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ABSTRACT  

Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely 

on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy 

and applicability domain to the chemical space of the training compounds. In this work, we 

aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We 

combined Cell Painting and Gene Expression data with chemical structural information from 

Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial membrane 

depolarization assay. We observed that mitochondrial toxicants significantly differ from non-

toxic compounds in morphological space and identified compound clusters having similar 

mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides 

biological insights related to mechanisms of action of this endpoint. We further showed that 

models combining Cell Painting, Gene Expression features and Morgan fingerprints improved 

model performance on an external test set of 236 compounds by 60% (in terms of F1 score) 

and improved extrapolation to new chemical space. The performance of our combined models 

was comparable with dedicated in vitro assays for mitochondrial toxicity; and they were able 

to detect mitochondrial toxicity where Tox21 assays outcomes were inconclusive because of 

cytotoxicity. Our results suggest that combining chemical descriptors with different levels of 

biological readouts enhances the detection of mitochondrial toxicants, with practical 

implications for use in drug discovery. 

Mitochondrial Toxicity; Cell Painting; Gene Expression; Cell Morphology; Machine Learning   
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INTRODUCTION 

Drug-induced mitochondrial toxicity1 is being increasingly recognized as a contributor to 

late-stage withdrawals2 causing cardiotoxicity3, drug-induced liver toxicity4 and diseases 

related to ageing such as Parkinson.5 Mitochondrial toxicity can be directly or indirectly caused 

by combinations of multiple mechanisms (as shown in Figure 1) which makes predicting 

mitochondrial toxicity challenging.6 A common direct cause of mitochondrial dysfunction is 

uncoupling of the electron transport chain from ATP synthesis or accumulation of calcium in 

mitochondria causing an increase in Reactive Oxygen Species (ROS) leading to oxidative 

stress and damaging mitochondrial DNA (mtDNA).7  Indirect effects of drugs on cells such as 

inhibition of fatty acid β‐oxidation, uncoupling of oxidative phosphorylation, the opening of 

the membrane permeability transition pore, and disruption of mtDNA synthesis and translation 

have also been shown to cause mitochondrial toxicity.7  

Risk of mitochondrial toxicity in drug discovery can be indicated either via experimental 

methods (such as the Glu/Gal assay8) or using predictive methods trained on data from in vitro 

assays. Dedicated assays often use HepG2 cells to detect mitochondrial toxicants9 and mostly 

fluorescent dyes (Mito-MPS10, DiOC611, rhodamine-12312, MitoTracker Orange13, TMRM12, 

TMRE12, JC-114). These assays capture proxy endpoints, for example, membrane 

depolarisation, which are quite heterogenous and not in absolute concordance to the term 

“mitochondrial toxicity”. Another example, in the Glu/Gal assay, the ratio of IC50 values in 

different cultures is not always easy to translate to in vivo effects. Further, each fluorescent dye 

has its limitation15, for example, JC1 is sensitive to membrane depolarization but disadvantaged 

by its poor water solubility and low signal-to-background window. Imaging assays, such as the 

Apredica HepG2 mitochondrial membrane potential and mitochondrial mass assays16 measure 

the average cell intensities for mitochondria from high content imaging, where the average 
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intensity of mitochondria was used to define mitochondrial membrane potential, and the total 

intensity is used to define mitochondrial mass.16 This makes defining and detecting 

mitochondrial toxicity a challenging task in itself. 

Previous approaches to computationally predict mitochondrial toxicity have to a large extent 

been based on predicting mitochondrial membrane depolarisation using chemical structure 

(Supplementary Figure S1,  Supplementary Table S1) and machine learning methods including 

Support Vector Machines17,  Random Forest models18,19, and naïve Bayes classifier20. Using 

molecular descriptors or structural fingerprints, the best models showed a balanced accuracy 

between 0.74 to 0.86 as reported by Zhao et. al.18 However, Zhao et al. showed that 

extrapolation to new structural space is difficult and accuracy inside the models’ applicability 

domain was significantly higher when compared with out-of-domain compounds.18  

Since mitochondrial toxicity can be characterised by a multitude of mechanisms3, it has been 

challenging to assemble sufficient data that can sustain computational methods able to 

extrapolate to new chemical space. Together with the fact that in vitro assays for mitochondrial 

toxicity are demanding and with varying degree of reliability, there is a clear need for 

advancements in the field.21 In recent years, hypothesis-free data on cell lines has become 

available on a much larger scale, both publicly and in company repositories. In this work, we 

explore how data from Cell Morphology in addition to Gene Expression can improve the 

detection of mitochondrial toxicity. To the best of our knowledge, this is the first study that 

presents predictive models for mitochondrial toxicity in vitro assays based on integrated data 

derived from two types of hypothesis-free data and chemical structure. 

The LINCS L1000 gene expression technology developed by Broad Institute (described in 

Figure 2) captures changes in 978 landmark genes, and  large scale data before and after treating 

different human cell lines to FDA-approved drugs and small molecules is now available on a 
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sufficiently broad base to be useful for modelling.22 Gene Expression features have been used 

in predicting in vitro cell viability23, drug proteins targets24, organ level toxicity such as 

hepatotoxicity25, nephrotoxicity and cardiotoxicity26. The Gene Ontology initiative aims to 

unify gene and gene product attributes in a classification effort that will provide functional 

interpretation of gene expression data which, in our case, helps better generalise pathways of 

mitochondrial toxicity.27 The Cell Painting assay (described in Figure 2) is a relatively recent 

technology developed by the by Broad Institute and is used to capture cellular morphological 

changes in image data from genetic or chemical perturbations.28,29 Microscopic images are 

processed to obtain over 1700 measures of cellular and organelle changes such as morphology, 

texture and intensity. Cell Painting features have been previously used in predicting in vitro 

toxicity such as cytotoxicity30, bioactivity endpoints31 and mechanism of action32, cell health 

phenotypes33, drug-protein targets34, antiviral drug discovery35 as well as organ level toxicity 

such as drug-induced liver toxicity36. However, the predictivity of high-dimensional biological 

features for safety- or efficacy-related endpoint needs to be established in each case, which for 

in vitro-to-in vivo extrapolation (for example from mitochondrial toxicity to liver injury caused 

by the former) is not a trivial exercise.37,38  

With the availability of high throughput hypothesis-free data from cell profiling technologies, 

we are presented with new opportunities to improve detection of mitochondrial toxicity. In this 

work, we use Cell Painting  and Gene Expression features to extrapolate the applicability 

domain of structure-based models to the new chemical space. While Gene Expression data is 

easier to directly interpret39, in this work we put particular emphasis on exploring and 

interpreting the biological significance and applicability of Cell Painting features that contain 

information about mitochondrial toxicity. 
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RESULTS 

Data for in vitro mitochondrial toxicity was collected from the Tox21 assay40 for 

mitochondrial membrane potential disruption summary assay (AID 720637).41 Image-based 

morphological features from the Cell Painting assay were collected from Bray et al.29 Gene 

Expression features were extracted from the LINCS L1000 dataset as pre-processed by the 

Ma’ayan Lab.39 A combined dataset was assembled to be used for model development 

(henceforth referred as “training data”) that contained 404 distinct compounds (62 mitotoxic, 

320 nontoxic and 22 inconclusive) that contained both Cell Painting features and Gene 

Expression features. An external test set was assembled that comprised a total of 236 distinct 

compounds (39 mitotoxic and 197 nontoxic) from Hemmerich et al.19 who compiled various 

assays relevant to toxicity of mitochondrial function, binding and inhibition, where no 

compound overlapped with the training data. Both datasets covered drugs over a wide range of 

ATC code distribution at the top level 327 drugs (training data) and 103 drugs (external test 

set) as shown in Supplementary Figure S2.  

Mitochondrial toxicants are similar in morphological space 

We analysed if mitochondrial toxicants were more similar to each other in morphological 

space than toxicants to non-toxicants, which could be a prerequisite for the use of this readout 

space for the detection of mitochondrial toxicity. This was done by comparing the median 

values of 5 highest Tanimoto similarity coefficients and the absolute value of median of 15 

most positively and 15 most negatively Pearson correlation statistic values for Cell Painting 

features. As shown in Figure 3, we found that mitotoxic compounds are considerably different 

from non-toxic compounds in morphological space (median Pearson correlation of 0.08 vs 

0.01, t-test independent p value=3.3e-20). However, they remain distinguishable in structural 

space (median Tanimoto Similarity of Morgan fingerprints 0.22 vs 0.19, t-test independent 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475326doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475326
http://creativecommons.org/licenses/by/4.0/


 8 

samples p value=6.3e-03). We conclude that morphological space can discriminate between 

mitochondrial toxicants and non-toxicants, and that this readout space is more able to 

discriminate between both classes of compounds than chemical fingerprints on the dataset 

analysed here. 

Cell Painting features cluster mitochondrial toxicants to identify different mechanisms 

of mitochondrial toxicity 

We firstly analysed morphological readout space with respect to the ability to differentiate 

different mechanisms of action (MOA) for mitochondrial toxicity. We performed feature 

selection on the initial 1,729 features (see Methods Section) which selected 110 Cell Painting 

features and visualised the morphological space using Principal Component Analysis (PCA). 

As shown in Figure 4, compound clusters emerged, which were related to mitochondrial 

toxicity (for further details see Supplementary Table S2). In particular, Cluster I (Figure 4) 

comprises several microtubule destabilisers such as fenbendazole, parbendazole, mebendazole, 

that belong to the benzimidazole class42,43,44 together with structurally dissimilar compounds, 

namely rotenone and paclitaxel, both of which  are known mitochondrial toxicants as well as  

microtubule destabilizers.45,46 Supplementary Figure S3, shows that cell painting phenotypes 

for six microtubule disruptor drugs (Cluster I: albendazole, colchicine, mebendazole, 

paclitaxel, parbendazole and podophyllotoxin) reveals alterations at the nuclear level, depicted 

by nuclear fragmentation as well as multinucleated cells, vacuolation of the endoplasmic 

reticulum, redistribution of the mitochondria and cytoskeleton destabilisation. We found 

ouabain and digoxin in Cluster II (Figure 4) have similar mechanisms for mitochondrial injury 

as inhibitors of the plasma membrane Na+ pump, which can lead to impaired mitochondrial 

Ca2+ retention, increased ROS production and reduced mitochondrial membrane potential.47,48 

Cluster III (Figure 4) consists of statins, namely lovastatin and simvastatin, which are known 
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to inhibit the synthesis of mevalonate, a precursor of ubiquinone that is vital to the 

mitochondrial respiratory chain, and causes oxidative stress.49 Compounds in Cluster IV 

(Figure 4), namely mevastatin (a statin), raloxifene (a selective estrogen receptor modulator) 

and prazosin (an alpha blocker), form again a cluster that is rather diverse with respect to 

chemical structures, and primary pharmacology/indication areas. However, those compounds 

are all known to induce apoptotic signalling cascades which trigger the release of cytochrome 

c into the cytosol.50,51,52 This causes depolarization in the mitochondrial membrane leading to 

mitochondrial injury. Overall, our findings show that cell morphology readouts from the Cell 

Painting assay can cluster several modes of action of mitochondrial toxicants, such as the 

disruption of microtubules, increased ROS production and oxidative stress.  

Cell Painting features are correlated to Gene Expression features 

We used 62 known mitotoxic compounds to calculate Pearson’s correlation between the 

selected 110 Cell Painting features, and 10 Gene Expression features related to unfolded 

protein response, endoplasmic reticulum stress, T cell apoptotic process and side of the 

membrane which represent biological processes which from prior knowledge are known to be 

related to mechanisms mitochondrial toxicity.53,54 We found significant correlations for 

specific Cell Painting features with these Gene Expression features as shown in Figure 5 

(further details on biological significance in Supplementary Table S3). We found that Gene 

Expression features corresponding to unfolded protein response and endoplasmic reticulum 

stress were most positively correlated to “Cytoplasm_AreaShape_FormFactors”. Form factors 

indicate how perfectly circular an object is which corresponds to the rounding up of cells due 

to apoptosis and could be indicative of cell death (caused by ER stress or the unfolded protein 

response which induce cell death, like many other stress responses55). Gene Expression features 

related to unfolded protein response were negatively correlated to 
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“Cells_Texture_DifferenceVariance_RNA_10_0” which calculates the image variation in a 

normalized co-occurrence matrix and could correspond to various secondary processes 

following ER stress (including a reduction in transcription, but also reduced translation, 

caspase activation, apoptosis, etc.56). The Gene Expression feature “side of membrane”, which 

is a parent to the cytoplasmic side of mitochondrial outer membrane was found most positively 

correlated to “Nuclei_Granularity_1_RNA” and most negatively correlated to 

“Cytoplasm_Correlation_Costes_DNA_Mito”. An increase or decrease in granularity of 

cytoplasmic RNA, in the proximity of the nucleus, might indicate the formation of RNA 

inclusion bodies or RNA processing while the correlation between DNA and mitochondria 

object could correlate to DNA fragmentation and heterogeneity in mitochondrial content. 

Hence, we conclude that Cell Painting features contain information of biological significance 

related to pathways of mitochondrial membrane depolarisation.  

Cell Painting and Gene Expression enables training of accurate and interpretable 

models for detecting mitochondrial toxicity 

As the utility of chemical structure in detecting mitochondrial toxicity was previously 

explored by Hemmerich et. al.19, our work focussed on comparing individual Cell Painting 

features and Gene Expression features with respect to their ability to detect mitochondrial 

toxicants. We used positive predictive values (PPV) and F1 scores from single decision tree 

classifiers trained on individual features (see Methods) to detect a signal for mitochondrial 

toxicants and provide a biological interpretation of these feature spaces. We found that Cell 

Painting features related to granularity, intensity, location, and radial distribution of 

mitochondrial objects over the three compartments (cells, cytoplasm and nuclei) had high 

predictivity for mitochondrial toxicity (median PPV grouped by compartment, channel, and 

feature group above 0.70; Supplementary Figure S4). We next more closely considered the 
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feature value distribution for individual features with high PPV for mitotoxicity 

(Supplementary Figure S5) For example, “Cells_Intensity_MaxIntensityEdge_Mito” 

(PPV=0.83). Compounds toxic to mitochondria evenly affects edge of the mitochondria object. 

Since this measurement is at the edge of the segmented object, it indicates a loss of membrane 

integrity. Another feature, “Cells Intensity MADIntensity Mito” (PPV=0.8) is a measurement 

of statistical dispersion which measures the standard deviation and median absolute deviation 

(MAD) of pixel intensity values while being robust to outliers. For MitoTracker Deep Red used 

in Cell Painting assay, this might indicate a variation of intensities among fragments of the 

mitochondrial membrane, resulting from loss of membrane integrity. “Cells Granularity 1 

RNA” (PPV=0.56) reveals information present of pixel 1 in the RNA channel where certain 

mitotoxic compounds also have significantly lower feature values. An increase or decrease in 

granularity of cytoplasmic RNA might indicate formation of RNA inclusion bodies or RNA 

processing. Further attempted biological interpretations for some features (knowing that this is 

not a trivial process) are shown in Figure 6 and Supplementary Table S4. 

Gene Expression features with high PPV could be classified as either causing mitochondrial 

membrane depolarisation or as an effect of mitochondrial toxicity (as shown in Figure 7 and 

Supplementary Table S5). Features such as endoplasmic reticulum unfolded protein response 

(PPV 0.92) and activation of signalling protein activity involved in unfolded protein response 

(PPV 1.00) have previously been attributed to ER related effects such as protein folding, 

oxidative stress and ER stress.55 Such effects are linked to each other and toxins affecting the 

same can depolarise the mitochondrial membrane affect the movement of mitochondria on 

microtubules and eventually regulate apoptosis.57 Features such as external side of plasma 

membrane (PPV 1.00), side of membrane (PPV 1.00), autophagic vacuole membrane (PPV 

1.00), negative regulation of T cell activation (PPV 0.86) are related to processes of cell 

proliferation, cell cycle arrest as well as apoptosis that causes oxidative stress and cell death 
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which can cause mitochondria to depolarise.58 The GO Cellular Component endritic plasma 

membrane (PPV 0.88) and the Biological Process oocyte development (PPV 0.88) are greatly 

affected by mitochondrial dysfunction as neurons are mitochondria dependent cells59 while 

oocyte development requires optimal energy production and is highly dependent on 

mitochondrial function for the same.60 Hence we conclude that a significant number of Cell 

Painting and Gene Expression features showing a high predictivity to mitochondrial membrane 

depolarization are also interpretable in the mechanistic roles either causing mitochondrial 

toxicity or being a consequence of the same.  

Fusion models accurately detects mitochondrial toxicity and expands the applicability 

domain 

We finally established predictive models for mitochondrial toxicity based on 3 models using 

Cell Painting features, Gene Expression features and Morgan fingerprints and another 2 

combinations thereof in early- and late-stage fusion. Early-stage fusion appended all three 

features into a single vector while late-stage fusion averaged the probabilities of the three 

individual models. We used a Random Forest model with repeated nested cross validation on 

a training data of 382 compounds (out of which 62 have mitotoxic annotations)  and validated 

using an external dataset of 236 compounds (39 mitotoxic) where test compounds, although 

run across various assay conditions)  were structurally diverse and generally dissimilar to the 

training data (details shown in Supplementary Figure S6). Figure 8 shows median performance 

from nested-cross validations and external validations (for further results see Supplementary 

Table S6 and for an overview of results from each fold of nested-cross validation see 

Supplementary Figure S7).  

Fusion models combining Cell Painting features, Gene Expression features, and Morgan 

fingerprints exhibited significantly higher F1 scores on the external dataset (early-stage fusion: 
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0.42, late-stage fusion: 0.40) in detecting mitotoxicity than models using only Morgan 

fingerprints (0.25). The drop in F1 score of models using only Morgan fingerprints from 0.42 

in repeated nested cross-validation to 0.25 in the external test (Figure 8) shows that Morgan 

fingerprints lack extrapolation power to novel chemical space. Although the training dataset 

was different and larger in previous work by Hemmerich et. al19 focusing on purely chemical 

structure data (1412 compounds vs 382 compounds here), the results are hence not directly 

comparable; our late-stage fusion model based had slightly higher sensitivity (0.82 vs. 0.79) 

which implied improved ability to detect mitochondrial toxicants in the external test set. As 

shown in Figure 9a, the success of fusion models is underlying in the fact that in morphological 

space, mitotoxic compounds in the external test set were more morphologically similar to 

mitotoxic compounds in the training set while no such correlation was present among the 

images of non-toxic compounds. Finally, late-stage fusion was more sensitive to the toxic class 

in the external test set compared to early-stage models (0.82 vs 0.62) while the balanced 

accuracy remained the same (0.68). Given the importance of detecting mitotoxicants in 

practice, higher sensitivity of a model is likely advantageous in practical situations even at 

identical balanced accuracy.  

We next analysed in more detail the predictions of mitochondrial toxicants in the external 

test set with our models as shown in Figure 9b (with further details shown in Supplementary 

Table S7). The model using Morgan fingerprints could correctly classify only 8 out of the 39 

mitochondrial toxicants in the external test set; these compounds were at a low structural 

distance to mitotoxic compounds in the training set (Supplementary Figures S6 and S8). The 

model using only Cell Painting features could extrapolate well into structurally diverse 

compounds and correctly predict 29 out of 39 mitotoxic compounds in the external test set but 

failed when the distance to morphological space was high for example, with compounds 71145-

03-4 (Figure 9b), while the same compound was correctly predicted by the model using only 
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Morgan fingerprints (which was explicable due to lower structural distance to training data). 

The late-stage fusion model correctly predicted 32 out of 39 mitotoxic compounds, combining 

information from both spaces, out of which 4 mitochondrial toxicants were neither correctly 

predicted by the model using only Cell Painting features, nor by the model using only Morgan 

fingerprints. Among them were betulinic acid, ketoconazole (which inhibits oxidative 

phosphorylation61) and fluoxetine (which inhibits oxygen consumption and 

lowers mitochondrial ATP62) shown in Figure 9b. These examples demonstrate the synergistic 

effect of the late-stage fusion model, using information from both the cell morphological as 

well as the chemical fingerprint space.  

Late-stage fusion models accurately detects mitochondrial toxicity of Tox21 

compounds labelled as inconclusive 

Next, we compared predictions using the  5 models above for the 22 compounds from the 

data with inconclusive Tox21 assay outcomes due to high cytotoxicity either in the 

mitochondrial depolarization assay or in the cell viability assay.63 Literature analysis revealed 

(further details in Supplementary Table S8) that 4 of the 22 compounds (loratadine, 

progesterone, ticlopidine and tyrphostin A25) previously have been shown to not cause 

mitochondrial damage (in fact, progesterone64 and tyrphostin A2565 reduce oxidative stress and 

repair oxidative damage). Another 10 compounds showed some mitochondrial toxicity, such 

as ketoconazole (inhibitor of oxidative phosphorylation61), diflunisal (uncoupler of oxidative 

phosphorylation66), daidzein and fipronil (increase ROS causing mitochondrial 

depolarization67,68). The mitochondrial toxicity for the remaining 8 compounds could not be 

elucidated further from the literature. Mitochondrial toxicity, like any other compound effect, 

is concentration- dependent, and the literature evidence compiled as well as the Cell Painting 

assays whose data was used in this work might hence use different concentrations. Also, the 
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cell line/biological system considered in the literature evidence, the Tox21 assays and the Cell 

Painting assay can also be very different. With respect to concentration, we explored to what 

extent the data used here would be predictive for the mitotoxicity endpoint considered, on a 

relative scale for the different input parameters used in our models; while for the cell line used 

it has been shown before that Cell Painting yields similar biological phenotypes for different 

cell lines without cytochemistry protocols requiring specific cell-type-specific optimization.69 

The latter indicates the predictions from the Cell Painting assay may be applicable in detecting 

toxicity mitochondrial toxicity in another cell line or biological system.  

For the 14 compounds for which mitotoxicity annotations were found, Morgan fingerprints 

correctly predicted toxicity only 1 out of 10 toxic compounds and correctly predicted the non-

toxic nature of 3 out the 4 non-toxic compounds (Supplementary Table  S9). Thus, Morgan 

fingerprints showed only very low sensitivity on this dataset. The best performing model, late-

stage fusion (averaging predictions from all three models using Cell Painting, Gene Expression 

features and Morgan fingerprints) however correctly predicted toxicity for all (10 out of 10) 

mitochondrial toxicants, and correctly predicted the non-toxic nature of 3 out the 4 non-toxic 

compounds (that is, the increased sensitivity does not come at a cost of a large false positive 

rate, given that the latter stayed constant between both models). Overall, the late-stage fusion 

model could hence extrapolate to the morphological space of these inconclusive compounds 

and detect mitochondrial toxicity even when Tox21 assays reported inconclusive outcomes due 

to cytotoxicity.  

Sensitivity of fusion models are on par with dedicated in vitro mitochondrial toxicity 

assays 

Finally, we compared the performance of our models to detect mitochondrial toxicity with 

dedicated in vitro assays. Hallinger et al. compared various high throughput screening assays 
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and a respirometric screening assay to detect known mitochondrial toxicants (as shown in 

Supplementary Figure S1 and Supplementary Table S1).70 When comparing 60 reference 

chemicals to existing Tox21 assays, they found RSA to be most predictive (balanced accuracy 

0.90), while the Tox21 mitochondrial membrane potential assay was also highly predictive 

(balanced accuracy 0.87). However, respirometric screens have lower throughput than Tox21 

assays and are not suitable for screening a large number of compounds. Among other assays 

they compared were high content imaging assays, where the Apredica HepG2 mitochondrial 

membrane potential and mitochondrial mass assays16 were found to be comparatively less 

predictive (balanced accuracy 0.78 and 0.65, respectively). Although the 236 compounds in 

the external test set in our study are not the same as these 60 reference chemicals, from a 

numerical performance comparison we found that our late-stage fusion model achieved higher 

sensitivity in the external test set (0.82 in our study vs 0.37 in Apredica MitoMass vs 0.8 in 

RSA) in detecting mitotoxic compounds with comparable balanced accuracies (0.68 in our 

study vs 0.65 in Apredica MitoMass). The added advantage in using Cell Painting is that it is 

a comparatively inexpensive single screen that can also be used simultaneously for multiple 

endpoints for which it is found to be predictive. Hence, we can conclude that the late-stage 

fusion model based on Cell Painting, Gene Expression and chemical structural data compares 

well with respect to its predictive power for mitotoxicity to  many dedicated assays for this 

purpose (although precise numerical values cannot be compared due to the different data sets 

used).  
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DISCUSSION 

Mitochondrial toxicity is a leading cause of late-stage drug withdrawals2 and numerous drugs 

such as amiodarone, doxorubicin, statins (e.g cerivastatin, simvastatin) and valproic acid have 

been shown to induce adverse effects via mitochondrial dysfunction. Mitochondrial toxicity 

can be caused by multiple mechanisms and prediction using only chemical structural 

fingerprints has been shown to be difficult, with respect to extrapolation to novel chemical 

space, where low model sensitivity has been regularly observed.  

To the best of our knowledge, in this work we present the first study combining hypothesis-

free high throughput Cell Painting and Gene Expression features with structural fingerprints to 

predict mitochondrial toxicity. In this work, we confirmed that Cell Painting readouts can 

discriminate mitotoxic and non-mitotoxic compounds and are able  to cluster mitotoxic 

compounds with shared mode of action (including compounds with inconclusive assay 

outcomes in Tox21 due to excessive cytotoxicity)  in morphological space. This indicates that 

Cell Painting features are able to detect similarity with respect to both mode of action and 

mitochondrial toxicity, also in situations of large differences in chemical space. Further, we 

showed that Cell Painting features correlate to Gene Expression features, which are related to 

mechanisms of mitochondrial toxicity. We trained late-stage fusion models, which are 

averaging the results from the Cell Painting, Gene Expression and Morgan fingerprint models, 

and found those fusion models to be better predictive of mitochondrial toxicity, when 

extrapolating to new chemical space of an external validation set, compared to the model using 

only Morgan fingerprints. Also compared to dedicated mitochondrial high content imaging 

assays our late-stage fusion model showed favourable sensitivity. Given that Cell Painting 

readouts can be used for multiple purposes, this supports their use also for the prediction of a 

mitochondrial toxicity endpoint.  
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Using hypothesis-free data, such as Cell Painting and Gene Expression data,  in machine 

learning models can hence be used to detect toxicity (here mitochondrial toxicity), as well as 

to help understand modes of toxicity, also in situations where this is not possible based on 

chemical structure alone. From a predictive modelling perspective, by combining high 

predictivity of fingerprints in areas of structural space close to the training set with better 

generalizability of Cell Painting features at greater distances to the training set, such models 

can contribute to extending the applicability domain of the overall model. 
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METHODS 

In this work, we followed the workflow as displayed in Supplementary Figure S9 for 

dataset curation, feature selection and model architecture.  

Mitochondrial toxicity dataset preparation 

Data for in vitro mitochondrial toxicity, used as the endpoint in this study, was collected from 

the Tox21 assay40 for mitochondrial membrane potential disruption (MMP) summary assay 

(AID 720637).41  This summary assay combines results from a mitochondrial membrane 

potential (MMP) assay71 (AID 720635) and a cell viability counter screen72 (AID 720634) into 

a binary assay hit call.  

For the Tox21 MMP assay, a water-soluble mitochondrial membrane potential sensor was used 

to evaluate chemically induced mitochondrial toxicity. In healthy cells, this dye accumulates 

in the mitochondria with red fluorescence. However, should the potential collapse, the dye is 

no longer able to accumulate in the mitochondria and remains in monomers giving a green 

fluorescence from the cytoplasm. The cytotoxicity was tested in the same assay well as the 

mitochondrial potential using a counter cell viability screen. The viability of the cells in the 

culture was determined by measuring the amount of ATP present. Thus, the summary assay 

considers not only triplicate runs of the ratio (red/green) readout in the MMP assay but also 

each fluorescence channel separately, as well as the cytotoxicity results.63 This helps 

differentiate compounds that decreased MMP from those inducing high cytotoxicity (thus 

labelled inconclusive) although caution must be exercised in interpreting the inconclusive 

compounds as mitochondrial dysfunction may also have caused excessive cell death. Hence, 

in our models, inconclusive compounds were removed and for the remaining compounds, 

mitochondrial toxicity labels were assigned as per assay hit calls from the Tox21 assay.  
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Multiple endpoints, such as mitochondrial membrane depolarisation, can be related to 

mitochondrial toxicity as can be increased ROS or alteration of energy homeostatic, especially 

if the membrane potential is depolarised.  Hemmerich et al.19 compiled various mitochondrial 

membrane potential as well as additional assays relevant to mitochondrial toxicity 

(mitochondria, mitochondria potential and mitochondria complex) from various sources, 

including CHEMBL, PubChem and 246 drugs tested by Zhang et al.17 into a single dataset 

related to mitochondrial function, binding and inhibition consisting of 824 mitochondrial 

toxicants and 4937  non-toxic compounds. To evaluate our models, we further used an external 

test set using compounds (that do not appear in the training data) from this dataset. 

Cell Painting features 

Image-based morphological features were extracted from the Cell Painting assay 

experiments in Bray et al.29 These experiments contained perturbations from 30000 chemicals 

(around 10,000 small molecules, 2200 drugs and 18000 novel compounds from diversity-

oriented synthesis) using DMSO neutral control, USO2 cells in 384-well plates in 5 channels 

staining eight cellular organelles: nucleus, endoplasmic reticulum, F-actin cytoskeleton, Golgi 

apparatus, plasma membrane, mitochondria, cytoplasmic RNA and the nucleoli. We obtained 

consensus morphological features for each compound using the following procedure similar to 

Lapins et al.32 For each plate, the average feature value from the DMSO plates was subtracted 

from the perturbation’s average feature value. Next, we calculated the median feature value for 

each compound and dose combination. For replicates, we used the median feature values for 

doses that were within one standard deviation of the mean dose. The concentration was also 

included as a feature. Features known to be noisy and generally unreliable as recommended by 

Way et al. were removed.73 When using Cell Painting features, we avoided compounds having 

low cell count (step 1, Supplementary Figure S9) in Cell Painting images by removing 
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compounds using “Cells Number Object Number" lesser than -15. Thus, consensus 

morphological profiles consisting of 1729 numerical features were obtained. 

Gene Expression features 

The Gene Ontology initiative aims to unify gene and gene product attributes in a 

classification effort that will provide biological and functional interpretation of gene expression 

data.27 They also ensure that genes are consistently annotated across different available 

datasets. The Gene Expression features used in this work have been derived from 

transcriptomic data from LINCS L1000. LINCS L1000 gene expression technology profiles 

changes in 978 landmark genes on perturbations of compounds for a variety of human cell 

lines.22 In this work, Gene Ontology transformed Gene Expression features were extracted 

from the http://maayanlab.net/SEP-L1000/#download which contained 4438 annotated Gene 

Expression features corresponding to 19803 distinct compounds.39 The authors used quantile-

normalized gene expression profiles from the LINCS L1000 dataset for all replicates of each 

compound. For each compound, the strongest signatures were used irrespective of the cell line, 

concentration, or time point which minimizes the number of features required. Gene expression 

signatures for each compound perturbation was computed using the Characteristic Direction 

(CD) method74 on 978 measured hallmark genes. Further, they computed enrichment p-values 

for each CD signature in the space of all genes against gene set libraries (including biological 

processes, cellular components, and molecular functions, as well as other gene set libraries 

accessible from the Enrichr tool75) using an extension of the CD technique called Principal 

Angle Enrichment Analysis (PAEA).76 We used these annotations for each GE-perturbation 

combination for further analysis. 

Dataset curation and collation 
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We calculated the intersection between mitochondrial toxicity and Cell Painting and Gene 

Expression datasets described above using standard InChI calculated using RDKit.77 For 

conflicting replicates, we considered a compound toxic, if it was detected to be mitotoxic at 

least once (since in such situations evidence for mitochondrial toxicity, at least under some 

conditions, exists).  We obtained 830 distinct compounds (161 mitotoxic, 61 inconclusive and 

remaining non-toxic) from the mitochondrial toxicity dataset overlapped with Gene Expression 

features and a total of 513 distinct compounds (82 mitotoxic and 27 inconclusive) in overlap 

with Cell Painting features. Similarly, we found 404 distinct compounds (62 mitotoxic and 22 

inconclusive) in overlap with both Cell Painting features and Gene Expression features. For 

the external test set, after adding required annotations of Cell Painting features and Gene 

Expression features, removing compounds with low cell count, and ensuring no compounds 

from this was used in feature selection or training our models, a total of 236 distinct compounds 

(39 mitotoxic and remaining nontoxic) remained in the external test set.  

Structural fingerprints 

For modelling purposes, we used Morgan fingerprints which contain structural information 

about compounds and have been successfully used before for toxicity prediction.78 The MolVS 

standardizer, an open-source tool based on RDKit77, was used to standardize (including 

tautomer standardization) and canonicalize SMILES of the parent molecules.79 This involved 

sanitization, normalisation, greatest fragment chooser, charge neutralisation, tautomer 

enumeration, and canonicalization as implemented in the MolVS tool and described in the 

MolVS standardizer. We calculated Morgan fingerprints of radius 2 and 2048 bits from 

standardized SMILES using RDKit.77  

Feature selection 
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For each of the Cell Painting features and Gene Expression features, standardized values for 

compounds in the training set were separately subjected to three statistical tests, namely, two-

sample Kolmogorov Smirnov test (KS test)80, Mann–Whitney U test81 (MWU test) and Point-

Biserial correlation82 (PBS correlation). While the Random Forest algorithm employed for 

modelling (see below) is in principle able to select features, this is not always successful which 

made us compare different explicit feature selection methods in parallel with inputting all 

features into the models subsequently. This method in our experience led to less overfitting 

while still being interpretable and also able to extrapolate to the external test set compared to 

other methods (Principal Component Analysis, Maximum Relevance — Minimum 

Redundancy or using all features, see Supplementary Table S10 for modelling results when 

comparing different feature selection methods). 

After removing the inconclusive compounds (step 2, Supplementary Figure S9), the feature 

selection (step 3, Supplementary Figure S9) was performed on Cell Painting features and Gene 

Expression annotations for the remaining compounds. For cross-validation of models, the 

overlap of the top 40 negatively and 40 positively correlated features from the MWU test and 

PBS correlation and top 40 correlated features from the KS test were selected for further 

modelling. For evaluating the external test where more data was available for training, we 

selected the top 25 correlated features from each test (both positively and negatively for MWU 

and PBS) and obtained 110 Cell Painting features and 102 Gene Expression features. 

Comparing class separation and visualization of compounds in morphological space  

For a comparison of intra-class (Toxic vs Toxic) and inter-class (Toxic vs Nontoxic) in 

morphological space, we used for 486 compounds (85 mitotoxic) for which Cell Painting 

annotations were available. We randomly resampled the majority class (non-toxic compounds) 

to match the number of samples of the minority class to ensure our comparisons are equivalent. 
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Then we visualised mean Tanimoto similarity, median positive image correlation (considering 

only positive Pearson correlations) and absolute median image correlation (considering the 

absolute value of median both positive and negative Pearson correlations) for various values 

of k in k-nearest neighbours in four quartiles of the distribution for intra- and inter-class 

pairwise distributions (Supplementary Figure S10). We found better separation between intra- 

and inter-class pairwise when using the absolute value of the median values from the most 15 

positively and 15 negatively pairwise Pearson correlations of Cell Painting features. For 

visualizing the same in structural space, we used the median of 5 highest pairwise Tanimoto 

similarity of Morgan Fingerprints.83,84 The methodology was followed when comparing test to 

train set distances as defined in subsection “Extrapolation to New Structural/Morphological 

Space”. 

For visualization of compounds in morphological space, we analysed the 110 selected Cell 

Painting features on 513 distinct compounds (85 mitotoxic and 27 inconclusive). We 

normalized 110 selected Cell Painting features and performed Principal Component Analysis 

using DataWarrior85 which compared to other nonlinear methods is more interpretable. 

Correlation between Cell Painting and Gene Expression features and their positive 

predictive values 

To determine the correlation between selected Cell Painting features and Gene Expression 

features for compounds exhibiting mitochondrial toxicity, we used Pearson correlation using 

pandas python package.86 Comparing the negative logarithmic p-value and the effect size, we 

determined which Cell Painting features were significantly correlated to specific Gene 

Expression features related to unfolded protein response, endoplasmic reticulum stress, T cell 

apoptotic process, side of membrane etc.  
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Random Forests are not able to detect feature importance when several features are correlated 

as the Gini index tends to dilute over different features in different trees. To evaluate an 

individual feature’s importance, we used the positive predictive value (PPV) from single 

decision tree classifiers trained on individual Cell Painting features. These classifiers were 

trained on 486 compounds (85 mitotoxic) having max depth one and two leaf nodes on our 

dataset for each feature. The tree hence determines an optimal threshold per feature to 

distinguish mitochondrial toxic compounds from non-toxic compounds. The mean PPV of Cell 

Painting features having PPV>0 was grouped by compartment (Cells, Cytoplasm, and Nuclei), 

channel (AGP, Nucleus, ER, Mito, Nucleolus/Cytoplasmic RNA), and feature group 

(Correlation, Granularity, Intensity, Radial Distribution, Texture). The predictive value of 

individual Gene Expression features was computed in a similar manner using decision tree 

classifiers on 768 compounds (161 mitotoxic). 

Types of features’ combinations used 

Here we employed 5 types of models having different input features, combinations thereof 

as well as model ensembling. Initially, Cell Painting features, Gene Expression features and 

Morgan fingerprints were used separately as features for three separate models. As shown in 

Supplementary Figure S11, an early-stage models fused Cell Painting, Gene Expression and 

Morgan fingerprints by appending the features into a single vector while another a late-stage 

fusion model averaged the probabilities of the three models using only Cell Painting, Gene 

Expression and Morgan fingerprints respectively into a single probability value.  

Model generation and evaluation 

382 compounds (62 mitotoxic) from the mitochondrial toxicity data having both Cell 

Painting and Gene Expression annotations were used for modelling. Random Forest models 

were trained using scikit-learn.87 
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As shown in Supplementary Figure S12, a grid search with 4-fold cross-validation revealed 

100 trees were optimal for achieving high balanced accuracies; hence we set Random Forests 

parameters with 100 trees. The nodes were let to expand until all leaves were pure or until all 

leaves contained less than a minimum of 2 samples that are required to split an internal node. 

A minimum of 1 sample was required to be at a leaf node and the number of features to consider 

when looking for the best split was set as the square root of total features. The consistent 

performance is most likely as Random Forests are usually robust against overfitting. As shown 

in Supplementary Figure S13, we used 4-fold nested cross-validation; inside the outer loop, a 

4-fold stratified splitting divided the data into a training set (75%), on which feature selection 

was performed and the remaining into a test set (25%). Inside the inner loop, a Random Forest 

model with parameters as above was trained on the training set using 4-fold stratified cross-

validation. For each model, to account for class imbalance, we tuned the threshold of 

probability to determine the cut-off for toxicity labels having maximum value for Youden's J 

statistic (J = True Positive Rate – False Positive Rate). The Youden index is frequently used to 

detect an optimal threshold to be used as a criterion for classifying subjects without biasing the 

model towards one class.  Thus, the predictions can be used to fully exploit the model giving 

equal weights to sensitivity and specificity without favouring one of them.  From combined 

results of the out-of-fold data from cross-validation, we chose the threshold of probability with 

the largest Youden's J statistic value. This threshold was then used for the test set (hence the 

test set was not used directly while selecting the optimal threshold). The entire process of nested 

cross-validating was repeated 50 times; we evaluated our models on the distribution and 

median of the performance metrics from all 200 test sets. The models overall trained with 

reasonable training time and threshold balancing ensured that overfitting on an unbalanced 

dataset could be avoided. 

External model evaluation  
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For the external test set, we trained 5 Random Forest models for each feature/combination 

on our dataset using 4-fold cross-validation and the optimal threshold was determined similarly 

from the combined out-of-fold data. The model was then retrained on the entire dataset and 

used to predict the external test set with the threshold previously determined. 

Evaluation metrics 

F1 scores of the minority class (mitotoxic compounds), precision of the minority class 

(mitotoxic compounds), sensitivity, specificity, Balanced Accuracy (BA), Area Under Curve-

Receiver Operating Characteristic (AUC-ROC), Area Under Curve-Precision Recall 

(AUCPR), and Mathew's correlation constant (MCC) were used to assess model performance 

as implemented in scikit-learn python package.87 Often in a toxicity prediction problem with 

unbalanced data, the number of nontoxic compounds far outweigh the number of mitotoxic 

compounds and improvement in the prediction of the mitotoxic compounds (minority class) is 

desired.88 Here particular metrics such as sensitivity and AUCPR are useful and less likely to 

exaggerate model performance. For comparing model predictions to true values in the external 

test set, F1 scores and precision of the minority class and the sensitivity of the model were used 

as they focus on the minority class (mitotoxic compounds) being detected by the model. 

Extrapolation to new structural/morphological space 

To evaluate if our models can extrapolate to novel chemical space (either in structural space or 

in morphological space) we defined for each compound in the external test set two parameters: 

(1) Structural distance to the training set: 

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥1 , 𝑥2 … , 𝑥15 ) 

where 𝑥𝑘= pairwise Tanimoto distances in decreasing magnitude, where, 
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𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

and (2) Morphological distance to the training set:  

𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

where, 

𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑎𝑏𝑠 ( 𝑚𝑒𝑑𝑖𝑎𝑛( 𝑎1 , 𝑎2 … 𝑎15 , 𝑏1 , 𝑏2 … 𝑏15))  

and 𝑎k = positively and 𝑏k = negatively pairwise Pearson correlations in decreasing 

magnitude.  

The distances were defined same as the subsection “Statistical Analysis of Cell Painting 

features and Gene Expression features”. The structural distance was defined as the median of 

the five lowest Tanimoto distances89 between Morgan fingerprints of the test compound and 

the compounds in the training dataset of the same activity annotation. The morphological 

distance was defined as the one minus the absolute value of median of 15 most positively and 

15 most negatively pairwise Pearson correlations (using selected Cell Painting features) of the 

test compound and the compounds in the training dataset of the same activity annotation. In 

this manner, we could evaluate if true positives from test sets for each model lie in relatively 

distant structural or morphological space to their training space.  
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CODE AVAILABILITY 

We released the python code for our models which are publicly available at 

https://git.io/JDGyc 

DATA AVAILABILITY 

The training dataset (used for nested cross validation) and the external test set used in this 

study are released in Supplementary Table S11 and S12. 
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FIGURES 

 

  
 

Figure 1. Major mechanisms of mitochondrial toxicants. Toxicants act on multiple pathways to exhibit mitochondrial toxicity, mostly 

inhibition of mitochondrial respiratory chain or uncoupling of oxidative phosphorylation, oxidative stress from responses including 

generation of reactive oxygen species (ROS), microtubule disruption and ER stress from various responses including inhibition of Na+ 

pumps etc. 
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Figure 2. Overview of the workflow employed in this study. L1000 technology for Gene Expression and Cell Painting Technology for 

cell morphology statistics. The LINCS L1000 gene expression technology profiles changes in 978 landmark genes before and after 

chemical perturbations on different human cell lines. Raw unprocessed flow cytometry data from Luminex is converted to quantile-

normalized gene expression profiles for all replicates of each compound. We use Gene Expression data from Wang et al39, who for 

each compound, computed the strongest gene expression signature using the Characteristic Direction (CD) method and computed 

enrichment p-values for each CD signature in the space of all genes against gene set libraries using Principal Angle Enrichment 

Analysis (PAEA). The Cell Painting assay, on the other hand, captures cellular morphological changes in the form of numerical 

statistics which are converted from microscopic image data of cells treated with chemical perturbations.  
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Figure 3. Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic)  

Median of five highest Tanimoto similarity coefficients of Morgan fingerprints and (B) Absolute value of the median of fifteen most 

positively and fifteen most negatively Pearson correlation effect sizes of selected 110 Cell Painting features for mitochondrial toxic 

and non-toxic compounds.  

Mitotoxic compounds considerably vary from non-toxic compounds in morphological space (median Pearson correlation of 0.140 vs 

0.038, t-test independent p value=3.301e-20) while also varying in structural space (median Tanimoto Similarity of Morgan fingerprints 

0.208 vs 0.183, t-test independent samples p value= 6.329e-03).
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Figure 4. Principal Component Analysis of 542 compounds in 110-dimensional Cell Painting feature space. Certain compounds 

clustered further away from the distribution of majority of compounds having similar mechanisms of actions such as of microtubule 

destabilizers, or compounds inducing apoptotic signalling cascades, compounds causing oxidative stress due to GSH depletion or 

those that are inhibitors of plasma membrane Na+ pump (all of which reduce mitochondrial membrane potential). Cluster I 

(microtubule destabilisers): rotenone, albendazole, parbendazole, mebendazole, nocodazole, fenbendazole, colchine, paclitaxel and  

podophyllotoxin; Cluster II (inhibitors of plasma membrane Na+ pump): ouabain and digoxin; Cluster III (caspase activation and GSH 

depletion): devazepide, lovastatin, simvastatin; and Cluster II (trigger the release of cytochrome c into the cytosol): mevastatin, 

prazosin, and raloxifene.
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Figure 5. Computational significance and biological implication in mitochondrial toxicity of the Cell Painting features that are most 

positively or negatively correlated to Gene Expression descriptors particularly unfolded protein response and endoplasmic reticulum 

stress (RNA variance and cell area shape), T cell apoptotic processes (mitochondrial granularity and DNA fragmentation) and side of 

the membrane (RNA granularity and heterogeneity in mitochondria). Further details in Supplementary Table S3.  
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Figure 6. Biological implication of mitochondrial toxicity translated from the computational image statistics of Cell Painting features. 

Features were mainly related to edge intensity of cells (possibly related to integrity of cell wall), radial distribution and intensity in 

mitochondria (related to mitochondrial death) and granularity features (related to cell death and amount of information contained in 

cellular images). Further details in Supplementary Table S4. AGP: Actin Golgi Plasma membrane, DNA: Deoxyribonucleic acid, ER: 

Endoplasmic Reticulum, Mito: Mitochondria, RNA: Ribonucleic acid      
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Figure 7. Biological implication of mitochondrial toxicity translated from the Gene Expression features. Features causing 

mitochondrial toxicity mainly related to unfolded protein response (possibly related to ER stress) and plasma membrane (related to 

membrane depolarisation). Some effects of mitochondrial toxicity were also captured by Gene Expression features such as oogenesis 

and dendritic plasma membrane; both processes are heavily mitochondria dependent. Further details in Supplementary Table S5.  
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Figure 8. Evaluation metrics, namely from (i) sensitivity, (ii) specificity, (iii) F1 score and (iv) 

balanced accuracy for  five models from (a) Nested CV (median of repeated nested cross 

validations) and (b) external test set. Early-stage fusion and Late-stage fusion models combining 

all three feature sets of Cell Painting, Gene Expression and Morgan have higher F1 score for 

compounds exhibiting mitochondrial toxicity and extrapolate well into new structural space in 

external test sets compared to models using Morgan fingerprints where F1 Score performance 

falls by 60% (0.25 to 0.40 in absolute terms). 
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Figure 9. (a) Most mitotoxic compounds are similar in image space for training and test sets, 

however, non-toxic compounds in the external test set were dissimilar to non-toxic compounds in 

training set in the image space. Further, toxic compounds are often dissimilar in structural space, 

indicating the need for fusion models.  

(b) Structural and morphological distance for mitotoxic compounds in external test set to the 

training set for models using (i) Cell Painting features, (ii)Morgan fingerprints and the (iii) Late-

stage fusion models. Morgan fingerprints failed to correctly classify mitotoxic compounds (eg. 

betulinic acid) at high structural distances while models using Cell Painting features could 

extrapolate well into structurally diverse compounds. The late-stage fusion models correctly 

classified mitotoxic compounds (eg. 71145-03-4 or methyl 2,6-dimethyl-5-nitro-4-[2-

(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate, ketoconazole and fluoxetine) in 

both diverse morphological and structural space where individual models failed demonstrating 

the synergistic effect of the features spaces. 
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