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Abstract 15 

 16 

Nanopore long-read genome sequencing is emerging as a potential approach for the study of 17 

genomes including long repetitive elements like telomeres. Here, we report extensive 18 

basecalling induced errors at telomere repeats across nanopore datasets, sequencing platforms, 19 

basecallers, and basecalling models. We found that telomeres which are represented by 20 

(TTAGGG)n and (CCCTAA)n repeats in many organisms were frequently miscalled (~40-50% of 21 

reads)  as (TTAAAA)n, or as (CTTCTT)n and (CCCTGG)n repeats respectively in a strand-22 

specific manner during nanopore sequencing. We showed that this miscalling is likely caused by 23 

the high similarity of current profiles between telomeric repeats and these repeat artefacts, 24 

leading to mis-assignment of electrical current profiles during basecalling. We further 25 

demonstrated that tuning of nanopore basecalling models, and selective application of the tuned 26 

models to telomeric reads led to improved recovery and analysis of telomeric regions, with little 27 

detected negative impact on basecalling of other genomic regions. Our study thus highlights the 28 

importance of verifying nanopore basecalls in long, repetitive, and poorly defined regions of the 29 

genome, and showcases how such artefacts in regions like telomeres can potentially be 30 

resolved by improvements in nanopore basecalling models. 31 
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Background 40 

 41 

Telomeres are protective caps found on chromosomal ends, and are known to play critical roles 42 

in a wide range of biological processes and human diseases [1,2]. These highly repetitive 43 

structures enable cells to deal with the “end-replication problem” through the action of 44 

telomerase which adds telomeric repeats to the ends of chromosomes. In cancer, the 45 

reactivation of telomerase to drive telomere elongation is estimated to occur in as many as 90% 46 

of human cancers, and has been shown experimentally to be critical for malignant 47 

transformation [3–8]. As one ages, telomeres are also known to progressively shorten, and are 48 

thus thought to also play a central role in the process of aging [9–11]. In many organisms, 49 

telomeres are characterized by (TTAGGG)n repeats that vary in length of between 2 and 20kb 50 

long, which are not readily resolved by short-read sequencing approaches. Given the 51 

importance of telomeres in a wide range of biological process and the technical challenges 52 

associated with their analysis using short-read sequencing, there is significant interest in 53 

applying emerging techniques like long-read sequencing to study these repetitive structures. 54 

 55 

Long-read sequencing has emerged as a powerful technology for the study of long repetitive 56 

elements in the genome. Two main platforms, Single Molecule Real Time (SMRT) sequencing, 57 

and Nanopore sequencing, have been developed to generate sequence reads of over 10 58 

kilobases from DNA molecules [12,13]. In SMRT Sequencing, the incorporation of DNA 59 

nucleotides is captured real time via one of four different fluorescent dyes attached to each of 60 

the four DNA bases, thereby allowing the corresponding DNA sequence to be inferred. 61 

Sequencing of the same DNA molecule multiple times in a circular manner further allows highly 62 

accurate consensus sequence of the DNA molecule to be generated in a process termed Pacific 63 

Biosciences (PacBio) High-Fidelity (HiFi) sequencing [12]. During Nanopore sequencing, the 64 

ionic current, which varies according to the DNA sequence, is measured while a single-stranded 65 

DNA molecule passes through a nanopore channel. The electrical current measurement is then 66 

converted into the corresponding DNA sequence using a deep neural network trained on a 67 

collection of ionic current profiles of known DNA sequences [13]. Notably, both platforms enable 68 

long DNA molecules of more than 10 kilo-base-pairs to be routinely sequenced and are thus 69 

highly suited for the study of long repetitive elements like telomeres.   70 

 71 

 72 

Results and discussion 73 

 74 

In our analysis of telomeric regions with nanopore long-read sequencing in the recently 75 

sequenced and assembled CHM13 sample [14,15], we surprisingly observed that telomeric 76 

regions were frequently miscalled as other types of repeats in a strand-specific manner. 77 

Specifically, although human telomeres are typically represented by (TTAGGG)n repeats 78 

(Supplementary Figure 1a), these regions were frequently recorded as (TTAAAA)n repeats 79 

(Figure 1a,b, Supplementary Figure 1 and 2a). At the same time, when examining the reverse 80 

complementary strand of the telomeres which are represented as (CCCTAA)n repeats, we 81 

instead observed frequent substitution of these regions by (CTTCTT)n and (CCCTGG)n repeats 82 

(Figure 1a,b, Supplementary Figure 1 and 2b,c). Notably, these artefacts were not observed 83 

on the CHM13 reference genome [14,15], or PacBio HiFi reads from the same site (Figure 84 

1a,b), suggesting that these observed repeats are artefacts of Nanopore sequencing or the 85 

base-calling process, rather than real biological variations of telomeres. Further, these repeat-86 

calling errors could be observed on all chromosomal arms for the CHM13 sample 87 

(Supplementary Figure 1b,c), and were thus not restricted to a single chromosomal arm. The 88 

examination of each telomeric long-read also indicates that these error repeats frequently co-89 

occur with telomeric repeats at the ends of each read (Figure 1c, Supplementary Figure 3). 90 
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Together, our results suggest that telomeric regions are frequently misrepresented as other 91 

types of repeats in a strand-specific manner during Nanopore sequencing. 92 

 93 

We then assessed if these errors are broadly observed in other studies or are specific to the 94 

CHM13 dataset from the Telomere-to-Telomere consortium. To assess this, we examined the 95 

previously published NA12878 and HG002 Nanopore genome sequencing datasets [12,13,16]. 96 

Remarkably, the same basecalling errors, TTAGGG�TTAAAA, CCCTAA�CTTCTT, and 97 

CCCTAA�CCCTGG, were similarly observed at telomeres in these datasets (Figure 1d, 98 

Supplementary Figure 4a), suggesting that these basecalling errors at telomeres are broadly 99 

observed across multiple studies. Remarkably, between 40-60% of reads at telomeric regions in 100 

these three datasets display at least one of these type of basecalling repeat artefacts for the 101 

Nanopore sequencing platform (Supplementary Figure 4b), while these errors were not 102 

observed in the PacBio HiFi datasets for the same samples (Supplementary Figure 4b). 103 

Further, we also partitioned these datasets based on the sequencing platforms used to generate 104 

them, and noted that basecalling error repeats are observed across all three nanopore 105 

sequencing platforms (MinION, GridION, PromethION) (Figure 1d, Supplementary Figure 4a). 106 

Together, these results show that these error repeats extend across nanopore sequencing 107 

datasets and sequencing platforms. 108 

 109 

We then questioned if these error repeats are unique to specific nanopore basecallers or 110 

basecalling models. We extracted reads from chromosomal ends, and re-basecalled ionic 111 

current data of these reads using different basecallers and basecalling models. Using the 112 

production-ready basecaller Guppy5 (Oxford Nanopore Technologies), and the developmental-113 

phase basecaller Bonito (Oxford Nanopore Technologies), we noticed that these basecalling 114 

error repeats can be readily observed across both basecallers (Figure 1e, Supplementary 115 

Figure 5 and 6). Further, these error repeats were also observed when different basecalling 116 

models were applied (Figure 1e). Significantly, we also observed that the “fast” basecalling 117 

mode in Guppy led to almost complete loss of the (CCCTAA)n strand (Figure 1e, 118 

Supplementary Figure 5a), while the “HAC” basecalling model enabled both strands to be 119 

recovered, highlighting that the basecalling model applied can affect strand-specific recovery of 120 

telomeric reads. Together, these results suggest that error repeats are observable across 121 

nanopore basecallers, and basecalling models. 122 

 123 

To determine the cause for these repeat-calling errors, we then examined the ionic current 124 

profiles of these repeats. We thus generated ionic current profiles of these telomeric repeats 125 

and these error repeats, induced by the nanopore basecallers, using known mean current 126 

values of different 6-mers (Methods). Remarkably, we observed a high degree of similarity 127 

between current profiles between telomeric repeats and these basecalling errors (Figure 1f). 128 

Specifically, we observed that (TTAGGG)n telomeric repeats had a high degree of similarity with 129 

the (TTAAAA)n error repeats generated by the Bonito base-caller  (Pearson correlation = 0.9928, 130 

Euclidean distance=4.9934) (Supplementary Figure 7a-c). Similarly, (CCCTAA)n current 131 

profile also showed high similarity with (CCCTGG)n repeats (Pearson correlation = 0.9783, 132 

Euclidean distance = 4.687), and reasonably good similarity with (CTTCTT)n repeats (Pearson 133 

correlation = 0.6411, Euclidean distance = 19.384) (Supplementary Figure 7a-c),. Together, 134 

these results suggest that similarities in current profiles between repeat sequences are possible 135 

causes for repeat-calling errors at telomeric repeats. 136 

 137 

We then examined if repeat-calling errors may extend to other repetitive sequences beyond 138 

telomeric sequences. To address this, we search for other repeat pairs with similar current 139 

profiles that may be susceptible to these repeat-calling errors. We simulated and performed 140 

pairwise comparison of current profiles for all 6-mer repeats (n=8,386,560 comparisons) 141 
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(Methods). Using similar Pearson correlation (≥0.99) and Euclidean distance cutoffs (≤5) as 142 

observed for telomeric repeat errors identified in this study (Supplementary Figure 7a-c), we 143 

identified a further 2577 pairs of repeats with similar current profiles (Supplementary Table 1, 144 

Supplementary Figure 7d). For instance, we found that (TTAGGG)n telomeric repeats also 145 

showed high similarities in current profiles with repeats with single-nucleotide substitutions like 146 

(TTAAGG)n, (TTAGAG)n and (TTGGGG)n (Supplementary Figure 7d,e). Repeat sequences 147 

like (GCTGCT)n and (AACGGC)n that differed drastically at the sequence level, but shared 148 

similar current profiles were also observed (Supplementary Figure 7d,f). Further, we also 149 

examined the unmappable pool of CHM13 nanopore reads after mapping it to the CHM13 150 

reference assembly. Remarkably, a significant pool of reads with long (GT)n repeats were 151 

readily observed (Supplementary Figure 8). Interestingly, (GTGTGT)n repeats were also found 152 

to have high similarities in current profiles with (CTCTCT)n repeats (Supplementary Figure 7d, 153 

Supplementary Table 1), suggesting that the pool of unmappable (GT)n reads may include 154 

(CT)n repeats. Collectively, our results suggests that these basecalling error repeats may be 155 

observed at other repetitive regions, beyond telomeres. 156 

 157 

To resolve these basecalling errors at telomeres, we then attempted to tune the nanopore 158 

basecaller by providing it with more training examples of telomeres (Figure 2a). Notably, model 159 

training was performed with a low learning rate to ensure that the majority of the model does not 160 

get affected during training while ensuring that minor adjustments in the model can be made to 161 

accurately basecall telomeres. Specifically, we tuned the deep neural network model underlying 162 

the Bonito basecaller by training it at a low learning rate with ground truth telomeric sequences 163 

extracted from the CHM13 reference genome, and current data of the corresponding reads 164 

(Methods). As two Nanopore PromethION runs were performed on the CHM13 dataset, we 165 

used the data from one run for training (run225) and tuning of the basecaller, and held out the 166 

data from the second run (run 226) for evaluation of our tuned basecaller. With this approach, 167 

we see a significant improvement in the base-calls of both the telomeres, and sub-telomeric 168 

regions on the training data and held out dataset with clearly observable decrease in errors on 169 

the chromosomal ends (Figure 2b, Supplementary Figure 9a-d). Together, our results indicate 170 

that a nanopore base-caller can be tuned to more accurately base-call telomeric regions by 171 

providing additional training examples. 172 

 173 

As it is computationally more efficient to redo repeat-calling only for the small fraction of 174 

problematic telomeric reads rather than all reads, we developed an overall strategy to select 175 

these telomeric reads for re-basecalling with the tuned Bonito+telomeres basecaller (Figure 2c). 176 

To select telomeric reads for selective re-basecalling, we relied on an observation from the 177 

CHM13 reference genome and nanopore sequencing datasets. Specifically, we noticed that 178 

telomeric reads which maps to the ends of the CHM13 reference genome tend to show a high 179 

frequency of telomeric, or basecalling error repeats as compared to the rest of the genome 180 

(Supplementary Figure 10). We therefore utilized this observation to separate the non-181 

telomeric reads, from the candidate telomeric reads (Figure 2c, Methods). These telomeric 182 

reads were then re-base-called with the tuned Bonito basecaller before being recombined with 183 

the pool of non-telomeric reads. Remarkably, with this strategy, we observed a significant 184 

improvement in recovery of telomeric reads with (TTAGGG)n and (CCCTAA)n repeats (from 384 185 

to 476 TTAGGG and 373 to 686 CCCTAA reads) (Figure 2d). At the same time, a sharp 186 

reduction of these basecalling repeat errors was also observed (151 to 17 TTAAAA reads, 561 187 

to 48 CTTCTT reads, and 337 to 20 CCCTGG reads) (Figure 2d). Together, these results 188 

suggests that our “selective tuning” approach for fixing basecalling errors at telomeres can 189 

improve recovery of telomeric reads while reducing telomeric basecalling repeat artefacts. 190 

 191 
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We further evaluated our approach for possible impact on overall basecalling accuracy. While a 192 

reduction in global basecalling accuracy was observed (~1-2%) when our tuned basecaller was 193 

directly applied to the full dataset, caused likely by miscalling of endogenous (CTTCTT)n 194 

genomic repeats as (CCCTAA)n, this loss of global basecalling accuracy could be avoided by 195 

applying our basecaller to telomeric reads alone. Concordant with this, we did not observe 196 

changes in overall basecalling accuracy with our telomere-selective tuning approach (Figure 197 

2e). These results indicate that our telomere-selective tuning approach has negligible impact on 198 

basecalling accuracy for the rest of the genome. 199 

 200 

 201 

Conclusion 202 

 203 

In this study, we showed that basecalling errors can be widely observed at telomeric regions 204 

across nanopore datasets, sequencing platforms, basecallers, and basecalling models. We 205 

further showed that these strand-specific basecalling errors were likely induced by similarities in 206 

current profiles between different repeat types. To resolve these basecalling errors at telomeres, 207 

we devised an overall strategy to re-basecall telomeric reads using a tuned nanopore basecaller. 208 

More broadly, our study highlights the importance of verifying nanopore basecalls in long, 209 

repetitive and poorly defined regions of the genome. For instance, this can be done either with 210 

an orthogonal platform, or at a minimum by ensuring nanopore basecalls between opposite 211 

strands are concordant. In the future, we anticipate that further improvements in the nanopore 212 

basecaller or basecalling model as demonstrated in this study will potentially lead to the 213 

reduction or elimination of these basecalling artefacts. 214 

 215 

  216 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475254
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Methods 217 

 218 

Nanopore and PacBio Datasets 219 

Nanopore and PacBio HiFi datasets for the CHM13 sample were downloaded directly from the 220 

telomere-to-telomere consortium (https://github.com/marbl/CHM13) 221 

 222 

Nanopore dataset for GM12878 was obtained from the Nanopore WGS consortium 223 

(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md). PacBio HiFi 224 

dataset for GM12878 was obtained from the repository at the SRA database (SRP194450), and 225 

downloaded from the following link 226 

(https://www.ebi.ac.uk/ena/browser/view/SRR9001768?show=reads) 227 

 228 

The HG002 PacBio HiFi and Nanopore datasets were downloaded from the Human 229 

Pangenome Reference Consortium (https://github.com/human-230 

pangenomics/HG002_Data_Freeze_v1.0). Specifically, the HG002 Data Freeze (v1.0) 231 

recommended downsampled data mix was downloaded. The PacBio HiFi dataset corresponds 232 

to ~34X coverage of Sequel II System with Chemistry 2.0. The Nanopore dataset corresponds 233 

to 60x coverage of unsheared sequencing from 3 PromethION flow cells from Shafin et al [17]. 234 

 235 

Extraction of candidate telomeric reads 236 

Telomeric reads were extracted by mapping all reads to the CHM13 draft genome assembly 237 

(v1.0) obtained from the telomere-to-telomere consortium using Minimap2 (version 2.17-r941). 238 

Subsequent to that, reads that mapped to within 10 kilobasepairs of the start and end of each 239 

autosome and X-chromosome were then extracted using SAMtools (version 1.10).  240 

 241 

Co-occurrence matrix 242 

Candidate PacBio HiFi and Nanopore telomeric reads were first extracted as described above, 243 

and then converted into the FASTA format using SAMtools (version 1.10). Subsequent to that, 244 

custom Python scripts were used to assess if each of the reads contain at least four consecutive 245 

counts of the repeat sequence of interest (e.g. (TTAGGG)4). This information is then used to 246 

generate a pair-wise correlation matrix as depicted with R in the main text.  247 

 248 

Basecalling of nanopore data with different basecallers and basecalling models 249 

Basecalling of Nanopore data was done using Guppy (Version 4.4.2), Guppy (Version 5.0.16) 250 

and Bonito v0.3.5 (commit d8ae5eeb834d4fa05b441dc8f034ee04cb704c69). For Guppy4, four 251 

different basecalling models were applied (guppy_dna_r9.4.1_450bps_fast, 252 

guppy_dna_r9.4.1_450bps_hac, guppy_dna_r9.4.1_450bps_prom_fast, 253 

guppy_dna_r9.4.1_450bps_prom_hac). For Guppy 5, six different basecalling models were 254 

applied (dna_r9.4.1_450bps_fast, dna_r9.4.1_450bps_hac, dna_r9.4.1_450bps_sup, 255 

dna_r9.4.1_450bps_fast_prom, dna_r9.4.1_450bps_hac_prom, dna_r9.4.1_450bps_sup_prom) 256 

For Bonito, the v1, v2, v3, v3.1 and default basecalling models were applied. 257 

 258 

Current profiles for different repeat sequences 259 

The mean current level for different k-mers sequenced by Nanopore sequencing was obtained 260 

from the k-mer models published by Oxford Nanopore 261 

(https://github.com/nanoporetech/kmer_models/tree/master/r9.4_180mv_450bps_6mer). 262 

Circular permutations of each 6-mer of interest was generated, and their corresponding mean 263 

current level extracted from the k-mer models. The current profiles for each of the indicated 264 

repeat sequences were then plotted and depicted in the figure. 265 

 266 

  267 
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Pairwise comparison of all possible k-mers 268 

Current profile for each 6-mer repeat sequence was generated using the published k-mer 269 

models as described above. Pairwise comparisons of all possible 6-mer repeat current profiles 270 

was then performed (8,386,560 pairs in total). A corresponding (i) Pearson correlation value, (ii) 271 

mean-centered Euclidean distance, and (iii) mean current difference for each pair of 6-mer 272 

repeat current profiles were then generated. Pairs of repeats with a Pearson correlation value ≥ 273 

0.99 and Euclidean distance ≤ 5 were selected as putative repeat pairs that can be miscalled. 274 

 275 

Tuning of bonito model 276 

The default model from Bonito v0.3.5 (commit d8ae5eeb834d4fa05b441dc8f034ee04cb704c69) 277 

was used as the base model for model tuning. The training dataset needed for the training 278 

process was generated from the telomeric reads from a PromethION run in the CHM13 dataset 279 

(run225). More broadly, we then generate the training dataset by matching the current profiles 280 

from the Nanopore run to ground truth sequences that we extracted from the CHM13 draft 281 

reference genome assembly (v1.0) using custom written code. 282 

 283 

Specifically, these telomeric reads were first basecalled using the initial Bonito basecalling 284 

model, and then mapped back to the CHM13 draft reference genome assembly (v1.0). This 285 

allowed each telomeric read to be properly assigned to its corresponding chromosomal arm with 286 

its sub-telomeric sequence. Nonetheless, as the telomeric region of the same read could not be 287 

properly mapped to the telomeric repeats due to the repeat errors, there was difficulty in 288 

assigning the nanopore current data to the correct ground truth sequences in the reference 289 

genome. As such, the presume length of sequences to extract was estimated using the 290 

basecalling repeat error sequences, and the same length of sequences were then extracted 291 

from the CHM13 reference genome to serve as ground truth sequences. With this idea and with 292 

custom Perl script, we were able to generate a set of ground truth sequences and signals for 293 

model tuning. These data were then formatted into the corresponding python objects required 294 

by the Bonito basecaller with custom Python scripts. Using the tune function in Bonito and with 295 

our prepared training dataset, we were then able to train the basecaller to convergence. 296 

 297 

Selective application of tuned basecaller to telomeric reads 298 

We applied our tuned basecaller by first extracting candidate telomeric reads for re-basecalling. 299 

This was done by enumerating the total 3-mer telomeric (TTAGGG, CCCTAA) and repeat 300 

artefact count (TTAAAA, CTTCTT, CCCTGG) on each read. Reads with at least 10 total counts 301 

of these repeats were isolated and their readnames noted. These reads were then excluded 302 

from the total pool of reads via their readnames, and basecalled separately using our tuned 303 

basecaller using the fast5 data of these reads. Following basecalling with the tuned basecaller, 304 

these reads were then recombined with the main pool of reads. 305 

 306 

 307 

 308 

Abbreviations 309 

PacBio: Pacific Biosciences 310 

SMRT: Single Molecule Real Time 311 

 312 
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 428 

Figure 1 Strand-specific Nanopore basecalling errors are pervasive at telomeres. (a,b) 429 

IGV screenshot illustrating the three types of basecalling errors found on the forward and 430 

reverse strands of telomeres for Nanopore sequencing. (TTAGGG)n on the forward strand of 431 

Nanopore sequencing data was basecalled as (TTAAAA)n while (CCCTAA)n on the reverse 432 
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strand was basecalled as (CTTCTT)n and (CCCTGG)n. PacBio HiFi data generated from the 433 

same cell line (CHM13) is depicted as a control. Reference genome indicated in the plot 434 

corresponds to the chm13 draft genome assembly (v1.0). (c) Co-occurrence heatmap 435 

illustrating the frequency of co-occurrence of repeats corresponding to natural telomeres, or to 436 

basecalling errors in PacBio HiFi and Nanopore long-reads found at chromosomal ends (within 437 

10kb of annotated end of the reference genome). Diagonal of co-occurrence matrix represents 438 

counts of long-reads with only a single type of repeats observed. (d) Basecalling errors at 439 

telomeres are observed across different nanopore datasets and sequencing platforms. (e) 440 

Basecalling errors at telomeres are observed different nanopore basecallers and basecalling 441 

models. Guppy5 and the Bonito basecallers, and different bascalling models for each bascaller, 442 

were used to basecall telomeric reads in the CHM13 PromethION dataset (reads that mapped 443 

to flanking 10kb regions of the CHM13 reference genome). (f) Basecalling errors share similar 444 

nanopore current profiles as telomeric repeats. Current profiles for telomeric and basecalling 445 

error repeats were plotted based on known mean current profiles for each k-mer (Methods). 446 

 447 

 448 
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449 

Figure 2 Selective re-basecalling of telomeric reads resolves basecalling errors at 450 

telomeres. (a) Approach for tuning the bonito basecalling model for improving basecalls at 451 

telomeres. (b) Tuned bonito basecalling model leads to improvement in basecalls at telomeric 452 

regions. IGV screenshots of telomeric region (chr2q) in the CHM13 dataset basecalled using the 453 

default bonito basecaller, and the tuned bonito basecalling model is as depicted. (c) Overall 454 

approach for selecting and fixing telomeric reads in nanopore sequencing datasets. Telomeric 455 

reads are selected (Methods), and rebasecalled using the tuned bonito basecalling model. (d) 456 

The selective tuning approach leads to improved recovery of telomeric reads, and decrease in 457 
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the number of reads with basecalling artefacts. Evaluation was performed on the held out test 458 

dataset (run226). (e) The ‘selective basecalling’ approach leads to little detected negative 459 

impact on basecalling of other genomic regions. The sequence similarity of all reads to the 460 

reference genome for three approaches for basecalling of nanopore reads was evaluated. They 461 

are applying the default bonito basecalling model to all reads (untuned bonito model), applying 462 

the tuned bonito basecalling model to all reads (tuned bonito model), and applying the tuned 463 

bonito basecalling model selectively to telomeric reads only (selective tuning of telomeric reads). 464 

The density plot depicts the sequence similarity of each read against the CHM13 reference 465 

genome as assessed using minimap2. 466 

  467 
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 468 

 469 

Supplementary Figure 1 Additional screenshots of basecalling repeat errors found on 470 

different chromosomal arms. (a) Schematic depicting sequence and orientation of telomeric 471 

repeat sequences on the p-arms (arm on the left in the schematic) and q-arms (arm on the right 472 

of the schematic) of a chromosome. Note that the forward strand for the arm on the left, and 473 

reverse strand for the arm on the right are “C-rich strands” and characterized by (CCCTAA)n 474 

repeats in a 5’-to-3’ direction. Also note that the reverse strand for the arm on the left, and 475 

forward strand for the arm on the right are “G-rich strands” and characterized (TTAGGG)n 476 
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repeats in a 5’-to-3’ direction. (b-c) Screenshots depicting additional representative examples of 477 

chromosomal arms with basecalling error repeats.  These are (b) chromosome 2 and (c) 478 

chromosome 11. Screenshots were extracted from the Integrative Genomics Viewer for the 479 

CHM13 long-read dataset mapped against the CHM13 reference genome. Related to Figure 1a. 480 

 481 
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482 

Supplementary Figure 2 Examples of long-reads with three types of basecalling error 483 

repeats found at telomeres. (a-c) Sequences and readnames of representative long-reads 484 

with the three reported types of basecalling error repeats are as depicted. The region with the 485 

basecalling error repeats is highlighted in red. The three type of basecalling errors found on 486 

each long read are (a) (TTAGGG)n to (TTAAAA)n, (b) (CCCTAA)n to (CTTCTT)n and (c) 487 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475254
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

(CCCTAA)n to (CCCTGG)n. Note that (b) and (c) represents the reverse complementary 488 

sequence of the actual nanopore long-read sequence. Also note that the repeats were found on 489 

the end of each read as expected given that telomeric repeats are typically found on the end of 490 

the chromosomes. 491 

  492 
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493 

Supplementary Figure 3 Co-occurrence heatmap illustrating the frequency of co-494 

occurrence of telomeric repeats and basecalling errors for the CHM13 Nanopore dataset 495 

generated at different sites. These are (a) National Human Genome Research Institute 496 

(NHGRI), (b) University of Nottingham  (UNottingham), (c) University of California, Davis 497 

(UCDavis) and (d) University of Washington (UWashington). The sequencing platforms used for 498 

sequencing at each of the sites are also as indicated. This figure is related to Figure 1b. 499 

  500 
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501 

Supplementary Figure 4 Frequency of telomeric repeat errors in different Nanopore 502 

sequencing dataset and sequencing platforms. (a) Frequency of basecalling error repeats 503 

on three different cell lines generated by different Nanopore sequencing platforms.  This figure 504 

is an extension Figure 1d. (b) Aggregated fraction of basecalling error repeats for different cell 505 

lines and datasets. 506 

 507 
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510 

Supplementary Figure 5 Frequency of telomeric repeat errors in different Nanopore 511 

basecallers. (a) Frequency of basecalling error repeats for different basecallers (Guppy4, 512 

Guppy5 and Bonito) and basecalling models. This figure is an extension of Figure 1e. (b) 513 

Aggregated fraction of basecalling error repeats for different basecallers and basecalling models. 514 

 515 
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517 

Supplementary Figure 6 Co-occurrence heatmap for different Nanopore basecalling 518 

models. Different nanopore basecallers and basecalling models were applied to the CHM13 519 

Nanopore promethion datasets. The frequency of telomeric repeats and basecalling artefacts 520 

observed on reads obtained are as depicted. 521 
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522 

Supplementary Figure 7 Similarities between current profiles for all possible pairs of 6-523 

mer repeats. (a-c) Heatmaps depicting the Euclidean distances, Pearson correlation, and mean 524 

current differences between current profiles between all possible 6-mer repeat sequences. 525 

These are depicted as pairwise plots for (a) the Euclidean distances vs. the Pearson correlation, 526 

(b) the mean current difference vs. the Pearson correlation, and (c) the mean current difference 527 

vs. the Euclidean distance. The pairwise comparisons between the telomeric repeats and the 528 

observed basecalling repeat artifacts are also highlighted in the plots. (d) Example pairs of k-529 

mer repeats with similar current profiles are as indicated. The nucleotides in k-mer 2 that differs 530 

from k-mer 1 is underlined to highlight the nucleotides that differ between the two types of 531 
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repeats. (e-f) Current profiles for repeats which were predicted to be highly similar to each other. 532 

These are depicted for (e) TTAGGG telomeric repeats and telomere-like repeat sequences and 533 

(f) GCTGCT repeat sequences that were highlighted in purple in Supplementary Figure 7d. 534 

 535 

  536 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475254
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

537 

Supplementary Figure 8 Example of reads with (GT)n repeat sequences in the CHM13 538 

dataset. (a-b) Two representative reads from the CHM13 nanopore sequencing dataset with 539 

(GT)n repeat sequences. (c) Read length distribution of unmappable (GT)n repeats (number of 540 

repeats ≥12) in the CHM13 nanopore dataset. 541 
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543 

Supplementary Figure 9 Additional examples for the performance of the tuned bonito 544 

basecaller on telomeres on other chromosomal arms. The tuned model was applied to the 545 

training dataset used for model training, and on an additional held out test dataset that was not 546 

used during model training. IGV screenshots of the default and tuned bonito basecaller on the 547 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475254
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

training and testing dataset for the chromosomal arms (a) chr1q, (b) chr3q, (c) chr11p and (d) 548 

chr12p are as depicted. Related to Figure 2b. 549 

 550 
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552 

Supplementary Figure 10 Histograms depicting the frequencies of 3-mer repeats on 553 

reads at telomeres and on reads found at the rest of the genome in the CHM13 dataset. 554 

(a-b) The sum of 3-mer telomeric repeats [(TTAGGG)3 (CCCTAA)3] and basecalling error 555 

repeats [(TTAAAA)3, (TTTTAA)3, (CTTCTT)3, (AAGAAG)3, (CCCTGG)3, (CCAGGG)3] on (a-b) 556 

each long-read or (c-d) genomic bin are as depicted on the x-axis of each histogram. The 557 

histograms represent the frequency of these repeats on (a) all long-reads in the CHM13 dataset, 558 

(b) telomeric reads in the CHM13 dataset, (c) 20 kb genomic bins with 10 kb moving window for 559 

the full CHM13 reference genome,  (d) and for the 10 genomics bins on each chromosomal end 560 

of the CHM13 genome. 561 
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Supplementary Tables 564 

 565 

Supplementary Table 1 List of k-mers with high similarities in current profiles. The 566 

pearson correlation, Euclidean distance, and mean current difference between each pair of k-567 

mer is as presented in the table. 568 
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