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 13 

Abstract 14 

Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. 15 

Genetic gains across economically important traits like yield have been well characterized and 16 

are the major force driving its production. Winter wheat is also an excellent model for analyzing 17 

historical genetic selection. As a proof of concept, we analyze two major collections of winter 18 

wheat varieties that were bred in western Europe from 1916 to 2010, namely the Triticeae 19 

Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties respectively. We 20 

develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in 21 

these panels, as well as in simulated populations. RALLY maps loci under sustained historical 22 

selection by using a simple logistic model to regress allele counts on years of variety release. 23 

To control for drift-induced allele frequency change, we develop a hybrid approach of genomic 24 

control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative 25 

selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By 26 

correlating predicted marker effects with RALLY regression estimates, we show that alleles 27 

whose frequencies have increased over time are heavily biased towards conferring positive 28 

yield effect, but negative effects in flowering time, lodging, plant height and grain protein 29 

content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic 30 

regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter 31 

wheat and guide its future breeding. 32 

 33 

Key Message 34 

Modelling of the distribution of allele frequency over year of variety release identifies major loci 35 

involved in historical breeding of winter wheat. 36 
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 39 

Introduction 40 

 Modern agriculture benefits from long standing breeding effort in creating new and 41 

improved crop varieties over time. Genetic gain is often used as a measure of the success in 42 

breeding for trait improvement. For example, in wheat, the genetic gains in yield and other 43 

agriculturally valuable traits have been well quantified (Mackay et al. 2011, Tadesse et al. 2019 44 

and Shorinola et al. 2021). The introduction of genomic selection (GS) (Meuwissen et al. 2001) 45 

in breeding program further shortens breeding cycles, improves selection accuracy and 46 

intensity, and accelerates genetic gain (Voss-Fels et al. 2019). Lastly, genetic gain is further 47 

increased by the rise of knowledge exchange between plant and animal breeding through GS 48 

(Hickey et al. 2017). 49 

 In recent years, there has been a growing interest in mapping quantitative selection loci 50 

(QSLs) that are associated with genetic gain independently of any phenotype. The mapping 51 

approach typically involves correlating continuous variables, such as year of variety release and 52 

geographical parameters, to genomic markers in a historical variety dataset. Conceptually, it is 53 

similar to selection mapping which tests for selection signatures among genomic markers using 54 

population genetic models (Johnsson 2018). This approach has been variously named as Birth 55 

Date Selection Mapping (Decker et al. 2012), Generation Proxy Selection Mapping (Rowan et 56 

al. 2021) and EnvGWAS (Li et al. 2020, Sharma et al. 2021). Here, we will refer to it as 57 

EnvGWAS because the underlying mixed linear model is no different from a conventional 58 

genome-wide association study (GWAS).  59 
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Related to EnvGWAS, EigenGWAS uses eigenvectors (principal components) as the 60 

dependent variable in a mixed linear model (Li et al. 2020, Sharma et al. 2021). The 61 

EigenGWAS approach may yield similar results to EnvGWAS if the dependent variables in 62 

EnvGWAS are correlated strongly with any eigenvector. Otherwise, EigenGWAS may identify 63 

additional QSLs where it incorporates variables that have not been quantified directly. A key 64 

confounding factor for determining whether a locus has been under sustained historical 65 

selection or drift is that varieties are linked by a complex historical pedigree and unequal 66 

relatedness. By correcting for population structure using a mixed linear model (Yu et al. 2006), 67 

year effects and principal components that are associated with drift can be controlled in 68 

EnvGWAS and EigenGWAS respectively. 69 

 Here, we introduce a new application of an old method by modelling allele frequency 70 

change over years in a historical variety dataset. This method, termed Regression of Alleles on 71 

Years (RALLY), fits a logistic regression to model the allele count as a dependent variable and 72 

the year of variety release as an independent variable. A logistic model is commonly used in 73 

case-control studies where the dependent variables are binary traits of whether an individual is 74 

diseased and the independent variables are test factors (Prentice and Pyke 1979). A logistic 75 

model is appropriate because changes in allele frequencies are small when the starting 76 

frequencies are near the extrema, and large when they are intermediate. In addition, the model 77 

is bounded asymptotically by 0 and 1. The dependent and independent variables are switched 78 

between RALLY and EnvGWAS. Instead of estimating the mean of years of release for each 79 

allele in EnvGWAS, RALLY estimates the mean of allele counts for each year, which is 80 

equivalent to the allele frequency for a given year. Recently, Looseley et al. (2020) applied a 81 

similar approach to RALLY on significant GWAS markers in a historical barley variety dataset.  82 

RALLY is a genome-wide approach that employs parametric control (PC) as a correction to drift-83 

induced allele frequency change. PC is a novel hybrid approach of genomic control (GC) (Devlin 84 
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and Roeder 1999) and delta control (DC) (Gorroochurn et al. 2006), which are two common 85 

control approaches against population structure in human GWAS studies without the need for 86 

mixed linear model.  87 

 Our analyses in the simulated and historical variety datasets demonstrate the usefulness 88 

of RALLY in mapping QSLs. We begin the evaluation of RALLY in simulated populations where 89 

the truth is known, both with and without selection, to quantify RALLY detection power and limit. 90 

We use the simulations to calibrate PC, which is then applied to the two historical winter wheat 91 

datasets, namely the panels of Triticeae Genome (TG) (Bentley et al. 2014) and Wheat 92 

Association Genetics for Trait Advancement and Improvement of Lineages (WAGTAIL) 93 

(Fradgley et al. 2019). The WAGTAIL panel is used only as a replicate RALLY analysis. Within 94 

the TG panel, we identify 22 RALLY QSLs and compare them to the GWAS QTLs from Ladejobi 95 

et al. (2019). Some notable QSLs include one in 2B which coincides with Ppd-B1 (Mohler et al. 96 

2004), Yr7/Yr5/YrSP (Marchal et al. 2018) and alien introgression from Triticum timopheevii 97 

(Tsilo et al. 2008, Martynov et al. 2018), as well as another in 6A that coincides with TaGW2 (Su 98 

et al. 2011), Rht24 (Würschum et al. 2017) and Rht25 (Mo et al. 2018). To further support the 99 

RALLY QSLs, we show that all 22 QSLs have non-zero local heritabilities for at least one trait. 100 

Next, we find clear directional selection in traits like flowering time, lodging, yield, plant height 101 

and grain protein content by comparing the signs of predicted marker allele effects with their 102 

directions of allele frequency change as given by RALLY. By extending the results to pairs of 103 

traits, we identify the selection priorities. For example, more ears with lighter grains have been 104 

preferred over fewer ears with heavier grains. Finally, we employ the multivariate breeder’s 105 

equation (Lande and Arnold 1983) to estimate selection parameters, although our results 106 

suggest a limited use in modern crops, in contrast to its original application in evolutionary 107 

studies. Overall, we have shown that many major genomic regions have been extensively used 108 
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in winter wheat breeding and we suggest that future selection should emphasize on improving 109 

other unexplored genomic regions.  110 

 111 

Materials and Methods 112 

Population simulation with and without selection 113 

 We initiated our population simulation in a fictitious species with 10 chromosomes 114 

(Figure 1). The genetic lengths of the chromosomes were set from 100 to 280 centiMorgans 115 

(cM) with an increment of 20 cM in subsequent chromosomes. The populations spanned over 116 

50 generations (years) with and without selection. All the simulations were performed using the 117 

“AlphaSimR” package (Gaynor et al. 2021) in R (R Core Team 2021). We first created 32 inbred 118 

founders using the runMacs function and we placed one marker (segregating site) at every 0.1 119 

cM. Two causal quantitative trait loci (QTLs) were chosen randomly from the markers at each 120 

frequency ranging from 1/32 to 16/32, which resulted in 32 QTLs. The QTL effects were drawn 121 

from an approximately negative binomial distribution such that the rarer QTL alleles have larger 122 

effects than the more common QTL alleles (Figure 1). We standardized the QTL effects such 123 

that the total variance of additive genetic or QTL effects is 1. Phenotypic values for each line 124 

were set as a sum of QTL effects and residual effects drawn from a normal distribution of mean 125 

0 and variance 1, which is equivalent to a heritability of 0.5. 126 

 We created selected (S) and unselected (U) populations from the 32 founders using a 127 

simplified model that mimics new variety breeding of major crops in Europe. All varieties were 128 

derived as F6 recombinant inbred lines (RILs) from bi-parental crosses. This is equivalent to 4 129 

generations of single seed descent (SSD) from an F2 population. The first 10 generations were 130 

created by crossing the initial 32 founders at random. In the subsequent generations, we 131 

randomly sampled 32 parents from 6 to 10 generations ago and created 16 bi-parental 132 
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populations with each having 100 F6 RILs. By keeping 2 RILs per bi-parental population, we 133 

maintained 32 lines at each generation. The 2 RILs were chosen either from the two highest 134 

phenotypic values (selected) or randomly (unselected). This step was repeated until the 135 

population underwent 55 generations of phenotypic selection. The first 15 generations were 136 

discarded as burn-in because none of the parents of the individuals from these 15 generations 137 

have been selected, and hence there is no selection-induced allele frequency change. In our 138 

simplistic modelling of the plant variety rights (PVRs) system where only a fraction of new lines 139 

passing the PVR test, we randomly sampled and retained 8 lines per generation for a total of 140 

400 lines that spanned over 50 generations. The simulated populations with and without 141 

selection were used in subsequent analyses. 142 

 143 

RALLY and GWAS in simulated populations 144 

 We compared the performances of Regression of Alleles on Years (RALLY) and 145 

Genome Wide Association Study (GWAS) when applied to the selected and unselected 146 

populations. The model for RALLY was fitted in a logistic regression using the glm function in R 147 

(R Core Team 2021). The model for GWAS was fitted in a mixed linear model using the 148 

GWASpoly function in the “GWASpoly” R package (Rosyara et al. 2016). 149 

Briefly, the logistic regression model for RALLY can be shown as below: 150 

�� �
�

���
���������	�����,��
����
���������

   [Equation 1] 151 

Or, alternatively, the logistic regression model can be rewritten in a linear form as: 152 

ln � ��
����

� � ������ � ������,	
��		
�� � 
�����  [Equation 2] 153 

Where the model terms are described as below: 154 
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�
  is a binary variable indicating the absence (0) or presence (1) of an allele at marker � in 
 155 

lines. 156 

������ is the mean allele frequency in the first year, or �-intercept. 157 

������,	
��  is the fixed year effect, or regression coefficient of the year variable. 158 

		
�� is the year variable. 159 


����� is the residual effect with a distribution of ��0, ��,������ �� and � is the identity matrix. 160 

 161 

The GWAS model is written as below: 162 

� � ����� � �����,	
��		
�� � � � �
	
 � 
����  [Equation 3] 163 

Where the model terms are described as below: 164 

� is the trait values in 
 lines. 165 

����� is the mean of trait value. 166 

�����,	
�� is the fixed year effect. 167 

		
�� is the year variable. 168 

� is the random genetic background effect with a distribution of ��0, ����� and � is the additive 169 

genetic relationship matrix. 170 

�
 is the fixed allele effect at marker �. 171 

	
 is the number of alleles at marker �. 172 


���� is the residual effect with a distribution of ��0, ��,����
� �� and � is the identity matrix. 173 

 174 
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In the given models, the terms of interest are ������,	
��  and �
 in RALLY and GWAS, 175 

respectively. The term significances are determined by their corresponding standard normal �-176 

statistics at a Bonferroni corrected threshold of P = 0.05. Due to how the populations are 177 

simulated, some markers may not segregate in all the populations. These markers, along with 178 

the QTLs and other markers that are highly linked (r2 > 0.99) to QTLs, were removed from the 179 

RALLY and GWAS analyses. The simulations were repeated for 100 iterations and the models 180 

were fitted for each simulated population separately. 181 

 182 

Model correction by parametric control (PC) 183 

 In the previously described naïve RALLY model (Equation 1 and 2), the RALLY test 184 

statistics may be inflated by population structure arising from consanguinity and population 185 

stratification. These factors can prevent a proper separation of markers under selection or drift if 186 

they are not addressed. To control for the inflation, we used a combined approach of genomic 187 

control (GC) (Devlin and Roeder 1999) and delta control (DC) (Gorroochurn et al. 2006) which 188 

we call parametric control (PC). In the absence of confounding factors, we expect the null test 189 

statistics (Z-scores) to be distributed as ��0,1�. However, in the presence of population 190 

structure, the distribution of null test statistics becomes ���, ��. As the terms imply, DC controls 191 

the inflation in mean � and GC controls the inflation in standard deviation �. If we can estimate 192 

� and �, we can adjust the test statistics as the following: 193 

���� � ���

�
 [Equation 4] 194 

 We used a maximum likelihood (ML) approach to estimate � and �. For any value of Z, 195 

both positive and negative signs are equally likely because the regression coefficient of one 196 

allele has the same magnitude but opposite sign of the other allele. Therefore, we can construct 197 

a composite likelihood function from two standard normal probability density functions that 198 
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account for positive and negative Z values. The likelihood function is shown in Equation 5 199 

below. To simplify the calculation, we used the log likelihood function as described in Equation 6 200 

below. We computed � and � for an 
-vector of Z values by either maximizing the log likelihood 201 

function, or equivalently, minimizing the negative log likelihood function using the “nlm” package 202 

in R (R Core Team 2021). 203 

���|�, �� � ∏ �

�√��
· �
�
· � �������

�

��� �  ��������
�

��� !�

��     [Equation 5] 204 

"��, �� � ln#���|�, ��$ � 
 · ln � �

�√��
� � ∑ "
 &�

�
� �������

�

��� �  ��������
�

��� !'�

��  [Equation 6] 205 

An important factor in PC is the selection of null marker sets for calculating the inflation 206 

factors for adjusting the test statistics. The most conservative approach is to use all markers as 207 

the null, but this approach is unrealistic as it results in over-correction when the selection is 208 

strong and prevalent across the whole genome. Therefore, PC is best estimated from markers 209 

that have not undergone selection, although it is paradoxical given that such markers are 210 

unknown at this stage. As a compromise, we may assume that the allele frequency differences 211 

between first and last years are larger for markers under selection than drift. This assumption is 212 

reasonable for a modern breeding population that has undergone intensive selection. We first 213 

predicted the allele frequency change for each marker using the RALLY model and then 214 

identified the null marker set from markers that fall below various thresholds of allele frequency 215 

change. We tested the thresholds ranging from 0.05 to 0.50 at an increment of 0.01, in which 216 

the thresholds of 0.05 and 0.50 correspond to 40% and 99% of the total markers respectively. 217 

Unfortunately, because the variance of allele frequency change, �∆�� � (�1 ) (� 2�⁄ , is largest 218 

when the initial allele frequencies are intermediate (Falconer and Mackay 1996), a loss in 219 

RALLY’s power to distinguish between weak selection signal and drift at those markers is 220 

unavoidable.  221 
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 222 

Detection limits of RALLY 223 

 We estimated the detection limits of RALLY using a simple example that is based on the 224 

simulated populations as described previously. We considered a QTL marker and five other 225 

proximal markers that are 1, 2, 3, 4 and 5 cM away. The initial QTL frequencies were set to 1/32 226 

to 16/32 with an increment of 1/32, and all possible marker-QTL haplotype frequencies were 227 

considered. We modelled selection on the QTL by increasing QTL initial frequency to the final 228 

frequency of 31/32 over 50 generations according to either a logistic or linear distribution. 229 

Consequently, the proximal markers experienced hitch-hiking effect due to the selection on 230 

QTL. Assuming an infinite population size, recombination is the sole factor that is responsible 231 

for the hitch-hiking effect, which allowed us to model the change in allele frequencies of the 232 

proximal markers. Non-recombinants are inherited at a probability of 1 ) , and recombinants 233 

are inherited at a probability of ,. From this, we derived the expected allele frequencies for the 234 

proximal markers at each generation. Next, we randomly sampled 8 individuals per generation 235 

using a binomial distribution with the expected frequencies as the sampling probabilities. This 236 

step was repeated for 100 times for each tested marker-QTL haplotype frequencies. A more 237 

detailed description of this is provided in Figure S1. 238 

 239 

RALLY in two wheat panels 240 

 We first applied the RALLY approach in the Triticeae Genome (TG) panel (Bentley et al. 241 

2014, Ladejobi et al. 2019) as a proof of concept. The TG panel has 344 winter wheat varieties 242 

from the UK, France and Germany that were released between 1948 and 2007 (Figure S2), 243 

which is ideal for analyzing selection over time in modern wheat breeding. We retained 333 244 

varieties that were in common between the TG panel data derived from DArT markers (Bentley 245 
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et al. 2014) and genotype-by-sequencing (GBS) markers (Ladejobi et al. 2019). The DArT 246 

marker data was only used in a later analysis for estimating multivariate selection parameters. 247 

From the initial 41,861 GBS markers, we removed 3,009 markers that are in high linkage 248 

disequilibrium (LD) (,� - 0.2) with markers from other chromosomes which left us with 38,852 249 

markers. These markers were positioned according to the IWGSC RefSeq v1.0 genome 250 

assembly. Here, we applied a similar model to Equation 2 with an additional fixed effect to 251 

account for the country of origin. We identified the year regression coefficients, applied the 252 

same level of PC as identified from the simulation to adjust the test statistics, and determined 253 

the significance at a Bonferroni-corrected threshold of 0.05. 254 

 Next, we replicated the analysis in the WAGTAIL panel (Fradgley et al. 2019) to test 255 

RALLY performance in a different sampling panel of modern wheat varieties. The WAGTAIL 256 

panel has 403 winter wheat varieties of mostly UK origin that were released between 1916 and 257 

2010. Of the 403 varieties, 283 originated from the UK, 51 from France, 34 from Germany and 258 

35 from other countries including Australia, Belgium, Canada, Denmark, the Netherlands, 259 

Sweden, Switzerland, and United States. There were 99 overlapping varieties between the TG 260 

and WAGTAIL panels. Since the WAGTAIL panel was genotyped using the wheat 90k array 261 

(Wang et al. 2014) and did not immediately have physical map positions for direct comparison 262 

with the TG panel, we identified the physical map positions from the IWGSC RefSeq v1.0 263 

annotation file. We retained 5,592 out of 26,015 markers that had matching chromosomes 264 

between the original WAGTAIL genetic map and the physical map. We also removed 319 265 

markers that are in high LD (,� - 0.2) with markers from other chromosomes which left us with 266 

5,273 markers. We applied Equation 2 with an additional fixed country of origin effect to the 267 

WAGTAIL panel and computed the year regression coefficients with the same PC and multiple 268 

testing correction to the test significances. 269 

 270 
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Estimating local heritabilities from RALLY QSLs 271 

 We clustered the significant markers identified from RALLY into groups based on the 272 

extent of LD surrounding the markers. Because genomic markers are not completely 273 

independent, some significant markers may be tagging the same QSLs. Starting with the most 274 

significant (focal) markers within each chromosome, we assigned markers that have ,� - 0.2 275 

with the focal marker to the same group. To avoid incorrectly mapped markers, we require the 276 

groups to have a minimum of 10 markers in the TG panel and 5 markers in the WAGTAIL panel 277 

due to lower marker density. As a trade-off, there may be bias against genomic regions with 278 

sparse marker density such as the D-genome. We repeated the process for the next significant 279 

marker that has not been assigned to any group until all significant markers have been 280 

assigned. Lastly, we merged all overlapping groups. 281 

 We estimated the local heritabilities (/��) for each QSL in the TG panel using the 282 

genomic heritabilities partitioning method that was introduced by Schork (2001) and Visscher et 283 

al. (2007). QSLs with non-zero /�� would support the hypothesis of selection over drift for the 284 

observed change in allele frequency. The TG panel includes 12 traits: Flowering Time (FT), 285 

Lodging (LODG), Yield (YLD), Plant Height (HT), Grain Protein Content (PROT), Winter Kill 286 

(WK), Awns (AWNS), Specific Weight (SPWT), Total Grain Weight (TGW), Ears per m2 (EM2), 287 

Tiller Number (TILL) and Maturity (MAT) (Bentley et al. 2014, Ladejobi et al. 2019). We were not 288 

able to estimate the /�� in the WAGTAIL panel since we did not have multi-trait data for the 289 

WAGTAIL panel. For each trait and QSL combination, we estimated the /�� from the following 290 

mixed model fitted using the mmer function from the “sommer” package (Covarrubias-Pazaran 291 

et al. 2016) in R (R Core Team 2021): 292 

� � � � 	� � � � �
 � 
     [Equation 7] 293 

Where the model terms are described as below. 294 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2022. ; https://doi.org/10.1101/2022.01.07.475391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475391
http://creativecommons.org/licenses/by/4.0/


13 

 

� is a vector of phenotypic trait values for 
 varieties. 295 

� is the trait mean. 296 

	 is an 
 0 2 matrix of incidence matrix for the fixed year and country of origin effects. 297 

� is a vector of length 2 of the fixed year and country of origin effects. 298 

�  is a vector of length 
 of the random genetic effect due to relationship among varieties 299 

calculated from markers not in group �, and it follows a distribution of ��0, ��, � 1 �. 300 

�
 is a vector of length 
 of the random genetic effect due to relationship among varieties 301 

calculated from markers in group �, and it follows a distribution of ��0, ��,
� 1
�. 302 


 is a vector of length 
 of the random residual effect under a distribution of ��0, ���2�. 303 

After each model was fitted, we calculated the /�� as 
�	
�

�	
�!�


�. For any trait, we identified the 304 

non-zero /�� groups (/�� - 0.001) and refitted a new mixed model with all the non-zero /�� 305 

groups. The model is shown as below with the similar terms as explained in Equation 7. 306 

� � � � 	� � � �∑�
 � 
     [Equation 8] 307 

 From Equation 5, we estimated the new /�� as 
�	,�
�

∑�	,�
� !�


� and used these as the final 308 

estimated /�� for each trait and group combination. 309 

 310 

Associating marker effects with alleles that are increasing over time  311 

We estimated the marker allele effects for each trait in the TG panel using ridge 312 

regression (RR) (Hoerl and Kennard 1970) and least absolute shrinkage and selection operator 313 

(LASSO) (Tibshirani 1996) approaches. For the RR approach, we used the mixed.solve function 314 
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from the “rrBLUP” package (Endelman 2011) in R (R Core Team 2021). For the LASSO 315 

approach, we used the cv.glmnet function from the ”glmnet” package (Friedman et al. 2010) in 316 

R (R Core Team 2021). In both approaches, we fitted a multiple linear regression model as 317 

shown below:  318 

� � � � �3 � 
      [Equation 9] 319 

Where the model terms are described as below. 320 

� is a vector of phenotypic trait values for 
 varieties. 321 

� is the trait mean. 322 

� is a 
 0 ( matrix of numerical marker genotypes coded as -1, 0 and 1 for homozygous first 323 

allele, heterozygous and homozygous second allele, respectively. The number of markers is (. 324 

3 is a vector of marker allele effects. In RR, 3 is estimated from minimizing the loss function of 325 

4���3� � 5� ) � ) �35� � 6535� where 6 � ��� �#�⁄  and 3~��0, �#�2� (Endelman 2011). In 326 

LASSO, 3 is estimated from minimizing the loss function of 4����$�3� � 5� ) � ) �35� � 6535 327 

where 6 is determined from the default 10-fold cross validations in cv.glmnet (Friedman et al. 328 

2010). In addition, the multivariate LASSO model in “glmnet” was used to ensure that the effects 329 

for all traits are estimated from the same set of chosen markers.  330 


 is a vector of residual effects that follows a distribution of ��0, ���2�. 331 

 For each trait 8 and marker 9, we identified :;�,% which is the effect direction for the allele 332 

that is increasing in frequency over time, as follows: first, we determined 3<�,% which is the 333 

direction of marker allele effect estimated from either RR or LASSO using the sign function in R 334 

(R Core Team 2021). This resulted in 3<�,% � )1 for negative effect, 3<�,% � 0 for no effect and 335 

3<�,% � 1 for positive effect. Next, we determined �=�,% which is the direction of year regression 336 
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coefficient estimated from RALLY. This resulted in �=�,% � )1 for decreasing allele and �=�,% � 1 337 

for increasing allele. Because the marker alleles were coded similarly in the RALLY and marker 338 

BLUP models, we could calculate :;�,% as 3<�,% 0 �=�,% directly. :;�,% � 1 suggests that the increasing 339 

allele has a positive effect and :;�,% � )1 suggests that the increasing allele has a negative 340 

effect. :;�,% � 0 is only possible in LASSO due to variable selection, which simply implies that 341 

there is no effect. For any trait, an excess of either :;�,% � )1 or :;�,% � 1 across all markers 342 

indicates a possible directional selection.  343 

 For a pair of traits 81 and 82, we calculated :;��,��,% � >:;��,% :;��,%? which is the pairwise 344 

effect direction for the increasing allele. :;��,��,% � @1 1A implies that the increasing allele has 345 

positive effects on both traits, :;��,��,% � @1 )1A or :;��,��,% � @)1 1A implies that the increasing 346 

allele has a positive and a negative effect on either trait, and :;��,��,% � @)1 )1A implies that the 347 

increasing allele has negative effects on both traits. By forming a contingency table from the 348 

counts of all four possible :;��,��,% combinations, we tested for selection-related interaction 349 

between the pairs of traits using a B�&���  test in the results involving LASSO. We did not test the 350 

results involving RR because the marker effects are not independent. 351 

 352 

Estimating multivariate selection parameters 353 

 We estimated the multivariate selection parameters in the TG panel using the 354 

multivariate breeder’s equation of ∆� � D�'
� (Lande and Arnold 1983). We obtained the 355 

selection response (∆�), genetic variance-covariance matrix (D) and phenotypic variance-356 

covariance matrix (E) from the trait and marker data. Next, we solved the multivariate breeder’s 357 

equation for the selection gradient �'
� and the equations of F � E�'
� and � � F G:�H��E�⁄  for 358 

the selection differential (F) and selection intensity (�) (Falconer and Mackay 1996). Lastly, we 359 
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decomposed the multivariate selection parameters into direct and indirect partitions as a method 360 

to quantify the direct and indirect historical selection in the TG panel. As a check, we repeated 361 

the same process in a simulated example. Complete details on the methods on estimating 362 

multivariate selection parameters are provided in the Supplementary Methods. 363 

 364 

Results 365 

RALLY and GWAS in simulated populations 366 

 We tested RALLY’s ability in identifying selection- or drift-induced marker allele 367 

frequency changes in simulated populations with (S) and without (U) selection (Figure 1) by 368 

varying the degree of parametric control (PC). Briefly, PC combines genomic control (GC) 369 

(Devlin and Roeder 1999) and delta control (DC) (Gorroochurn et al. 2006) to correct for 370 

inflation in test statistics due to population structure. Details on the PC approach and 371 

simulations are described in the Materials and Methods section. Across all tested allele 372 

frequency change thresholds (t) for null marker set, setting t > 0.11 produced better control of 373 

test statistics (significant markers in S < 1.867%, U < 0.109%) than without any correction 374 

(significant markers in S = 1.942%, U = 0.089%) (Figure 2A, Table S1). At t = 0.15, we found 375 

little significance in the unselected population across all 100 simulations with some inevitable 376 

loss of significance in the selected population (significant markers in S = 0.994%, U = 0.012%) 377 

(Table S1). This result suggests that PC at this threshold can reasonably separate out the true 378 

selection signals from drift in our simulation. To err on the cautious side, we used a higher 379 

threshold of t = 0.20 in the simulation, TG and WAGTAIL panels. 380 

 We evaluated the QSL/QTL mapping performances of RALLY and GWAS in the 381 

simulated populations with selection (Figure 1) and found a higher mapping power in RALLY 382 

over GWAS (Figure 2). Across the 100 simulations, we found that the individual significant 383 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2022. ; https://doi.org/10.1101/2022.01.07.475391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475391
http://creativecommons.org/licenses/by/4.0/


17 

 

markers are rarely shared between RALLY and GWAS (Figure 2B), and even less likely to be 384 

found in GWAS but not RALLY (Figure 2D). Most of the significant markers are found in RALLY 385 

but not GWAS (Figure 2C). The low number of significances in GWAS is likely because the 386 

simulated QTLs have small effects and low heritabilities, which is common for quantitative traits. 387 

The heritabilities for the largest QTLs are approximately 0.030 and the smallest QTLs are 388 

approximately 0.002. An additional intention of having low heritabilities is to reduce the fixation 389 

rate of QTL due to selection and prevent pre-matured fixation of QTL in the simulated 390 

population.  391 

 We repeated the RALLY and GWAS analyses in the unselected populations as a control 392 

for the same analyses in the selected populations (Figure 2). On average across all 100 393 

simulations, RALLY identifies 0.1 significant markers out of 19,000 total markers in the 394 

unselected population compared to 104.5 significant markers in the selected population. This 395 

result suggests that less than 0.1% of the significant markers in the selected population are 396 

likely caused by drift instead of selection. In the selected population, there are more significant 397 

markers (means of 99.4 versus 5.1) that are close to the QTLs (≤ 5 cM) than far (> 5 cM) 398 

(Figure 2B-C). Assuming that all 32 QTLs are selected and all markers within 5 cM of the QTLs 399 

experience hitch-hiking effect, there should be a maximum of 3,200 significant markers in the 400 

selected population. However, the number of significant markers is much lower in reality 401 

because: (1) the selection force is proportional to the QTL effects (Figure S3), (2) the hitch-402 

hiking effect depends on the initial marker-QTL haplotype distribution (Figure S1), and (3) the 403 

hitch-hiking effect decreases as genetic distance increases. On the other hand, GWAS 404 

performance remains similar between the selected and unselected populations (Figure 2). 405 

 406 
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Detection limits of RALLY 407 

 Following from the previous simulation, we investigated the relationship between QTL 408 

under selection and its proximal markers and the results suggested a detection limit of 409 

approximately 5 cM (Figure S4). Here, we considered 10 markers that are evenly spaced 410 

between 1 to 10 cM away from a QTL and evaluated how these marker allele frequencies 411 

change as a result of increasing QTL frequency. Because the markers are linked to the QTL, we 412 

expect their frequencies to follow the QTL frequency in an inversely proportional way according 413 

to their genetic distances from the QTL. This process is commonly known as hitch-hiking, and it 414 

is an important consideration for RALLY because hitch-hiking markers are more likely to be 415 

genotyped than the true QTLs. Curiously, our results suggest that the ability of RALLY in 416 

identifying significant hitch-hiking markers depends on the QTL-marker haplotypes, QTL initial 417 

frequency, and genetic distance between QTL and marker (Figure S4). With all factors 418 

considered, RALLY rarely detects significance beyond 5 cM although our previous results 419 

showed that some long-range significances may still be present (Figure 2B). A possible 420 

explanation for this is when multiple QTLs co-localize into one major QTL haplotype, which may 421 

amplify the significances of surrounding markers. 422 

 423 

RALLY in two wheat panels 424 

 We mapped 22 significant QSLs (Bonferroni corrected p < 0.05) across 14 425 

chromosomes in the Triticeae Genome (TG) panel using RALLY (Table 1, Figure 3, Figure S5, 426 

File S1). Because the distances between significant markers and true QTLs are unknown, we 427 

used a linkage disequilibrium (LD) measure of ,� - 0.2 as a method to identify the genomic 428 

boundaries that the significant markers tag. This method resulted in QSL intervals ranging from 429 

1.46 Mb to 774.73 Mb with a mean of 148.74 Mb. Given the large blocks of genomic regions 430 
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and a previously approximated RALLY detection limit of 5 cM, many of the QSLs are likely to fall 431 

within low recombination regions. QSLs in high recombination regions are harder to map due to 432 

the lack of markers tagging the causative QTLs. Besides, sustained selection is more likely to 433 

be observed on multiple weakly favorable alleles in low than high recombination regions. 434 

 Of the 22 QSLs, 12 co-localize with previously mapped QTLs using GWAS (Ladejobi et 435 

al. 2019) in the TG panel (Table 1, Figure 3, Figure 4, Table S2). QSLs/QTLs found in both 436 

RALLY and GWAS indicate that their effects are likely beneficial and have been selected during 437 

the breeding process. QSLs unique to RALLY suggest that their effects might be too small for 438 

GWAS to detect or the specific traits have not been analyzed for GWAS. QTLs unique to GWAS 439 

suggest that they are still segregating in the population, which could be due to various reasons 440 

like recent introduction into the breeding population and linkage drag. 441 

 A literature search showed that RALLY QSLs occur in both well-characterized and novel 442 

genomic regions in winter wheat (Table S3). The most significant RALLY QSL-6 mapped to a 443 

large region in chromosome 2B: 11 – 230 Mb, which includes Ppd-B1 (Mohler et al. 2004) and 444 

multiple resistance loci of Yr5, Yr7 and YrSP (Marchal et al. 2018). Another major QSL-16 445 

mapped to a large region in chromosome 6A: 62 – 545 Mb, which contains TaGW2 (Su et al. 446 

2011) and the GA-responsive dwarfing genes of Rht24 (Würschum et al. 2017) and Rht25 (Mo 447 

et al. 2018). Interestingly, the durum wheat dwarfing gene Rht14/16/18 resides in the same 448 

genomic region, although it remains to be tested whether it is allelic to Rht24 (Haque et al. 449 

2011). A recent EnvGWAS in winter wheat by Sharma et al. (2021) also mapped to the same 450 

genomic region (6A: 396 Mb) but without mention of any Rht candidate gene. On a broader 451 

scale, 16 RALLY QSLs co-localize with the recently identified meta-QTLs on yield and yield-452 

related traits in wheat (Yang et al. 2021). 9 RALLY QSLs overlap with the QTLs identified from a 453 

Multi-parental Advanced Generation Inter-Cross (MAGIC) population of 16 diverse UK winter 454 

wheat varieties (Scott et al. 2021). 455 
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In addition, we found 11 RALLY QSLs that overlap with known alien and non-alien 456 

introgressions in wheat (Cheng et al. 2019). These include major introgressions like the 2A: 0 – 457 

11 Mb from Aegilops ventricosa (Robert et al. 1999, Rhoné et al. 2007) and 2B: 90 – 749 Mb 458 

from Triticum timopheevii (Tsilo et al. 2008, Martynov et al. 2018). These two introgressions 459 

were shown to segregate among the UK winter wheat varieties by Scott et al. (2021). Because 460 

alien introgressions tend suppress recombination (Gill et al. 2011), they can be easily mapped 461 

using RALLY. Considering all overlaps in results between RALLY and the studies described 462 

thus far, we found 19 RALLY QSLs that can be traced to at least one study. 463 

 In the WAGTAIL panel, we mapped 19 significant QSLs across 13 chromosomes using 464 

RALLY (Table S4, Figure S6, File S1). We used the same approach as we did with the TG 465 

panel to identify the boundaries of these significant QSLs. With 99 varieties in common between 466 

the TG and WAGTAIL panels, we expect a high number of overlapping QSLs. 10 out of 19 467 

QSLs in the WAGTAIL panel matched with 10 out of 22 QSLs in the TG panel (Figure 4), which 468 

is approximately one-half overlap between them. Given that the TG panel was genotyped using 469 

GBS (Elshire et al. 2011) while the WAGTAIL panel was genotyped using the 90k array (Wang 470 

et al. 2014), the genotyping and mapping quality of these two panels are likely different. This 471 

may partially explain why the results from the TG and WAGTAIL panels did not fully overlap. 472 

Another possible reason is that the distributions of countries of origins differ in the two panels in 473 

which the TG panel is more homogeneous than the WAGTAIL panel. 474 

 475 

Local heritabilities in the RALLY QSLs 476 

 We calculated local heritabilities for the 22 RALLY QSLs as a support for possible 477 

selection over drift at these QSLs (Table 2, Figure 5). We found that all 22 QSLs have non-zero 478 

local heritabilities for at least one trait. We tested for non-zero in the local heritabilities using a 479 
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likelihood ratio test to compare between the mixed models with and without QSLs (Santantonio 480 

et al. 2019). However, most of the tests were non-significant due to low power (Table S5). The 481 

tests for QSLs collectively showed significance in 5 out of 12 traits, which comes at a cost of 482 

losing the test on individual QSL in exchange for a slightly higher power. In an extreme example 483 

with a total heritability of 0.379, QSL-16 at 6A: 89,355,276 is associated with 8 traits and found 484 

to co-localized with all other previously mentioned results. While it is possible that the underlying 485 

candidate genes TaGW2 (Su et al. 2011), Rht24 (Würschum et al. 2017) and Rht25 (Mo et al. 486 

2018) have pleiotropic effects that are beneficial for wheat breeding, we cannot exclude the 487 

possibility of additional genes that provide breeding advantages in the same haplotype block. 488 

Nonetheless, given that QSL-16 has already played a major role in wheat breeding, it is unlikely 489 

to be useful for future breeding. The genomic region with the next largest total heritability of 490 

0.226 is located in QSL-2 at 1A: 138,028,803. While no known gene has been mapped around 491 

QSL-2, results from our analysis and others (Cadalen et al. 1998, Griffiths et al. 2012, Tiwari et 492 

al. 2016) suggest that it may contain loci responsible for plant height and grain protein content. 493 

 Between the cumulative heritabilities explained by these 22 QSLs and the remaining 494 

genomic regions, HT and TGW are higher in the QSLs, AWNS is lower in the QSLs and the 495 

other 9 traits are about equal (Table 2, Figure 5). This result highlights the narrow genetic 496 

diversity that is often seen in modern varieties (Reif et al. 2005) due to the repeated use of 497 

identical favorable haplotypes in wheat breeding. Fortunately, the remaining “unselected” 498 

genomic regions for important traits like yield, grain protein content and plant height are not fully 499 

devoid of heritabilities. There is still room for varietal improvement without the introduction of 500 

favorable exotic alleles in the short term, which suggests that it might be better to devote some 501 

of the resources in pre-breeding on these genomic regions instead. For traits like TGW and 502 

TILL, breeders may need to look for alternative genetic resources to compensate for the lack of 503 

diversity. 504 
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 505 

Marker effects of alleles that are increasing over time 506 

 We evaluated the marker allele effects using the prediction models from Ridge 507 

Regression (RR) and Least Absolute Shrinkage and Selection Operator (LASSO). Across all 12 508 

traits, RR resulted in higher prediction accuracy than LASSO although the differences were 509 

comparable in some traits (Figure S7 and S8). Despite that, we retained the results from both 510 

approaches because the variable selection step in LASSO is important for a follow-up test 511 

involving trait pairs. 512 

 We examined the marker allele effect directions for increasing alleles and found 513 

excesses in one over another direction across each of the 12 traits (Figure 6, Figure S9). We 514 

first partitioned the markers based on their RALLY significance into three groups: (1) markers 515 

with p-values lower than the Bonferroni corrected threshold of 0.05, (2) markers with p-values 516 

between 0.05 and the Bonferroni corrected threshold of 0.05, and (3) markers with p-values 517 

higher than 0.05. The results from using either RR (Figure 6) or LASSO (Figure S9) are similar 518 

although the differences across the significance groups in LASSO are less pronounced, i.e. 519 

there are more differences between group 1 and 2 in RR than LASSO results. This might be 520 

due to LASSO selected markers having weak but small, non-significant changes in allele 521 

frequencies over time. Within the RR results, the excesses in effect directions are strongest in 522 

the significance group 1 and weakest in the significant group 3, which suggest that the excesses 523 

can be related to the favored direction of selection. The lack of excesses in significance group 3 524 

implies that favorable and unfavorable alleles are still segregating about equally in the 525 

unselected genomic regions. 526 

 Across all 12 traits, the excesses agree with our expectation of traits that are important 527 

in wheat breeding. The most extreme example is yield (YLD) where both the RR and LASSO 528 
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results show a near complete excess of positive effects in the increasing alleles in significance 529 

group 1. As shown previously by Mackay et al. (2011), the genetic gain in the UK winter wheat 530 

yield has been rising steadily over time. The next four traits with strong excesses are flowering 531 

time (FT), lodging score (LODG), plant height (HT) and grain protein content (PROT). FT, 532 

LODG and HT are favored for lower trait values, and thus the increasing alleles have excesses 533 

in negative effects. On the contrary, higher PROT is valuable for bread making quality, which is 534 

unfortunately going in the opposite direction due to a strong negative genetic correlation with 535 

yield (Scott et al. 2021). This result suggests that the selection for higher yield is a lot stronger 536 

than the selection for higher grain protein content. In the remaining traits, the excesses are 537 

smaller and less obvious given the variations seen from RR and LASSO results, which suggests 538 

that directional selection is likely weak for these traits. 539 

 By comparing the effect directions for increasing alleles in pairs of traits, we identified 540 

the priorities of traits under selection (Table 3, Table S6 and S7, Figure 7). Taking YLD and 541 

PROT for example, there is a strong excess for alleles with positive YLD but negative PROT. 542 

This result reiterates the priority of YLD over PROT in wheat breeding. Between TGW and EM2, 543 

there is an excess for alleles with positive EM2 and negative TGW which suggests that more 544 

ears with lighter grains are preferred over fewer ears with heavier grains. In a different 545 

perspective, the results here also highlight the constraints imposed by genetic correlations 546 

across traits. For example, there is a small proportion of alleles with the same effect directions 547 

for YLD and PROT. These alleles could be used in breeding high YLD and PROT varieties, 548 

although it is still important to consider the possibility that these alleles could be unfavorably 549 

associated with other traits. 550 

 551 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2022. ; https://doi.org/10.1101/2022.01.07.475391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475391
http://creativecommons.org/licenses/by/4.0/


24 

 

Multivariate selection parameters 552 

 In contrast to a genomic-centric approach that has been described thus far, the 553 

multivariate selection parameters may provide an alternative, trait-focused perspective on the 554 

historical selection of winter wheat represented by the TG panel. We found a strong 555 

misalignment between the selection response (ΔZ) and gradient (βsel) where the directions of the 556 

vectors’ elements are the opposite in 5 out of 12 traits (Table S8). If the selection parameters 557 

are estimated accurately, such divergence may imply an inefficient selection process. In 558 

addition, we partitioned the selection response (ΔZ), differential (S) and intensity (i) into direct 559 

and indirect components to quantify the amount of each selection parameter that is directly due 560 

to the available variation within a trait or indirectly due to the covariation with other traits. In an 561 

example with HT, we found positive direct effects in ΔZ, S and i, which contradicts the known 562 

selection on dwarfing genes like Rht1, Rht2 and Rht24 (Pearce et al. 2011, Würschum et al. 563 

2017). Given the uncertainties in the multivariate selection parameters, we have provided the 564 

full results in the Supplementary Results and we advise to treat these estimates with caution.  565 

 Following the results, we investigated the possible causes of issues in estimating 566 

multivariate selection parameters using a simulated example with a single generation of 567 

selection involving three genetically correlated traits. First, we found that the genetic variances 568 

and covariances (G) estimated from mixed linear model were close to the true simulated values 569 

but with low precision (Table S9, Figure S10). Next, we computed the selection parameters (ΔZ, 570 

βsel, S, i) from the simulation directly, true G and estimated G, which are referred to as true, 571 

realized and estimated values, respectively. Given the imprecise estimates of G, we observed 572 

lower correlations between the estimated and true values than between the realized and true 573 

values (Table S9, Figure S11-S16). Despite using the true G, the realized values still failed to 574 

match the true values perfectly, which indicates that the deviations in realized ΔZ are carried 575 

over into the other selection parameters that are estimated downstream. 576 
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 577 

Discussion 578 

Advantages and disadvantages of RALLY 579 

 RALLY has a major feature of being a trait-free method for mapping QSLs; however, this 580 

feature is a double-edged sword. For any population, RALLY involves only a single, relatively 581 

simple logistic regression analysis. In contrast, GWAS requires either multiple, simple mixed 582 

model analyses for each trait or a single, yet computationally intensive multi-trait analysis. 583 

Unlike any other trait-based mapping methods, the QSLs identified through RALLY are not 584 

restricted to only traits that are scored. While this makes RALLY a convenient method, the 585 

results do not inform us which traits the QSLs are associated with. In this regard, we will need to 586 

rely on other trait-based analyses like GWAS or genomic variance partitioning (Schork 2001, 587 

Visscher et al. 2007) to relate QSLs to traits. This additional step is not restricted to the same 588 

population as the QSL-trait information can be drawn from other studies such as GWAS on 47 589 

traits in the wheat MAGIC diverse population (Scott et al. 2021). Therefore, RALLY can function 590 

as a replication of results from other studies. 591 

 As a kinship-free method, RALLY avoids any potential issues that may arise from the 592 

use of genomic relationship matrix (GRM) in mixed linear models. Recently, kinship estimates 593 

have been shown to be biased under complex population structure (Ochoa and Storey 2021), 594 

which can arise due to selection and migration of materials across breeders and countries. 595 

Besides, kinship estimates depend on the assumption that the alleles frequencies observed in 596 

the study population are representative of the reference or base population. For a population 597 

that has only experienced weak to no selection, the mean of genome-wide marker variance 598 

might be a reasonable approximation to the reference population. But, in populations under 599 

strong selection like modern crop varieties, the deviation between observed and true (reference) 600 

distribution of allele frequencies may not be trivial. Jiang et al. (2021) showed that the kinship 601 
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estimates are biased when the observed distribution of allele frequencies fails to match the true 602 

distribution. In addition, a similar study on populations of modern wheat and barley varieties 603 

suggested that their kinship estimates may be biased due to long period of intensive selection 604 

(Sharma et al. 2021). However, the bias impacts on mapping power in GWAS and accuracy of 605 

variance component estimates remain to be evaluated. 606 

 Given that RALLY is designed specifically for mapping QSLs that have been selected 607 

over a time period, there may be limited utilities outside of its target scope. Our RALLY analyses 608 

model the change in allele frequency under a logistic distribution, which requires both genomic 609 

marker and year of variety release information. So, RALLY cannot be immediately applied to 610 

typical artificial mapping populations like bi-parental, nested association mapping (NAM) or 611 

MAGIC populations. However, we can extend the use of RALLY by conceptualizing it in its 612 

simplest form, which is a regression of marker allele on a variable of interest. For example, we 613 

can regress the marker allele on a continuous geographical origin variable such as latitudes and 614 

altitudes. The outcomes would directly define alleles that are relevant to local adaptation. 615 

Furthermore, the hybrid approach of parametric control (PC) is independent of RALLY and can 616 

be used in any genome-wide mapping analyses as a replacement for GRM and mixed linear 617 

model. 618 

 619 

Selection history and future direction in winter wheat breeding 620 

 Given the largely incomplete overlap between RALLY and GWAS QSLs/QTLs in the TG 621 

panel, GWAS-specific QTLs may not have been directly useful in breeding. Several possible 622 

reasons include linkage drag between the QTLs, recent introduction of QTL alleles into the 623 

breeding pool, and ineffective selection at those QTLs. In the absence of genome editing to 624 

remove unfavorable alleles (Johnsson et al. 2019), linkage drag is unavoidable due the low 625 
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probability of creating favorable recombinant haplotypes. New QTL alleles are hard to map 626 

under RALLY due to low power issue, but it can be improved by including more recent varieties. 627 

Ineffective selection is a direct consequence of the selection tendency towards low-hanging 628 

fruits. In an extreme example involving a cross between an elite variety and an exotic wild 629 

relative, selection is bound to reconstitute the elite genome because of the higher probabilities 630 

of favorable alleles in the elite over exotic genomes (Gorjanc et al. 2016). This phenomenon is 631 

observed in a large-scale crossing program involving groups of one exotic and two elite parents, 632 

in which the resulting lines lost approximately two-thirds of the expected exotic genome (Singh 633 

et al. 2021). In this regard, the approach of Origin Specific Genomic Selection (OSGS) (Yang et 634 

al. 2020) can be used to specifically target genomic regions outside of RALLY QSLs for 635 

selection. 636 

 The association between directions of allele frequency change and predicted marker 637 

effects provides us with an overview of selection priorities (Figure 6 and 7). High yield, short 638 

plants, early flowering, reduced lodging and reduced grain protein content are clearly preferred 639 

under directional selection. However, there is no obvious directional selection on spikes and 640 

grain related traits, which suggests that there is no specific morphology that provides advantage 641 

in the breeding practice. The pairwise analysis further demonstrates the selection priorities and 642 

genetic correlations between traits. The results can be used to formulate a future breeding 643 

direction, for example, breeding for varieties with high yield and grain protein content by 644 

focusing on increasing the frequencies of the favorable alleles on both traits. In line with the 645 

global interest in shifting towards more sustainable agricultural practice (Hoad 2010), this 646 

approach can be extended to include traits relevant to sustainability and climate resilience to 647 

better guide the breeding direction.  648 

 649 
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Limited practical use of multivariate breeder’s equation 650 

 As shown in the results involving the TG panel, the multivariate breeder’s equation has 651 

limited practical use in estimating selection parameters (Table S8). An important component of 652 

the equation is the genetic variance-covariance matrix (G). The assumption that G is constant is 653 

likely violated because G should have been calculated from the base population (Walsh and 654 

Lynch 2018) rather than a population under selection over a time period. While this violation 655 

likely contributes to the poor estimates of the selection parameters, it is not the only source of 656 

issue. Variations across two tested genotyping methods (GBS and DArT) resulted in severely 657 

different selection parameters (Table S8) even when the G were similar across the two methods 658 

(Table S10). 659 

 Despite fulfilling the assumption of constant G and eliminating the genotyping 660 

discrepancy in our simulated example, additional issues remain in estimating selection 661 

parameters from the multivariate breeder’s equation. We found that the poor estimation of 662 

multivariate selection parameters is caused by imprecise G estimated from mixed linear model. 663 

However, the estimation of multivariate selection parameters cannot be completely recovered 664 

even when the true G is used. This is probably because the multivariate breeder’s equation can 665 

only capture the means but not the variances of the selection parameters (ΔZ, βsel, S, i). Since 666 

the selection parameters are derived sequentially, repeated deviations from the means result in 667 

poor estimates of the selection parameters. This issue can be remedied by increasing the 668 

sample size, although there is a limit to the sample size due to practicality in breeding practice. 669 

Furthermore, the deviation is amplified across multiple generations of selection. Given the multi-670 

layered issues with estimating selection parameters using the multivariate breeder’s equation, it 671 

is best to limit its use to predict forward for a single generation as a rough guide to selection 672 

experiments involving crop varieties. 673 

 674 
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Tables and Figures 874 

Table 1. Genomic positions of 22 RALLY QSLs in the TG panel. 875 

The IWGSC RefSeq v1.0 physical positions of the peaks and LD boundaries are shown, along 876 

with the -log10P scores associated with the peaks and overlapping QSLs/QTLs from RALLY in 877 

WAGTAIL panel and GWAS in TG panel (Ladejobi et al. 2019). 878 

QSL Chr 
Position (bp) 

-log10P 
Overlapping QSLs/QTLs 

Peak Start End WAGTAIL GWAS 

1 1A 40,535,368 36,797,100 42,151,448 6.964 2 1 
2 1A 138,028,803 105,888,613 395,485,807 6.419 2 0 
3 1B 274,240,580 52,771,404 572,972,254 8.726 3 0 
4 2A 19,049,803 502,328 36,134,675 7.022 5 7 
5 2A 56,159,824 56,159,824 115,431,692 7.951 6 0 
6 2B 230,348,363 10,888,962 785,614,875 10.634 9,10 10 
7 3A 544,972,180 488,305,885 574,586,196 6.965 13 19 
8 3B 20,035,143 19,086,765 31,366,713 6.011 0 0 
9 3B 829,382,536 813,333,316 829,954,621 9.170 0 0 

10 4A 690,425,855 507,739,498 695,893,542 7.199 14 22 
11 4B 570,537,081 507,170,910 593,797,914 5.934 0 26,27 
12 5A 59,666,472 31,088,127 449,788,941 7.816 16 28 
13 5B 703,651,326 681,349,598 703,858,824 5.923 0 0 
14 5D 69,776,655 43,408,942 233,674,405 6.148 0 0 
15 6A 2,160,664 684,328 5,113,555 7.259 0 32 
16 6A 89,355,276 61,817,777 545,399,189 6.538 18 33 - 37 
17 6A 609,106,971 596,590,923 617,255,792 6.468 0 38 
18 7A 612,599,663 610,209,166 612,599,663 6.272 0 0 
19 7A 681,696,004 669,820,116 695,003,193 6.632 0 0 
20 7B 3,693,110 3,366,069 4,826,131 6.438 0 0 
21 7B 43,221,041 40,293,564 58,886,832 6.503 0 48 
22 7B 704,838,082 698,229,993 707,941,517 7.952 0 49 
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Table 2. Local heritabilities associated with 22 RALLY QSLs. 881 

Local heritabilities less than 0.001 are not shown. 882 

QSL FT LODG YLD HT PROT WK AWNS SPWT TGW EM2 TILL MAT 

1 - - - 0.054 0.048 0.051 - - - 0.005 - - 

2 - - 0.007 0.068 0.105 - - - 0.003 0.043 - - 

3 0.084 - 0.006 - 0.014 - - - - 0.002 0.000 0.060 

4 - - - - - - 0.001 - - - 0.016 - 

5 - 0.009 - 0.002 - - - - - - - - 

6 - - 0.009 - - 0.003 - - 0.009 - - 0.037 

7 - - - - - - 0.014 - 0.055 - 0.009 - 

8 0.005 - - - - - - 0.020 - - - - 

9 - - - - 0.002 - 0.004 - - - 0.006 - 

10 0.010 0.000 - - - 0.002 0.003 0.008 0.090 - 0.012 0.019 

11 - 0.040 0.036 - 0.012 0.002 0.011 0.005 0.005 - - - 

12 - - 0.003 - - 0.005 0.011 0.075 - 0.003 - - 

13 - - 0.006 - - 0.049 - - 0.002 - - - 

14 0.069 - 0.019 - 0.018 0.000 - - - - - 0.006 

15 0.011 - - - - 0.004 0.018 - 0.005 0.014 - - 

16 - 0.086 0.045 0.127 0.071 - - 0.013 0.012 0.021 - 0.006 

17 0.072 - 0.001 - 0.001 0.016 - - 0.002 - 0.013 0.069 

18 - - 0.006 - - - - - 0.003 - - - 

19 - 0.020 0.005 - - - 0.011 - 0.028 0.001 - - 

20 - - 0.008 0.089 0.004 0.000 - - - 0.065 - - 

21 - 0.039 - 0.041 - - - 0.009 0.025 - - - 

22 0.010 - 0.001 0.021 - - - - 0.016 - 0.013 - 

Total 0.260 0.194 0.153 0.402 0.275 0.133 0.074 0.129 0.254 0.154 0.068 0.197 

Others 0.284 0.123 0.160 0.223 0.205 0.220 0.583 0.156 0.050 0.216 0.051 0.179 
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Table 3. Counts of pairwise LASSO effects for alleles that are increasing over time. 884 

For each allele with increasing frequency over time, it is classified into pairs of traits for which 885 

the allele has an increasing effect on both traits (+/+), a decreasing effect on both traits (-/-) or 886 

antagonistic effects (+/- and -/+). The distribution for each pair of traits is tested with a B�&���  887 

contingency table where the significant threshold is set to -log10p = 3.121 (equivalent to a 888 

Bonferroni-corrected threshold of p = 0.05 for 66 possible pairs of traits). Only the significant 889 

trait pairs are shown here, and the full results are available in Table S7. 890 

trait pair +/+ +/- -/+ -/- -log10p 

FT/YLD 270 43 145 59 4.435 

FT/HT 112 201 22 182 9.352 

FT/WK 135 178 135 69 6.326 

FT/AWNS 139 174 140 64 6.959 

FT/MAT 268 45 57 147 38.908 

LODG/HT 75 56 59 327 20.083 

YLD/PROT 74 341 62 40 17.486 

YLD/MAT 280 135 45 57 4.687 

HT/PROT 56 78 80 303 5.408 

HT/WK 34 100 236 147 11.996 

HT/AWNS 49 85 230 153 5.361 

HT/MAT 102 32 223 160 3.474 

PROT/SPWT 82 54 138 243 5.742 

AWNS/MAT 145 134 180 58 7.317 

SPWT/EM2 148 72 122 175 8.195 

SPWT/MAT 119 101 206 91 3.269 

TGW/EM2 85 131 185 116 5.962 

EM2/MAT 149 121 176 71 3.643 

 891 
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894 

Figure 1. Population simulation and changes in allele frequency over time. 895 

The simulated populations with and without selection are described in detail here. The first 15 896 

generations were used as burn-ins and discarded. 8 varieties from each generation starting at 897 

16 and ending at 65 were randomly chosen to create a population of 400 varieties that span 898 

over 50 generations. Examples of how allele frequency changes over time are shown, with the 899 

first two examples follows a logistic distribution and thus are more likely to be significant under 900 

RALLY than the other two examples. 901 
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903 

Figure 2. RALLY and GWAS in simulated populations. 904 

Selected (S) and unselected (U) populations are simulated for 100 times and mapped for 905 

QSLs/QTLs using RALLY and GWAS. [A] Significant proportions of total markers identified from 906 

RALLY in S and U populations are calculated under various thresholds used in choosing null 907 

markers for delta control (DC) and genomic control (GC). The red point is estimated without DC 908 

and GC (uncorrected). Under the assumption that significant markers in U are due to drift alone 909 

and in S are due to both drift and selection, the X-axis is shown as the proportions in U while the910 

Y-axis is shown as the differences in proportions between S and U. [B – D] Counts of significant 911 

markers identified from RALLY and GWAS are shown according to their distance from QTLs in 912 

both S and U populations. Medians are shown in red points. [E] Manhattan plot for RALLY in 913 

one simulated S population. QTLs are highlighted in vertical bars according to their effect sizes. 914 

[F] Manhattan plot for RALLY in one simulated U population. [G] Manhattan plot for GWAS in 915 

one simulated S population. [H] Manhattan plot for GWAS in one simulated U population. [I] 916 

Histogram of RALLY p-values for the same simulated S population. [J] Histogram of RALLY p-917 

values in the same simulated U population. 918 
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921 

Figure 3. Manhattan plot for RALLY results in the TG panel. 922 

RALLY peaks and their extents of LD are shown in red points and horizontal bars, respectively. 923 

GWAS peaks from Ladejobi et al. (2019) are shown in blue points. The dashed horizontal line 924 

represents the Bonferroni threshold of 0.05. 925 
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 927 

Figure 4. QSL/QTL overlaps across different results. 928 

The number of overlapping QTLs among RALLY in TG panel (AT), RALLY in WAGTAIL panel 929 

(AW) and GWAS in TG panel (GT) are shown. 930 
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932 

Figure 5. Local heritabilities in RALLY QSL groups. 933 

[A] Local heritabilities for all 12 traits are shown as stacked bars for each RALLY QSL (defined 934 

in Table 1). [B] Local heritabilities from 22 RALLY groups are summed and compared against 935 

the heritabilities from other genomic markers. 936 
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 939 

Figure 6. Distributions of positive and negative RR effects in the increasing alleles. 940 

[A] Markers with RALLY P-values of lower than the Bonferroni corrected threshold. [B] Markers 941 

with RALLY P-values between 0.05 and the Bonferroni corrected threshold. [C] Markers with 942 

RALLY P-values of higher than 0.05. 943 
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945 

Figure 7. Distribution of pairwise effects for alleles with increasing frequency over time. 946 

For each allele with increasing frequency over time, it is classified into pairs of traits for which 947 

the allele has an increasing effect on both traits (+/+), a decreasing effect on both traits (-/-) or 948 

antagonistic/opposite effects (+/- and -/+). The circle areas are scaled according to the marker 949 

counts. The bottom left triangle represents the RR effects and the top right triangle represents 950 

the LASSO effects. The distributions of the effect classes in each trait pair are tested using 951 

 in the LASSO effects and significant results (Bonferroni-corrected threshold of p = 0.05) 952 

are highlighted in yellow. No test is performed in the RR effects because the marker effects in 953 

RR are not independent. 954 
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