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Abstract 

Cis and trans-interactions in cadherins are the foundations of multicellularity. While the trans-

interaction mediate cell-cell adhesion, the cis-interaction is postulated as strengthening to trans by 

clustering. The well-accepted model in cadherin-adhesion is that the ‘trans precedes cis’ via a 

diffusion-trap kinetic model. Here we report that cadherin-23, a non-classical cadherin with an 

extended extracellular region, undergoes clustering in solution via lateral interactions independent 

of trans and phase separate as liquid droplets. In cellulo using fluorescence-recovery after the 

photobleaching, we noticed a significantly slow-diffusion of cadherin-23 at the intercellular 

junctions, indicating the diffusion of a cluster. The cis-clustering accelerates the cell-cell adhesion 

and, thus, kinetically controls cell-adhesion via ‘cis precedes trans’ model. Though the connection 

of cis-clustering with the rapid adhesion is yet to explore, M2-macrophages that predominantly 

express cadherin-23 undergo fast attachments to circulatory tumor cells during metastasis.  

Introduction 

Cadherins predominantly maneuver the active cell-adhesion processes for both vertebrates and 

invertebrates. Two modes of binding are known for cadherins, trans-binding and cis-binding. 

While in trans-binding, the terminal extracellular (EC) domains of cadherins from opponent cells 

interact, the cis-binding is mediated by the lateral interactions among the rest of the EC domains 

of cadherins from the same cell surfaces(Harrison et al., 2011). Trans mediates direct contacts 

among opposing cells via a diffusion-trap kinetic approach and secures a cell-cell junction. For 

classical E(pithelial)-cadherins, approximately five independent protein molecules, clustered at the 
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intracellular region by the cortical F-actin filaments, diffuse across the membrane and are trapped 

via trans-interactions with E-cadherins of neighboring cells and initiate the cell-cell adherin 

junctions (Wu et al., 2015). Lateral interactions, thereafter, influence the clustering of cadherins 

on the premature junctions and strengthen the association between cells. Cis-interaction is thus 

conceptually referred to as reinforcement to the trans-mediated cellular junctions for classical 

cadherins. However, this need not be universally true for all cadherins.  

A sizeable conformational entropy and homotypic protein-protein repulsions against weak cis-

interactions have been the limitations for cis clustering in solution. Results from molecular 

dynamics and Monte-Carlo simulations conceptualized the two-dimensional confinement of 

proteins as a solution to reduce the conformational entropy and neutralization of protein-protein 

repulsions, favoring independent cis clusters for classical cadherins. This is experimentally 

verified with E-cadherins on a supported lipid bilayer and monitored using single-particle tracking 

and FRET(Thompson et al., 2019, Thompson et al., 2020). However, capturing cadherin clusters 

mediated predominantly by cis-interactions in traditional solution-phase assays and studying their 

functional relevance has still been elusive yet demanding.    

Clustering of solute in a solution is a classical phase separation to condensed phase from the dilute 

phase. In cell biology, such a liquid-liquid phase separation (LLPS) is common in the cytoplasm. 

It is the developmental origin of the membrane-less liquid compartments like nucleoli(Latonen, 

2019), centrosomes(Mahen and Venkitaraman, 2012), Cajal bodies(Gall, 2003), stress 

granules(Buchan and Parker, 2009). Relatively uncommon, but the existence of LLPS is also 

reported with proteins like Zonula Occludens (Beutel et al., 2019), nephrin(Banjade and Rosen, 

2014) that are anchored to cell-membrane and mediate multiprotein cell-adhesion, signal 

transduction. Favorable interactions among like-neighbors are thermodynamically responsible for 

such phase separations. Such favorable interactions are also present in cadherins and drive cis-

clustering on two-dimensional confinement; however, the conformational entropy and protein-

protein repulsion often overpower the cis-clustering in solution. Intuitively, controlled tuning of 

the counterbalancing interactions may favour the clustering and subsequently, the LLPS with 

cadherins. 

We performed an unbiased in silico search using the catGRANULE algorithm(Mitchell et al., 

2013, Klus et al., 2014) across the cadherin-superfamily of proteins and identified cadherin-23 

(Cdh23) (NP_075859) protein with a high propensity to undergo LLPS. Cdh23 is one of the long 

non-classical classes of cadherins with 27 extracellular domains. It mediates strong cell-cell 

adhesion among tissues like the heart, kidney, muscle, and testis homophilically(Sannigrahi et al., 

2019, Singaraju et al., 2019, Sotomayor et al., 2012), and heterophilic interactions with 

protocadherin-15 in neuroepithelial cells(Sotomayor et al., 2010). Interestingly, with the potential 

for multivalent lateral interactions, Cdh23 engages in a stable spiral cis-dimerization(Kachar et al., 

2000). The cis-interactions of Cdh23 facilitate clustering and phase separation to liquid droplets 

in solution. The phenomenon is critical to the ionic strength of the buffer. We quantitatively 

derived the relation of cis-clustering mediated LLPS of Cdh23. 

To confirm the contribution of cis-interactions in LLPS, we specifically blocked the trans-

interactions of Cdh23 and measured the extent of LLPS. Further, we used chemical needles like 
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1,6-Hexanediol (HD) that rupture liquid droplets of biomacromolecules by non-specifically 

blocking interparticle interactions (Patel et al., 2017). We noticed no LLPS of Cdh23 in-vitro after 

1,6-HD treatment. Free-standing cis-clustering of Cdh23 independent of trans-binding prompted 

us to study the effect on cell adhesion. We measured a significant acceleration in the rate of cell-

cell adhesions driven by cis-clustering. We noticed a substantial drop in cell-adhesion kinetics 

upon disruption of cis-clusters by 1,6-HD, supporting the functional implication of cis-clustering 

in cell-cell adhesion. Notably, while the toxicity of the phase-separated states has already been 

proposed for intrinsically disordered proteins(Elbaum-Garfinkle, 2019), the fast-aggregation of 

cells is a demonstration of the functional implication of LLPS in cell adhesion. Our fluorescence 

recovery after photobleaching (FRAP) experiments revealed the fluidic nature of the Cdh23-

clusters at the cell-cell junctions. 

Results 

Cdh23 with 27 EC domains undergoes LLPS 

The presence of Ca2+ ions in the coordination sphere of cadherins reduces conformational 

variations. Further, inert polymers like polyethylene glycol (PEG) molecules often occupy the 

excluded protein volume and reduce protein entropy(Kaur et al., 2019, Delarue et al., 2018). 

Besides, Cdh23 EC1-27 has 440 negatively charged and 222 positively charged amino acid 

residues distributed throughout its structure, thus possessing coacervation propensity. It is, 

therefore, an interplay between the concentration of Ca2+ ions, ionic strength of the buffer, and the 

protein proximity optimizes the lateral interactions in Cdh23 and drive phase separation in 

solution. Our in-silico search identified the EC regions in Cdh23 as more prone towards phase 

separation with a propensity score of 1.3. Usually, a propensity score higher than 1 is considered 

a good LLPS candidate(Ambadipudi et al., 2017). However, the propensity score for Cdh23 EC1-

10, a truncated isoform, was measured lower than 1 (Fig. S1). Inference from the crystallographic 

studies has also revealed that EC domains 14, 17, 20, 21, 23, and 25 are predominantly responsible 

for cis-interactions in Cdh23(Jaiganesh et al., 2018). To verify, we designed two variants of 

Cdh23: Cdh23 EC1-27, a variant with an entire EC region, thus possessing high-propensity for 

LLPS, and a truncated version, Cdh23 EC1-10, with a low-propensity for LLPS. Reportedly, 

Cdh23, apart from cis-interactions, can mediate both homophilic and heterophilic trans-

interactions. Two types of trans-interactions with two distinct binding affinities were reported 

between Cdh23 and Pcdh15 (Narui and Sotomayor, 2018). The most robust trans-conformation 

with a dissociation constant of < 1 M was notified for the canonical variant. The second trans-

conformation with a higher dissociation constant of 5 M, was observed for a truncated variant. It 

was, therefore, necessary to block the interference of the trans-interactions to measure the strength 

of cis-binding. Notably, the heterophilic trans-interaction with Pcdh15 has the highest affinity 

(Table 1) (Choudhary et al., 2020, Singaraju et al., 2019, Sotomayor et al., 2012).  

To corroborate our in-silico observations on clustering propensity of Cdh23 EC1-27, we 

systematically varied the protein concentrations and the ionic strength of the buffer and checked 

the cis-clustering in solution. We recombinantly tagged eGFP at the C-terminal of each variant to 
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visually track the cis-induced phase separations in real-time under a fluorescence microscope. 20 

mM of HEPES buffer at pH 7.5 was used for all experiments, and 0.5% of PEG6000 was used as 

a crowding agent. We noticed the condensates of Cdh23 EC1-27 proteins for a range of protein 

concentrations, ionic strengths, and Ca2+ concentrations (Fig. 1 A, B and C). Association of the 

green fluorescence with the protein confirmed that the condensates are made of Cdh23 (Fig. 1 B 

and Video 1 A). Fusion among floating droplets, the gold standard for liquid condensates, is also 

noticed among Cdh23 condensates, indicating the fluid nature of the droplets (Fig. 1 A and Video 

1 B). Further from the time-trace analysis of the fusion events, we measured an average fusion-

time of 5.0 ± 1.2 s, in range with other proteins that undergo LLPS (Wang et al., 2019) (Fig. S2 

and Video 1 B).  

Attributing to the Hofmeister series, a standard theory to estimate protein stability and solubility, 

we systematically varied Na+ & Ca2+ ions to identify optimal conditions for the liquid-phase 

condensation of Cdh23 EC1-27(Dignon et al., 2020). The rate of droplet growth was monitored 

for optimization (Fig. 1 C). Towards this, we first varied Na+ ions keeping Ca2+ ions fixed at 4 

mM. We noticed a gradual increase in droplet growth rate with increasing Na+ ions, reaching an 

optimum at 500 mM (Fig. 1 C). The phase separation of Cdh23 EC1-27 was noticed for 100 mM 

– 1 M of NaCl. Next, we set the Na+ ions to 500 mM and altered Ca2+ ions, and obtained phase 

separation for a range of 4 mM – 10 mM of CaCl2, and optimal at 6 mM of Ca2+ (Fig. S3 A). 

Finally, we fixed the Ca2+ ions to 6 mM and varied both [protein] and [Na+] ions to obtain a 

complete phase separation diagram (Fig. 1 D). The optimal growth rate of liquid droplets was 

obtained at 14 µM of proteins, 535 mM ionic strength, and 6 mM of Ca2+ ions (Fig. 1 C and D and 

Fig. S3 B and Fig. S4). We noted a lower critical concentration of 2.5 µM for Cdh23 EC1-27 for 

in vitro cis-clustering (Fig. 1 D). Also, Na+ and Ca2+ions beyond the salting-out range showed no 

LLPS for Cdh23 EC1-27. It is important to note that the optimal Ca2+ ions for in vitro LLPS of 

Cdh23 EC1-27 are within the scope of the extracellular region in physiology. 

Interestingly, Cdh23 EC1-10 did not undergo phase separation for a wide range of buffer 

conditions, including the requirements maintained for Cdh23 EC1-27. We, therefore, considered 

the truncated version as the negative control. The point to note here is that both Cdh23 EC1-10 

and Cdh23 EC1-27 have eGFP tags at their C-termini, and yet, Cdh23 EC1-27 is the only construct 

undergoing LLPS thus, withholding the contribution of eGFP in LLPS.  

To validate the LLPS of Cdh23 EC1-27 as a resultant of exclusive cis-clustering, we repeated the 

phase transition experiment in the optimal condition, but by blocking the trans-interacting sites 

with ligand-protein, Pcdh15 EC1-2. As a precaution, we first facilitated the heterophilic trans-

interactions with an abundance of Pcdh15 EC1-2 (20 µM) in the experiment buffer and carefully 

altered the solution’s ionic strength from an unfavorable phase separation condition to a favorable 

state via dialysis (Materials and Methods). We observed LLPS of Cdh23 EC1-27 and Pcdh15 EC1-

2 complex, indicating that the droplets are predominantly due to lateral interactions of Cdh23 (Fig. 

S5). Notably, the droplets of Cdh23 EC1-27 without Pcdh15 EC1-2 were more extensive than in 

Pcdh15 EC1-2, indicating that the additional trans-interactions contribute to the phase separation 
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in vitro but are not essential for the LLPS. Overall, Cdh23 EC1-27 undergoes LLPS under 

physiological conditions, and the liquid droplets follow the characteristic feature of protein 

condensates. 

LLPS helps in faster cell-cell aggregation  

Liquid droplets of Cdh23 are not exclusive to in-vitro conditions. We observed mesoscopic liquid-

like assemblies of Cdh23 in-cellulo in HEK293 cells stably expressing full-length Cdh23. Full-

length Cdh23, similar to the other cadherin family members, comprises a transmembrane domain 

and a cytosolic domain along with EC regions. Punctate structures in the mesoscopic to the 

microscopic regime were noticed at the cell-cell junctions of stably transfected HEK293 cells 

(Materials and Methods). The puncta structures were absent in control for immunofluorescence 

images, where only a secondary antibody was used for staining the cells (Fig. 2 A). Cellular 

droplets in cytosol separate homogeneous biomolecules into two phases, a condensed liquid 

droplet of specific biomolecules surrounded by a diluted phase. Since the foundation of the 

condensed phase is transient and weak intermolecular interactions, the liquid phase rapidly and 

reversibly undergoes de-mixing in response to chemical and physical cues, either triggered by in-

cellulo activities or externally. 1,6-hexanediol (1,6- HD) is a widely used aliphatic alcohol in cell 

biology that weakens the hydrophobic interactions critical for LLPS and inhibits the condensation 

of solutes to liquid droplets(Itoh et al., 2021, Duster et al., 2021). Accordingly, we treated the 

stable HEK293 cells with 1,6-hexanediol and monitored the disruption of puncta structures, 

confirming the fluid nature of the Cdh23 clusters in cells (Fig. 2 A). Even in vitro, we noticed a 

complete demolishing of the condensed liquid phase in 1,6-HD (Fig. S6). 

How do the liquid droplets of Cdh23 mediated by cis-clustering contribute to cells? Cadherins 

generally form anchoring junctions with the neighboring cells. Cdh23 is no different from the other 

family members and mediates vital cell-cell adhesion junctions in several tissues like the kidney, 

muscle, testes, and heart (Singaraju et al., 2019, Sannigrahi et al., 2019, Sotomayor et al., 2012, Li 

et al., 2019). We, therefore, verified the effect of the liquid condensates of Cdh23 mediated by cis-

clustering in cell-cell adhesion, more importantly where cis-clustering precedes the trans-

interactions. We hypothesized that cis-clustering on a membrane would increase the effective 

intercellular interacting interface and accelerate cell-adhesion kinetics. We thus monitored the 

aggregation-kinetics of HEK293 cells exogenously expressing Cdh23 and fit the kinetics data to 

Von Bertalanffy model (West and Newton, 2019, Benzekry et al., 2014) to estimate the relative 

adhesion-rate constants (Materials and Methods). We used the same two recombinant variants, 

Cdh23 EC1-27, and Cdh23 EC1-10, but along with the transmembrane (TM) and cytosolic 

domains (CD) at their C-terminals (NP_075859). For monitoring the localization of proteins on 

cell junctions, we fused eGFP at the extreme C-terminals of the constructs. We transfected these 

chimeric constructs in HEK293 cells, where the cells were pre-treated with siRNA to silence the 

endogenous Cdh23 expression precisely (Materials and Methods). As expected, we observed a 

significant enhancement in the aggregation-kinetics of cells expressing Cdh23 EC1-27 

(𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑎𝑜𝑛
0 = 2.1 × 10−3  𝑚𝑖𝑛−1) (Fig. 2 B) than the cells overexpressing Cdh23 EC1-
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10 (𝑎𝑜𝑛
0 = 3.4 × 10−4𝑚𝑖𝑛−1) (Fig. 2 C). Important to note that both types of cells formed Cdh23 

mediated matured cell-cell junction after incubation, warranting the functional activity of both 

constructs. HEK293 cells treated with siRNA for endogenous Cdh23 showed no aggregation 

within the experiment time. 

Does cis-clustering on cell membrane depend on the extent of surface coverage by Cdh23? To 

check, we monitored the cell-aggregation kinetics among cancer cell lines, HEK293, HeLa, 

HaCaT, and A549, that express endogenous Cdh23 differentially. Our results from qRT-PCR and 

western blot, in corroboration with TCGA, indicate higher endogenous expression of Cdh23 in 

A549, HaCaT cells and comparatively lower expression in HEK293, HeLa cell-lines (Fig. S7 A). 

Amongst all in the list, HeLa has the least expression. We performed the cell-aggregation assays 

in the previously optimized buffer condition and noticed significantly faster cell-aggregations for 

A549 and HaCat, than the low-expressing cell lines (HEK293 and HeLa). HeLa did not aggregate 

within the experiment time (Fig. 3 A and B). To conclude the differences in aggregation kinetics 

based on the extent of the cis-clustering,  we performed the aggregation kinetics of A549 and 

HEK293 cells in the presence of 1,6-HD. The aggregation kinetics of both cells dropped 

significantly in the presence of 1,6-HD (Fig. 4 A and B) and became comparable among each 

other. Overall, the kinetic data w/o 1,6-HD indicate that the differences in cell-adhesion kinetics 

of A549 and HEK293 cells without 1,6-HD are due to differences in the extent of cis-clustering of 

Cdh23. When chemical treatments abolish the cis-clustering, the individual Cdh23 molecules on 

the cell membrane follow the trans-mediated diffusion-trap kinetics for cell adhesion, similar to 

classical cadherins. While cis-clustering increases the effective binding interface on a cell 

membrane and kinetically facilitates the cell adhesion, the diffusion trap is instead driven by the 

binding affinities between partners and, thus, independent of the surface coverage. 

Fluidic nature of Cdh23 clusters on the cell membrane 

Fluorescence recovery after photobleaching (FRAP) has been a valuable tool to decipher the 

fluidic nature of liquid droplets in in-vitro and in-cellulo conditions (Pincet et al., 2016, Kanaan et 

al., 2020). Accordingly, we performed FRAP experiments on the intercellular junctions of 

HEK293 cells that are stably transfected with Cdh23. The protein was recombinantly tagged with 

eGFP at the C-terminal. We noticed localization of eGFP at the cell-cell junctions as expected for 

Cdh23 (Fig. 5 A) and photobleached a confocal volume. Next, we monitored the fluorescence 

recovery along a line across the photobleaching spot (Fig. 5 B and C). This is to identify if the 

recovery is from the new Cdh23 exported and recruited to the membrane by cells or diffusion of 

membrane-bound proteins. The fluorescence intensity profile across the line is expected to follow 

an inverted Gaussian profile with a deep at the center of the photobleaching spot (Fig. 5 D). We 

noticed widening in the Gaussian profiles with recovery, characteristics of diffusion of active 

proteins from the surrounding membrane. Recruitment of new proteins, in general, recover the 

fluorescence intensity without diluting the surroundings, thus with a little widening of the Gaussian 

width (Erami et al., 2016). Next, we plotted the width of the Gaussian (σ2) with time-lapsed after 

photobleaching and fit to the linear equation and estimated the diffusion-coefficient of Cdh23 
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clusters at the cell-cell junctions (Fig. 5 E) (Materials and Methods). The diffusion-coefficient of 

Cdh23 clusters at the cell-cell junctions is 0.6x10-3 + 0.1x10-3 µm2 s-1, 8-fold slower than the 

reported diffusion-coefficient of classical E-cadherin (Deff = 4.8x10-3 + 0.3x10-3 µm2 s-1 ) clusters 

of ~1000 molecules (Erami et al., 2016). Overall, our FRAP data indicates that Cdh23 at the cell-

cell junction is fluidic and diffuse in clusters.  

Discussion 

Cdh23 can condensate to the punctate liquid phase at the cell membrane and, as super-adhesive, 

rapidly seizes the floating cells into aggregates. Though dense, short-range punctate junctions are 

widely noted for the cadherin family of proteins, the physiological implication of rapid cell-cell 

adhesion/communication is still elusive. Here, we deciphered that the punctate could be liquid 

droplets of cadherins. Though, in the family of cadherins, this is the first report to highlight the 

ability of the cadherin proteins to undergo LLPS. The LLPS mediated faster cell-cell adhesion is 

also the first demonstration of the physiological implication of LLPS on the membrane. Cdh23, 

among other cadherins, is significantly overexpressed in tumor-infiltrating M2-type 

macrophages(Poczobutt et al., 2016) and microglia(Zhang et al., 2016, Zhang et al., 2014) (Fig. 

S7 B). M2-type macrophages associate with the circulatory tumor cells (CTCs) on the go and help 

in metastasis. A quick cell-cell adhesion is thus essential in this process. Though speculative, the 

fast adhesion between M2 macrophages and CTCs is facilitated by the condensed Cdh23 droplets.  

Usually, weak multimodal interactions are among the driving forces for LLPS. The ectodomains 

of Cdh23 possess such multiple interaction sites, witnessed from the previously reported puckered 

and extended coil conformation of Cdh23 cis-dimer (Jaiganesh et al., 2018, Di Palma et al., 2001). 

The specific cis-interacting sites beyond the ectodomain number of 10 (dom10) were also 

identified from the fragmented crystal structures of Cdh23 domains(Jaiganesh et al., 2018). 

Further, the catGRANULE algorithm that predicts the LLPS propensity of a protein from the 

primary structure identified several granules forming sites on the ectodomains of Cdh23, majorly 

beyond dom10. Accordingly, we observed LLPS for Cdh23 EC1-27 at the lowest concentration of 

2.5𝜇M in vitro but no condensed liquid-like phase for Cdh23 EC1-10 even at a very high 

concentration of 100 𝜇M. Our in-cellulo experiments also featured multifold faster rates (𝑎𝑜𝑛
0 ) of 

cellular aggregation for cell-lines expressing full-length Cdh23 (Cdh23 EC1-27+TM+CD) 

(𝑎𝑜𝑛
0 = 2.14 × 10−3 𝑚𝑖𝑛−1) than the truncated form of Cdh23 (Cdh23 EC1-10+TM+CD) (𝑎𝑜𝑛

0 =

3.4 × 10−4𝑚𝑖𝑛−1). Together, our data indicate that the EC domains beyond 10 (EC10 – 27) is the 

key for LLPS. Data from FRAP experiments indicate that even at the cell-cell junctions, Cdh23 

translocates as cis-clusters. Though we could not quantify the cluster size accurately, from the 

comparisons of the diffusion-coefficients, we noted approximately 8-fold  mass-equivalence of 

Cdh23 clusters than the classical E-cadherins. It must be noted that the comparisons cannot be 

quantitative as cell lines under study are different.  

The cis-dimerization of classical cadherins is generally considered the aftereffect of intercellular 

trans-interactions(Pontani et al., 2016). The physiological role of the cis-dimer is proposed to 

strengthen the trans-interactions at the cell-cell junction(Wu et al., 2010). The liquid phase 

condensate of Cdh23 on-membrane instead contributes to the kinetics of cell-cell adhesion. It 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475209


8 
 

drives the adhesion kinetics via the induced-fit model than the diffusion-trap as reported for 

classical cadherins. The adhesion kinetics is also dependent on the extent of surface coverage of 

Cdh23, so as the extent of cis-clustering. Interestingly, the extent of cis-clustering only affect the 

rate of cell-cell adhesion at the initial phase, and not the mature cell-cell junction. However, the 

physiological implication of such fast-snapping is still not well-understood.  

Moreover, Cdh23 may not be the only cadherin in the family that can undergo LLPS. The 

Catgranule algorithm estimated the CDF score of more than 1 for many other cadherins (Table 2), 

considering only the ectodomains. In general, with a CDF of more than 1, the proteins show a 

tendency for LLPS. Accordingly, Fat-cadherin, Dacshous-cadherin, desmosomes, cadherin-22 

have CDF scores of more than 1, and can undergo LLPS. Interestingly, most of these cadherins 

are associated with special cell-cell junctions. For instance, fat-cadherin and dacshous cadherin-

mediated heterophilic junctions exclusively regulate the epithelial cell-size dynamics (ECD) under 

the mechanical cues during morphogenesis (Kumar et al., 2020), desmoglein-2 forms heterophilic 

interactions with other isoforms of desmosomal cadherins and form Ca2+-independent hyper-

adhesive desmosomal junctions in tissues like skin, heart that are exposed to physical forces. Apart 

from cadherins, ZO1 that form tight-junctions (McNeil et al., 2006) also has a CDF score of more 

than 1 and undergoes LLPS (Beutel et al., 2019).  

Conclusion 

The distinctive features of liquid droplets, stretchable and tunable to different sizes and shapes, 

may be helpful in cell-cell junction, which routinely experiences mechanical assault. Our results 

address a functional feature that liquid condensates can achieve, but the individual functional 

counterparts cannot. Identifying the physiological or pathological cues that trigger such phase 

transitions is the next exciting step and may open up another exciting field of rapid cell-cell 

communication and adhesion. 

Materials and Methods 

Cloning of domain deletion mutants of Cdh23 

The full-length Cdh23(NP_075859) consisting of 27 EC domains, a transmembrane domain, and 

a cytoplasmic domain was a generous gift from Dr. Raj Ladher, NCBS, Bangalore. Using this 

construct, we recombinantly generated domain deletion mutants. We have subcloned the same 

construct in pcDNA3.1 (+) plasmid, which code for Neomycin resistance. All the constructs were 

cloned between NheI and XhoI restriction sites with (S)-Sortase-tag (LPETGG)-(G)-eGFP-tag and 

(H)-His-tag; SGH-tag at downstream (C-terminus of the protein) in the same order. All the 

recombinant constructs were verified through double digestion, PCR amplification, and DNA 

sequencing. 

Protein expression and purification 

All recombinant Cdh23 variants for in-vitro studies were expressed in the ExpiCHO suspension 

cell system (A29129 ThermoFisher Scientific), following the prescribed protocol for transfection 

in ExpiCHO cells. After seven days, the culture media was collected by pelleting down the cells 

at 2000 rpm for 15 min at room temperature. The media was then extensively dialyzed against the 
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dialysis buffer for 48 hours and intermittently changed the buffer every 8 hours. The dialyzed 

media with proteins were purified using affinity chromatography using Ni-NTA columns. The 

purity of the samples was checked using SDS-PAGE. Finally, the presence of protein was 

confirmed using western blotting with specific antibodies against GFP, Cadherin-23, and his-tag. 

 

In vitro droplet formation assay 

All purified proteins were prepared in buffer containing 20 mM HEPES, pH 7.5, 100 mM NaCl, 

4 mM CaCl2. Before each experiment, the proteins were centrifuged at 15000 rpm at 4°C for 

10 min to remove possible nonspecific aggregates. Then proteins were adjusted to reach 

designated concentrations. Each protein mixture (14 μM for each component) was injected into a 

homemade chamber and imaged using a Leica microscope (Leica DMi8) using 40X objective lens. 

The time-lapse images were taken under bright-field and fluorescence filters. All the assayed 

droplets were thicker than 6 μm in height, so the central layers of optical sections were chosen for 

quantification. Over 10 or more droplets were measured for each protein to generate the phase 

diagram of the condensed phase. The images were analyzed by ImageJ, and the quantification was 

performed by Origin software. 

 

Immunofluorescence and LLPS disruption studies 

Immunofluorescence staining was performed using Cadherin-23 (HPA017232, Sigma-Aldrich) 

primary antibody and Anti Rabbit IGG CF633 (SAB4600141, Sigma-Aldrich) secondary 

antibody. DAPI (Sigma-Aldrich) was used to stain the nuclei of the cells. Images of 

immunofluorescent labeled cells were obtained on a confocal microscope (Leica, TCS SP8) using 

a 63X objective lens. To disrupt the liquid-like clusters, Cdh23 stable HEK293 cells were 

incubated with 2% (w/v) of 1,6-Hexanediol (H11807, Sigma-Aldrich) for 1 hour. Similarly, 10% 

(w/v) of 1,6-Hexanediol was used to disrupt the liquid droplets of Cdh23 EC1-27 in-vitro.  

Western blot and qRT-PCR 

The adherent cancer cell lines HeLa, HEK293, A549, and HaCat were obtained from NCCS, Pune. 

All cells were cultured in high glucose DMEM media (D1152, Sigma-Aldrich) containing 10% 

FBS and 5% CO2. We followed the standard protocol(Hirano, 2012) for the western blotting of 

the lysates from the mentioned cell lines. Cadherin-23 (HPA017232, Sigma-Aldrich and PA5-

43398, Invitrogen), eGFP (A11122, Invitrogen) and His-tag (11965085001, Roche) antibodies 

were used to detect the proteins.  

RNA from different cancer cell lines was extracted using RNA isolation kit (Bio Rad) and treated 

with DNAse using DNAse 1 kit (AMPD1, Sigma-Aldrich). cDNA synthesis was done using cDNA 

synthesis kit (Bio Rad). qRT-PCR was performed with the primers probing Cdh23 using the real 

time PCR system (CFX96 Bio Rad). 

Cell-aggregation assay 

After 30 hours of post-transfection, the cells were washed gently with PBS and then resuspended 

in Hank’s buffer supplemented with 10mM Ca2+ ions to a final cell count of 105 cells. Hank’s 
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buffer behaves like an incomplete media maintaining the osmolarity of the solution with the cells 

avoiding any bursting or shrinking of cells throughout the entire duration of the assay. After 

resuspending, the cells were imaged with a bright-field filter at 10X magnification using a Leica 

Inverted Microscope (Leica DMi8) over a time trace for 2 hours. The images were collected at 10 

min, 15min, 30 min, 45 min, 60 min, and 120 min when all the cells aggregated completely. The 

image analysis for measuring the area of each aggregate was done in ImageJ software. The 

aggregates with atleast 5 cells are considered for the analysis. The mean area of aggregates over 

four different focal positions were measured and plotted against time. The aggregate size was 

compared over varying domain lengths for Cdh23. We performed all cell aggregation experiments 

at fixed cell-types and numbers. 1% (w/v) of 1,6-Hexanediol was added in the Hank’s buffer for 

disrupting the LLPS during the cell-aggregation assays.  

Fitting the cell aggregation data to a model 

We have used Von Bertalanffy model(West and Newton, 2019, Benzekry et al., 2014) to quantify 

the rate of cell-cell aggregation for HEK293 cells transfected with Cdh23 EC1-10 and Cdh23 EC1-

27 at different calcium concentrations. The net rate of cell aggregation is proportional to the total 

area of aggregate. In the absence of any dissociation in our experiment timescale, we have 

neglected the loss term in the equation (a special case of Von Bertalanffy model). Finally, we fit 

the cell aggregation data for anexperimental condition over time using the following rate-equation: 

𝑑𝐴

𝑑𝑡
= 𝑎𝑜𝑛

0 . 𝐴𝛾 

The model is solved and written explicitly as, 𝐴(𝑡) = (𝑎𝑜𝑛
0 . 𝑡. (1 − 𝛾))

1

1−𝛾,  where, 𝑎𝑜𝑛
0  represents 

the rate-constant, 𝐴 represents the area of aggregate, 𝑡is the independent variable (time), and 𝛾 

represents the growth of aggregate. 𝑎𝑜𝑛
0 is an inherent property and 𝛾 is dependent on the cell types 

and their heterogeneity. While fitting, we, therefore, performed global fits and shared the value of 

𝛾 (Table S1). 

Live cell imaging and FRAP analysis 

Stably expressing Cdh23 HEK293 cells grown for confluency on a 35mm glass-base petri dish 

were used for imaging. A super-resolution microscope (Zeiss LSM980 Airyscan 2)  was used to 

image the cells maintained at 37 ºC and 5% CO2. FRAP was performed on a confocal volume of 

1 µm diameter at the cell-cell junctions where localization of eGFP was noticed. ImageJ software 

was used to measure the fluorescence intensity profiles the line segment of 4 µm drawn across the 

photobleached region (line-scan analysis). The fluorescence intensity profiles (normalized) at 

different time points were fit to the Gaussian function in origin software. The fitted widths obtained 

at different time points were plotted against recovery time, and fit to linear regression to estimate 

the diffusion coefficient from slope (Erami et al., 2016).    
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Abbreviations 

AUC    Analytical UltraCentrifugation 

Cdh23   Cadherin-23 

CDF     Cumulative Distribution Function 

CD       Cytosolic domain 

DAPI    4,6-diamidino-2-phenylindole 

EC        Extracellular 

EC1-10     Extracellular 1-10 domains 

EC1-27      Extracellular 1-27 domains 

eGFP     Enhanced Green fluorescent protein 

FRAP      Fluorescence Recovery After Photobleaching 

1,6-HD    1,6-Hexanediol 

ITC        Isothermal titration calorimetry 

LLPS      Liquid- Liquid Phase Separation 

Pcdh15     Protocadherin-15 

qRT-PCR     Quantitative Real-time polymerase chain reaction 

SPR     Surface Plamon Resonance 

TM        Transmembrane 
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Figure 1. LLPS of Cadherin-23. (A) Representative bright-field images, and (B) fluorescence images of 

liquid droplet-like condensates of Cdh23 EC1-27 at three different time intervals (i) 0 min, (ii) 45 min, and 

(iii) 60 min. Buffer composition is 20 mM HEPES, 500 mM NaCl and 6 mM CaCl2. Scale bar: 50 µm. (C) 

Growth kinetics of liquid droplets (µm) at a varying concentration of NaCl. Error bars represent the standard 

error of the mean (SEM) with N=30 droplets. (D) Phase diagram of liquid droplets of Cdh23 EC1-27 

relating protein concentration and ionic strength of the buffer with droplet formation.  
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Figure 2. LLPS of Cdh23 facilitates cell-cell adhesion. (A) The immunofluorescence images of the 

puncta (red)of Cdh23 on HEK293 cells exogenously expressing Cdh23 (Middle row). No puncta were 
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noticed in control (top row). Bottom row: Disruption of puncta after 1,6-Hexanediol (1,6-HD) treatment to 

HEK293 cells exogenously expressing Cdh23. DAPI is to stain the nucleus (blue). Scale bar: 10 µm. (B) 

Time-stamp bright-field images of cell-cell aggregations of HEK293 cells untransfected (1st column), 

transiently transfected with Cdh23 EC1-10 (2nd column), and Cdh23 EC1-27 (3rd column). Scale bar: 50 

µm. (C) The time-dependent growth of the cell-cell aggregation area (normalized) of HEK293 cells 

exogenously expressing Cdh23 EC1-27 (red) and Cdh23 EC1-10 (black), along with the Von Bertalanffy 

model fit (solid lines). The error bars represent the standard error of the mean (SEM) with N=15 aggregates. 

(D) The time-dependent growth of the cell-cell aggregation area (normalized) of HEK293 cells exogenously 

expressing Cdh23 EC1-27 at varying calcium concentrations. The error bars represent the standard error of 

the mean (SEM) for N=15 aggregates. The solid lines represent the fitting of aggregation kinetics to the 

Von Bertalanffy model. 
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Figure 3. Dependence of cell-cell adhesion rate on the intrinsic expression of Cdh23. (A) Time-stamp 

bright-field images of cell-aggregates of HeLa, HEK293, HaCat, and A549 cells differentially expressing 

endogenous Cdh23. Scale bar: 50 µm. (B) Growth of cell-cell aggregation area (in µm2) with time for HeLa 

(red), HEK293 (green), HaCat. (black) and A549 (blue) cell lines. Error bars represent the standard error 

of the mean (SEM) for N=15 aggregates. 
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Figure 4. Effect of disrupted cis-clusters on cell-adhesion kinetics. (A) Time-stamp bright-field 

images of cell aggregates of A549 and HEK293 cells in absence (control) and presence of 1,6-HD. 

Scale bar: 50 µm. (B) Growth of cell-cell aggregation area (in µm2) with time for A549 cells in 

Control (blue) and treated with 1,6-HD (Olive), and  HEK2923 cells in control (black) and treated 

with 1,6-HD (red). Error bars represent the standard error of the mean (SEM) for N=15 aggregates. 
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Figure 5. FRAP to probe the fluidic cis-clusters of Cdh23 at the cell-cell junctions. (A) 

Representative bright field and fluorescence images show the localization of Cdh23 at the cell-cell 

junction of HEK293 cells exogenously expressing Cdh23. Cdh23 is recombinantly tagged with 

eGFP at C-terminus. The circle (red) indicates the confocal volume for the FRAP experiment. 

Scale bar: 10 µm. (B) The cross-sections of fluorescence images indicate the regions of pre-bleach, 

bleach, and post-bleach recovery at the selected time points. The fluorescence recovery is 

monitored with time along the red line. The length of the line is 4 µm. (C) The contour plot 

represents the spatiotemporal distribution of Cdh23-eGFP along the red line. (D) The fluorescence 

intensity profile along the red line is plotted with the recovery time points. The solid lines are the 

Gaussian fits. (E) The widths (σ2) from the Gaussian fits are plotted with recovery time. The solid 

red line is the linear fit to the data to estimate the diffusion-coefficient. Error bars indicate the 

standard deviation obtained from the Gaussian fit. 
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Table1.  Binding-affinities of the heterophilic and homophilic trans-complexes of Cdh23 as 

reported.  

Homo/Heterophilic 

dimer 

Interaction 

geometry 

Method T(ºC) KD (µM) Reference 

Cdh23 (EC1-2)-

Pcdh15 (EC1-2) 

Trans ITC 10 2.9 ± 0.4 Nature, 2012 

Cdh23 (EC1-2)-

Pcdh15 (EC1-2) 

Trans SPR 25 0.84 ± 0.03 Biochemistry,2018 

Cdh23 (EC1-2)-

Cdh23 (EC1-2) 

Trans AUC 20 18 ± 4 FEBS, J.,2019 

       KD denotes the dissociation constant 

 

 

Table2. CDF scores for different cadherins (EC-domains only) estimated using 

catGRANULE algorithm. 

 

                                     

 

 

 

 

 

                                     CDF score represents the propensity for LLPS 

 

 

 

 

 

 

 

 

Cadherins CDF score 

 Cdh23 1.259 

 Pcdh1 1.002 

 Dcsh1 1.350 

FAT1 1.432 

FAT2 1.326 

FAT3 1.538 

FAT4 1.642 
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Supplimentary Figures: 

 

 

 

Figure S1. The high propensity of Cdh23 EC1-27 to undergo liquid-liquid phase-separation 

than Cdh23 EC1-10. The plot of the propensity scores estimated using catGRANULE algorithm 

for Cdh23 EC1-27 (black) and Cdh23 EC1-10 (red) versus the number of residues shows that a 

higher number of EC domains is having a higher probability of undergoing LLPS. Propensity 

scores for Cdh23 EC1-27 and Cdh23 EC1-10 are 1.2932 and 0.8012, respectively. 
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Figure S2. Time-lapse images of droplet fusion (Supporting to Fig. 1, A and B). The bright-field 

images with time capture one of the fusion events of liquid droplets of Cdh23 EC1-27. Arrows in 

black are highlighting the droplets undergoing fusion. Scale bar: 50 µm.  
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Figure S3. Systematic alterations of Ca2+ ions for the optimization of LLPS of Cdh23 EC1-

27 (Supporting to Fig. 1, C, D). (A) The growth of liquid droplets (µm) of Cdh23 EC1-27 with 

time depends on Ca2+ concentration. Error bars represent the standard error of the mean (SEM) for 

N=30 droplets. (B) The liquid droplet size of Cdh23 EC1-27 measured after 60 min of nucleation 

follows a typical bell-shaped curve with increasing ionic strength of the buffer. Error bars represent 

SEM with N=30 droplets. 
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Figure S4. Optimization of LLPS of Cdh23 EC1-27 at varying NaCl and protein 

concentrations (Supporting to Fig. 1 D). Error bars represent SEM with N=30 droplets. 
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Figure S5. LLPS of Cdh23 EC1-27 in the absence of trans-interactions. (A) Bright-field and 

(B) fluorescence images of liquid droplets of Cdh23 EC1-27 induced by exclusive cis-interactions. 

The trans-interactions were turned off by introducing Pcdh15 EC1-2 in the buffer. The scale bar 

is 50 µm. (C) The comparative growth kinetics of liquid droplets (µm) of Cdh23 EC1-27 in the 

absence (black) and presence (red) of Pcdh15 EC1-2. Pcdh15 blocks the homophilic trans-binding 

interface of Cdh23. 
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Figure S6. Cis-clustering of Cdh23 drives the LLPS of Cdh23. (A) The representative bright-

field and fluorescence images of liquid droplets of Cdh23 EC1-27 in absence (column 1) and 

presence (column 2) of 1,6-HD. 1,6-HD disrupted the liquid droplets of Cdh23 EC1-27. Scale bar: 

50 µm. 
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Figure S7. Differential expression of Cdh23 in cancer cell lines and microglia (Supporting to 

Fig. 3). (A) The relative expression of Cdh23 mRNA in different cancer cell lines, namely HeLa, 

MCF-7, HEK293, HaCat, and A549, quantified using qRT-PCR. The highest expression is noticed 

in A549 and the most negligible expression in HeLa.  (B) Bar plot to display the mRNA expression 

of different cadherin proteins in microglia cells.  FPKM is Fragments Per Kilobase Million 

essentially represents normalized expression values.  
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Figure S8. Calcium-dependent cell-cell aggregation of HEK293 cells exogenously expressing 

Cdh23 (Supporting to Fig. 2 D).  Scale bar: 50 µm 
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Figure S9. Calcium-dependent cell-cell aggregation of HEK293 cells exogenously expressing 

Cdh23 (Supporting to Fig. 2 D).  The time-dependent growth of the cell-cell aggregation area 

(normalized) of HEK293 cells exogenously expressing Cdh23 EC1-27 at varying calcium 

concentrations. The error bars represent the standard error of the mean (SEM) for N=15 

aggregates. 
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Video 1 A. Fusion of droplets of Cdh23 EC1-27 (Supporting to Fig. 1 F). The fusion of liquid 

droplets of Cdh23 EC1-27 captured under a fluorescence (GFP) microscope. 

 

 

 

Video 1 B. Fusion of droplets of Cdh23 EC1-27 (Supporting to Fig. 1 E). The fusion of liquid 

droplets of Cdh23 EC1-27 captured under bright-field. 

 

 

  

 

Table S1.  The value of γ obtained from the fitting of the cell aggregation kinetics to Von 

Bertalanffy model. 

   

              

                         

                                    

                          γ represents the growth of the aggregate. 

 

 

                            

 

  

 

  

Cell aggregation experiment γ 

Cdh23 EC1-10 and Cdh23 EC1-27  

-2.25 

 
Cdh23 EC1-27 at different Ca2+ concentrations 
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