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Abstract

The population genetics of digenic genotypes in diploid populations, geno-
types based on alleles at two loci, have been studied theoretically for decades
with relevant digenic traits of medical interest being known for over 25 years.
Given the effects of linkage and linkage disequilibrium on two locus genotypes,
it should be expected that these factors can change the expected frequencies
of digenic genotypes in many, sometimes unexpected, ways. In particular, the
combination of linkage disequilibrium and inbreeding can combine to increase
the frequencies of double homozygotes and double heterozygotes significantly
over outbred comparisons. Given the prevalence of linkage disequilibrium in
recently admixed populations, this can lead to large shifts in trait prevalence
such that it can sometimes exceed that of either original pre-admixed pop-
ulation with the combined effects of linkage disequilibrium and inbreeding.
Here we investigate the frequencies of digenic genotypes under the combined
effects of linkage, linkage disequilibrium, and inbreeding to analyze how these
interact to increase or decrease the frequency of the genotypes across two loci.

Keywords: digenic traits, oligogenic traits, inbreeding, linkage, population
admixture

1. Introduction

Starting in the early 1960s, population geneticists began building on the
advances made understanding the dynamics of single loci subject to evolu-
tionary forces to analyze the dynamics of multilocus systems with two or
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more loci. Early work on multilocus genetics included Hogben (1932) and
Li (1953) on double homozygous recessive traits and Haldane (1949) in the
first steps of understanding the effects of inbreeding at two loci. Digenic
models were also essential in theories by Fisher and others on the evolution
of dominance Fisher (1928a,b, 1929).

The dynamics of two loci subject to selection was a subject of early work
by Kimura (Kimura (1956)) but was first developed into a general theory
of stable equilibria by Lewontin & Kojima (Lewontin & Kojima (1960)).
Their paper described the general equations for the evolution of haplotype
frequencies and the effects of linkage and linkage disequilibrium on changes
in haplotype frequency and stable states. Key to the work by both groups
of authors was the analysis of the dynamics of two loci where the relative
fitness matrix is symmetric allowing the problem to be analytically tractable
and guaranteeing the existence of stable solutions under certain conditions
of relative fitness.

Lewontin and Kojima’s paper stimulated much interest in the topic, espe-
cially in light of the increasing availability of polymorphism data, which in-
clude Bodmer & Felsenstein (1967); Karlin & Feldman (1970); Karlin (1975,
1979); Karlin & Avni (1981); Bürger (2020). A good review of some of
the historically important results can be found in Karlin (1975) and Bürger
(2020).

From the late 1970s to the 1990s, digenic traits, especially where they
could possibly be of relevance to explaining medical conditions, were increas-
ingly investigated. A disease model based of the symmetric fitness models
of Lewontin, Kojima, and Karlin was given by Merry et. al. (1979). In ad-
dition, the enumeration of medically relevant two locus genotypes and the
covariance of relatives where the loci are unlinked is given by Neuman &
Chakravarti (1992) building on earlier work by Hartl (1968). Full enumera-
tion of all possible digenic trait genotypes were given by Li & Reich (2000);
Hallgŕımsdóttir & Yuster (2008).

Two locus disease models continued to evolve throughout the 1980s and
1990s with important contributions by Hodge (1981a); Hodge & Spence
(1981b); Goldin & Weeks (1993). These were complimented by the first
confirmed discovery of a digenic disease trait: a double heterozygous geno-
type that causes a variation of retinitis pigmentosa (Kajiwara et. al. (1994)).
However, much interest in digenic traits temporarily waned with the advent
of advanced technologies such as next generation sequencing and methods
such as GWAS which allowed analysis of large numbers of loci compared to
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previously limited polymorphism data.
However, there has been a resurgence of interest in so-called oligogenic

disorders, defined as disorders whose aetiology is described by the genotypes
at two or more loci, which occupy a midpoint between single locus Mendelian
disorders and complex diseases defined as quantitative traits. Several re-
views Badano & Katsanis (2002); Cooper et. al. (2013); Schäffer (2013);
Deltas (2018) have discussed the increasing number of discoveries of digenic
or oligogenic diseases. In Schäffer (2013) ninety-five non-overlapping cases
of digenic disorders were listed along with the method of inheritance for
each locus. In the Online Mendelian Inheritance in Man (OMIM) database
OMIM (2021), there are currently 33 entries for disorders that have an either
digenic dominant or digenic recessive aetiology. About half are inherited in
an autosomal dominant manner with double heterozygote genotypes most
commonly described. This however, is still minuscule compared to the over
2,800 disorders with autosomal recessive aetiology and over 2,000 disorders
with autosomal dominant aetiology in OMIM. While still relatively small in
confirmed numbers, they are subject of renewed search and interest.

One of the key aspects of digenic traits separating them from monogenic
ones is the importance of both linkage and linkage disequilibrium. The fre-
quencies of digenic genotypes and the effects of mating systems on those
frequencies are heavily dependent on these variables. Given this fact, pop-
ulations that have a high prevalence of linkage disequilibrium should be ex-
pected to have impacts on the frequencies of digenic traits, especially when
mating between relatives occurs.

1.1. Population admixture and linkage disequilibrium
It has been long established that admixture between populations with dif-

ferent allele frequencies at a pair of loci will generate linkage disequilibrium
between these loci, even if it is absent in the original populations. Though
this linkage disequilibrium decays over time unless maintained by evolution-
ary forces, it can last for a substantial number of generations in cases where
the loci in question are linked and encounter recombination with much lesser
frequency.

The amount of linkage disequilibrium generated by admixture was first
worked out by Nei & Li (1973). For the case of bi-allelic loci where population
one contributes a proportion m1 to the final population this leads to

D = m1D1 + (1−m1)D2 +m1(1−m1)(pA1 − pA2)(pB1 − pB2) (1)
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The D1 and D2 terms represent initial linkage disequilibrium in the origi-
nal populations and the probabilities are the frequencies of allele A and B in
population 1 or 2. This linkage disequilibrium affects haplotype frequencies
which in turn help determine digenic trait frequencies. The most obvious ef-
fect, that of linkage disequilibrium in an outbred population will be explained
first and show how this linkage disequilibrium directly alters the frequencies
of digenic genotypes. This is the most common outcome and is not really
dependent on linkage except in how rapidly linkage disequilibrium decays.

Second, we will show how linkage disequilibrium accompanied by link-
age between loci amplifies the effects of inbreeding. This shows that even
compared to inbreeding in similar populations without linkage disequilib-
rium, inbreeding in populations with linkage disequilibrium between loci can
substantially increase the frequency of digenic genotypes by orders of magni-
tude. Finally, we will demonstrate how these factors interplay in an example
of expected digenic genotypes for the progeny of first cousins.

While the results derived here are valid for any two loci in any type
of population that are in linkage disequilibrium, we focus on the case of
admixed populations since linkage disequilibrium can be much more pervasive
between loci, even those that are unlinked, and understanding the genetic
epidemiology of digenic traits can be counterintuitive as with the increased
frequencies of double heterozygotes due to inbreeding.

2. Digenic genotype frequencies

In this section, we will outline the effects on digenic genotype frequen-
cies due to linkage disequilibrium and inbreeding. The first case will cover
linkage disequilibrium in outbred populations alone and then incorporate the
necessary adjustments for inbreeding.

2.1. The effects of linkage disequilibrium

When the population is outbred, the effect of linkage disequilibrium on
genotype frequencies is clear as shown in Table 1. For positive linkage dis-
equilibrium between loci, the frequencies of some genotypes can increase
markedly. This alone can increase the frequency of digenic genotypes in
recently admixed populations.

For example, for two loci with minor allele frequencies of 0.01, the ex-
pected double homozygous genotype frequency for the minor alleles is 1 ×
10−8. With linkage disequilibrium equivalent to D′ = 0.25, however, this
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AA Aa aa

BB P 2
AB 2PABPaB P 2

aB

Bb 2PABPAb 2PABPab + 2PAbPaB 2PaBPab

bb P 2
Ab 2PAbPab P 2

ab

Table 1: Two loci genotype frequencies taking linkage disequilibrium into account. See
also Lewontin & Kojima (1960); Weir (2008). Chart adopted from Weir (2008). PAB =
pApB +D, Pab = (1− pA)(1− pB) +D, PAb = pA(1− pB)−D, PaB = (1− pA)pB −D.
Note the double heterozygote (AaBb) genotype has two terms due to the genotype arising
from either the dual gametes AB and ab or Ab and aB.

can increase to 6.7 × 10−6, over a 600-fold increase though still relatively
uncommon.

2.2. The effects of inbreeding at two loci

It has been known for centuries that breeding of relatives can lead to
an increasing frequency of relatively rare disorders. The modern analysis
of inbreeding was formalized by Wright (Wright (1922)) and improved by
Malécot’s probabilistic definition of the probability of two alleles at a locus
being identical by descent (IBD) (Malécot (1970)). The inbreeding coefficient
of descent F is defined as the IBD probability for two alleles in a locus and
is equal to the coefficient of coancestry, θ, of the parents, also called kinship
(e.g. Jacquard (1975)). In other words, the inbreeding of the progeny reflects
the consanguineous relationship of the parents. Therefore the probability, F ,
that two alleles in the progeny are IBD is equal to the probability that two
alleles from the same locus in each parent are IBD as well.

The genotypic results of inbreeding are widely known, most markedly in-
creased homozygosity by an amount p(1−p)F and a decline in heterozygosity
as well as the separation of a population into lines which have a steady de-
creasing genetic variance within the line and an increasing genetic variance
between lines. This increase in homozygosity allows the appearance of rare
homozygous genotypes at significantly higher frequencies than if the popu-
lation was outbred. This increases the frequencies of recessively inherited
disorders in inbred populations.

The story for two loci is a bit more complex. First investigated by JBS
Haldane (Haldane (1949)) and most thoroughly expounded in the collabo-
ration of C. Clark Cockerham and Bruce Weir (Weir & Cockerham (1968);
Cockerham & Weir (1968, 1973, 1977); Weir & Cockerham (1974)), the ef-
fects of inbreeding across two loci involves not just the effects of increased
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homozygosity on the joint occurrence of genotypes.
Where two loci are concerned, we want to first investigate the conditions

under which alleles at each locus in different individuals are identical by
descent. We will designate the two alleles at the first locus in individuals 1
and 2 as a1 and a2 and at the second locus as b1 and b2. Note that these
only represent the identity of the alleles and not the specific allele present.
Per the notations of Weir and Cockerham we will define four different types
of two-locus inbreeding coefficients:

F11 = P (a1 ≡ a2) and P (b1 ≡ b2)

F10 = P (a1 ≡ a2) and P (b1 ̸≡ b2)

F01 = P (a1 ̸≡ a2) and P (b1 ≡ b2)

F00 = P (a1 ̸≡ a2) and P (b1 ̸≡ b2)

(2)

The ≡ symbol indicates identity by descent. Note the single locus in-
breeding coefficient for locus a is F1. = F11 + F10 and the coefficient for
locus b is F.1 = F11 + F01. The average of these two is often used to rep-
resent the average probability of IBD across both loci and is designated as
F1 = (F1. + F.1)/2. For our analysis, we will assume the IBD probabilities
at each locus are identical so F.1 = F1. = F1 = F . In evaluating the effects
of inbreeding on two loci, the coefficient F11 is most useful in describing the
impact of inbreeding at both loci.

In particular for the determination of genotype frequencies is the impor-
tance of the identity disequilibrium (ID), η11. The ID is a measurement of the
increased frequency of joint IBD alleles at both loci above the IBD expected
based on the product of the inbreeding coefficients at each locus. It can also
be interpreted as the correlation between heterozygosity across loci caused
by inbreeding at two loci. Where the inbreeding coefficient is the same for
both loci, ID is defined as

η11 = F11 − F 2 (3)

The main effect of identity disequilibrium is to increase the frequency
of double homozygous and double heterozygous genotypes while reducing
the frequency of genotypes that are pairs of homozygous and heterozygous
genotypes. The increase in double heterozygotes is in contrast to the effects
of inbreeding at a single locus where the frequency of heterozygotes gradually
decreases with increased inbreeding. This still occurs at single loci due to
the effects of inbreeding but it is moderated or even reversed for double
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heterozygotes given the value of the identity disequilibrium. The effects of
η11 by genotype are shown in Table 2.

AA Aa aa

BB PAAPBB + σ2
Aσ

2
Bη11 PAaPBB − σ2

Aσ
2
Bη11 PaaPBB + σ2

Aσ
2
Bη11

Bb PAAPBb − σ2
Aσ

2
Bη11 PAaPBb + σ2

Aσ
2
Bη11 PaaPBb − σ2

Aσ
2
Bη11

bb PAAPbb + σ2
Aσ

2
Bη11 PAaPbb − σ2

Aσ
2
Bη11 PaaPbb + σ2

Aσ
2
Bη11

Table 2: Two loci genotype frequencies under inbreeding at linkage equilibrium taking
identity disequilibrium into account. See also Cockerham & Weir (1973). The variance of
each locus is represented by σ2

A = pA(1−pA) and σ2
B = pB(1−pB). The variable η11 is the

identity disequilibrium. Per the regular results of inbreeding, PAA = p2A + pA(1 − pA)F ,
PAa = 2pA(1 − pA)(1 − F ), Paa = (1 − pA)

2 + pA(1 − pA)F , PBB = p2B + pB(1 − pB)F ,
PBb = 2pB(1− pB)(1− F ), Pbb = (1− pB)

2 + pB(1− pB)F .

The coefficient F11, however is not a fixed value across all loci pairs and
all individuals in the population. In particular, F11 depends on the level of
linkage between the two loci as well as the pedigree of ancestors back to the
original gamete to account for all possibilities of transmission. Its boundary
values are F11 = F 2 if c = 1/2, where c is the recombination frequency, and
there is no linkage. Thus for c = 1/2, η11 = 0. For complete linkage where
c = 0, F11 = F and thus η11 = F (1 − F ). Intermediate values of F11 are
calculated with algorithms given the pedigree of the individual. These will
be explained in Appendix A.

2.3. The combined impact of inbreeding and linkage disequilibrium

The sole addition of identity disequilibrium to the genotype frequencies
described in Table 2 assumes that the loci are in linkage equilibrium. This
greatly simplifies the analysis. The presence of linkage disequilibrium changes
frequencies due to the fact initial linkage disequilibrium interacts with linkage
to change the expected frequencies of alleles being IBD within loci. It also
means we have to account for several additional descent coefficients.

The first, the parental descent coefficient F 11, measures the probability
that both of the gametes are identical to the gamete in the common ancestor
both alleles descended from. In other words, F 11 measures the probability
that both gametes in each individual are passed down from the common
ancestor without recombination.

Assuming ≡ means the alleles are from the same ancestral gamete, we can
define the two locus parental coefficients similar to the inbreeding coefficients.
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F 11 = P (a1 ≡ b1) and P (a2 ≡ b2)

F 10 = P (a1 ≡ b1) and P (a2 ̸≡ b2)

F 01 = P (a1 ̸≡ b1) and P (a2 ≡ b2)

F 00 = P (a1 ̸≡ b1) and P (a2 ̸≡ b2)

(4)

The average parental coefficient across both individuals can be defined
similarly to the inbreeding coefficient case and is designated as F 1.

The second new coefficient, the recombination descent coefficient 11F is a
measure of the probability that an allele at the first locus on one gamete in one
individual and an allele at the second locus on the other gamete in the other
individual were originally part of the same gamete in the common ancestor.
This measures the probability that there was a recombination event in one
or both of the common parents and the alleles in the final generation are on
different gametes than they started out. For more details see Cockerham &
Weir (1973, 1977).

Similar to the definitions above for the parental coefficients

11F = P (a1 ≡ b2) and P (a2 ≡ b1)

10F = P (a1 ≡ b2) and P (a2 ̸≡ b1)

01F = P (a1 ̸≡ b2) and P (a2 ≡ b1)

00F = P (a1 ̸≡ b2) and P (a2 ̸≡ b1)

(5)

The ≡ symbol here indicates the two alleles at different loci on different
gametes were originally together on the common ancestral gamete. These
descent coefficients are necessary since descent identity no longer relies on
alleles at a single locus but the shared gametic ancestry (or lack thereof) of
the alleles on the gametes inherited by descendants.

The differential effects of linkage combined with linkage disequilibrium on
digenic genotype frequencies creates a condition, not present in analyses of
single loci, where populations with linkage disequilibrium between loci can
have greater or lesser frequencies of digenic genotypes than similarly inbred
populations where loci are at linkage equilibrium.

2.4. Calculations of the linkage disequilibrium impact under inbreeding

We will analyze the effect of linkage disequilibrium on digenic double
homozygous and double heterozygous genotypes. The resultant expressions
for the effect of inbreeding with linkage disequilibrium will be described below
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with the reader referred to Cockerham & Weir (1973) for detailed derivation
and explanation of the source equation which involves two, three, and four
gamete linkage disequilibrium effects. The value of D is the value of linkage
disequilibrium in the nearest common ancestor of the related parents of the
individual.

We will describe the double homozygous genotypes as P (ab|ab), where a
and b represent the (minor) alleles at their respective loci and the vertical
line separates the two gametes. The double heterozygous genotypes are of
four types depending on the composition of the gametes and which of the two
chromosomes they are located on. P (AB|ab) = P (ab|AB) and P (Ab|aB) =
P (aB|Ab). Here pA = 1− pa and pB = 1− pb. Where linkage disequilibrium
is not present, the genotypes for each will be described with an asterisk and
are equal to the below

P (ab|ab)∗ =(p2a + pA(1− pA)F )(p2b + pB(1− pB)F ) + pA(1− pA)pB(1− pB)η11

P (AB|ab)∗ =P (ab|AB)∗ = P (Ab|aB)∗ = P (aB|Ab)∗

=pA(1− pA)pB(1− pB)(1− F )2 + pA(1− pA)pB(1− pB)η11
(6)

The additional changes in digenic genotype frequency caused by linkage
disequilibrium involve F 1, 1F and related coefficients. Fortunately, the ad-
ditive adjustments to the double homozygote and double heterozygote geno-
type frequencies are very similar.
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P (ab|ab) =P (ab|ab)∗ +D2
[
F 11 + 11F − 2F 11

11

]
+D

[
2(F 1 + 1F )papb

+ F 11
11 (1− 2pa)(1− 2pb) + 21F

1
1 (pa + pb − 4papb)

]
P (AB|ab) =P (ab|AB) = P (AB|ab)∗ +D2

[
F 11 + 11F − 2F 11

11

]
+D

[
F 1(pApB + (1− pA)(1− pB)) + 1F (pA(1− pB)+

(1− pA)pB)− 21F
1
1 (1− 2pA)(1− 2pB)

+ F 11
11 (pApB + (1− pA)(1− pB) + pA(1− pB) + (1− pA)pB)

]
P (Ab|aB) = P (aB|Ab) =P (Ab|aB)∗ +D2

[
F 11 + 11F − 2F 11

11

]
+D

[
F 1(pA(1− pB)+

(1− pA)pB) + 1F (pApB + (1− pA)(1− pB))

− 21F
1
1 (1− 2pA)(1− 2pB)

+ F 11
11 (pApB + (1− pA)(1− pB) + pA(1− pB) + (1− pA)pB)

]
(7)

The two new coefficients above are F 11
11 and 1F

1
1 . The first represents

the probability that alleles at both loci are IBD as well as that alleles on
both gametes came from the original ancestral gamete. The second is the
average of the four probabilities of the joining occurrence of: one locus having
IBD alleles, one gamete being inherited intact from an ancestor, and two
alleles from different gametes having been on the same gamete in an ancestral
generation. Their expressions can be defined as

F 11
11 =P (a1 ≡ a2 ≡ b1 ≡ b2)

1F
1
1 =

1

4
[P (a1 ≡ a2 ≡ b1) + P (a1 ≡ a2 ≡ b2) + P (a1 ≡ b1 ≡ b2) + P (a2 ≡ b1 ≡ b2)]

(8)
Again ≡ means designates alleles from the same initial gamete (Weir &

Cockerham (1974))
The total double heterozygote frequency is the sum of all four separate

double heterozygote variations
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P (AaBb) =2P (AB|ab) + 2P (Ab|aB) = 4P (AB|ab)∗ + 4D2
[
F 11 + 11F − 2F 11

11

]
+ 2D

[
(F 1 + 1F )(pApB + (1− pA)(1− pB) + pA(1− pB)

+ (1− pA)pB)− 41F
1
1 (1− 2pA)(1− 2pB)

+ 2F 11
11 (pApB + (1− pA)(1− pB) + pA(1− pB) + (1− pA)pB)

]
(9)

The frequency difference between the two types of double heterozygosity
can be given by

2P (AB|ab)− 2P (Ab|aB) =2D
[
(F 1 − 1F )(pApB + (1− pA)(1− pB)

− pA(1− pB)− (1− pA)pB)
] (10)

Equations 7 and 9 can take a variety of values based on the value of
D, allele frequencies, as well as the relative size of the identity coefficients.
It does demonstrate that linkage disequilibrium can alter the genotype fre-
quencies where inbreeding is involved. Two main questions however are, first
how does inbreeding affect genotypic expectations in populations with link-
age disequilibrium versus the case where there is linkage disequilibrium with
no inbreeding and second, how does linkage disequilibrium affect genotype
expectations compared to inbreeding at linkage equilibrium.

The first question is addressed by the fact that when there is no inbreed-
ing, the genotype frequencies above reduce to those expected in Table 1.
Under these conditions F 1 = F 11 = 1 and 1F

1
1 = 1F = 11F = F 11

11 = 0
Cockerham & Weir (1973, 1977). These then give the genotype frequencies
as expected from Table 1.

To address the second question, we look at the overall change from the
first term with the product of the genotypes at each locus and the term with
the identity disequilibrium multiplied the variances of both loci. What is
clear is that all terms multiplied by D are positive for double homozygotes
and there is only one relatively minor negative term for double heterozy-
gotes. Thus these terms change the genotype frequency proportional to the
magnitude and sign of the linkage disequilibrium. The term multiplied by
D2 is also almost always positive given F 11

11 is usually very small though it
is usually negligible except when the loci are tightly linked. Thus, compared
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to the case with inbreeding but no linkage disequilibrium, positive and nega-
tive linkage disequilibrium in the ancestor increase of decrease the genotype
frequencies of double homozygotes and double heterozygotes.

To understand the magnitude of this difference, however, we will explore
the effect of first cousin mating on the expected digenic genotypes under all
conditions for a double homozygous trait inherited in an autosomal recessive
manner as well as a double heterozygous trait inherited in an autosomal
dominant manner. This will help demonstrate the magnitude of possible
effects.

3. First cousin inbreeding example

I H

G D E F

B C

A

Figure 1: Pedigree of first cousin inbreeding.

In this example, we will examine the impact that the combined effects of
linkage disequilibrium and inbreeding have on the frequency of double ho-
mozygous and double heterozygous genotypes at two loci with rare minor
allele frequencies of 0.01. As will be demonstrated, not only does inbreeding
increase double homozygosity greatly, as expected, but also double heterozy-
gosity, even though inbreeding reduces heterozygosity and a single locus.
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The process to derive the descent coefficients in the case of first cousin
mating will be outlined in Appendix A. The results for our purposes are
summarized below:

F1 =
1

16

1F =
1

16
F 1 = (1− c)3

F11 =
1

16

(
(1− c)6 + c2(1− c)4 +

1

2
c2(1− c)2

)
F 11 = (1− c)6

11F =
1

16
((1− c)4 − 2c(1− c)4 + 2c2(1− c)4)

F 11
11 =

1

16
(1− c)6

1F
1
1 =

1

32
(2(1− c)5 + c2(1− c)2)

(11)

These descent coefficients can then be used to calculate the double ho-
mozygous and double heterozygous genotype frequencies per equations 7 and
9. The two key variables affecting the genotype frequency are both the degree
of linkage between the loci and the magnitude of the linkage disequilibrium.
For the two rare alleles analyzed, D has a range of [−0.0001, 0.0099] and c
ranges between zero and one-half.

In Figure 2 are graphs of the frequency of double homozygotes and double
heterozygotes for various values of D and c. The plot gives linkage on the
x-axis as Schnell’s linkage value (Schnell (1961)) λ = 1 − 2c that ranges
from [0, 1] as c ranges from [1/2, 0] since this more clearly demonstrates the
increasing frequency with linkage.

Consider two types of digenic hereditary disorders with separate aeti-
ologies. In both the minor allele of interest has a population frequency of
0.01. One condition is inherited in an autosomal recessive manner and only
expressed when a double homozygous recessive genotype is present. The
other is inherited in an autosomal dominant manner with a rare dominant
allele and is expressed in double homozygotes, double heterozygotes, and
mixed dominant homozgyote/heterozygotes. However, the largest frequency
of occurrence is with double heterozygotes. If the rare alleles are considered
the causative alleles in both cases, for the autosomal recessive condition,
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Figure 2: Plots of the frequencies of double homozygous and double heterozygous geno-
types versus linkage where the frequency of the minor allele is 0.01 and the different colors
represent different values of linkage disequilibrium.D′ = 1, D′ = 0.5, D′ = 0.25, D′ =
0, D′ = −0.25, D′ = −0.5, D′ = −1. are represented by the line colors red, orange, blue,
black, green, brown, and gray. Linkage is designated by the Schnell linkage value λ = 1−2c.
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there would only be one case in 100 million persons. Under normal Hardy-
Weinberg equilibrium with no inbreeding and linkage equilibrium between
the two loci, the double heterozygote, the largest frequency genotype for di-
genic autosomal dominant disorders, would have a prevalence of 39 cases per
100,000.

These incidence rates change markedly with the introduction of inbreed-
ing, linkage disequilibrium, or both. For first cousin inbreeding where F =
1/16, at two loci which are unlinked and not in linkage disequilibrium, there
is not a large change in incidence with double homozygosity rising to 5.2
cases per 10 million, a 50-fold increase, and double heterozygosity actually
reducing to 34 cases per 100,000. This is solely due to the combined effects
of single locus inbreeding genotype changes at each locus.

The effect of inbreeding increases with linkage however, especially for
double homozygotes, and for c = 1/4 the rate becomes 0.14 per 100,000, a
2.7X increase, for double homozygotes and 35 per 100,000 for double het-
erozygotes. For completely linked loci the rates become 0.63 per 100,000 for
double homozygotes and 37 per 100,000 for double heterozygotes. Thus when
there is inbreeding without linkage disequilibrium, the effects of identity dis-
equilibrium are more marked on double homozygotes. Double heterozygotes
see a small decrease, though less than expected if one only considered the
decline in heterozygosity at the individual loci.

The introduction of linkage disequilibrium, however, removes the ambigu-
ous effect of inbreeding on double heterozygotes. For linkage disequilibrium
of D′ = 0.25 without inbreeding for unlinked loci, double homozygotes have
an incidence of 1.7 per 10 million and double heterozygotes a rate of 99
per 100,000. For c = 0, double homozygotes increase to 0.66 per 100,000
with double heterozygotes rising to 520 per 100,000. Under inbreeding at
F = 1/16 and D′ = 0.25, the rates for unlinked loci are 0.34 per 100,000
for double homozygotes (a 20X increase over the identical outbred scenario)
and 120 per 100,000 for double heterozygotes. The rate for double heterozy-
gotes is now higher than the outbred case for the same amount of linkage
disequilibrium. This rises to 17 per 100,000 and 500 per 100,000 for dou-
ble homozygotes and double heterozygotes respectively for completely linked
loci where double heterozygotes under inbreeding see their frequency gap
with the outbred counterparts disappear and even slightly reverse.

These rates are not reflective of the entire population since cousin mar-
riages in most societies are relatively uncommon. However, for the partial
linkage disequilibrium of D′ = 0.25, for the double heterozygotes, unlinked
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loci will have an incidence of about 1 in 833 offspring for cousin inbreed-
ing with double homozygotes having a rate of 1 in 300,000. For linked loci,
the double homozygote rate would be 1 in 5,882 offspring and the double
heterozygote rate would be 1 in 200.

Inbreeding Ancestral Linkage Disequilibrium Linkage P(aabb) P(AaBb)

F = 0

D′ = 0 Any 1.0× 10−8 3.9× 10−4

D′ = 0.25
c = 1/2 1.7× 10−7 9.9× 10−4

c = 1/4 1.3× 10−6 2.4× 10−3

c = 0 6.6× 10−6 5.2× 10−3

D′ = 1
c = 1/2 1.8× 10−6 2.8× 10−3

c = 1/4 1.8× 10−5 8.3× 10−3

c = 0 1.0× 10−4 0.02

F = 1
16

D′ = 0
c = 1/2 5.2× 10−7 3.4× 10−4

c = 1/4 1.4× 10−6 3.5× 10−4

c = 0 6.3× 10−6 3.7× 10−4

D′ = 0.25
c = 1/2 3.4× 10−6 1.2× 10−3

c = 1/4 2.9× 10−5 2.5× 10−3

c = 0 1.7× 10−4 5.0× 10−3

D′ = 1
c = 1/2 1.3× 10−5 3.8× 10−3

c = 1/4 1.3× 10−4 9× 10−3

c = 0 7.2× 10−4 0.019

Table 3: Expected double homozygote and double heterozygote frequencies under various
combinations of ancestral linkage disequilibrium and inbreeding for pa = pb = 0.01 and
consanguineous mating between first cousins determining F and the descent coefficients for
the inbred case. Note that the final linkage disequilibrium in the affected population has
undergone three generations of recombination from the ancestral linkage disequilibrium
and in each case is D′(1− c)3.

4. Simplified expressions

For similar situations to this example where minor allele frequencies are
small and maximum linkage disequilibrium is not large, the genotype fre-
quency expressions can be greatly simplified to only the most familiar vari-
ables. While the genotype frequency expressions can be complicated and
involve many new variables in the case of linkage disequilibrium, the rela-
tively small contributions of most of the descent coefficients as well as small
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effect of D2, especially in the double heterozygote case, can give us simpler
approximations that can be useful for estimation. In short, for the double
homozygous and double heterozygous genotype frequencies, the approxima-
tions can be given by

P (ab|ab) =P (ab|ab)∗ + 2D(F 1 + 1F )papb

P (AaBb) =4P (AB|ab)∗ + 2D(F 1 + 1F )(pApB + (1− pA)(1− pB) + pA(1− pB) + (1− pA)pB)
(12)

In this simplification, only F11 and F need to be known to calculate η11
for the base case and for linkage disequilibrium, only the averages F 1 and

1F . If only the parents of the final progeny are consanguineous (all other
ancestors are outbred), and the parents belong to the same generation this
can be simplified further to

P (ab|ab) =P (ab|ab)∗ + 2D((1− c)n + F )papb

P (AaBb) =4P (AB|ab)∗ + 2D((1− c)n + F )(pApB + (1− pA)(1− pB)

+ pA(1− pB) + (1− pA)pB)

(13)

The variable n is the number of generations between the progeny and the
nearest common ancestor of the consanguineous parents. So n = 2 for the
progeny of full or half-sibs, n = 3 for progeny of first cousins, etc.

For unlinked loci (1 − c) = 1/2 so

P (ab|ab) =P (ab|ab)∗ + 2D(
(1
2

)n
+ F )papb

P (AaBb) =4P (AB|ab)∗ + 2D(
(1
2

)n
+ F )(pApB + (1− pA)(1− pB)

+ pA(1− pB) + (1− pA)pB)

(14)

Finally, for completely linked loci, the D2 term may become substantial
and can be simplified with the below taking into account for completely
linked loci F 11 = 1 and F11 = F 11

11 = F .

P (ab|ab) =P (ab|ab)∗ +D2(1− F ) + 2D((1− c)n + F )papb

P (AaBb) =4P (AB|ab)∗ + 4D2(1− F ) + 2D((1− c)n + F )(pApB + (1− pA)(1− pB)

+ pA(1− pB) + (1− pA)pB)
(15)
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5. Discussion

The dynamics of two-locus systems are much more complex than those
at a single locus and the analysis of the effects of inbreeding are not an
exception. As shown by early work on two locus dynamics in Lewontin &
Kojima (1960), linkage disequilibrium and linkage play integral parts in un-
derstanding solutions to problems of haplotypes and genotypes across two
loci. While the analysis here can apply to any pair of loci in linkage disequi-
librium and subject to consanguineous mating, the more pervasive presence
of linkage disequilibrium in populations with substantial recent admixture
gives emphasis to the results when applied to these cases.

In short, positive linkage disequilibrium can raise the expected frequency
of some two-locus genotypes, especially double homozygous ones, above what
would be expected based on allele frequencies alone. However, the impact of
linkage and identity of alleles by descent across loci can increase it markedly
through the identity disequilibrium and the other effects two-locus inbreeding
coefficients have under linkage disequilibrium. This can give rise to double
genotype frequencies higher in admixed populations than in either original
population, a circumstance only possible at single loci for the frequency of
heterozygotes under population admixture. In the single locus case, the het-
erozygote frequency in an admixed population can be higher if the admixed
population allele frequency is closer to 1/2 than either original population.
However, at two loci the various effects under inbreeding with linkage dis-
equilibrium can give rise to a case where double homozygous and double
heterozygous genotypes have higher frequencies than either original popula-
tion.

The dual impact of inbreeding in linkage disequilibrium on digenic traits
has two aspects. On one hand, inbreeding and linkage combined increase
the frequency of double homozygotes and support the frequency of double
heterozygotes against declines of heterozygosity at single loci. However, the
impact of linkage disequilibrium has two contrasting effects on double ho-
mozygotes and double heterozygotes. For double homozygotes, linkage dis-
equilibrium and linkage both combine to increase frequencies to ever higher
levels if either linkage or linkage disequilibrium rise.

Under inbreeding, the frequency of double heterozygotes sees the great-
est increase over the analogous outbred comparisons when there is linkage
disequilibrium and the loci are unlinked. While the double heterozygote fre-
quencies still increase with linkage, they do so at a slow rate and for linked
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loci the effects of inbreeding are nearly identical to the situation with outbred
individuals with the same linkage disequilibrium at completely linked loci.
This is due to the negative term in the genotype frequency becoming larger
with increasing linkage (1F

1
1 → F ) and thus counteracting other positive

terms and the identity disequilibrium. Therefore, for double heterozygotes
with alleles in linkage disequilibrium, the largest impacts are for unlinked
and partially linked loci under inbreeding. For both double homozygotes
and double heterozygotes, these effects are reversed when linkage disequilib-
rium is negative and rare genotypes can all but disappear from the population
as shown with the frequencies for zero or negative linkage disequilibrium in
Figure 2.

The examples for unlinked loci are particularly cogent for digenic traits
of medical interest. The traits, while often on the same chromosome, may
exist in different, though related, genes and can be unlinked. Therefore iden-
tity disequilibrium would play little role in the genotype frequencies except
when loci are close on the same gene and have some linkage. On the other
hand, comparing the frequencies in a population with linkage disequilibrium
between the loci and one that does not should show a significantly higher
prevalence, in all contexts, especially if there is inbreeding.

In summary, inbreeding across two loci raises the frequencies of double
homozygotes as expected from analogy with the single locus case with the gap
rising with increased linkage. Double heterozygotes do not see an increase
from the outbred case unless linkage disequilibrium is involved though their
frequencies under inbreeding can be supported near the outbred frequency
by increasing linkage.

The effect of linkage disequilibrium is to increase or decrease genotypic
frequencies for positive or negative linkage disequilibrium in all cases and
causes a higher frequency in double homozygotes and double heterozygotes
over their outbred comparisons. However, the interaction between inbreeding
and linkage disequilibrium is much more unambiguous for double homozygous
loci where linkage and linkage disequilibrium combine to strongly increase
frequencies of double homozygotes. For double heterozygotes, the increased
genotype frequencies under inbreeding are most prominent for loci with little
or no linkage.

Digenic traits, like other oligogenic traits, are being found increasingly
frequently in populations where unexplained phenotypes or medical condi-
tions show no resolution as Mendelian or complex disorders. The frequencies
of these disorders in populations is not yet understood similarly to the bet-
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ter understanding of population frequencies for some Mendelian traits. The
foregoing should hopefully assist in clarifying the issues regarding disease ae-
tiology and prevalence to allow us to better understand two locus conditions
as well as their one locus counterparts.

Appendix A. Descent coefficient derivation

This section will give a brief overview of the derivation of the descent
coefficients in simple pedigrees. For more detailed derivation and analysis,
see Weir & Cockerham (1968); Cockerham & Weir (1968, 1973, 1977, 1973);
Weir & Cockerham (1974). For the average descent coefficients, F1, F

1, and

1F , we will use the lettering of the individuals in Figure 1 and show results
in Table A.4.

Also, we will use Schnell’s recombination values to make calculations
more simple and easy to derive. Using Schnell’s terminology, the probability
of recombination is 1−λ

2
and the probability of no recombination is 1+λ

2
.

For the initial ancestors in the pedigree, which we assume are outbred, F1

and 1F are both zero and F 1 is originally defined as one. Each subsequent
generation of descent has a value of F 1 multiplied by the previous generation’s
value times the probability of no recombination. Note outbred avunculars
of A: D and E, have zero probability of allele or gamete identity so have
all descent coefficients as zero. Only the final generation where inbreeding is
present has values for F1 and 1F . The value of F1 is the inbreeding coefficient
based on the coancestry of the parents. The value of 1F is given by an
algorithm from Cockerham & Weir (1977). Where n1 and n2 are the number
of generations between the parents of A (B and C respectively) and the
common ancestors (H and I) and M is the number of distinct paths between
B and C and H/I, we can state

1FA =

(
1

2

)n1+n2
(

1FI + F 1
I

2

)
M (A.1)

The first calculation of F 11 is straightforward for simple pedigrees. For
F 1, by definition
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ID F1 1F F 1

I 0 0 1

H 0 0 1

G 0 0 1+λ
2

F 0 0 1+λ
2

E 0 0 0

D 0 0 0

C 0 0
(
1+λ
2

)2
B 0 0

(
1+λ
2

)2
A 1

16
1
16

(
1+λ
2

)3
Table A.4: Average descent coefficients for the pedigree in Figure 1. See also Cockerham
& Weir (1977).

F 1 =
F 1. + F .1

2
=

F 11 + F 10 + F 11 + F 01

2
= F 11 +

F 10 + F 01

2
=
(1 + λ

2

)3
F 10 =F 01 =

(1 + λ

2

)3[
1−

(1 + λ

2

)3]

(A.2)
The values of F 10 and F 01 are the probability of one gamete descend-

ing without recombination while another descends with any numbers of re-
combinations except zero. Given equation A.2 and our previously derived

F 1 =
(

1+λ
2

)3
we can derive

F 11 =
(1 + λ

2

)6
= (1− c)6 (A.3)

To calculate F11, and 11F , F 11
11 and 1F

1
1 , one expands the descent coef-

ficients backwards through the pedigree from the affected individual to the
common ancestors of the parents. For example, F11A for A is the same as
the two locus coancestry coefficient for parents B and C, θ11BC

θ11BC =
1 + λ

2

θ11BE + θ11BF

2
+

1− λ

2

γ11B,EF + γ11B,FE

2
(A.4)
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The fractions 1+λ
2

and 1−λ
2

are the probabilities of no recombination and
recombination respectively and the term (θ11BE + θ11BF )/2 is the average
of the coancestries of B and the parents of C. The average of γ11B,EF and
γ11B,FE is the average of the three gamete probabilities which are the proba-
bility that one gamete comes from B and the other alleles which eventually
form a gamete in C come from E and F separately after a recombination
event.

Since E is unrelated to F or B, θ11BE = 0 and the terms γ11B,EF and
γ11B,FE are zero as well since different parents cannot contribute to the same
gamete in C. So we then have

θ11BC =
1 + λ

4
θ11BF (A.5)

Next we expand out θ11BF

θ11BF =
1 + λ

2

θ11DF + θ11GF

2
+

1− λ

2

γ11F,DG + γ11F,GD

2
(A.6)

Using similar arguments to before the γ terms are zero and θ11DF = 0 so
θ11BC is now

θ11BC =

(
1 + λ

4

)2

θ11GF (A.7)

Now we approach the final expansions to the ancestors H and I.

θ11GF =
1 + λ

2

θ11GH + θ11GI

2
+

1− λ

2

γ11G,HI + γ11G,IH + γ11G,HH + γ11G,II

4

θ11GF =
1 + λ

2

θ11GH + θ11GI

2
+

1− λ

2

γ11G,HH + γ11G,II

2
(A.8)

The second expression follows for γ sinceH and I are outbred so γ11G,HI =
γ11G,IH = 0. Now we approach the final expansions to the ancestors H and
I.Following
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θ11GH =
1 + λ

2

θ11HH + θ11HI

2
+

1− λ

2

γ11H,HI + γ11H,IH

2

θ11GI =
1 + λ

2

θ11II + θ11IH
2

+
1− λ

2

γ11I,HI + γ11I,IH
2

γ11G,HH =γ11G,II =
1− λ

2
γ11H,HH =

1− λ

2
γ11I,II =

1− λ

2

1

4

(A.9)

Note that since H and I are outbred, γ11H,HI = γ11H,IH = γ11I,HI =
γ11I,IH = 0. The only three gamete probabilities are for one un-recombined
gamete and two alleles from a recombined gamete to come from the same
individual thus γ11H,HH = γ11I,II = 1/4. Since the ancestors are outbred,
θ11HI = θ11IH = 0 and per the definition of two locus IBD with ones self
(Cockerham & Weir (1973)), θ11HH = θ11II =

1+λ2

4
. So finally we have

F11A = θ11BC =

(
1 + λ

4

)4

(θ11HH + θ11II) +

(
1 + λ

4

)2(
1− λ

4

)2

(γ11H,HH + γ11I,II)

F11A = θ11BC =

(
1 + λ

4

)4
1 + λ2

2
+

1

2

(
1 + λ

4

)2(
1− λ

4

)2

F11A =
1

16

(
(1− c)6 + c2(1− c)4 +

1

2
c2(1− c)2

)
(A.10)

The final line is the result in terms of c identical to the result in Haldane
(1949). To calculate 11F , F 11

11 and 1F
1
1 we use identical expansions to the first

line in Equation A.10 where the subscripts are changed and different values
for ultimate common ancestor probabilities (identical subscripts) are used.

Descent Coefficient Two Gamete Probabilities Three Gamete Probabilities

11F 11θHH = 11θII = 1+λ2

4 11γ
1
1H,HH = 11γ

1
1I,II = 0

1F
1
1 1θ

1
1HH = 1θ

1
1II = 1+λ

4 1γ
1
1H,HH = 1γ

1
1I,II = 1/4

F 11
11 θ1111HH = θ1111II = (1+λ)2

8 γ1111H,HH = γ1111I,II = 0

Table A.5: Two and three gamete descent coefficients for the pedigree in Figure 1. For
most derivations, see Cockerham & Weir (1973); Weir & Cockerham (1974).

This gives
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F 11 =
(1 + λ

2

)6
= (1− c)6

11F =
(1 + λ

4

)41 + λ2

2
=

1

16
((1− c)4 − 2c(1− c)4 + 2c2(1− c)4)

F 11
11 = 4

(1 + λ

4

)6
=

1

16
(1− c)6

1F
1
1 =

1

16

(1 + λ

4

)5
+

1

2

(
1 + λ

4

)2(
1− λ

4

)2

=
1

32
(2(1− c)5 + c2(1− c)2)

(A.11)

Appendix B. Data Availability
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