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Abstract 

Obesity, the accumulation of body fat to excess, may cause serious negative health effects, including 

increased risk of heart disease, type 2 diabetes, stroke and certain cancers. The biology of obesity is 

complex and not well understood, involving both environmental and genetic factors and affecting 

metabolic and endocrine mechanisms in tissues of the gut, adipose, and brain.  Previous RNA 

sequencing studies have identified transcripts associated with obesity and body mass index in blood and 

fat, often using animal models, but RNA sequencing studies in human brain tissue related to obesity 

have not been previously undertaken. We conducted both large and small RNA sequencing of 

hypothalamus (207 samples) and nucleus accumbens (276 samples) from individuals defined as 

consistently obese (124 samples), consistently normal weight as controls (148 samples) or selected 

without respect to BMI and falling within neither case nor control definition (211 samples), based on 

longitudinal BMI measures. The samples were provided by three cohort studies with brain donation 

programs; the Framingham Heart Study (FHS), the Religious Orders Study (ROS) and the Rush Memory 

and Aging Project (MAP).  For each brain region and large/small RNA sequencing set, differential 

expression of obesity, BMI, brain region and sex was performed. Analyses were done transcriptome-

wide as well as with a priori defined sets of obesity or BMI-associated mRNAs and microRNAs (miRNAs). 

There are sixteen mRNAs and five microRNAs that are differentially expressed (adjusted p < 0.05) by 

obesity or BMI in these tissues, several of which were validated with qPCR data. The results include 

many that are BMI-associated, such as APOBR and CES1, as well as many associated with the immune 

system and some with addiction, such as the gene sets “cytokine signaling in immune system” and 

“opioid signaling”. In spite of the relatively large number of samples, our study was likely under-

powered to detect other transcripts or miRNA with relevant but smaller effects.  

Introduction 
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Obesity is the accumulation of body fat to the point of excess that may cause serious negative 

health effects. These health risks are all among the world’s leading causes of death and include heart 

disease, type 2 diabetes, stroke and certain cancers (breast, colon, kidney, endometrial, gallbladder, and 

liver). The prevalence of adult obesity in developed countries has increased dramatically over time until 

leveling off in the last decade at approximately 35% [1] but continues to increase worldwide. [2] 

The etiology of obesity is complex, influenced by genetic and environmental factors such as diet, 

caloric intake and amount of physical activity.  Many genome-wide association studies (GWAS) [3-14] 

have been conducted in order to find specific sequence variants associated with obesity, and at least 75 

genetic loci have been identified [15, 16].  Although the functional consequences of these variants are 

not all understood, many implicated genes have functions associated with the neuro-endocrine and 

related neuronal systems. These include FTO (fat mass and obesity associated gene), the strongest and 

first association made to BMI via GWAS, implicated through a cluster of BMI-associated SNPs in its first 

intron.  FTO is expressed ubiquitously but is especially highly expressed in the brain and in neurons, 

where it may act in the sensing of intracellular amino acid concentrations [15, 17]. Other 

neuroendocrine genes among the GWA-implicated set are MC4R (melanocortin receptor 4), NPC1 (NPC 

Intracellular Cholesterol Transporter 1), NRXN3 (Neurexin3) and (Potassium Calcium-Activated Channel 

Subfamily M Alpha 1). MC4R is a hormone receptor in the brain regulating the melanocortin system on 

which the hunger hormones leptin and ghrelin act, NPC1 is involved in membrane cholesterol transport 

in glial cells, NRXN3 is a neuronal cell surface protein associated with cell adhesion, and KCNMA1 is key 

in neuron excitability. 

Neuroendocrine involvement in the development and subsequent effects of obesity is 

unsurprising, given the association of obesity with dysregulation of energy homeostasis, and the 

relevance of neuroendocrine function to hunger, diet, and response to the metabolic hormones such as 

insulin and leptin. Consequently, we were motivated to interrogate obesity via RNA sequencing in the 
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brain. We chose to study the hypothalamus, as this brain region is heavily involved in regulating the 

endocrine system. The hormones leptin and ghrelin act in the hypothalamus, increasing or decreasing 

satiation after being produced in the adipose tissue or gut, respectively [18].  In addition to the 

hypothalamus, we conducted RNA sequencing in the nucleus accumbens.  This brain region plays a 

significant role in reward systems, pleasure, and impulse responses, which have been implicated in 

obesity related behaviors [19].  While brain related metabolic, endocrine and behavioral effects are 

likely to contribute to obesity, these have not been previously evaluated in human brain.   

Measurements of gene expression are a key tool that that may assist in identifying obesity 

associated genes and the underlying variants responsible for the relationship. RNA sequencing yields 

transcript abundance estimates which may be affected by all of the factors that GWAS can capture and 

those it cannot, including genetic, environmental and gene regulatory effects.  Furthermore, RNA 

sequencing analysis may offer a more direct measure of the functional state of a cell or tissue, showing 

which transcripts are being utilized and may be particularly useful for interrogating the effect of disease 

on or within specific tissues. RNA expression analyses of obesity and BMI have been conducted in 

human adipose [2, 20-25] and in animal models [26, 27], but not within human brain tissue.  RNA 

sequencing analysis contrasting post-mortem human brain tissue of obese and normal weight 

individuals has the potential to reveal novel significant insights into the mechanisms of obesity. 

We have conducted large and small RNA sequencing on human hypothalamus and nucleus 

accumbens samples from The Framingham Heart Study, The Religious Orders Study and the Memory 

and Aging Project. Differential expression analyses of obese versus controls were conducted with 

individuals selected based on strict longitudinal BMI requirements, and analyses of continuous BMI done 

with a larger set of samples. Here we present transcriptome-wide and obesity-implicated gene and 

microRNA differential expression results of obesity and BMI, obesity gene set enrichment results, and 

similar analyses of differential expression by brain region and by sex with the same data. 
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Materials and Methods 

Sample Information 

Approximately 100 mg of post-mortem frozen hypothalamus and nucleus accumbens tissue 

were provided by the brain banks at three cohort studies; the Framingham Heart Study (FHS), 

Framingham, Massachusetts, and the Religious Orders Study (ROS) and the Memory and Aging Project 

(MAP) centered at the Rush University Medical Center, Chicago, Illinois. The FHS brain donation program 

represents only a portion of all FHS participants as it was established after the study initiation and not all 

participants chose to consent to brain donation. Brain donation is part of the ROS and MAP study 

protocols and each participant signed an Anatomic Gift Act in addition to informed consent and a 

repository consent allowing their biospecimens and data to be repurposed.  Details of study design for 

each of these cohorts has been previously published [28-30]. Dissection of frozen hypothalamus and 

nucleus accumbens was done by a single pathologist at each site. FHS, ROS and MAP each collect 

detailed phenotypic, genotypic and neuropathological data, including longitudinal measure of BMI, 

enabling application of strict criteria sample selection. Cases were defined as individuals who were 

consistently obese (BMI>30) for at least 4 consecutive measures prior to death. Controls were defined 

as individuals who were consistently normal weight (18< BMI < 25) for at least 4 consecutive measures 

prior to death. Over cases and controls this represents a time span ranging from 2.6 years to 23.9 years, 

with a median span of 3.2 years. The initial phase of sample selection and sequencing consisted of 230 

cases and controls, followed by a second phase of 291 samples, including 32 cases and 25 controls and 

the remainder a population sample that did not include individuals meeting the case or control 

definitions but were otherwise not selected with respect to BMI.  

Sample Preparation and Sequencing 
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Total RNA from these samples were isolated using QIAzol Lysis Reagent (Qiagen, Valencia CA) 

and purified using miRNeasy MinElute Cleanup columns. RNA integrity was evaluated with per-sample 

RNA Integrity Number (RIN) using Agilent’s Bioanalyzer 2100 and RNA 6000 Nano Kits. 

Large RNA library preparation and sequencing was conducted at the Oklahoma Medical Research 

Foundation Genomics Core using the Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold (rRNA-

depleted) preparation kits. The sequencing was conducted in ten separate batches (sequencing runs 

conducted on different flow cell and/or day), four in phase 1 and six in phase 2. In order to eliminate 

lane effects within each batch, samples were barcoded to distinguish samples and multiplexed across 

lanes. Sequencing of 2x150 paired-end reads was done using the Illumina Hiseq 3000 with target read 

depth of 40 million read pairs. 

Small RNA library preparation and sequencing at the University of California, Los Angeles, 

Clinical Microarray Core using New England Biolabs NEBNext library preparation, and sequencing of 

1x50 single-end reads done on the Illumina HiSeq 3000 with target read depth of 15 million. Sequencing 

was conducted in twenty-seven batches, eleven in phase 1 and sixteen in phase 2, and samples were 

multiplexed within each batch to eliminate any lane artifacts. 

Sequencing Analysis 

Sequencing reads were clipped of adaptors and length-filtered using the tool cutadapt v 1.14 

[31].  Clipped large RNA sequencing reads shorter than 50 nucleotides were removed, and clipped small 

RNA sequencing reads shorter than 15 or longer than 23 were removed.  For quality control, the 

nucleotide trimming tool sickle v 1.33 was applied with Phred quality threshold of 20, removing low 

quality ends of reads and once again applying the lower bound read length filter [32].  Reads of each 

sequencing sample were aligned to the hg38 human reference genome with the alignment tool STAR, 

Spliced Transcript Alignment to a Reference, v 2.5.3a [33].  Large RNA alignments with mismatches more 
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than 5% of the read length and small RNA alignments with greater than 1 mismatch were disallowed. 

Spliced reads were disallowed for the small RNA sequencing samples. Read counting of small RNA 

alignment files was done using the HTSeq intersection non-empty method [34] implemented in Verse v. 

0.1.5 [35], and miRBase version 22 [36] mature microRNAs. Large RNA abundance estimation was done 

using the method RSEM [37] with input STAR alignment of reads to gencode version 23 genes translated 

into transcriptome coordinates (STAR’s –quantMode TranscriptomeSam option).   

Sample Sets analyzed: 

Sample filtering based on RIN and Braak neurofibrillary tangle stage [38], a measure of 

neurodegeneration, was applied yielding three separate analyses defined by different filter criteria.  In 

all analyses, 39 samples with RIN less than 3 were removed. Our choice of RIN > 3 as a lower threshold 

was guided by observable differences at very low RIN values. Samples with RIN less than 3 have much 

lower read depth and more multi-mapped reads than samples above 3. The three filtering criteria used 

are notated as RIN6/BraakIV, RIN3/BraakIV and RIN3/Braak-adjusted and are described in detail below.  

The sample sizes of obesity and BMI differential expression analyses with varying sample filters (both 

sexes combined) are shown in Table 1. 

Table 1: Sample sizes of the three RIN and Braak stage filters from the obesity and BMI differential 

expression analyses, without sex stratification. 

Test Stratification Filter N total N controls N cases N unselected 

Obesity Hypothalamus RIN3/Braak adjusted 106 59 47 0 

RIN3/BraakIV 81 40 41 0 

RIN6/BraakIV 28 13 15 0 

Nucleus RIN3/Braak adjusted 136 74 62 0 
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accumbens RIN3/BraakIV 101 49 52 0 

RIN6/BraakIV 76 36 40 0 

BMI Hypothalamus RIN3/Braak adjusted 172 59 47 66 

RIN3/BraakIV 131 40 41 50 

RIN6/BraakIV 48 13 15 20 

Nucleus 

accumbens 

RIN3/Braak adjusted 262 74 62 126 

RIN3/BraakIV 198 49 52 97 

RIN6/BraakIV 139 36 40 63 

 

RIN3/Braak Adjusted:  This analysis included samples with RIN >= 3 and no filtering on Braak 

stage. Although RIN >= 6 is a more common RIN filtering criteria, we chose a lower threshold for our 

main analyses because of our choice of sequencing library preparation with ribosomal RNA depletion, 

which is more resilient to degraded RNA than poly-A selection. In addition, we did not observe the 

differences in quality noted for our RIN < 3 samples for samples with RIN between 3 and 6.  Given these 

factors, we wanted to retain a larger sample size.  

Braak stage was accounted for with adjustment in the differential expression models. However, 

covariate adjustment may not sufficiently account for the effect of substantial neurodegeneration, 

particularly because neurodegeneration is not randomly occurring across cases and controls.  Obesity 

has been previously associated with neurodegeneration [39], and this is seen in these samples, in which 

obesity is associated with Braak stage independent of age of death.  Although lower age of death is 

associated with lower Braak stage, obesity is not associated with age of death in this data. In order to 

mitigate confounding effects from the association of obesity with Braak stage, we have also conducted 

the RIN3/BraakIV analysis. 
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RIN3/BraakIV: To more thoroughly address the potential effect of neurodegeneration indicated 

by a high Braak stage, we conducted an additional analysis with a Braak filter excluding subjects with 

Braak stage greater than IV.  As with all analyses, only samples with RIN >= 3 were retained. The Braak 

filter reduced the number of subjects from 293 to 221 and samples (both brain regions) from 483 to 

365. The loss of power by the reduction of sample size by nearly one quarter may be offset by greater 

homogeneity in the remaining samples after excluding those with Alzheimer’s disease pathology. 

RIN6/BraakIV: A third analysis was done excluding subjects with Braak > IV and applying a more 

stringent and standard RIN filter excluding samples with RIN < 6. Although RIN is also accounted for in 

the models, this greater homogeneity of RIN values may give us more confidence that any effects of 

RNA degradation on gene quantifications has not affected the differential expression analysis. However, 

this final RIN6/BraakIV filter reduces the RIN3/BraakIV sample size to 189, nearly by half. The benefit for 

increased RIN stringency is likely negated by the loss of power from reduced sample size.  

Differential Expression Analysis  

Differential expression analyses were conducted to evaluate expression differences between the 

obese and normal weight samples and for association with body mass index (BMI). Hypothalamus and 

nucleus accumbens samples were analyzed separately, and sex stratified and combined analyses were 

conducted.  For each sample subset, genes and microRNAs with zero counts in more than half of 

samples were excluded from analyses.   

Differential expression testing of obesity status was performed with two methods: DESeq2 and 

linear regression with LIMMA. Normalization of gene abundance estimates and raw miRNA counts was 

conducted using the DESeq2 normalization method prior to DESeq2 differential expression tests.  

Normalization was performed using the DESeq2 rlog method (following ComBat batch correction) for 

LIMMA tests. Differential expression testing of last measured BMI was performed using linear regression 
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with LIMMA. Last BMI was used instead of mean BMI because the two measures are highly correlated in 

these data and the last BMI was measured more closely to death, after which tissue used for expression 

analysis was obtained and frozen. Principle Component Analyses showed clear differences by 

sequencing phase but not sequencing batch, so both LIMMA tests (obesity and BMI) applied ComBat 

batch correction of phase to DESeq2 rlog transformed data, gene abundance estimates or microRNA raw 

counts.  Each test applied a false discovery rate (FDR) adjusted p-value significance threshold of 0.05. 

Phase of sequencing and RIN were included as covariates in the models for all tests, with additional 

covariates chosen based on association with the model outcome (gene abundance estimates or 

microRNA counts). Potential covariates were added to the model only if they were significantly 

associated with more than 10% of the normalized counts across the full set of genes or microRNAs. The 

tests of association with covariates were done with ANOVA, logistic regression, and Spearman 

correlation for batch, study, and age of death, respectively. Covariates considered were sex, study of 

origin (FHS or ROSMAP), age at death, sequencing batch (in which case sequencing phase is removed). 

The association tests used were logistic regression for sex and study, Spearman correlation for age at 

death, and ANOVA for sequencing batch. Final covariates used for each sample subset may differ, and 

are shown in Table 2. For these tests and all differential expression analyses, Bioconductor v. 3.0 and R 

v. 3.1.1 were used. 

Table 2: Covariates used for each obesity and BMI differential expression analysis (RIN included in all 

cases so is not shown in table). 

Test Sample set RIN3/Braak 

adjusted 

RIN3/BraakIV RIN6/BraakIV 

Obesity Hypo/Male Phase, Braak Phase NA: sample size 

too small 
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Hypo/Female Phase, Braak, 

Age_Death, Study 

Phase Phase 

Hypo/BothSexes Phase, Braak, 

Age_Death, Study 

Phase Phase 

NucAcc/Male Phase, Braak, 

Age_Death 

Phase, 

Age_Death 

Phase 

NucAcc/Female Phase, Braak Phase Phase 

NucAcc/BothSexes Phase, Braak Phase Phase 

BMI Hypo/Male Phase, Braak Phase Phase 

Hypo/Female Phase, Braak, 

Age_Death, Study 

Phase, 

Age_Death 

Phase 

Hypo/BothSexes Braak, 

Age_Death, 

Study, Batch, Sex 

Phase, 

Age_Death, Study 

Phase 

NucAcc/Male Braak, 

Age_Death, 

Study, Batch 

Phase, 

Age_Death, Study 

Phase, 

Age_Death, Study 

NucAcc/Female Phase, Braak, 

Age_Death, Study 

Phase, 

Age_Death 

Phase, 

Age_Death, Study 

NucAcc/BothSexes Braak, 

Age_Death, 

Study, Batch, Sex 

Age_Death, 

Study, Batch, Sex 

Age_Death, 

Study, Batch, Sex 

 

Differential expression of obesity implicated mRNA and miRNA  

In addition to transcriptome-wide analyses, a focused assessment of mRNAs and miRNAs 

previously implicated in obesity and obesity-related phenotypes was conducted. An FDR adjustment 
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correcting only for the reduced set of hypotheses was applied to the nominal DESeq2 p-values of the 

mRNAs and miRNAs in the obesity set. 

The mRNA subset was determined using results of a BMI GWAS meta-analysis [40]. Genes 

whose genomic location overlap LD blocks of the most significant BMI-associated SNPs were included in 

our subset, for a total of 549 genes. The miRNA subset was taken from Deiuiliis [41] which contains a 

conglomeration of miRNAs previously implicated with obesity and related traits from studies using a 

variety of study designs, tissue types and models. The sum of the miRNA set include miRNAs associated 

with obesity, cardiometabolic disease, adipogensis, lipogenesis, insulin resistance and hepatic glucose 

homeostatis, totaling 159 of the 2813 miRBase v. 21 mature miRNAs. 

Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) [42] was performed with the R package fgsea, Fast Gene 

Set Enrichment Analysis [43].  The transcriptome-wide mRNA DESeq2 results ordered by the test 

statistic was used as input. The gene sets from The Molecular Signatures Database (MSigDB) version 6.0 

[42, 44], specifically the subset of curated gene sets (C2) and canonical pathways (CP), were tested for 

significant enrichment based on gene order. The fgsea function was run with 100,000 permutation gene 

label permutations for p-value estimation (nperm) and filtering pathways with less than 15 or more than 

500 genes (minSize, maxSize). This was done for each of the DESeq2 analyses performed. For 

interpretation of results, gene sets were manually associated with a set of general categories (obesity, 

neurons, cancer, development, transcription/translation, etc.) based on matching of category key-words 

within names of gene-sets. 

Validation 

Validation of DESeq2 obesity and brain region differential expression results for nine mRNA and 

miRNA transcripts was performed with the QuantStudio 12K Flex [45] TaqMan Array Card protocol (Life 
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Technologies Corporation, 6055 Sunol Blvd, Pleasanton, CA 94566) using the simultaneous detection of 

miRNA and mRNA procedure described by Buchholz [46]. Reverse transcription (RT) was performed for 

10ng of RNA (5ng/ul concentration). RT was performed by ligating a poly-A tail to the 3’ and an adaptor 

to the 5’ end of the transcript as described by the manufacturer [47]. mRNA RT was performed using 

Universal RT primers, random hexamers, and RT enzyme mix according to protocol [46]. The resulting 

cDNA was then subjected to miRNA pre-amplification for miRNA transcript specific RT amplification 

using the miR-AMP forward primer, and miR-AMP reverse primers for each miRNA to be assayed 

according to manufacturer’s protocol [47]. 

 The products were detected by qPCR in the Array Card, using gene-specific mRNA TaqMan Gene 

Expression Assays and miRNA-specific TaqMan Advanced miRNA Assays which were plated in the Array 

Card. Each Array Card consists of 384 wells, each containing a specific assays are. Each card has eight 

slots into which eight individual samples can be applied to 48 wells into which that sample is distributed 

by centrifugation. Assays were performed in triplicate, permitting up to 15 assays to be assessed within 

each card for all eight samples, with an Applied Biosystems internal standard in the 16
th

 position.   

 A total of 200 female samples selected to permit validation of differentially expressed genes and 

miRNA were assayed for the thirteen target assays. Targets for obesity were USP6, TTN, and NDNF, with 

a range of mean count values (100 to 3170) and absolute value of log fold-changes (0.73 to 1.78). 

Targets for brain region were ARPP21, SYNDIG1L, DRD1, hsa-miR-139-5p, hsa-miR-552-5p, and hsa-miR-

10b-5p, with a range of mean count values from 130 to 38261 and log fold-change from 1.11 to 6.09. In 

addition, one mRNA and two miRNA transcripts were assayed (TMEM186, hsa-miR-154-5p and hsa-miR-

423-3p), selected from the RNA sequence data to be transcripts with uniform expression across all 

contrasts, low standard deviations and mean count values representative of the chosen miRNA and 

mRNA assays.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.08.473382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.08.473382


14 

 

Analysis of differential expression was performed with a delta-delta-Ct (ΔΔCt) algorithm, as 

described in Livak and Schmittgen 2001 [48] and implemented with the R package ddCt [49] which 

yielded ΔΔCt and fold-change values. mRNA and miRNA analyses were done separately, with TMEM186 

or hsa-miR-154-5p and hsa-miR-423-3p used as reference transcripts, with TaqMan’s rRNA reference 

transcript Hs999999-1_s1 used in both cases. Significance of ΔΔCt distribution differences was evaluated 

by t-test if normality was shown with a Shapiro-Wilk test, or by Wilcoxon rank test if not. 

 

Results and Discussion 

Large RNA Differential Expression of Obesity and BMI 

Significant results from the large and small RNA sequencing DESeq2 and LIMMA differential 

expression tests of obesity from the RIN3/BraakIV filtering sets are shown in Tables 3 and 4, positive log 

fold-changes indicating higher expression with higher BMI or obesity status. The large RNA results of 

obesity and BMI tests from all sets are within Supplementary File 1 (ObesityBMI_Significant_Results.xls), 

and summarizations of the numbers of results of all obesity, BMI, brain region and sex analyses are 

shown in Supplementary File 2 (Results_Summary_padj0.05.xls). 

Table 3: Large RNA differential expression significant results of obesity (DESeq2) and BMI (LIMMA), from 

RIN3/BraakIV analyses. 

Gene 

name 

Chr Description Test Stratification LogFC Adjusted p 

FCGBP 19 Fc fragment of IgG binding protein Obesity Hypo/M -1.478 0.006 

SLAMF8 1 Lymphocyte activation associated Obesity Hypo/M -1.165 0.029 

HJURP 2 Holliday junction recognition BMI Hypo/M -0.447 0.044 
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C1QTNF4 11 Inflammatory regulation, 

hypothalamic and obesity-

associated 

Obesity Hypo/M 1.078 0.049 

(obesity-

set) 

MEPE 4 matrix extracellular 

phosphoglycoprotein 

Obesity Hypo/F -3.917 3.694E-05 

TBR1 2 Cortical development Obesity Hypo/F -3.433 0.010 

SERPINE1 7 serine proteinase inhibitor family, 

innate immunity 

Obesity Hypo/F -1.523 0.027 

NDNF 4 neuron derived neurotrophic 

factor 

Obesity Hypo/F 0.990 0.027 

APOBR 16 apolipoprotein B receptor Obesity Hypo/Both -0.545 0.007 

(obesity-

set) 

TTN 2 vertebrate striated muscles Obesity Hypo/F 0.725 0.025 

BMI Hypo/F 0.039 0.019 

*Chr: chromosome, LogFC: log fold-change, Hypo: hypothalamus, NucAcc: nucleus accumbens, M: male, 

F: female 

Table 4: Small RNA differential expression significant results of obesity (DESeq2) and BMI (LIMMA), from 

RIN3/BraakIV analyses. 

ID Name Chr Test Stratification LogFC Adjusted p 

MIMAT0000267 hsa-miR-210-3p 11 Obesity Hypo/M -0.493 0.003 (obesity-set) 

MIMAT0000254 hsa-miR-10b-5p 2 Obesity Hypo/Both 0.779 0.011 (obesity-set) 

MIMAT0000421 hsa-miR-122-5p 18 Obesity NucAcc/F 1.132 0.014 (obesity-set) 

MIMAT0000095 hsa-miR-96-5p 7 Obesity NucAcc/Both -0.788 0.011 

MIMAT0000728 hsa-miR-375-3p 2 Obesity NucAcc/Both -1.038 0.050 (obesity-set) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.08.473382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.08.473382


16 

 

*Chr: chromosome, LogFC: log fold-change, Hypo: hypothalamus, NucAcc: nucleus accumbens, M: male, 

F: female 

Statistically significant (adjusted p < 0.05) differential expression results for obesity status are sparse for 

large RNAs in both hypothalamus and nucleus accumbens and both sexes, regardless of the RIN/Braak 

sample filtering. There are 16 unique large RNAs with significant DESeq2 differential expression between 

obese and control samples; all from hypothalamus. Two of these are not significant transcriptome-wide 

but are significant in the obesity-associated set of transcripts (C1QTNF4 and APOBR). There are no 

mRNA transcripts that are significant in both male and female stratified analyses. 

DESeq2 yielded more results than LIMMA. The transcriptome-wide LIMMA analyses of obesity 

had two significant results: HJURP in hypothalamus/male (filtering RIN3/BraakIV, adjusted p: 0.044, log 

fold-change: -0.447) and USP6 in hypothalamus/female (filtering RIN6/BraakIV, adjusted p: 0.034, log 

fold-change: 1.037). Both are also transcriptome-wide significant with DESeq2 in the same sample sets. 

The LIMMA analyses of BMI yielded only one result, titin (TTN), in the hypothalamus/female from both 

the filtering RIN3/Braak adjusted (adjusted p: 0.004, log fold-change: 0.0370) and RIN3/BraakIV 

(adjusted p: 0.019, log fold-change: 0.039), which is also among the DESeq2 obesity results for the 

hypothalamus/female (filtering RIN3/BraakIV, adjusted p: 0.025, log FC: 0.725). 

Several of the obesity and BMI significantly differentially expressed genes are associated with 

the immune system and vascularization. SLAMF8 is associated with lymphocyte activation and C1QTNF4 

with cytokine activity, both significant in hypothalamus, male (filtering RIN3/Braak4). In that sample 

subset, SLAMF8 has significantly lower expression in obese samples transcriptome-wide (adjusted p: 

0.029, log FC: -1.165) and with the obesity-implicated set, C1QTNF4 is significantly more highly 

expressed in obese samples (adjusted p: 0.049, log FC: 1.078). MUC16 is a member of and FCGBP is 

associated with the mucin family of proteins which are associated with the immune system and with 
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cancer. Both have significantly lower expression in obese samples relative to control for the 

hypothalamus, both sexes, filtering RIN3/Braak adjusted (adjusted p: 0.017 and 0.040, log FC: -2.649 and 

-1.036, respectively) and for FCGBP also in the hypothalamus, male (filtering RIN3/Braak adjusted and 

RIN3/Braak4, adjusted p: 0.0002 and 0.0055, log FC: -1.653 and -1.478, respectively). CXCL8 has lower 

expression in obese relative to control samples in the hypothalamus, both sexes (filtering RIN3/Braak 

adjusted, adjusted p: 0.021, log FC: -1.560) and is associated with inflammation and with angiogenesis. 

NDNF, associated with revascularization, is more highly expressed in obese samples for hypothalamus, 

female (filtering RIN3/Braak4, adjusted p: 0.027, log FC: 0.990), and SERPINE1 which inhibits fibrinolysis 

thus promoting blood clotting, in the same sample set is more lowly expressed in obese samples 

(filtering RIN3/Braak4, adjusted p: 0.027, log FC: -1.523).  

Carboxylesterase 1 (CES1) is significantly differentially expressed by obesity status with DESeq2 

in the hypothalamus, both sexes (filtering RIN3/Braak adjusted, adjusted p: 0.035, log fold-change: -

1.287). It is an enzyme that hydrolyzes endogenous and exogenous esters. This includes those of 

cocaine, heroin and other toxins, but also of cholesteryl esters and triacylglycerols, thus playing a role in 

both xenobiotic detoxification or activation as well as cholesterol and lipid metabolism.  It is abundantly 

expressed in liver and adipose tissue [50]. Expression and activity of CES1 in adipose tissue has been 

shown to be increased in obese and type 2 diabetic individuals relative to control [51], although our 

results show CES1 expression in the hypothalamus is down in obese relative to control samples. 

Among our obesity-implicated mRNAs is apolipoprotein B receptor (APOBR), which is 

significantly differentially expressed with the DESeq2 and LIMMA analyses of obesity in the 

hypothalamus, both sexes (filtering RIN3/Braak4, adjusted p: 0.007, log FC: -0.545). Its expression is 

lower in obese relative to control. APOBR is the receptor for APOB, an apolipoprotein produced in the 

gut and liver that binds lipids to form low density lipoprotein chylomicrons that transport lipids in the 

blood. The receptor itself binds to APOB, mediating the endocytosis of the lipids of the lipoprotein. A 
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mutation in APOBR has been associated with hypothyroidism [52]. APOBR is known as a macrophage 

receptor but is known to be expressed in the brain [53], and cholesterol metabolism and transport are 

often implicated in neurological disease [54]. The large RNA DESeq2 and LIMMA results are shown in 

Table 3 and Supplemental File 1 (ObesityBMI_Significant_Results.xls), first tab. 

Small RNA Differential Expression of Obesity and BMI 

Like the significant large RNA results of obesity and BMI tests, vascularization is again associated 

with many of the small RNA results. Unlike the large RNAs, the significantly differentially expressed small 

RNA results are nearly exclusively from the nucleus accumbens rather than hypothalamus. There are 

only three DESeq2 significant miRNA results from the hypothalamus, but each are among the a priori 

defined obesity-implicated set and each is associated with angiogenesis. Two have lower expression in 

obese samples relative to control (hsa-miR-210-3p and hsa-miR-375-3p) while one has the opposite 

expression pattern (hsa-miR-10b-5p). hsa-miR-210-3p is significantly differentially expressed in the 

hypothalamus, male RIN3/BraakIV (adjusted p: 0.003, log fold-change: -0.493) and RIN3/Braak adjusted 

(adjusted p: 0.014, log FC: -0.453), hsa-miR-375-3p in hypothalamus, both sexes (RIN3/Braak adjusted, 

adjusted p: 0.008, log FC: -1. 061), and hsa-miR-10b-5p in the hypothalamus, both sexes (RIN3/BraakIV, 

adjusted p: 0.011, log FC: 0.779). In addition to angiogenesis, hsa-miR-210-3p is associated with hypoxia, 

cardiac disease and cancer, and hsa-miR-375-3p with regulation of protein kinase B signaling and 

endothelial cell apoptosis. 

hsa-miR-375-3p is also significant with the DESeq2 test in nucleus accumbens, both sexes (filter 

RIN3/BraakIV, adjusted p: 0.050, log FC: -1.038), and is the only transcript that is significant in both brain 

regions in any analysis. There are a number of transcripts from the nucleus accumbens, either female or 

both sexes (filtering RIN3/Braak adjusted) analyses that are significant transcriptome-wide with both the 

obesity and the BMI tests. This includes hsa-miR-23b-3p (from female, obesity tests, adjusted p: 0.007 
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and 0.011, log FC: -0.344 and -0.240 from DESeq2 and LIMMA, respectively. From BMI LIMMA, adjusted 

p: 0.024 and 0.026, log FC: -0.016 and -0.014, from female and both sexes, respectively), which through 

Gene Ontology associations is involved with cardiac muscle cell growth and vascular permeability and 

growth, hsa-miR-15b-5p (female, obesity DESeq2 adjusted p: 0.014, log FC: -297, both sexes, BMI 

LIMMA adjusted p: 0.029, log FC: -0.010), associated with cardiac muscle hypertrophy and angiogenesis, 

and hsa-miR-96-5p (from both sexes, BMI LIMMA adjusted p: 0.043, log FC: -0.021, and from both sexes, 

obesity BMI test, adjusted p: 0.011 and 0.008, log FC: -0.788 and -0.692 from RIN3/BraakIV and 

RIN3/Braak adjusted, respectively), associated with vascular smooth muscle cell proliferation with 

cellular response to cholesterol. An additional 37 miRNA are significantly associated with BMI in the 

nucleus accumbens, both sexes (filtering RIN3/Braak adjusted). Among them are hsa-miR-25-3p 

(adjusted p: 0.037, log FC: -0.012) and from the obesity-implicated set, hsa-let-7b-5p (adjusted p: 0.047, 

log FC: -0.007), with associations for cardiac muscle tissue growth and for angiogenesis, respectively. 

The small RNA DESeq2 results are shown in Table 4 and Supplemental File 1 

(ObesityBMI_Significant_Results.xls), second tab. 

Gene Set Enrichment Analysis of Obesity 

Gene set enrichment analysis results for the filter RIN3/BraakIV are summarized by category in 

Table 5. Full obesity GSEA results are given in Supplemental File 3 (GSEA_Obesity_DESeq2.xls), with 

filtering and stratifications in separate tabs, and GSEA result categorization counts and ratios per 

analysis (in separate columns) in Supplementary File 4 (GSEA_DESeq2_categorizations.xls). The number 

of gene set results for each differential expression analysis ranges from 23 to 343. The most common 

categorization of the gene-sets based on key-word association is immune system or inflammation 

related. For example, the top three results from the hypothalamus, both sexes (filter RIN3/Braak4) are 

Reactome’s “cytokine signaling in immune system” and “innate immune system” and Kegg’s “cytokine-

cytokine receptor interaction.” The most common categorizations for the hypothalamus/male, 
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hypothalamus/both sexes and nucleus accumbens/male sets (filtering RIN3/BraakIV) are by far 

immune/inflammation related, with 132/300, 65/143 and 21/45 gene sets, respectively. 

Not surprisingly, many gene sets are neuron-related, the most common categorization for the nucleus 

accumbens/both sexes results (filtering RIN3/BraakIV). Four of the six gene sets among the filtering 

RIN3/BraakIV, have the Reactome category “Neuronal System” among the top results. Interestingly, the 

most significant result from the nucleus accumbens, both sexes (filter RIN3/Braak4) is Reactome’s 

“opioid signaling”, with adjusted p-value of 0.010. There are some obesity-related gene sets among the 

significant results, for example from the hypothalamus, female (filtering RIN3/Braak4) Kegg’s “insulin 

signaling pathway” with adjusted p-value of 0.015, but overall, obesity-related pathways are sparse. 

Table 5: Number of Gene Set Enrichment Analysis results from obesity differential expression results 

with DESeq2, in each brain region and sex stratification (RIN3/Braak4 sets), as categorized by gene-set 

name key-word association. Note that a gene set may have multiple categories, so the number of gene 

sets over all categories (first row) does not necessarily equal the sum of all other rows.  

 All gene 

sets 

Hypo/

M 

Hypo/

F 

Hypo/ 

Both 

NucAcc/

M 

NucAcc/

F 

NucAcc/ 

Both 

All categories 1329 300 58 143 45 23 30 

None 440 0 0 0 0 0 0 

Other 214 53 25 34 11 2 10 

Obesity 78 5 7 7 0 0 1 

Immune/Inflam 229 132 6 65 21 8 0 

Neurons 114 39 16 6 1 2 11 

Vascular system 25 8 4 5 0 1 1 

Apoptosis 39 22 0 4 4 1 0 
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Cancer 55 19 0 5 4 0 1 

Cell Cycle 37 10 0 1 1 2 1 

DNA 

damage/repair 

16 3 0 0 1 0 1 

Development 45 6 0 1 2 0 1 

Microtubules 41 4 1 3 0 0 0 

TF targets 32 13 0 6 2 0 0 

Transc/Transl 89 22 2 17 1 8 4 

*Hypo: hypothalamus, NucAcc: nucleus accumbens, M: male, F: female, Immune: immune system, 

Inflam: inflammation, TF: transcription factor, Transc: transcription, Transl: translation 

Brain Region Differences 

Differential expression results between the hypothalamus and nucleus accumbens are 

abundant. There are many thousands of genes, and many hundreds of miRNAs that are significantly 

differentially expressed with adjusted p-value < 0.05 for each combination of cases/controls/both and 

male/female/both and for both DESeq2 and LIMMA with large overlap across them. There are more 

than 2,000 genes and nearly 900 miRNAs that are DESeq2 differentially expressed with the largest set of 

samples, both statuses and sexes combined (filtering RIN3/Braak adjusted).  Of the top 10 most 

significant results there is very large overlap of genes and miRNAs across all sets, regardless of obesity 

status or sex stratification.  Among these are some brain-related genes including dopamine receptor D1 

and hippocalcin, and several miRNAs from the obesity-implicated set including hsa-miR-10b-5p and hsa-

miR-539-3p, which are among the obesity/BMI differential expression results. Gene set enrichment 

results of the brain region DESeq2 results are also abundant. There are at least 150 gene-sets 

significantly associated with the rank of differential expression results for each analysis. Reactome’s 
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“Cholesterol biosynthesis” is within the top 10 most significant results in each of the RIN3-filtered 

analyses, followed only by KEGG’s “Ribosome” and Reactome’s “Peptide chain elongation”. The top 

brain region DESeq2 result (top 10 most significant by p-value from each filtering and stratification 

analysis) are shown in Supplemental File 5 (Brain_region_DESeq2_Top10_Significant_Results.xls), mRNA 

and miRNA in separate tabs. GSEA results from brain region DESeq2 analyses are shown in Supplemental 

File 6 (GSEA_BrainRegion_DESeq2.xls), and gene set categorization information among the columns of 

Supplementary File 4 (GSEA_DESeq2_categorizations.xls). 

Sex Differences 

Differential expression by sex yields at least a dozen significant mRNA results for the filter 

RIN3/BraakIV, with many hundreds from the largest stratification set, nucleus accumbens of all obesity 

statuses. Similar numbers were seen with other filter sets. This sample set also yields the most miRNA 

results, with more than a dozen for each test and more than 50 in most. This is compared to all other 

sample stratifications which, with one exception, have fewer than 4 significant results in all sample sets 

and tests. For both mRNA and miRNA there is large overlap between the DESeq2 and LIMMA results. 

Unsurprisingly, most of the top results are on the X and Y chromosomes. From the top ten most 

significant results of all RIN3/BraakIV DESeq2 analyses (stratifications of cases status and brain region), 

there are twenty-two mRNAs, none of which are autosomal. By expanding to the top fifty most 

significant results there are 297 mRNAs over all stratifications, of which 239 are autosomal. Of those 

239, there are 9 from both brain regions in at least one analysis, including four immune-related genes 

(IGKC, IGHG2, ISG15 and NLRP2) and two lncRNAs. There are many mRNAs that appear among the top 

results in multiple analyses but only of one brain region, and similarly, a number from only obese or only 

control analyses (or combined), but never together. This is true for both large and small RNA analyses. 

There is an abundance of obesity-implicated miRNA within these results. Among the 454 unique miRNAs 

that appear within the top 50 results of any DESeq2 analysis, 53 are within our obesity-implicated set, 33 
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of which have negative direction of effect (higher in males), 12 positive, and 8 that differ depending on 

the context. Significant sex DESeq2 results are shown in Supplemental File 7 

(Sex_Significant_Results.xls), mRNA and miRNA in separate tabs. 

With the exception of nucleus accumbens, cases (filtering RIN3/BraakIV), each set of large RNA 

differential expression analyses yields Gene Set Enrichment Analysis results, shown in Supplemental File 

8 (GSEA_Sex_DESeq2.xls), with resulting categorization information among the columns of 

Supplementary File 4 (GSEA_DESeq2_categorizations.xls). These GSEA results are heavily skewed 

towards those gene sets characterized as related to the immune system or inflammation, even more so 

than the obesity results and brain region GSEA results. For example, in analyses of both regions the gene 

set “autoimmune thyroid disease” from KEGG, categorized as immune-related and is also obesity-

related, is significantly associated with the sex DE results (filtering RIN3/BraakIV) among all samples and 

among only obese samples. 

Validation 

Table 6: Summary of the RNA sequencing differential expression results (adjusted p-value and mean 

ΔΔCt) and qPCR ΔΔCt results (adjusted p-value and RQ value) for the three transcripts chosen to validate 

obesity differential expression.  

Transcript name Test Stratification (all 

female) 

DESeq2 

adjusted p 

ΔΔCt 

adjusted p 

DESeq2 log2 

fold-change 

Mean ΔΔCt  

USP6 Obesity Hypothalamus, 

RIN6/BraakIV 

9.769E-07 0.026 1.781 8.687 

TTN Obesity Hypothalamus, 

RIN3/BraakIV 

0.025 0.222 0.725 0.975 

NDNF Obesity Hypothalamus, 

RIN3/BraakIV 

0.027 0.073 0.990 1.081 
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Brain region RNA sequencing DE results were successfully validated with significance (adjusted 

p-value < 0.05) and the same direction of effect with qPCR ΔΔCt analyses for all six transcripts in nearly 

all sample stratifications. Each of the chosen transcripts (ARP21, SYNDIG1L, DRD1, hsa-miR-139-5p, hsa-

miR-552-5p and hsa-miR-10b-5p) had very significant RNA sequencing DE results in each of the sample 

stratifications used for the validation (female, RIN3/BraakIV and RIN6/BraakIV), with adjusted p-values 

ranging from 1.187E-05 to 2.313E-136. These DE results are validated by the qPCR data, with ΔΔCt 

analysis adjusted p-values ranging from 0.000548 to 2.058E-29. The only exceptions are among the 

RIN6/BraakIV, control, female sample stratifications, for which hsa-miR-139-5p and hsa-miR-10b-5p 

yielded directions of effect matching the RNA sequencing DE results and whose nominal p-values were 

significant but adjusted p-values were not (0.116 and 0.223). Obesity RNA sequencing differential 

expression validation is summarized in Table 6. The USP6 RNA sequencing DE result was validated by the 

ΔΔCt analysis with significance (adjusted p < 0.05) and fold change in the same direction. TTN and NDF 

ΔΔCt results also have fold change directions matching the RNA sequencing results and although the p-

values are nominally significant, they are not significant after multiple hypothesis testing adjustment. 

Discussion 

We present an analysis of large and small RNA sequencing in 444 samples after filtering for RIN 

and Braak stage to remove samples with degraded RNA and evidence for Alzheimer pathology. Obesity 

has not been previously studied with RNA sequencing in the human brain, and these samples give a rare 

opportunity to analyze the role of the hypothalamus and nucleus accumbens in obesity and BMI. 

Because of the neuroendocrine role of the hypothalamus and the reward/addiction role of the nucleus 

accumbens, each brain region has functions that are associated with obesity but we have for the first 

time evaluated their gene and miRNA expression association with the obese phenotype. We have shown 

that a small number of genes and miRNAs have statistically significant differential expression of obesity 

and BMI in these tissues, including some involved in metabolism such as APOBR and CES1, and a number 
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associated with the immune system and inflammation, which is reinforced by gene set enrichment 

analysis. 

  Our criteria for samples’ case and control definitions give a binary contrast of stark phenotypic 

differences, requiring that the last four measures of BMI before death are greater than 30 or between 

18.5 and 25.  This is a conservative approach that removed from study individuals whose weight 

fluctuated or lost weight to the point of changing obesity status prior to death. In addition to this test of 

binary obese status with DESeq2 we conducted a Limma linear regression test with the continuous BMI 

measure, which included many subjects who did not meet the strict case/control criteria (see Table 1 for 

sample sizes of these analyses).  

For test of obesity differential expression we used both DESeq2 and Limma linear regression.  

The implementation of Limma was intended to more thoroughly address differences observed between 

our two phases of sequencing. As DESeq2 cannot utilize sequencing counts that have been transformed, 

we accounted for sequencing phase among our potential DESeq2 model covariates, but with Limma we 

also used a data transformation with ComBat batch correction [55]. Ultimately the results of the two 

analyses were similar, indicating that the two methods for accounting for phase differences may be 

comparable. 

A small number of differential expression results were statistically significant. This may indicate 

that there are few genetic signals of obesity to be detected in the hypothalamus or nucleus accumbens 

or that such effects are small and that more samples providing additional power are needed for 

detection. While the total number of samples studied here is relatively large, it is compromised by the 

intrinsic challenges of using human post-mortem samples from these longitudinal studies of aging 

adults, as many were removed for low RNA integrity and high Braak stage. Inherent with human samples 

is large heterogeneity which will obfuscate true associations, and inherent with post-mortem samples is 
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the possibility that a true obesity signal is overwhelmed by death processes. However, these limitations 

do not outweigh the clear benefit of studying the disease in human tissue directly without an animal 

model of disease, or of the unique interrogation of brain tissue with regard to obesity and BMI. Our 

large sample size has at least partially overcome those inherent difficulties, as a handful of interesting 

genes and miRNAs are observed whose expressions are significantly associated with obesity status or 

BMI. 

The RNA sequencing analyses were validated with ΔΔCt analyses from qPCR data in the same 

samples for the brain region DE of six transcripts and the obesity DE of three transcripts. Female 

stratified analyses were chosen, as representative of all analyses but with feasible sample size. Each RNA 

sequencing DE result had power for validation above 0.95, based on sample size and DESeq2 effect size 

and p-value. Although performed in a limited number of transcripts, this validates that the RNA 

sequencing data is comparable to qPCR data. 

Inflammation and the immune system are the among the most prominent signals seen in our 

obesity differential expression and gene set enrichment results, in the hypothalamus by genes such as 

SLAMF8, C1QTNF4, MUC16, FCGBP and CXCL8 and 65 of the 143 significant gene sets from the analysis 

of both sexes. The analysis of the nucleus accumbens has far fewer inflammation mRNA results, but has 

far more significant miRNAs with vascular associations, such as angiogenesis, a symptom of chronic 

inflammation. These include hsa-miR-210-3p, hsa-miR-23b-3p, hsa-miR-15b-5p, hsa-miR-96-5p,hsa-miR-

96-5p and hsa-let-7b-5. 

Tissue inflammation has been associated with obesity, not only the system-wide inflammation 

observed in many organ systems, but also specifically in the hypothalamus and some other brain tissues 

[56]. There is evidence that inflammation of the hypothalamus precedes that of peripheral tissues [57], 

suggesting that inflammation-induced dysregulation of the energy-regulating functions of the 
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hypothalamus contribute to comorbidities such as insulin resistance, and to maintaining over-eating and 

obesity [58, 59]. Although this may suggest that the signals of hypothalamic inflammation we have 

ascertained from gene expression may be partially causal, it would be difficult to disentangle the two 

potential types of inflammation, causal and resultant, because the obese individuals in this study may 

have experienced generalized inflammation of brain tissue for many years. The differences in the 

inflammation signal between the hypothalamus and nucleus accumbens may indicate otherwise, but we 

should also be cautious that the inflammation signals may be due to technical artifacts. For example, 

because adjacent brain regions may have great differences in vascular characteristics, signals of vascular 

differences may be particularly susceptible to slight differences in tissue composition due to dissections. 

In addition, inflammation-associated results may generally be more likely to be a result of type I error, 

due to a characterized bias towards immune-related genes and pathway over-representation in 

differential expression analyses regardless of biological context [60]. 

For example, because adjacent brain regions may have great differences in vascular 

characteristics, signals of vascular differences may be particularly susceptible to slight differences in 

tissue composition due to dissections. In addition, inflammation-associated results may generally be 

more likely to be a result of type I error, due to a characterized bias towards immune-related genes and 

pathway over-representation in differential expression analyses regardless of biological context [60]. 

Carboxylesterase 1 (CES1) and Apolipoprotein B Receptor (APOBR) are both DESeq2 genome-

wide significant in at least one subset of hypothalamus samples. Expression of CES1 has been previously 

associated with obesity and type 2 diabetes in human adipose tissue [51]. It plays a role in both toxin, 

including cocaine and heroin, detoxification but also in cholesterol and lipid metabolism.  The nucleus 

accumbens is involved with drug addiction and impulse control, but CES1 was genome-wide significant 

only in the hypothalamus. Given the association of CES1 with obesity in adipose tissue and now in the 
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hypothalamus, it is possible that the mechanism of this association is driven by the role of CES1 in the 

metabolism of cholesterol and lipids rather than toxins.  

APOBR is more lowly expressed in our obese samples relative to control in the hypothalamus, 

for both sexes. It binds APOB, mediating uptake of lipids into the cell. Lower expression of this receptor 

may cause lipid deficits and negatively impact cellular health and function. The effect of lipid 

metabolism on brain and neuron health has been thoroughly analyzed especially with regard 

Alzheimer’s disease and APOE, but also APOB [61]. Dysregulation of the lipid intake may negatively 

affect the hypothalamus’ normal functions regulating energy intake and expenditure, potentially helping 

to explain the observed association. Alternatively, reduced ability to respond to APOB may be 

interpreted by the hypothalamus as a signal from other tissues, disrupting normal hypothalamus 

regulation. Although there are a handful of obesity associated GSEA results from both the nucleus 

accumbens and hypothalamus, most GSEA results are immune system, inflammation or nervous system 

related. It is interesting, however, that the gene set most significantly associated with the nucleus 

accumbens, both sexes DESeq2 results is “opioid signaling,” a set of 72 genes. This may indicate that the 

nucleus accumbens’ role in regulating impulse control and addiction may indeed also play a role with 

obesity, as was the original rationale to include nucleus accumbens in this study. 

In order to interrogate possible interaction between obesity and brain region, differential 

expression of the hypothalamus and nucleus accumbens was conducted. These analyses yield a very 

large number of significantly differentially expressed genes and miRNAs. Gene set enrichment analysis 

from the mRNA DESeq2 are also numerous, but include some that are potentially obesity associated, 

such as “Cholesterol biosynthesis”. In addition, the miRNAs that are significantly differentially expressed 

by brain region include several that are among the obesity/BMI differential expression results. These 

associations with obesity may be unsurprising given the two very different functions of the 

hypothalamus and nucleus accumbens and their potential roles in obesity. Similarly, the miRNAs that 
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are significantly differentially expressed by sex include many within our a priori defined obesity-

implicated set, perhaps showing an interaction of obesity and sex in these tissues and justifying 

stratified analyses.  GSEA with the DESeq2 tests of sex differential expression results yield many gene 

sets characterized as related to the immune system or inflammation, even more than from the analyses 

of obesity status and brain region, perhaps indicating sex-differences in the obesity-associated 

inflammation of the brain tissue or of the tissue’s ability to maintain its functions while experiencing 

inflammation. 

Differential expression of obesity and BMI yielded few significant results, but particularly 

notable are the mRNAs ABOR and CES1 which linked to metabolism and obesity, as well as a number of 

other mRNAs and miRNAs showing aspects of brain inflammation. The gene set enrichment results 

reiterate this signal of inflammation and immune system differences by obesity status, in addition to 

angiogenesis.  In addition, “Opioid signaling” is among the gene sets associated with the nucleus 

accumbens obesity differential expression results. If the per-transcript signal of obesity in these tissues 

is difficult to detect, it appears that there is more information captured on the level of gene sets, 

reinforcing that there are legitimate patterns of obesity taking place in the hypothalamus and nucleus 

accumbens. The analyses of differences by brain region show huge differences between the 

hypothalamus and nucleus accumbens with an indication of a BMI association from the GSEA results, 

and like the obesity analysis, analysis of sex indicates differences of the immune system and 

inflammation. 

Conclusions 

We have conducted differential expression analyses of obesity and BMI in humans with RNA 

sequencing of 207 hypothalamus and 276 nucleus accumbens post-mortem samples from the 

Framingham Heart Study, Religious Orders Study and Memory Aging Project. These analyses were 
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conducted both transcriptome-wide and with sets of mRNAs and miRNAs that were a priori defined to 

be associated with obesity or BMI. Our study may be under-powered to detect transcript-level results, 

despite our relatively large sample size. With significance of adjusted p-value less than 0.05 there are 

sixteen mRNAs and five miRNAs with significant differential expression by obesity or BMI over all 

analyses and RIN and Braak filtering criteria. Among the obesity DE mRNAs are CES1, associated with 

detoxification and cholesterol and lipid metabolism, and APOBR, a receptor for APOB which mediates 

cellular lipid uptake. Many of the significant miRNA differential expression analyses are associated with 

the immune system, angiogenesis and inflammation, signals which are reiterated by many gene set 

enrichment analysis results from the mRNA differential expression results. Despite few transcript-level 

results, there appear to be valid signals of obesity and BMI detected in these tissues at the level of gene-

sets, dominated by signals of inflammation. 
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Supplementary Materials 

Supplementary File 1 is an excel file which contains the large and small RNA results (in separate 

tabs) of the obesity and BMI tests from all sample sets. For each transcript with a significant result 

(rows), the transcript ID and name, chromosome, and a brief description are included (columns), as well 

as the sample subset for which the transcript was significant (the same transcript in different sample 

subsets are in separate rows), as well as DESeq2 information (log fold-change, base mean, nominal p-

value, adjusted-pvalue and obesity-set adjusted p-value) and LIMMA information (log fold-change, 

nominal p-value, adjusted p-value and obesity-set adjusted p-value). 

Supplementary File 2 is an excel file which summarizes the number of results from all obesity, 

BMI, brain region and sex analyses. Separate analyses (mRNA/miRNA and sample filter) are shown in 

separate tabs, e.g. “mRNA_Filter_RIN3Braak4”.  Within each tab, rows distinguish the test (e.g. obesity 

status) and sample set (e.g. hypothalamus/male), and further columns show the sample sizes, covariates 

included in the analysis, the number of significant DESeq2 results, number of significant LIMMA results, 

and the number that overlap between the two. 

Supplementary File 3 is an excel file containing the GSEA results from the obesity DESeq2 

analyses in totality.  Different analyses (stratifications and sample filtering) are displayed in separate 
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tabs. In addition to the GSEA outputs, each result (row) also shows the key-word categorization of the 

pathway, and a list of other analyses in which the pathway was significant result. 

Supplementary File 4 is an excel file which contains GSEA result categorization information, 

counts and ratios of counts in separate tabs. For each separate analysis (columns) and for each 

combination of gene set categorization (rows), the count (number of GSEA results) and ratio of counts 

(count divided by the total number of GSEA results) is shown. 

Supplemental File 5 is an excel file which shows the top brain region DESeq2 result (top 10 most 

significant by p-value from each filtering and stratification analysis), mRNA and miRNA in separate tabs. 

Each row is a transcript and among the column information are the gene name, chromosome, brief 

description, the specific analyses (and number) in which the transcript was among the top results, 

adjusted p-values for separate analyses, and comma-delimited per cell in the same order as the analyses 

listed, the log fold-changes, DESeq baseMean values, and sample sizes. 

Supplemental File 6 is an excel file containing the GSEA results from brain region DESeq2 

analyses. Different analyses (stratifications and sample filtering) are displayed in separate tabs. In 

addition to the GSEA outputs, each result (row) also shows the key-word categorization of the pathway, 

and a list of other analyses in which the pathway was significant result. 

Supplemental File 7 is an excel file which shows the results from sex DESeq2 analyses, mRNA 

and miRNA in separate tabs. For each transcript with a significant result (rows), the transcript ID and 

name, chromosome, and a brief description are included (columns), as well as the sample subset for 

which the transcript was significant (the same transcript in different sample subsets are in separate rows 

with ‘-integer’ appended to the ensemble ID row names), as well as DESeq2 information (log fold-

change, base mean, nominal p-value, adjusted-pvalue and obesity-set adjusted p-value) and LIMMA 

information (log fold-change, nominal p-value, adjusted p-value and obesity-set adjusted p-value). 
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Supplemental File 8 is an excel file containing the GSEA results from sex DESeq2 analyses. 

Different analyses (stratifications and sample filtering) are displayed in separate tabs. In addition to the 

GSEA outputs, each result (row) also shows the key-word categorization of the pathway, and a list of 

other analyses in which the pathway was significant result. 
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