T-Cell phenotyping in Cattle

Roos et al.

1 Cattle T Cell Phenotyping by an 8-Colour, 10-Parameter Panel

Eduard O. Roos¹, William Mwangi¹, Wilhelm Gerner¹, Ryan Waters¹, John A.
 Hammond^{1*}

4

¹ The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK

⁶ *Correspondence to: John Hammond; The Pirbright Institute, Ash Road, Pirbright,

7 Woking, Surrey, GU24 0N, UK. E-mail: john.hammond@pirbright.ac.uk

8

9 Abstract:

10 This multiplex staining panel was developed to differentiate cattle T cells into

11 conventional (CD4 and CD8) and unconventional ($\gamma\delta$ -TCR) subsets as well as their

12 stage of differentiation and activation. The combination of CD45RO and CD62L

allows the identification of naïve ($T_{Naïve}$), central memory (T_{CM}), effector memory

14 (T_{EM}) and terminal effector (T_{TE}) T cells. Activated cattle T cells (T_{AV}) can be

15 identified by the cell surface expression of CD25. This panel was developed using

16 cryopreserved cattle peripheral blood mononuclear cells (PBMCs) and tested on

17 fresh as well as stimulated PBMCs. Therefore, this 8-colour, 10-parameter flow

18 cytometry panel simultaneously identifies cattle $T_{Naïve}$, T_{AV} , T_{CM} , T_{EM} , T_{TE} and $\gamma\delta$ -

19 TCR cells. This panel will improve our ability to examine T cell response to

20 pathogens and vaccines in cattle including the potential to identify previously

21 undescribed subpopulations. Furthermore, this panel can be readily optimised for

22 other bovid species as many of these reagents are likely to cross react.

23

24 Key terms:

Flow cytometry; cattle PBMC; T cells; naïve T cells; effector memory T cells; central
memory T cells; activated T cells; γδ T cells; T cell subsets

T-Cell phenotyping in Cattle

Roos et al.

27

28 Background:

29	Robust T cell responses are critical in the response to pathogen infection both for
30	clearance and the formation of strong and broad memory responses (1). Cattle, like
31	several other species, have a much higher proportion of $\gamma\delta$ T cells compared to CD4
32	and CD8 (2–4). Consequently, it is important to study the entire T cell compartment
33	simultaneously to fully characterise how immune protection arises and persists.
34	Furthermore, as the research climate focusses on One Health approaches, the ability
35	to study the immune response at high resolution in species that underpin global
36	food security is essential.
37	
38	Common to several non-model species, the first mAbs to study CD molecules on
39	cattle T cells were derived from mouse immunizations with whole cattle PBMC
40	populations or PBMC lysates. Antibodies were characterized in three international
41	workshops on ruminant antigens (2,5,6). Together with identification of cross-

42 reactive mAbs, this allowed the establishment of a basic toolbox to study cattle T

43 cells and various subsets within them (7). However, several limitations still exist for

44 the establishment of polychromatic flow cytometry staining panels. For example,

45 many of the current 371 human CD molecules do not have an antibody that cross

46 react with cattle. Another major limitation is the lack of useful mAbs that are

47 labelled to a wider range of fluorochromes. This makes it difficult to expand panels

48 beyond the three most common fluorochromes FITC (or AF488), PE and APC (or

49 AF647). By conjugating existing T cell markers in-house we were able to develop a

T-Cell phenotyping in Cattle

Roos et al.

50	cattle T cell panel that utilises eight colours excluding PE and APC-conjugated
51	antibodies. This allows the addition of specific antibodies, such as for cytokines or
52	transcription factors, that maximises the broader utility of this panel for individual
53	research needs. Additionally, if more of the available mAbs would be conjugated to
54	fluorochromes that are excited by the violet laser, the panel can be further expanded.
55	
56	This OMIP identifies all three main cattle T cell subsets (CD4, CD8 and $\gamma\delta)$, as well
57	as their subsets that are activated (T $_{\rm AV}$) or in the distinct differentiation states of
58	naïve (T $_{\text{Naïve}}$), central memory (T $_{\text{CM}}$), effector memory (T $_{\text{EM}}$) and terminal effector
59	(T_{TE}). The gating strategy we used initially identifies the two $\alpha\beta$ T cell subsets CD4
60	(mAb clones CC8/CC30) and CD8 (mAb clone CC63) as well as the $\gamma\delta$ T cells (mAb
61	clone GB21A) (2,8) (Fig. 1). Like in swine and chickens, $\gamma\delta$ T cells constitute a major
62	T cell subset in cattle blood and can comprise more than 50% of circulating T cells
63	(3,9). To identify activated T cells, CD25 (mAb clone IL-A111) can be used (8,10–12),
64	whereas the memory state of the cells can be defined using the CD45RO (mAb clone
65	IL-A116) and CD62L (mAb clone CC32) cell surface markers (6,8,13–15) (Fig. 1).
66	Using this gating strategy, the following known subsets can be identified for the
67	helper T cells, $T_{Naïve}$ (CD3+ $\gamma\delta$ -TCR-CD4+CD25-CD45RO-CD62L+), T_{CM} (CD3+ $\gamma\delta$ -TCR-CD4+CD25-CD62L+), T_{CM} (CD3+ $\gamma\delta$ -TCR-CD4+CD2+CD2+CD2+CD2+CD2+CD2+CD2+CD2+CD2+CD2
68	CD4+CD25-CD45RO+CD62L+), T _{EM} (CD3+ $\gamma\delta$ -TCR-CD4+CD25-CD45RO+CD62L-), T _{TE}
69	(CD3+ $\gamma\delta$ -TCR-CD4+CD25-CD45RO-CD62L-) and T _{AV} (CD3+ $\gamma\delta$ -TCR-CD4+CD25+).
70	Similarly, the cytotoxic T cells can be separated into $T_{Na\"ive}$ (CD3+ $\gamma\delta$ -TCR-
71	$CD8\alpha^+CD25^-CD45RO^-CD62L^+),\ T_{CM}\ (CD3^+\gamma\delta^-TCR^-CD8\alpha^+CD25^-CD45RO^+CD62L^+),$
72	$T_{EM} (CD3^+\gamma \delta\text{-}TCR\text{-}CD8\alpha\text{+}CD25\text{-}CD45RO\text{+}CD62L\text{-}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}CD62L\text{-}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}CD62RO\text{+}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}CD62RO\text{+}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}), T_{TE} (CD3^+\gamma \delta\text{-}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}), T_{TE} (CD3^+\gamma \delta\text{-}CD62RO\text{+}), T_{TE} (CD3^+\gamma \delta\text{-}), T_{TE} $

T-Cell phenotyping in Cattle

Roos et al.

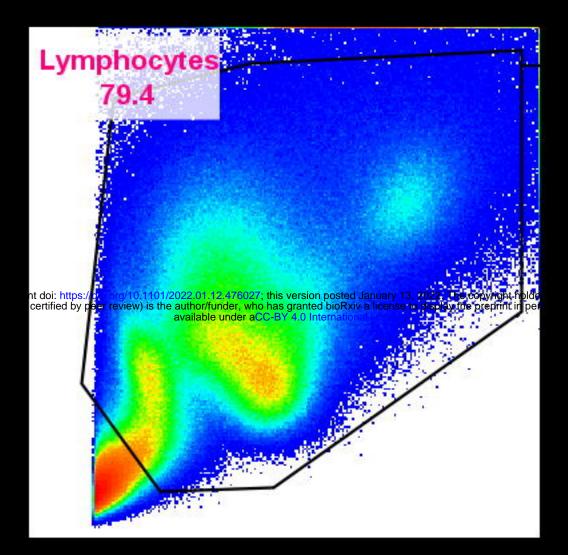
73	CD45RO-CD62L-) and T_{AV} (CD3+ $\gamma\delta$ -TCR-CD8 α +CD25+). Furthermore, $\gamma\delta$ T cells can
74	also be identified by (CD3+ $\gamma\delta$ -TCR+) (Fig. 1; Online Table 3). A major improvement
75	by this panel is the simultaneous analysis of all these T cell subsets in a single
76	sample, hence reducing the variation between replicates and the number of samples
77	needed per animal.
78	
79	The panel was designed and optimised on a BD LSRFortessa and was tested on a BD
80	Aria IIIU. The BD Aria IIIU allows for sorting of the T cell subsets. Further
81	adaptations to the panel are enabled by having both the PE and APC channel empty,
82	for which many antibodies are commercially available. If more reagents become
83	available in the violet channel, they can easily be added to the panel with only minor
84	influence on compensation requirements.
85	
86	In conclusion, this cattle T cell panel will advance the understanding of the cattle
87	immune response as it allows the measurement of all major T cell subsets and their
88	differentiation stage within a single sample.
89	
90	Similarity to published OMIPs:
91	None to date.
92	
93	Acknowledgements:
94	The authors wish to acknowledge the valuable input of Dr Katy Moffat for technical
95	support on the instruments. This project received funding from the European

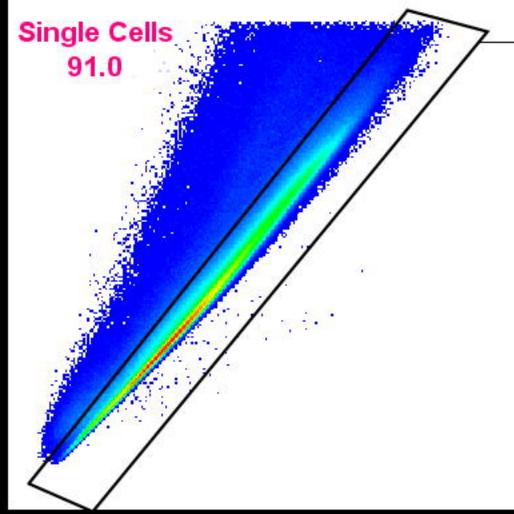
T-Cell phenotyping in Cattle

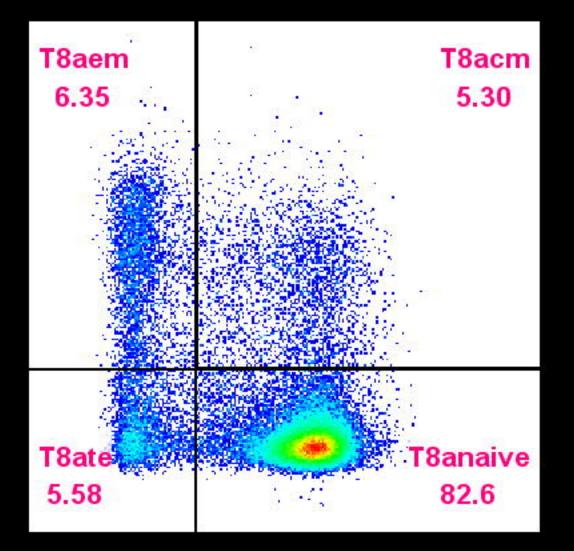
Roos et al.

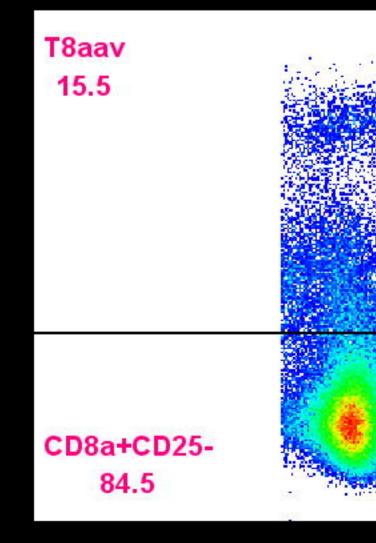
96	Union's Horizon 2020 research and innovation programme under the VetBioNet
97	grant agreement (731014). The authors would like to acknowledge the Pirbright
98	Flow Cytometry facility and the Immunological Toolbox unit supported by the
99	United Kingdom Research and Innovation- Biotechnology and Biological Sciences
100	Research Council awards (BBS/E/I/00007038 and BBS/E/I/00007039); JAH and
101	WG were further supported by BBS/E/I/00007030 and BBS/E/I/00007031.
102	
103	Literature Cited
104	1. Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4+ T cells in CD8+ T
105	cell memory. Nat. Rev. Immunol. 2016;16:102–111.
106	2. Davis WC, Brown WC, Hamilton MJ, Wyatt CR, Orden JA, Khalid AM, Naessens
107	J. Analysis of monoclonal antibodies specific for the $\gamma\delta$ TcR. Vet. Immunol.
108	Immunopathol. 1996;52:275–283.
109	3. Baldwin CL, Damani-Yokota P, Yirsaw A, Loonie K, Teixeira AF, Gillespie A.
110	Special features of $\gamma\delta$ T cells in ruminants. Mol. Immunol. 2021;134:161–169.
111	Available at: https://doi.org/10.1016/j.molimm.2021.02.028.
112	4. Telfer JC, Baldwin CL. Bovine gamma delta T cells and the function of gamma
113	delta T cell specific WC1 co-receptors. Cell. Immunol. 2015;296:76-86. Available at:
114	http://dx.doi.org/10.1016/j.cellimm.2015.05.003.
115	5. Howard CJ, Morrison WI, Bensaid A, Davis W, Eskra L, Gerdes J, Hadam M,
116	Hurley D, Leibold W, Letesson J-J, MacHugh N, Naessens J, O'Reilly K, Parsons KR,
117	Schlote D, Sopp P, Splitter G, Wilson R. Summary of workshop findings for
118	leukocyte antigens of cattle. Vet. Immunol. Immunopathol. 1991;27:21-27. Available

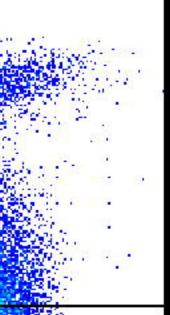
T-Cell phenotyping in Cattle

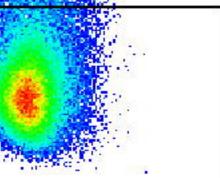

Roos et al.

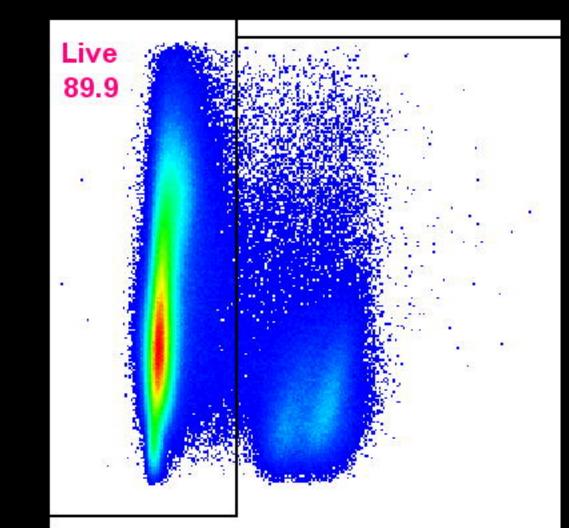

- 119 at: https://linkinghub.elsevier.com/retrieve/pii/016524279190072K.
- 120 6. Naessens J, Hopkins J. Introduction and summary of workshop findings. Vet.
- 121 Immunol. Immunopathol. 1996;52:213–235. Available at:
- 122 https://linkinghub.elsevier.com/retrieve/pii/0165242796055663.
- 123 7. Sopp P, Werling D, Baldwin C. Cross-reactivity of mAbs to human CD antigens
- 124 with cells from cattle. Vet. Immunol. Immunopathol. 2007;119:106–114. Available at:
- 125 https://linkinghub.elsevier.com/retrieve/pii/S0165242707002206.
- 126 8. Howard CJ, Naessens J. 4.1 Summary of workshop findings for cattle (Tables 1
- and 2). Vet. Immunol. Immunopathol. 1993;39:25–47. Available at:
- 128 https://linkinghub.elsevier.com/retrieve/pii/016524279390161V.
- 129 9. Baldwin CL, Telfer JC. The bovine model for elucidating the role of $\gamma\delta$ T cells in
- 130 controlling infectious diseases of importance to cattle and humans. Mol. Immunol.
- 131 2015;66:35–47. Available at: http://dx.doi.org/10.1016/j.molimm.2014.10.024.
- 132 10. Coussens PM, Sipkovsky S, Murphy B, Roussey J, Colvin CJ. Regulatory T cells in
- 133 cattle and their potential role in bovine paratuberculosis. Comp. Immunol.
- 134 Microbiol. Infect. Dis. 2012;35:233–239. Available at:
- 135 http://dx.doi.org/10.1016/j.cimid.2012.01.004.
- 136 11. Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S,
- 137 Peroni L, Fallacara F, Dima F, Balsari A, Turano A. Flow cytometric analysis of
- activation markers on stimulated T cells and their correlation with cell proliferation.
- 139 Cytometry 1997;27:71–6. Available at:
- 140 http://www.ncbi.nlm.nih.gov/pubmed/9000587.
- 141 12. Waters WR, Rahner TE, Palmer M V., Cheng D, Nonnecke BJ, Whipple DL.

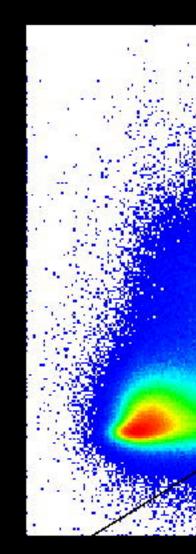

T-Cell phenotyping in Cattle

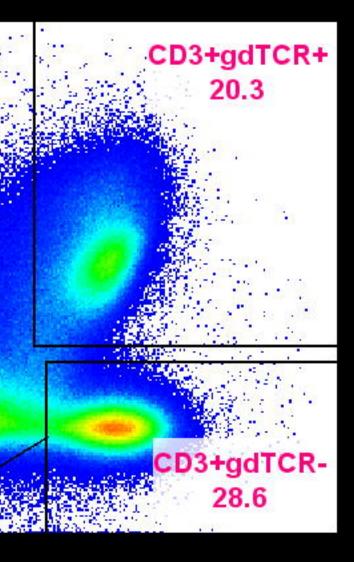

Roos et al.

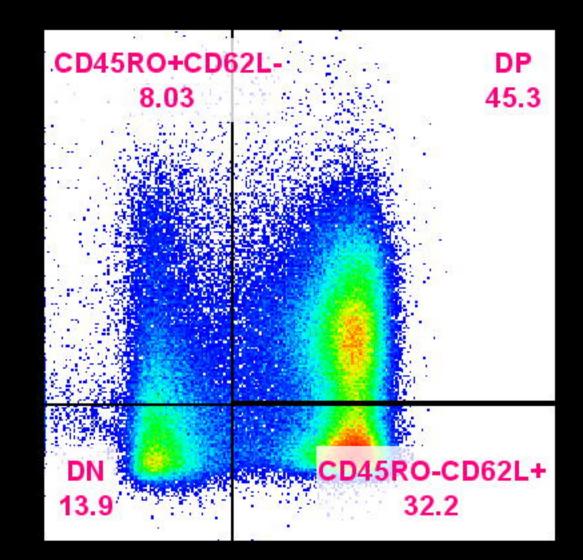

- 142 Expression of L-selectin (CD62L), CD44, and CD25 on activated bovine T cells.
- 143 Infect. Immun. 2003;71:317–326.
- 144 13. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions,
- and CAR-T immunotherapy. Cancers (Basel). 2016;8.
- 146 14. Bembridge GP, MacHugh ND, McKeever D, Awino E, Sopp P, Collins RA,
- 147 Gelder KI, Howard CJ. CD45RO expression on bovine T cells: relation to biological
- 148 function. Immunology 1995;86:537–44. Available at:
- 149 http://www.ncbi.nlm.nih.gov/pubmed/8567018%0Ahttp://www.pubmedcentral.
- 150 nih.gov/articlerender.fcgi?artid=PMC1384052.
- 151 15. Whelan AO, Villarreal-Ramos B, Vordermeier HM, Hogarth PJ. Development of
- an antibody to bovine IL-2 reveals multifunctional CD4 T EM cells in cattle naturally
- infected with bovine tuberculosis. PLoS One 2011;6:2–9.

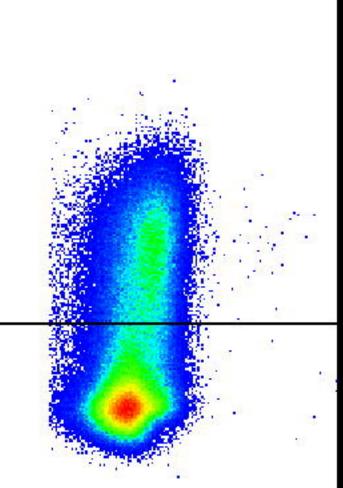


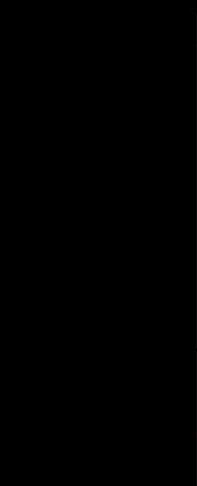


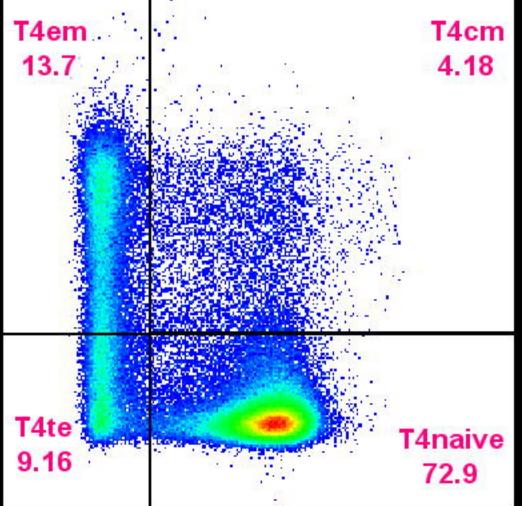





CD8a+ CD8a+CD4+ 21.0 0.65 CD8a-CD4-10.6 CD4+ THE REAL PROPERTY. 67.6




T4av 30.2


CD4+CD25-69.8

