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Abstract

By applying the principle of maximum entropy, we demonstrate the
universality of the spatial distributions of the cone photoreceptors in the
retinas of vertebrates. We obtain Lemâıtre’s law as a special case of our
formalism.
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1 Introduction

The principle of maximum entropy provides an estimation for the underlying
probability distribution of the observed data that corresponds best to the current
available information about the system [1, 2]. It has been used in fields as diverse
as physics [3, 4], biology [5], ecology [4, 6], and natural language [7]. The
philosophy behind this approach is to describe and predict the experimental
observations by making the fewest number of assumptions (constraints), while
it assumes no explicit underlying dynamics.

One of the main challenges in applying the principle of maximum entropy is
to identify the constraints that should be imposed on the system. The authors
of [8] recognized that, in the case which the experiments are repeatable, the
expected value of the likelihood entropy is a relevant information that should
be considered as a constraint; although, for a given system, its value is mostly
unknown. In the present paper, we adopt this approach and recast it in the
context of biology in order to be applicable to complex multicellular systems
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and develop it further. In a nutshell, we look for the configuration of biolog-
ical receptors that maximizes the entropy, while the value of the extracellular
microenvironmental entropy has been imposed as a constraint; this approach
allows us to interpret the involved free parameter (Lagrange multiplier) as a
coarse-grained sensing parameter, which quantifies how cells overall perceive
their microenvironments. This idea that the organization of biological systems
stems from an underlying optimization problem goes back to D’Arcy Thomp-
son, which in his seminal work, On Growth and Form [9], he argues for the case
of energy minimization, which leads, for example, to the prediction of cellular
packing geometries in two-dimensional networks [10]. These geometric proper-
ties, obtained on the basis of the physical properties of the epithelial cells, can
be considered as the factors that control the development and function of an
organism [9]. In essence, here, we are replacing the energy minimization with
the entropy maximization, with the advantage of ignoring the involved forces.

In this paper, we apply the aforementioned approach to the retinal cone
photoreceptor mosaics. Cone photoreceptor cells are wavelength-sensitive re-
ceptors in the retinas of vertebrate eyes, which are responsible for color vision.
The spatial distributions of these cells are commonly referred to as retinal cone
photoreceptor mosaics [11]. Cone mosaic patterns vary among different species,
which in each case it may reflect the evolutionary pressures that give rise to vari-
ous adaptations to specific visual needs of a particular species with respect to its
lifestyle; although, in most cases, the adaptive value of a particular cone mosaic
is unknown [12]. From the perspective of the gene regulatory mechanisms, the
most fundamental questions, such as: what are the mechanisms which control
the mostly random distributions of the cone subtypes in the human retina? or,
what migration mechanism determines the highly regular and ordered patterns
of the cone subtypes in the retina of the zebrafish?, remain unanswered [13].

Our goal, here, is to establish a parameter, if it exists, which could play a
role as a conserved quantity in the retinal patterning of different species. To
this end, we employ the principle of maximum entropy, as explained earlier,
without invoking any specific biological mechanisms. This allows us to identify
a conserved coarse-grained retinal factor, called collective sensing, in divergent
species of: rodent, dog, monkey, human, fish, and bird.

This paper is organized as follows: in Sec. 2, we formulate the entropy
maximization problem; therein, we derive the virial equation of state for two-
dimensional cellular mosaics, known as Lemâıtre’s law, as a special case of our
formalism. We apply the obtained formulas, in Sec. 3, to the spatial distributions
of the cone photoreceptors in the retinas of different vertebrates and demonstrate
the predictive power of our approach besides its explanatory nature. In Sec. 4, by
using statistical analyses, we shed light on the obtained results. We summarize
and conclude in Sec. 5.
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2 Entropy maximization

In statistical mechanics, in order to obtain the Boltzmann distribution from the
principle of maximum entropy, one has to assume a constraint on the mean en-
ergy value; since in physics context, the expected value of the energy is a crucial
information about the system. This approach leads to a formalism which tem-
perature emerges as a free parameter and should be determined later from the
experiment [14]. In a general setting, the challenge is to identify the relevant
constraints. Caticha and Preuss [8] assumed a set of data generated by some
experiment, where the only requirement was the experiment to be repeatable.
If, for example, the experiment is performed twice, with the corresponding out-
comes of y1 and y2, in the case that we discard the value of y2, the resulting
situation should be indistinguishable from if we had done the experiment only
once. They argued that a constraint on the expected value of the entropy of
the likelihood codifies this information. Inspired by this idea, we formulate
our problem of the entropy maximization, suitable for multicelluar systems, as
follows.

We denote the biological receptor as x ∈ X and the (extracellular) microen-
vironment, which could consist of chemicals or other cells, as Y. We assume the
following information about the system:∑

x∈X
p(x) = 1, (1)

S(Y | X) =
∑
x∈X

p(x)S(Y | X = x) = S, (2)

where the first one is a normalization condition, concerning the probability
mass function of the receptors, and the second one implies the knowledge of
the numerical value S of the microenvironmental entropy, S(Y | X). Now, by
the method of Lagrange multipliers, we maximize the Shannon entropy of the
receptors, S(X) = −

∑
x∈X p(x) ln p(x), while taking into account (1) and (2).

The corresponding Lagrangian reads as

L = S(X)− λ

[∑
x∈X

p(x)− 1

]
− β

[∑
x∈X

p(x)S(Y | X = x)− S

]
, (3)

where λ and β are Lagrange multipliers. By solving ∂L/∂p(x) = 0, we obtain:

p(x) =
e−βS(Y |X=x)

Z
, (4)

where λ is absorbed in Z, also S(Y | X = x) = −
∑
y∈Y p(Y = y | X =

x) ln p(Y = y | X = x), and Z =
∑
x∈X exp[−βS(Y | X = x)].

A couple of remarks are in order. The application of the principle of max-
imum entropy strongly depends on how we specify the system configuration,
which by itself depends on the nature of the problem at hand. In this paper
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(see Sec. 3), we are interested in the spatial distributions of the cone cells in the
eye, where we assume there is a correlation (or, communication) between a cell
and its nearest neighbor, and employ an appropriate spatial statistics to take
this into account. Different ways of describing the system configuration of the
same problem could lead to different results.

The second remark has to do with (2). Although, we have assumed the
knowledge of S, but we don’t know its value in most cases, but rather, it is a
quantity that its value should be known, thus we have formulated our problem
as if we had this information [8]. By calculating the free parameter, β, from
the experimental data, one can infer the value of S. In general, since β is
introduced as the Lagrange multiplier for the entropy of the microenvironment
given the set of receptors, i.e., S(Y | X), we interpret β as a coarse-grained
collective sensing, that is, it assigns a number to how cells overall perceive their
microenvironments, see also [15].

2.1 Special case: Lemâıtre’s law

Lemâıtre’s law is the virial equation of state, originally proposed for two-dimensional
foams, which relates two measures of disorder (thermodynamic variables), namely,
the fraction of hexagons to the width of the polygon distribution, in cellu-
lar mosaics [16, 17, 18, 19]. It can be obtained by maximizing the entropy,
S = −

∑
n=3 pn ln pn, where pn is the probability of having an n-sided polygon,

while considering the following information:∑
n=3

pn = 1,
∑
n=3

npn = 6,
∑
n=3

fnpn = const., (5)

where the first relation concerns the normalization condition and the second
is a consequence of Euler’s relation concerning the topology of the structure,
which assumes only three lines meet at the same vertex (as, in this paper, we
are interested in Voronoi tessellations, this is always the case). The function
fn, in the last relation, depends on the geometry or the underlying dynamics
of the cells (polygons). Lemâıtre et al. [16, 17] originally considered fn = 1/n,
as an empirical observation made through measuring the areas of cells in two-
dimensional mosaics produced by hard discs moving on an air table. It has
been shown that a wide range of two-dimensional cellular networks in nature,
ranging from biology, such as epithelial cells, to physics, such as Ising model
and amorphous graphene, obey Lemâıtre’s law [19, 20, 21, 22, 23]; although, at
first sight, it seems that the choice of fn = 1/n is not applicable to a general
setting. In fact, it was already mentioned in [17] that this particular form of fn
cannot be valid for all cellular mosaics, for instance, it is incompatible with the
well-known Lewis’ law [24], which assumes a linearity in n; however, the authors
of [17] speculated that the remarkable universality of Lemâıtre’s law suggests
that the constraint on fn = 1/n has probably a deeper meaning than expected.

In the following, we derive Lemâıtre’s law as a special case of our formalism,
explained in the beginning of Sec. 2. The main idea is to consider a general
standardized discrete distribution for the calculation of the entropy; as a result
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of this, we can justify the particular choice of fn = 1/n in (5) and show the
universality of Lemâıtre’s law. To this end, first we generalize the Lagrangian
introduced in (3) as

L = S(X)− λ

[∑
x∈X

p(x)− 1

]
− β

[∑
x∈X

p(x)S(Y | X = x)− S

]

− µ

[∑
x∈X

p(x)N(Y | X = x)−N

]
,

(6)

where we have assumed the following additional information: N(Y | X) =∑
x∈X p(x)N(Y | X = x) = N , which N(Y | X) is the average number of cells

in the microenvironment, and we have introduced the corresponding Lagrange
multiplier as µ. Now, by solving ∂L/∂p(x) = 0, we obtain:

p(x) =
e−βS(Y |X=x)−µN(Y |X=x)

Z
, (7)

where Z =
∑
x∈X exp[−βS(Y | X = x)−µN(Y | X = x)]. We can simplify the

notations in (7) and write:

pn =
e−βSn−µn

Z
, (8)

where pn is the probability of having an n-sided polygon and Z =
∑
n=3 exp[−βSn−

µn]. Now, in order to calculate Sn, we consider a general standardized discrete
distribution, which its density can be expanded as [25],

gn(x) =
1√
2π
e−

x2

2

{
1 +

g1√
n

+
g2
n

+ · · ·
}
, (9)

where g1 = α1H3(x/
√

2) and g2 = α2H4(x/
√

2) + α3H6(x/
√

2), for some
constants α1, α2, α3, and Hk(·) is the kth Hermite polynomial. We note
that, as n → ∞, gn(x) approaches the standard normal distribution. Now
that we have gn(x) at our disposal, we can calculate the differential entropy
Sn = −

∫∞
−∞ dx gn(x) ln gn(x); since H3(x) = 8x3 − 12x is an odd function of x,

its integral vanishes, as a result, the first nonzero correction term is of the order
1/n. Thus, for a general standardized discrete distribution, we obtain:

Sn =
1

2
ln(2πe) +O

(
1

n

)
, (10)

where the first term is the entropy of the standard normal. Now, by plugging
(10) into (8), we arrive at

pn =
e−β/n−µn

Z
, (11)

where Z =
∑
n=3 exp[−β/n− µn].
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The variance, µ2, of the distribution pn in (11) reads as

µ2 =
〈
(n− 〈n〉)2

〉
=
∑
n=3

pn(n− 6)2, (12)

where we have used Euler’s relation. The second moment of pn, i.e., µ2, demon-
strates a deviation from the hexagonal configuration, thus it can be interpreted
as a measure of topological disorder.

By exploiting (11) and (12), Lemâıtre’s law, as a relation between two mea-
sures of disorder, that is, µ2 and p6, has been obtained as [16, 17, 18, 19, 23],

µ2p
2
6 = 1/(2π), 0.34 < p6 < 0.66, (13)

µ2 + p6 = 1, 0.66 < p6 ≤ 1. (14)

In the following, we present a simple and intuitive derivation of Equations
(13) and (14). For (13) to hold, since we have assumed p6 is large enough, we
suppose pn in (11) is peaked at n = 6, thus we can approximate it — near
n = 6 — by a normal distribution, Pn, centered at n = 6, while ignoring the
discreteness of n. We also allow n to vary from −∞ to∞, which can be justified
as only the values of n close to the peak at n = 6 have significant contributions,
provided that p6 is not too small. Thus, we have: Pn = 1/

√
2πµ2 exp[−(n −

6)2/(2µ2)], which results in µ2P
2
6 = 1/(2π). Now, for Equation (14) to hold,

we need probabilities, pn’s, for n /∈ {5, 6, 7} to be negligible compared with
pn’s for n ∈ {5, 6, 7}, as a result, in this region, the discreteness of n cannot
be neglected as only three values contribute. Since 〈n〉 = 6, this implies that
pn, thus h(n) ≡ −β/n − µn, should sharply peak at n = 6, which leads to
µ2 + p6 → 1 as p6 → 1. We note that, although in (6), we assumed information
about seemingly unrelated quantities of S(Y | X) and N(Y | X), represented
in terms of their corresponding Lagrange multipliers, β and µ, respectively,
however, the peakedness of pn at n = 6 gives us a relation between β and µ;
since h′(6) = β/62 − µ = 0, thus we have: β = 36µ. Also, in order h′′(6) =
−2β/63 < 0, β must be positive, which establishes a necessary condition in
order to have an ordered crystalline structure, that is, to have an abundance
of hexagons. If β < 0, then h(n) is minimized for n = 6, which implies the
corresponding minimization of pn for n = 6. Such a configuration which is
characterized by the lack of hexagons, indicates an amorphous structure, that
is, a highly disordered pattern. As an illustration, in Figure 1, we have shown
the discrete plot of {(n, pn) : n ∈ {3, . . . , 10}} for µ = −0.1 and β = −3.6, where
the percentage of hexagons is around 11%. In the biology context, β < 0 could
imply the early stage of the organism development, which the system has not
yet reached the organized state, and the disordered and ordered phases could be
linked by a phase transition; or, it could imply malfunctioning of the organism.

To obtain the regions of validity of the derived equations in the previous
paragraph, we have analyzed (11), (13), and (14) numerically, and the results
are presented in Figure 2. The left panel illustrates µ2 as a function of p6,
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Figure 1: The discrete plot of {(n, pn) : n ∈ {3, . . . , 10}} for pn in (11), where
µ = −0.1 and β = −3.6. The figure shows a low percentage of hexagons
(≈ 11%), for which β is negative.

where the red points are obtained directly from (11), subjected to the constraint
〈n〉 = 6, and the blue and green curves correspond to (13) and (14), respectively.
Our numerical analysis suggests that the known lower bound of (13), reported
in the literature, can be relaxed to 0.20, that is,

µ2p
2
6 = 1/(2π), 0.20 ≤ p6 < 0.66. (15)

In the right panel of Figure 2, we have shown β as a function of µ, where we
have compared the analytical result of β = 36µ, as a blue curve, with the values
obtained from (11), subjected to the constraint 〈n〉 = 6.

We conclude by noting that, the arguments provided in this section can be
reformulated with the corresponding modified results, if other pn’s, rather than
p6, have the largest contributions; in Sec. 3, such systems are studied.

3 Spatial distributions of the cone photorecep-
tors in the retinas of vertebrates

In this section, we want to examine the results obtained in the previous section,
namely, (4), (14), and (15), by applying them to the retinal cone cell mosaics
of rodent, dog, monkey, human, fish, and bird. We demonstrate that the appli-
cation of the principle of maximum entropy leads to the introduction of a new
parameter, which is conserved among different species of vertebrates; we call
this coarse-grained parameter as collective sensing. In Sec. 3.1, we elaborate on
the details of our calculations in the case of the human cone cells; other species
are presented in Sec. 3.2.
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Figure 2: In the left panel, the blue and green curves correspond to (13) and
(14), respectively; the red points are obtained directly from (11), subjected to
the constraint 〈n〉 = 6. This plot suggests that the known lower bound of
(13) can be relaxed to 0.20. The comparison between the analytical result of
β = 36µ (blue curve) and the β’s and µ’s obtained from (11) is depicted in the
right panel.

3.1 Spatial distributions of the human cone photorecep-
tors

Human color vision is mediated by three types of cone cells, which are sensitive
to (blue) short- (S), (green) medium- (M), and (red) long- (L) wavelength light.
The spatial distributions of these cells, in a living human eye, are shown in
Figure 3. The image in the top-left corner, is the first image of the spatial
arrangement of the living human cones, reported in [26].

Our first goal, here, is to predict the occurrence probabilities of the cone
cells, i.e., the S, M, and L cones, in the retinal field of the human eye presented
in Figure 3. To this end, we exploit (4) and rewrite it as

pi =
e−βSi∑
j e
−βSj

=
e−βSi

e−βSb + e−βSg + e−βSr
, (16)

where pi is the probability of observing the ith color, i.e., the ith cone subtype,
and b, g, and r stand for the blue, green, and red cones, respectively. For
the sake of simplicity, we have considered the following two assumptions: in
each cone subtype, we consider cells to be indistinguishable and we assume no
explicit dependence of cones of different types on each other, thus, for instance,
the microenvironment of a blue cone consists of other blues. The latter can be
justified as this dependence is already encoded in the arrangement of the cells
with respect to each other, in the whole pattern.

Now, we need to calculate Sb, Sg, and Sr, which in turn, first we need to
consider some density functions to begin with. Our choice is to construct the
nearest-neighbor-distance (NND) distribution for each cone subtype and then
to calculate its differential entropy. The rationale behind our choice is that,
the methods based on the concept of the nearest-neighbor distance have been
extensively used to quantify cone mosaics, see for example [11], which turns
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Figure 3: The spatial distributions of the cone photoreceptors in a living human
nasal retina, at one degree of eccentricity. The image, in the top-left corner, is
adapted from [26], where the scale bar = 5 µm. The figures in the bottom row,
from left to right, illustrate the short-, medium-, and long-, wavelength-sensitive
cones, separately.
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Figure 4: Searching for the nearest neighbors, in the case of the blue cone
photoreceptors, in a living human retina.
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Figure 5: The nearest-neighbor-distance distributions of the cone photorecep-
tors in a living human retina. The values of the mean and standard deviation (in
micrometers), for each distribution, read as: µb = 3.572, σb = 1.020, µg = 1.188,
σg = 0.300, µr = 1.172, and σr = 0.257.

out to be a simple, but powerful, concept to analyze spatial patterns. As an
example, in Figure 4, we have shown searching for the nearest neighbors in the
case of the blue cones.

The NND distribution for each cone subtype is presented in Figure 5, which
demonstrates that the nearest-neighbor distances, in each case, follow an ap-
proximately normal distribution. We note that, in order to obtain the opti-
mal bin widths of the histograms, we have used a data-based procedure pro-
posed by M. P. Wand [27], to its first-order approximation, which is called the
one-stage rule (the zeroth-order approximation, i.e., the zero-stage rule, of the
method reproduces Scott’s rule of binning [28]). Now, we can construct the
probability density function, Pi(x), for each histogram in Figure 5, such that∫
dxPi(x) = 1; then, the differential entropy can be calculated according to:

Si = −
∫
dxPi(x) lnPi(x). We obtain the entropies as

Sb = 1.365, Sg = −0.350, Sr = −0.378. (17)

From the image in the top-left corner of Figure 3, we can determine the
occurrence probabilities of the S, M, and L cones, which are the percentages of
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Figure 6: The Kullback–Leibler divergence is depicted as a function of β in the
left panel, where it has the global minimum of 0.001 at β = 1.284. The right
panel shows the comparison between the in vivo observed cone photoreceptor
percentages, in the human retina, and the predictions of the theory, that is,
(16), for β = 1.284.

these cells in the retinal field. Now, we need to find the appropriate β in (16),
which results in predicting the observed values of the probabilities. To this end,
we employ the Kullback–Leibler divergence, that is, DKL =

∑
i qi ln(qi/pi),

where qi and pi correspond to the in vivo observed values of the cone cell prob-
abilities and the predictions of the theory, i.e., (16), respectively. The left panel
of Figure 6 illustrates the Kullback–Leibler divergence as a function of β, with
the global minimum of 0.001 at β = 1.284. The observed cone percentages,
in a living human retina, are compared to the predictions of the theory for
β = 1.284, in the right panel of Figure 6. Since at the heart of this approach is
the arrangement of the cells with respect to each other, we call the parameter
β as collective sensing.

Our second goal, here, is to examine the modified Lemâıtre’s law in the
case of the human eye. In order to partition the retinal fields of Figure 3
into polygons, we construct the corresponding Voronoi tessellations. In this
structure, each Voronoi polygon is generated by a cone cell in such a way that
all points in a given polygon are closer to its generating cone cell than to any
other [29]. In the top row of Figure 7, we have depicted the Voronoi tessellations
of the spatial arrangements of the S, M, and L cones in the human retina and
in the bottom, the Voronoi tessellation of the whole pattern of the cones is
presented. The fractions of the n-sided bounded polygons are reported in the
figure caption. If we assume a high value of p6 indicates the regularity of the
corresponding cone mosaic, Figure 7 demonstrates that the spatial arrangement
of the S cones is more random than those of the M and L cones, where for the
blue cones, we have: pb6 = 0.143, while pg6 = 0.360 and pr6 = 0.378, for the greens
and reds, respectively. This finding agrees with [26]. We also note that, as is
shown in the bottom of Figure 7, in contrast to the cone subtypes, the whole
spatial arrangement of the human cones is highly ordered, with p6 = 0.718.

Figure 8 shows Lemâıtre’s law as is applied to the human cone photorecep-
tors. Although, the blue cones have a low p6, however, there is a significant
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Figure 7: In the top row, we have shown the Voronoi tessellations regarding the
three cone photoreceptor subtypes in a living human retina. The fractions of
the n-sided bounded polygons, pn’s, in each case, are: pb4 = 0.286, pb5 = 0.286,
pb6 = 0.143, pb7 = 0.214, and pb8 = 0.071; pg3 = 0.010, pg4 = 0.089, pg5 = 0.300,
pg6 = 0.360, pg7 = 0.153, pg8 = 0.069, and pg9 = 0.020; pr4 = 0.077, pr5 = 0.300,
pr6 = 0.378, pr7 = 0.184, pr8 = 0.030, and pr9 = 0.030. The Voronoi tessellation
of the whole retinal field is illustrated in the bottom, with the fractions of the
n-sided polygons as: p4 = 0.012, p5 = 0.171, p6 = 0.718, p7 = 0.086, and
p8 = 0.012.
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Figure 8: The blue, green, red, and black points depict the experimental values
of (pi, µ2), i = 5, 6, regarding the S, M, L, and the whole pattern of the cones,
respectively. The theoretical result, i.e., Lemâıtre’s law, is represented as the
light gray curve and the dark gray, dashed one, which correspond to (14) and
(15), respectively.
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Figure 9: The left panel, adapted from [30], demonstrates the spatial distribu-
tions of the cone photoreceptors in the retina of a living human eye at a range
of retinal eccentricities. In the right panel, we have shown the behavior of the
cones — the whole pattern in each case — with respect to Lemâıtre’s law.

contribution of pentagons in the Voronoi tessellation. As explained at the end
of Sec. 2, our arguments leading to Lemâıtre’s law can be reformulated with the
corresponding modified results, if other polygons have the largest contributions,
which in this case, it is p5. In the left panel of the figure, the experimental value
of (p5, µ2) regarding the S cone, is represented in blue, and the light gray curve
and the dark gray, dashed one correspond to the modified versions of (14) and
(15) for p5, respectively. The cases of the M (green), L (red), and the entire
pattern of the cones (black), are shown in the right panel. In all cases, the
agreements between Lemâıtre’s law and the observed values of (pi, µ2), i = 5, 6,
are quite good.

As another illustration, in Figure 9, we have investigated the behavior of the
human cones with respect to Lemâıtre’s law, at six different retinal locations
in a living human eye, namely, two, four, six, eight, ten, and twelve degrees of
retinal eccentricities, temporal to the fovea.
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3.2 Spatial distributions of the vertebrate cone photore-
ceptors: from rodent to bird

In this subsection, we apply the procedures explained in Sec. 3.1 to various
vertebrate species, namely, rodent, dog, monkey, human, fish, and bird. The
rodent and dog are dichromats, the monkey, like the human, is trichromat, and
the fish and bird are tetrachromats, which in the case of the bird, there is also a
significant number of double cones. The results are summarized in Figures 10,
11, 12, 13, 14, and 15. Although, the cone mosaics of these diverse species are
significantly different from each other, the values of the parameter β, in all cases,
are in the same order, where 1 < β < 2. In the next section, by using statistical
analyses and the fact that the NND distributions of the cone subtypes, in the
mentioned species, are peaked distributions and thus can be approximated by
Gaussians, we estimate the value of β in a general case.

4 Discussion

We are in a position to address the issue raised in the beginning of Sec. 2:
although, we lacked the knowledge of the numerical value S of the microen-
vironmental entropy, however, we considered it as a crucial information about
the system and represented it in terms of the Lagrange multiplier β. In this
section, we want to estimate the value of S, which leads to the estimation of
β, by considering an additional information obtained in Sec. 3, that is, the fact
that the distribution of the nearest-neighbor distances of a given cone subtype
can be approximated by a Gaussian distribution.

First, we note that, in the case of a normal distribution where Si = (1/2) ln(2πeσ2
i ),

(4) becomes:

pi =
σ−βi
Z

, (18)

where i denotes colors and Z =
∑
j σ
−β
j . We also assume the nearest-neighbor

distances as random variables Xi’s, where Xi ∼ N (µi, σ
2
i ). Now, in order to

estimate S, first we define the random variable W as

W =
∑
i

πiXi, (19)

where πi is the weight of the contribution of each cone subtype and
∑
i πi = 1.

Since W has a normal distribution, its entropy is related to its variance σ2, as
(1/2) lnσ2+const.; thus, in principle, we can obtain the lower and upper bounds
of the entropy, by minimizing and maximizing the variance of W , respectively.
In the following, we investigate these two extreme cases.

For the variance of W , we have: σ2 =
∑
i π

2
i σ

2
i . By the method of Lagrange

multipliers, we can minimize σ2, subjected to the constraint
∑
i πi = 1; it turns

out that for πi ∝ σ−2i , σ2 is minimized, which implies the minimization of
the entropy of W . By comparing this πi with (18), we establish the upper
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Figure 10: The image in the top-left corner (scale bar = 50 µm), adapted from
[31], illustrates the spatial distribution of the cone photoreceptors in the dorsal
mid-peripheral retina of a diurnal rodent, called the agouti. In this image, the
S-cone opsin is represented as green and the L-cone opsin as purple; next to it, in
the digitized image, we have reversed the colors. The nearest-neighbor-distance
distributions have the entropies of Sv = 3.310 and Sg = 1.787; next to them,
we have shown the comparison between the experimental observations and the
predictions of the theory, evaluated at β = 1.310 (the global minimum of the
Kullback–Leibler divergence). The Voronoi tessellation of the retinal field and
the behavior of the cones with respect to Lemâıtre’s law are illustrated in the
last row, where the purple, green, and black points correspond to the S, L, and
the whole pattern of the cones, respectively.
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Figure 11: The image in the top-left corner, adapted from [32], shows the spatial
distribution of the cone photoreceptors in the inferior peripheral retina of a dog;
the S-cone opsin is represented as green and the L/M-cone opsin as red. The
entropies of the nearest-neighbor-distance distributions read as: Sg = 3.933 and
Sr = 2.440. The comparison between the experiment and the predictions of the
theory, as depicted in the third row, is evaluated at the global minimum of the
Kullback–Leibler divergence, which occurs at β = 1.127. The behavior of the
cones with respect to Lemâıtre’s law is shown in the last row, where the green,
red, and black points correspond to the experimental values of (p6, µ2) in the
cases of the S, L/M, and the whole pattern of the cones, respectively.
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Figure 12: The image in the top-left corner, which shows the spatial distribution
of the cone photoreceptors in the nasal retina of a monkey (macaque), is provided
by A. Roorda [33]. The entropies of the nearest-neighbor-distance distributions
read as: Sb = 1.019, Sg = 0.018, and Sr = −0.476. The predictions of the
theory, illustrated in the fourth row, are evaluated at the global minimum of
the Kullback–Leibler divergence, which occurs at β = 1.174.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475540doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475540
http://creativecommons.org/licenses/by-nc-nd/4.0/


F
re
qu
en
cy

10 15 20 25 30 35 40

2

4

6

8

Nearest-neighbor distances (µm)

F
re
qu
en
cy

4 6 8 10 12
0
10
20
30
40
50
60

Nearest-neighbor distances (µm)

F
re
qu
en
cy

3 4 5 6 7 8 9

50

100

150

200

Nearest-neighbor distances (µm)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

p6

μ2

Figure 13: The image in the top-left corner, provided by A. Roorda [33], illus-
trates the spatial distribution of the cone photoreceptors in the temporal retina
of a human. The entropies of the nearest-neighbor-distance distributions are:
Sb = 2.977, Sg = 1.691, and Sr = 0.651; and, β = 1.291.
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Figure 14: The image in the top-left corner, adapted from [34], shows the spatial
distribution of the cone photoreceptors in the retina of the zebrafish. The corre-
sponding entropies are: Sb = 1.471, SUV = 1.440, Sr = 1.350, and Sg = 1.128;
and, β = 1.894.
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Figure 15: The digitized image of the spatial distribution of the cone photore-
ceptors in the dorsal nasal retina of the chicken, shown in the top-left corner, is
constructed from the data reported in [35]; the double cones are represented as
white. The corresponding entropies read as: Sv = 2.291, Sb = 2.081, Sr = 1.826,
Sg = 1.739, and Sd = 1.364; and, β = 1.527.
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bound of β as 2. We note that the two species of fish and bird, studied in the
previous section, which their cone mosaics are more ordered, thus possessing
lower entropies, their β’s are closer to 2 than the other species.

Now, in order to obtain the lower bound of β, we should maximize the
entropy of W , which implies the maximization of σ2, subjected to

∑
i πi = 1.

This happens by letting the πi corresponding to the largest σi to be 1 and all
the other πi’s vanish. This scenario is not desirable, as the contributions of
different colors vanish. In order to obtain an acceptable maximum value of
σ2, we assume the uncertainties associated with the random variables πiXi are
equal, that is, we equalize the variances of πiXi by considering πi ∝ σ−1i , which
results in: σ2 = C2

∑
i = C2N , where C is the proportionality constant, i.e.,

πi = Cσ−1i , and N is the number of colors. Now, by comparing this πi with
(18), we establish the lower bound of β as 1.

Hence, for the retinas of vertebrates, under the assumption that the NND
distributions are Gaussians, we always have: 1 < β < 2, as demonstrated
explicitly for several species in Sec. 3.

5 Concluding remarks

In summary, we have applied the principle of maximum entropy to describe the
spatial distributions of the cone cells in the vertebrate eyes and have established
a parameter, called collective sensing, which is conserved throughout different
species as diverse as: rodent, dog, monkey, human, fish, and bird, regardless of
the details of the underlying mechanisms.

Lemâıtre’s law, which relates the fraction of hexagons to the width of the
polygon distribution in numerous two-dimensional cellular mosaics in nature
and is usually obtained by assuming an ad hoc constraint, here is derived as a
special case of our formalism.

Since we have considered a completely general constraint in the entropy
maximization procedure, our formalism could be used to describe other patterns
or processes in nature. In the case of failure, it implies that either additional
information, which stems from the knowledge of the underlying mechanisms,
need to be considered, or the assumed information is incorrect. This indicates
that, although in many cases as in this paper, we can describe and predict the
phenomena without knowing the details of the underlying dynamics, however,
the principle of maximum entropy could still lead us to a better understanding
of the involved mechanisms by validating the assumed information.
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