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2 
 

On the environmental zero-point problem in  19 

microevolutionary climate response predictions 20 

Abstract  21 

It is well documented that populations adapt to climate change by means of phenotypic 22 

plasticity, but few reports on adaptation by means of genetically based microevolution caused 23 

by selection. Disentanglement of these separate effects requires that the environmental zero-24 

point is defined, and this should not be done arbitrarily. Together with parameter values, the 25 

zero-point can be estimated from environmental, phenotypic and fitness data. A prediction 26 

error method for this purpose is described, with the feasibility shown by simulations. An 27 

estimated environmental zero-point may have large errors, especially for small populations, 28 

but may still be a better choice than use of an initial environmental value in a recorded time 29 

series, or the mean value, which is often used. Another alternative may be to use the mean 30 

value of a past and stationary stochastic environment, which the population is judged to have 31 

been fully adapted to, in the sense that the mean fitness was at a global maximum. An 32 

exception is here cases with constant phenotypic plasticity, where the microevolutionary 33 

change per generation follows directly from phenotypic and environmental data, independent 34 

of the chosen environmental zero-point.  35 

Keywords: Climate response predictions; Environmental zero-point; Microevolution; 36 

Plasticity; Prediction error minimization 37 

1 Introduction 38 

Wild populations adapt to changing environments by phenotypic plasticity and 39 

microevolution, and especially climate change responses have been extensively studied. The 40 

aim is then to disentangle phenotypic changes owing to genetically based microevolution, 41 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475361
http://creativecommons.org/licenses/by/4.0/


3 
 

caused by selection, and changes due to individual plasticity. Relying on 11 review articles, 42 

including reviews of altogether 66 field studies, Merilä & Hendry (2014) arrived at the 43 

conclusion that evidence for genetic adaptation to climate change has been found in some 44 

systems, but that such evidence is relatively scarce. They also concluded that more studies 45 

were needed, and that these must employ better inferential methods. The aim of the present 46 

short communication is to give a contribution in that respect. 47 

    It is obvious that for all evolutionary systems with interval-scaled environmental variables 48 

𝑢𝑡, as for example temperature in ℃, a suitable zero-point 𝑢𝑟𝑒𝑓 must be chosen, and as argued 49 

in Section 2 this should not be done arbitrarily. In most cases where the environmental 50 

variable is for example a temperature, the zero-point should not, for example, be set to 0 ℃. 51 

Neither should it without further consideration be set to the initial or mean environmental 52 

value of a specific time series. It appears that the need for a proper environmental zero-point 53 

definition, and thus an environmental cue definition, has been largely ignored in the reviewed 54 

studies referred to in Merilä & Hendry (2014). 55 

     The present communication is an attempt to clarify some important questions relating to 56 

environmental zero-points, and for that purpose a method for model-based predictions of 57 

microevolutionary changes is also proposed. This method is based on parameter estimation by 58 

means of prediction error minimization, and it includes estimation of the environmental zero-59 

point and initial mean trait values. 60 

    For a discussion of the general microevolution vs. plasticity disentanglement problem, we 61 

may for simplicity assume the two-trait individual reaction norm model 62 

𝑦𝑖,𝑡 = 𝑎𝑖,𝑡 + 𝑣𝑖,𝑡 + (𝑏𝑖,𝑡 + 𝜂𝑖,𝑡)(𝑢𝑡 − 𝑢𝑟𝑒𝑓), (1) 

where 𝑢𝑡 − 𝑢𝑟𝑒𝑓 and  𝑦𝑖,𝑡 are the environmental cue and the individual phenotypic value, 63 

respectively, as functions of time 𝑡 measured in generations. The generations are here 64 

assumed to be non-overlapping. The traits 𝑎𝑖,𝑡 and 𝑏𝑖,𝑡 are the additive genetic components of 65 
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the individual reaction norm elevation and plasticity slope, respectively, while 𝑣𝑖,𝑡 and 𝜂𝑖,𝑡 are 66 

independent iid zero mean normal non-additive effects with variances 𝜎𝑣
2 and 𝜎𝜂

2, 67 

respectively. From eqn (1) follows the mean trait reaction norm model  68 

𝑦̅𝑡 = 𝑎̅𝑡 + 𝑏̅𝑡(𝑢𝑡 − 𝑢𝑟𝑒𝑓). 69 

    The environmental zero-point 𝑢𝑟𝑒𝑓 is determined by the environment u0 at which the 70 

phenotypic variance has its minimum, as defined in more detail in Section 2, and as discussed 71 

in Ergon & Ergon (2017) and Ergon (2018). In theoretical work it is often assumed that the 72 

population has fully adapted to a stationary stochastic environment with a given mean value, 73 

such that mean fitness is at a global maximum, and the environmental zero-point is then set to 74 

zero (Lande, 2009; Chevin & Lande, 2015). Although there is nothing wrong with this 75 

theoretical approach, it disguises the underlying problem discussed here, and 𝑢𝑟𝑒𝑓 is therefore 76 

included in eqn (1). This formulation also makes it possible to distinguish between the 77 

environment as such and the environmental cue. In a laboratory setting it may in some cases 78 

be possible to determine the environmental zero-point experimentally, see, e.g., Fossen et al. 79 

(2018), but that is obviously difficult for wild populations. 80 

    When the environmental cue 𝑢𝑡 − 𝑢𝑟𝑒𝑓 varies over time, the mean trait values 𝑎̅𝑡 and 𝑏̅𝑡 as 81 

follow from eqn (1) may evolve due to selection, and as a result also the mean phenotypic 82 

value 𝑦̅𝑡 will evolve (Lande, 2009). Without changes due to selection, i.e., if the mean trait 83 

values 𝑎̅𝑡 and 𝑏̅𝑡 are constant, the value of 𝑦̅𝑡 may still vary when 𝑢𝑡 − 𝑢𝑟𝑒𝑓 varies, as also 84 

follows from eqn (1). 85 

    Section 2 discusses several aspects of the general microevolution vs. plasticity 86 

disentanglement problem. First, a definition of the environmental zero-point 𝑢𝑟𝑒𝑓 is given. 87 

Second, it is shown how the mean trait values 𝑎̅𝑡 and 𝑏̅𝑡, and thus also 𝑦̅𝑡, evolve as functions 88 

of the environmental cue 𝑢𝑡 − 𝑢𝑟𝑒𝑓 and the phenotypic selection gradient 𝛽𝑦,𝑡. Third, it is 89 

shown how 𝑢𝑟𝑒𝑓 and 𝛽𝑦,𝑡, as well as initial mean trait values and the parameter values in the 90 
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𝑮 matrix, can be estimated by means of a prediction error minimization method (Ljung, 91 

2002), using data from known time series of 𝑢𝑡 and 𝑦𝑖,𝑡, as well as of individual fitness values 92 

𝑊𝑖,𝑡. Forth, it is discussed why it may be difficult to estimate 𝑢𝑟𝑒𝑓, as revealed by simulations, 93 

and which consequences errors in estimated values of 𝑢𝑟𝑒𝑓 will have. An exception is here 94 

cases with constant phenotypic plasticity, where the microevolutionary change per generation 95 

follows directly from phenotypic and environmental data, independent of the chosen 96 

environmental zero-point. 97 

    It must be underlined that the theory in Section 2 assumes that the phenotypic trait 𝑦𝑖,𝑡 in 98 

eqn (1) is not correlated with other traits having causal effects on fitness, see Morrissey et al. 99 

(2010) for a discussion. Also note that the need for a proper environmental zero-point is not 100 

specific for the simple case according to eqn (1). 101 

    Simulations in Section 3 show that errors in the estimated or guessed value of 𝑢𝑟𝑒𝑓 may 102 

cause large mean trait prediction errors. They also show the feasibility of the proposed 103 

parameter estimation method. Finally follows a discussion in Section 4. Derivations of 104 

prediction equations, some additional simulation results, a short comparison with REML 105 

parameter estimation, and MATLAB code, are given in Supporting Information.  106 

2 Theory and methods 107 

2.1 Example system 108 

For a study of the general environmental zero-point problem, and for a test of the proposed 109 

parameter estimation method, we may consider a true evolutionary system based on eqn (1), 110 

𝑦̅𝑡 = 𝑎̅𝑡 + 𝑏̅𝑡(𝑢𝑡 − 𝑢𝑟𝑒𝑓), (2a) 

[
∆𝑎̅𝑡

∆𝑏̅𝑡
] =

1

𝑊̅𝑡
𝑮𝑷−1 [

𝑐𝑜𝑣(𝑊𝑖,𝑡, 𝑎𝑖,𝑡 + 𝑣𝑖,𝑡)

𝑐𝑜𝑣(𝑊𝑖,𝑡, 𝑏𝑖,𝑡 + 𝜂𝑖,𝑡)
], 

(2b) 
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with 𝑮 = [
𝐺𝑎𝑎 𝐺𝑎𝑏

𝐺𝑎𝑏 𝐺𝑏𝑏
] and 𝑷 = [

𝐺𝑎𝑎 + 𝜎𝑣
2 𝐺𝑎𝑏

𝐺𝑎𝑏 𝐺𝑏𝑏 + 𝜎𝜂
2]. Here, eqn (2b) is the multivariate 111 

breeder’s equation (Lande, 1979), where 𝑊𝑖,𝑡 is found from any given fitness function. It is 112 

assumed that the phenotypic trait 𝑦𝑖,𝑡 in eqn (1) is not correlated with other phenotypic traits 113 

having causal effects on fitness, and that generations are non-overlapping. 114 

2.2 Environmental zero-point 115 

As discussed in the Introduction, there is a need for a well-defined environmental zero-point: 116 

Definition 1 117 

Assuming a single environmental variable 𝑢𝑡, and given a reaction norm model, the 118 

environmental zero-point is 119 

𝑢𝑟𝑒𝑓 = 𝑢0 + 𝑓(𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑟𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠), (3) 

where 𝑢0 is the environment at which the phenotypic variance is at a minimum, and where the 120 

covariance between the plastic phenotypic value and reaction norm slope is zero. Here, 121 

𝑓(𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑟𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠) is a correction term that may be zero.  122 

    For the reaction norm model (1) we find for example (using 𝑢′ = 𝑢 − 𝑢𝑟𝑒𝑓) 123 

𝑐𝑜𝑣(𝑦, 𝑏) = 𝐸[(𝑎 − 𝑎̅ + 𝜈 + (𝑏 − 𝑏̅)𝑢′ + 𝜂𝑢′)(𝑏 − 𝑏̅ + 𝜂)] = 𝐺𝑎𝑏 + (𝐺𝑏𝑏 + 𝜎𝜂
2)𝑢′, (4a) 

which by setting 𝑐𝑜𝑣(𝑦, 𝑏) = 0 and 𝑢′ = 𝑢0 − 𝑢𝑟𝑒𝑓 gives the environmental zero-point 124 

𝑢𝑟𝑒𝑓 = 𝑢0 +
𝐺𝑎𝑏

𝐺𝑏𝑏 + 𝜎𝜂
2

. 
(4b) 

For 𝐺𝑎𝑏 = 0 the environmental zero-point is thus the environment where the phenotypic 125 

variance is minimized (see Fig. 1 for illustration). This is also the environment where the 126 

mean fitness has a global maximum, and thus the environment the population is fully adapted 127 

to. In this environment the environmental cue will be zero. 128 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475361
http://creativecommons.org/licenses/by/4.0/


7 
 

 129 

Fig. 1 Reaction norms for 100 individuals in a population according to eqn (1), with 130 

𝐺𝑎𝑎 + 𝜎𝑣
2 = 0.05, 𝐺𝑏𝑏 + 𝜎𝜂

2 = 0.02 and 𝐺𝑎𝑏 = 0. The environmental zero-point is 131 

𝑢𝑟𝑒𝑓 = 10 ℃, which since 𝐺𝑎𝑏 = 0 also is the temperature 𝑢0 to which the population 132 

is fully adapted. The mean trait values are 𝑎̅𝑡 = 0 and 𝑏̅𝑡 = 0.5. Solid lines indicate 133 

the range of environmental data used for parameter estimation and mean trait 134 

predictions in simulations. Note that 𝑢𝑟𝑒𝑓 = 𝑢0 = 10 ℃ is not within that range. 135 

2.3 Mean trait prediction equations 136 

    A fundamental equation for mean trait predictions follows from eqn (2a) as 137 

∆𝑦̅𝑡 = ∆𝑎̅𝑡 + ∆𝑏̅𝑡(𝑢𝑡+1 − 𝑢𝑟𝑒𝑓) + 𝑏̅𝑡∆𝑢𝑡, (5) 

where ∆𝑢𝑡 = 𝑢𝑡+1 − 𝑢𝑡, ∆𝑎̅𝑡 = 𝑎̅𝑡+1 − 𝑎̅𝑡, ∆𝑏̅𝑡 = 𝑏̅𝑡+1 − 𝑏̅𝑡 and ∆𝑦̅𝑡 = 𝑦̅𝑡+1 − 𝑦̅𝑡 are changes 138 

per generation. From this follows that the value of 𝑢𝑟𝑒𝑓 has nothing to say in special cases 139 
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with constant phenotypic plasticity slopes, i.e., when ∆𝑏̅𝑡 = 0. In such cases we simply have 140 

∆𝑦̅𝑡 = ∆𝑎̅𝑡 + 𝑏̅∆𝑢𝑡, where 𝑏̅ is constant, or only ∆𝑦̅𝑡 = 𝑏̅∆𝑢𝑡 if 𝑎̅𝑡 does not evolve. 141 

    As shown in Appendix S1 in Supporting Information, eqn (5) leads to equations for ∆𝑎̅𝑡 142 

and ∆𝑏̅𝑡 as functions of the phenotypic selection gradient 𝛽𝑦,𝑡, 143 

∆𝑎̅𝑡 = (𝐺𝑎𝑎 + 𝐺𝑎𝑏(𝑢𝑡 − 𝑢𝑟𝑒𝑓)) 𝛽𝑦,𝑡   (6a) 

and 144 

∆𝑏̅𝑡 = (𝐺𝑎𝑏 + 𝐺𝑏𝑏(𝑢𝑡 − 𝑢𝑟𝑒𝑓)) 𝛽𝑦,𝑡,         (6b)  

where 145 

𝛽𝑦,𝑡 =
1

𝑊̅𝑡

 (𝑃𝑎𝑎 + 2𝐺𝑎𝑏(𝑢𝑡 − 𝑢𝑟𝑒𝑓) + 𝑃𝑏𝑏(𝑢𝑡 − 𝑢𝑟𝑒𝑓)
2

)
−1

𝑐𝑜𝑣(𝑊𝑖,𝑡, 𝑦𝑖,𝑡). 
(6c) 

In addition to time series of 𝑢𝑡 and 𝑦𝑖,𝑡, we thus need parameter values for 𝑢𝑟𝑒𝑓, 𝐺𝑎𝑎, 𝐺𝑎𝑏, 146 

𝐺𝑏𝑏, 𝜎𝑣
2 and 𝜎𝜂

2, and a time series of individual fitness values 𝑊𝑖,𝑡. For mean trait predictions 147 

we also need initial values. Note that these equations are valid only when the relationship 148 

matrix is a unity matrix (Lynch & Walsh, 1998). 149 

2.4 Prediction error minimization method 150 

From the prediction equations (6a,b) follows predicted values of 𝑦̅𝑡 from eqn (2a). The 151 

prediction equations can thus be used for parameter estimation in a prediction error 152 

minimization method (PEM), as shown in Fig. 2. As follows from eqns (6a,b,c) we can then 153 

set 𝐺𝑎𝑎 to any value, and estimate 𝐺𝑎𝑏, 𝐺𝑏𝑏, 𝜎𝑣
2 and 𝜎𝜂

2 relative to that value.  154 
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 155 

Figure 2. Block diagram of microevolutionary PEM, with dynamical tuning model 156 

based on a reaction norm model with mean traits 𝑎̅𝑡 and 𝑏̅𝑡. Here, 𝑢𝑡 and 𝑦̅𝑡 are the 157 

known environmental input and the known mean phenotypic value at time 𝑡, 158 

respectively. 𝑨𝑡 is the additive genetic relationship matrix, which here is assumed to 159 

be 𝑨𝑡 = 𝑰, while 𝒚𝑡 and 𝒘𝑡 are vectors of individual phenotypic and relative fitness 160 

values, respectively. The 𝑮̂ and 𝑷̂ matrices include the system parameters, while 𝑎̂̅𝑖𝑛𝑖𝑡, 161 

𝑏̂̅𝑖𝑛𝑖𝑡 and 𝑢̂𝑟𝑒𝑓 are the initial mean trait values and the environmental zero-point, 162 

respectively. Assuming data over 𝑇 generations, all these model parameters are tuned 163 

until ∑ 𝜀𝑡
2𝑇

𝑡=1 = ∑ (𝑦̅𝑡 − 𝑦̂̅𝑡)2𝑇
𝑡=1  is minimized, with 𝑦̅𝑡 = 𝑦̂̅1  = 0 and  164 

𝑎̂̅1  = −𝑏̂̅1 (𝑢1 − 𝑢̂𝑟𝑒𝑓).  165 

2.5 Effects of environmental zero-point errors 166 

With an environmental zero-point 𝑢̂𝑟𝑒𝑓 instead of 𝑢𝑟𝑒𝑓, predictions based on eqn (2a) can be 167 

written 168 

𝑦̂̅𝑡 = 𝑎̂̅𝑡  + 𝑏̂̅𝑡(𝑢𝑡 − 𝑢̂𝑟𝑒𝑓) = 𝑎̂̅𝑡 − 𝑏̂̅𝑡(𝑢̂𝑟𝑒𝑓 − 𝑢𝑟𝑒𝑓) + 𝑏̂̅𝑡(𝑢𝑡 − 𝑢𝑟𝑒𝑓), (7) 

where 𝑎̂̅𝑡 and 𝑏̂̅𝑡 are found from eqns (6a,b) with use of estimated parameter values.  169 

    For small values of 𝐺𝑏𝑏, i.e., when 𝐺𝑏𝑏 → 0 and 𝐺𝑎𝑏 → 0, it follows from eqns (6a,b,c) that 170 

∆𝑎̅𝑡 is independent of 𝑢𝑟𝑒𝑓, and that 𝑏̅𝑡 is constant. This results in ∆𝑎̂̅𝑡 = 𝐺𝑎𝑎 (𝐺𝑎𝑎 + 𝜎̂𝑣
2)⁄ , 171 
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such that only 𝜎̂𝑣
2 must be tuned in order to minimize ∑ (𝑦̅𝑡 − 𝑦̂̅𝑡)2𝑇

𝑡=1 . In this case an error in 172 

𝑢̂𝑟𝑒𝑓 has very little effect on the change in 𝑎̂̅𝑡 over many generations (see Appendix S2 in 173 

Supporting information). This also follows from eqn (5). 174 

    For larger values of 𝐺𝑏𝑏, ∆𝑎̂̅𝑡 will be affected by an error in 𝑢̂𝑟𝑒𝑓, and good predictions 175 

𝑦̂̅𝑡 ≈ 𝑦̅𝑡 for 𝑡 = 1 to 𝑇 can then only be obtained by parameter tuning such that  176 

𝑏̂̅𝑡 ≈ 𝑏̅𝑡 over all generations. That is possible because 𝑢𝑟𝑒𝑓 appears in both nominator and 177 

denominator of eqn (6b). According to eqn (7) we then find 𝑎̂̅𝑡 ≈ 𝑎̅𝑡 + 𝑏̂̅𝑡(𝑢̂𝑟𝑒𝑓 − 𝑢𝑟𝑒𝑓), 178 

which as shown in Section 3 may result in large errors in predicted changes of 𝑎̅𝑡 over time. 179 

2.6 Effects of modeling errors 180 

Modeling errors will obviously affect predictions of the mean traits. As an example, 181 

simulations with the true individual model 182 

𝑦𝑖,𝑡 = 𝑎𝑖,𝑡 + 𝑣𝑖,𝑡 + (𝑏𝑖,𝑡 + 𝜂𝑖,𝑡)(𝑢𝑡 − 𝑐𝑖,𝑡 − 𝛾𝑖,𝑡), (8) 

are included in Appendix S3 in Supporting Information. Here, 𝑐𝑖,𝑡 is a perception trait, as 183 

discussed in Ergon & Ergon (2017). 184 

3 Simulation results 185 

3.1 True model, fitness function, and environmental input signals 186 

Assume that what we consider to be true mean responses, 𝑦̅𝑡, 𝑎̅𝑡 and 𝑏̅𝑡, are generated by the 187 

state-space model (2a,b). Here, 𝐺𝑎𝑏 = 0 in the true system, but left as a free parameter in the 188 

tuning model in Fig. 2. The individual effects 𝑎𝑖,𝑡, 𝑏𝑖,𝑡, 𝑣𝑖,𝑡 and 𝜂𝑖,𝑡 are at each generation 189 

drawn from populations with normal distributions around 𝑎̅𝑡, 𝑏̅𝑡, 0 and 0, respectively. 190 

    The individual fitness function is assumed to be 191 

𝑊𝑖,𝑡 = 𝑒𝑥𝑝 (−(𝑦𝑖,𝑡 − 𝜃𝑡)
2

/2𝜔2), (9) 

where 𝜃𝑡 is the phenotypic value that maximizes fitness, while 𝜔2 = 10. 192 
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    Also assume a stationary or slowly varying mean 𝜇𝑈,𝑡 of a stochastic environment, with 193 

added iid zero mean normal random variations 𝑢𝑛,𝑡 with variance 𝜎𝑈𝑛

2 , i.e., 𝑢t = 𝜇𝑈,𝑡 + 𝑢𝑛,𝑡, 194 

and that the population is fully adapted to a stationary environment with  195 

𝜇𝑈,𝑡 = 𝑢𝑟𝑒𝑓 = 𝑢0 = 10 ℃ (as in Fig. 1). In a corresponding way assume that 𝜃𝑡 = 𝜇Θ,𝑡 + 𝜃𝑛,𝑡, 196 

where 𝜃𝑛,𝑡 is iid zero mean normal with variance 𝜎Θ𝑛

2 , and where 𝑢𝑛,𝑡 and 𝜃𝑛,𝑡 are correlated 197 

with covariance 𝜎Θ𝑛𝑈𝑛
. Following Lande (2009), we may assume that juveniles of generation 198 

𝑡 are exposed to the environment 𝑢𝑡−𝜏 during a critical period of development a fraction of a 199 

generation before the adult phenotype is expressed and subjected to natural selection. We will 200 

define 𝜃𝑡 = −2(𝑢𝑡 − 10), which implies a linear relationship 𝜇Θ,𝑡 = −2(𝜇𝑈,𝑡 − 10), 201 

variances 𝜎Θ𝑛

2 = 4𝜎𝑈𝑛

2 , and covariance 𝜎Θ𝑛𝑈𝑛
= −2𝜌𝜏𝜎𝑈𝑛

2 , where 𝜌𝜏 is the autocorrelation of 202 

background environmental fluctuations. We will assume 𝜎𝑈𝑛

2 = 0.5 and 𝜌𝜏 = 0.25. The 203 

optimal value of the mean plasticity slope in a stationary stochastic environment is then 204 

𝑏̅𝑜𝑝𝑡 = 𝜎Θ𝑛𝑈𝑛
𝜎𝑈𝑛

2⁄ = −2𝜌𝜏 = −0.5 (Ergon & Ergon, 2017). 205 

    Further assume that 𝑢𝑡 and 𝜃𝑡 are noisy ramp functions as shown in Fig. 3, with 𝜇𝑈,𝑡 206 

starting from 10 ℃ at 𝑡 = 10 generations. The choice of a negative trend in 𝜃𝑡 and thus in 𝑦̅𝑡 207 

is inspired by common cases where a positive temperature trend leads to earlier breeding 208 

dates for various natural populations. 209 
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 210 

Figure 3. Noisy ramp functions 𝑢𝑡 (panel A) and 𝜃𝑡 (panel B), with 𝑢𝑟𝑒𝑓 = 10,  211 

𝜇Θ,𝑡 = −2(𝜇𝑈,𝑡 − 10), 𝜎U𝑛

2 = 0.5, 𝜎Θ𝑛

2 = 2 and 𝜎U𝑛,Θ𝑛
= −0.25. The dashed parts of 212 

the curves indicate data that are not used for parameter estimation and mean trait 213 

predictions (compare with Fig. 1). 214 

3.2 Parameter estimation and mean trait prediction results  215 

Parameter estimation and mean trait prediction results were found by use of the MATLAB 216 

function fmincon in the PEM method in Fig. 2. Results with use of input-output data from  217 

𝑡 = 31 to 60 are given in Table 1. The relative errors in total change of predictions over 30 218 

generations are included, computed as ∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% = 100(∆30𝑎̂̅𝑡 − ∆30𝑎̅𝑡)/∆30𝑎̅𝑡 etc., where  219 

∆30𝑎̂̅𝑡 = 𝑎̂̅60 − 𝑎̂̅31 and ∆30𝑎̅𝑡 = 𝑎̅60 − 𝑎̅31. The final values ∑𝜀𝑡,𝑓𝑖𝑛𝑎𝑙
2  of ∑ (𝑦̅𝑡 − 𝑦̂̅𝑡)260

𝑡=31  are 220 

also included, as they indicate the degree of optimization success. Results are presented as 221 

mean values and standard errors, 𝑀𝑒𝑎𝑛 ± 𝑆𝐸, based on 100 repeated simulations with 222 

different realizations of random inputs. 223 
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    Given the model in eqns (2a,b) and (9), there are six parameter values to be estimated 224 

(while 𝑎̂̅31 follows from eqn (2a) with 𝑦̂̅31 sat to zero). In the optimizations the initially 225 

guessed values of 𝐺̂𝑏𝑏, 𝐺̂𝑎𝑏, 𝜎̂𝑣
2, 𝜎̂𝜂

2 and 𝑏̂̅31 were set to zero, while the initial value of 𝑢̂𝑟𝑒𝑓 226 

was set to 10 (when 𝑢̂𝑟𝑒𝑓 was a free variable). The true value 𝐺̂𝑎𝑎 = 0.025 was used, such 227 

that estimates of 𝐺𝑏𝑏, 𝐺𝑎𝑏, 𝜎𝑣
2 and 𝜎𝜂

2 are found relative to 𝐺𝑎𝑎 = 0.025. Table 1 presents 228 

results for three cases, first for 𝑢̂𝑟𝑒𝑓 = 𝑢𝑟𝑒𝑓 = 10 (Case 1), second for 𝑢̂𝑟𝑒𝑓 as free variable 229 

(Case 2), and third for 𝑢̂𝑟𝑒𝑓 = 11 (Case 3), which approximately is the initial value in the 230 

time series used. Note the fairly good estimates of 𝐺𝑏𝑏, 𝐺𝑎𝑏, 𝜎𝑣
2 and 𝜎𝜂

2 in Case 1. In Case 2, 231 

the estimates of these parameters have larger standard errors, and as a result also ∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% 232 

has a large standard error. With 𝑢̂𝑟𝑒𝑓 = 11 (Case 3), ∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% has a large bias error. In this 233 

case also the estimates of 𝐺𝑏𝑏, 𝐺𝑎𝑏 and 𝜎𝜂
2 are biased. In all cases ∆30

𝑒𝑟𝑟𝑜𝑟 𝑏̂̅𝑡% is close to the 234 

result with the correct value 𝑢̂𝑟𝑒𝑓 = 10 (Case 1), as explained in Subsection 2.5.  235 

    Table 1 includes theoretical prediction error results based on eqn (7),  236 

𝑎̂̅𝑡,𝑐𝑜𝑟𝑟 = 𝑎̂̅𝑡 − 𝑏̂̅𝑡(𝑢̂𝑟𝑒𝑓 − 𝑢𝑟𝑒𝑓). These are in all cases close to the results with  237 

𝑢̂𝑟𝑒𝑓 = 𝑢𝑟𝑒𝑓 = 10 (Case 1). 238 

Table 1.  Estimation and prediction results with true system responses generated by 239 

means of eqns (2a,b) and (9). Results are for cases with population size 𝑁 = 100 and 240 

perfect measurements 𝒚𝑡 and 𝒘𝑡, and they are based on 100 simulations with different 241 

realizations of all random input variables.  242 

Case 1: 𝑢̂𝑟𝑒𝑓 = 10 (the true value).  243 

Case 2: 𝑢̂𝑟𝑒𝑓 as a free variable.  244 

Case 3: 𝑢̂𝑟𝑒𝑓 = 11 (approximate initial value in optimization data). Here, 9% of the 245 

simulations were discarded because ∑𝜀𝑡,𝑓𝑖𝑛𝑎𝑙
2 > 0.001 (typically 40% with 10% 246 

measurement noise). 247 
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Parameter 

etc. 

True 

value 

Optimization 

results 

Case 1 

Optimization 

results 

Case 2 

Optimization 

results 

Case 3 

𝐺̂𝑏𝑏 0.01 0.0102 ± 0.0006 0.0102 ± 0.0029 0.0064 ± 0.0019 

𝐺𝑎𝑏 0 0.0005 ± 0.0037 0.0007 ± 0.0057 0.0069 ± 0.0018 

𝜎̂𝑣
2 0.025 0.0263 ± 0.0092 0.0285 ± 0.0254 0.0255 ± 0.0038 

𝜎̂𝜂
2 0.01 0.0104 ± 0.0019 0.0105 ± 0.0043 0.0164 ± 0.0038 

𝑏̂̅31 − −0.5028 ± 0.0093 −0.5036 ± 0.0069 −0.5033 ± 0.0081 

𝑢̂𝑟𝑒𝑓 10 10 −0.0525 ± 0.2854 11 

∑𝜀𝑡,𝑓𝑖𝑛𝑎𝑙
2  − 10−5(1 ± 3) 10−5(1 ± 3) 10−5(10 ± 13) 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% − 0 ± 2 −3 ± 18 67 ± 10 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑏̂̅𝑡% − 0 ± 1 0 ± 2 4 ± 4 

∆30,𝑐𝑜𝑟𝑟
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% − 0 ± 2 0 ± 2 −3 ± 3 

 248 

    The results in Table 1 will be altered with introduced measurement noise, and when the 249 

population size is increased. For a test, 10% random iid zero mean normal errors with 250 

standard deviations 0.03 and 0.1 were added to all values of 𝑦𝑖,𝑡 and 𝑊𝑖,𝑡, respectively. This is 251 

based on the facts that 𝑦𝑖,𝑡 varies approximately ±0.3 around the mean values 𝑦̅𝑡, and that the 252 

maximum value of 𝑊𝑖,𝑡 is one. Results for different combinations of measurement noise and 253 

population size are given in Table 2. Note that with the true value 𝑢̂𝑟𝑒𝑓 = 10 (Cases 1 and 4), 254 

the standard errors of the predictions increase substantially when measurement noise is 255 

introduced, but that these errors are markedly reduced when the population size is increased 256 

from 100 to 1,000. With 𝑢̂𝑟𝑒𝑓 as a free variable (Cases 2 and 5), the results for ∆30𝑏̅𝑡 are very 257 
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much the same as in Case 1, while the results for ∆30𝑎̅𝑡 are not improved with a larger 258 

population size.  259 

Table 2.  Mean trait prediction results with true system responses generated by means 260 

of eqns (2a,b) and (9), for two of the cases in Table 1, but with 10% random 261 

measurement errors in the individual phenotypic and fitness values.  262 

Case 4: 𝑢̂𝑟𝑒𝑓 = 10 (the true value).  263 

Case 5: 𝑢̂𝑟𝑒𝑓 as a free variable.  264 

Para- 

meter 

Population  

size 

Optimization 

results 

Case 4 

Optimization 

results 

Case 5 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% 100 −1 ± 8 0 ± 43 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑏̂̅𝑡% 100 1 ± 6 1 ± 6 

∆30,𝑐𝑜𝑟𝑟
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% 100 −1 ± 8 −1 ± 7 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% 1,000 0 ± 4 1 ± 39 

∆30
𝑒𝑟𝑟𝑜𝑟 𝑏̂̅𝑡% 1,000 0 ± 3 0 ± 3 

∆30,𝑐𝑜𝑟𝑟
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% 1,000 0 ± 4 1 ± 3 

 265 

    As shown in Tables 1 and 2, large errors in the assumed environmental zero-point 𝑢̂𝑟𝑒𝑓 266 

result in large errors in predicted changes of in 𝑎̅𝑡 over 30 generations (Case 3). Table 3 267 

shows these errors for more moderate errors in 𝑢̂𝑟𝑒𝑓.  268 

  269 
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Table 3. Errors in predicted total relative change of 𝑎̅𝑡 and 𝑏̅𝑡 over 30 generations, 270 

without measurement noise, as functions of the environmental zero-point 𝑢̂𝑟𝑒𝑓 used in 271 

the optimization procedure.  272 

𝑢̂𝑟𝑒𝑓  ∆30
𝑒𝑟𝑟𝑜𝑟 𝑎̂̅𝑡% ∆30

𝑒𝑟𝑟𝑜𝑟 𝑏̂̅𝑡% 

−9.75 −16 ± 2 0 ± 1 

10 0 ± 2 0 ± 1 

10.25 17 ± 3 0 ± 1 

10.5 31 ± 10 1 ± 1 

11 67 ± 10 −3 ±  3 

 273 

    Fig. 4 shows predicted mean values 𝑦̂̅𝑡, 𝑎̂̅𝑡 and 𝑏̂̅𝑡, as compared to true mean values 𝑦̅𝑡, 𝑎̅𝑡 274 

and 𝑏̅𝑡, for Case 1 and Case 3 in Table 1. 275 

 276 
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Figure 4. Typical responses for Case 1 and Case 3 in Table 1. True 𝑦̅𝑡 values are 277 

shown by solid blue lines. All parameter values except 𝐺̂𝑎𝑎 = 0.025 were initially set 278 

to zero, which gave predictions 𝑦̂̅𝑡,𝑠𝑡𝑎𝑟𝑡 = 𝑐𝑜𝑣(𝑊𝑖,𝑡, 𝑦𝑖,𝑡) 𝑊̅𝑡⁄  as shown by dashed blue 279 

lines. Final predictions 𝑦̂̅𝑡 are shown by blue dots. True 𝑎̅𝑡 and 𝑏̅𝑡 responses are shown 280 

by green lines, while predictions 𝑎̂̅𝑡 and 𝑏̂̅𝑡 are shown by magenta circles. Panels A 281 

and B show results for Case 1 with 𝑢̂𝑟𝑒𝑓 = 10 (true value), while panels C and D show 282 

results for Case 3 with 𝑢̂𝑟𝑒𝑓 = 11. Here, the theoretical predictions  283 

𝑎̂̅𝑡,𝑐𝑜𝑟𝑟 = 𝑎̂̅𝑡 − 𝑏̂̅𝑡(𝑢̂𝑟𝑒𝑓 − 𝑢𝑟𝑒𝑓) are included as black dashed line. Note that 𝑦̅31 = 𝑦̂̅31 284 

is set to zero, such that 𝑎̅31 = −𝑏̅31𝑢31 and 𝑎̂̅31 = −𝑏̂̅31(𝑢31 − 𝑢̂𝑟𝑒𝑓), where 𝑢31 is not 285 

quite the same from simulation to simulation. 286 

4 Discussion 287 

It is well documented that populations adapt to climate change by means of plasticity, but few 288 

reports on adaptation by means of genetically based microevolution caused by selection 289 

(Merilä & Hendry, 2014). The main point in this communication is that disentanglement of 290 

these separate effects requires that the environmental zero-point 𝑢𝑟𝑒𝑓 is defined, and that this 291 

should not be done arbitrarily. Instead, it should be based on the environment 𝑢0 where the 292 

phenotypic variance is at a minimum (Definition 1 and Fig. 1). This definition can be 293 

extended to multivariate cases. Another main point is that errors in 𝑢𝑟𝑒𝑓 may lead to large 294 

errors in predicted microevolutionary changes over time (Table 1 and Fig. 4). 295 

    In theoretical studies it is often assumed that the environmental variable is scaled such that 296 

𝑢𝑟𝑒𝑓 = 𝑢0 = 0 (Lande, 2009; Chevin & Lande, 2015). This can be done also in databased 297 

applications, provided that 𝑢0 is known, and that the correction term in Definition 1 is zero. 298 
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    By use of a simple example it is verified that the environmental zero-point together with 299 

initial mean trait and parameter values can be estimated from environmental, phenotypic and 300 

fitness data, by use of the prediction error minimization method in Fig. 2. The simulations 301 

make use of an environmental trend, as in noisy temperature trends caused by climate change 302 

(Fig. 3), and a correct environmental zero-point then results in quite good parameter estimates 303 

and predicted changes in mean traits over time (Table 1, Case 1). The environmental zero-304 

point can also be estimated, but with large standard errors, especially for small population 305 

sizes, and this results in a correspondingly large standard error in predicted change in mean 306 

elevation 𝑎̅𝑡 over time (Table 1, Case 2). An estimated zero-point may still be a better choice 307 

than use of an initial environmental value in a recorded time series, or the mean value, which 308 

may give large bias errors in predicted changes in mean traits (Table 1, Case 3). Another 309 

alternative may be to use the mean value of a past stationary stochastic environment, which 310 

the population is judged to have been fully adapted to. 311 

    The standard errors in the predicted mean trait changes over time increase with random 312 

errors in the individual phenotypic and fitness data (Table 2). This is somewhat compensated 313 

by an increase in population size, especially with a correct value of the environmental zero-314 

point.  315 

     It is here assumed that the genetic relationship matrix is an identity matrix, and the 316 

simulation results are obtained by use of a prediction error minimization method. However, 317 

the fact that errors in the environmental zero-point may cause large errors in predictions of 318 

microevolution, as discussed in Subsection 2.5, is a generic problem. Independent of 319 

prediction method and the complexity of the model, an error in the environmental zero-point 320 

implies that an erroneous model is fitted to the input-output data, and that must inevitably 321 

result in prediction errors. There is therefore no reason to believe that such errors will 322 

disappear in cases where the genetic relationship matrix is not a unity matrix, or when other 323 
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parameter estimation and mean trait prediction methods are used. A more specific argument 324 

regarding REML parameter estimation is given in Appendix S4 in Supporting Information. It 325 

must thus be expected that predictions of microevolutionary changes over time depend on the 326 

chosen environmental zero-point, and such predictions cannot therefore be trusted unless the 327 

chosen environmental zero-point can be trusted. An exception is here cases with a constant 328 

mean plasticity slope, where the change in mean reaction norm elevation per generation 329 

according to eqn (5) is independent of the environmental zero-point. This implies that a nearly 330 

constant mean plasticity slope must be expected to give small errors in the predicted changes 331 

of the mean elevation, also if there is an error in the environmental zero-point.   332 
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