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Abstract 
 
Despite over a century’s use as a dominant paradigm in the description of biochemical 
rate processes, the Michaelis–Menten (MM) rate law stands on the restrictive 
assumption that the concentration of the complex of interacting molecules, at each 
moment, approaches an equilibrium much faster than the molecular concentration 
changes. The increasingly-appreciated, remedied form of the MM rate law is also 
based on this quasi-steady state assumption. Although this assumption may be valid 
for a range of biochemical systems, the exact extent of such systems is not clear. In 
this study, we relax the quasi-steady state requirement and propose the revised MM 
rate law for the interactions of molecules with active concentration changes over time. 
Our revised rate law, characterized by rigorously-derived time delay effects in 
molecular complex formation, improves the accuracy of models especially for protein–
protein and protein–DNA interactions. Our simulation and empirical data analysis 
show that the improvement is not limited to the quantitatively better characterization 
of the dynamics, but also allows the prediction for qualitatively new patterns in the 
systems of interest. The latter include the oscillation condition and period patterns of 
the mammalian circadian clock and the spontaneous rhythmicity in the degradation 
rates of circadian proteins, both not properly captured by the previous approaches. 
Moreover, our revised rate law is capable of more accurate parameter estimation. This 
work offers an analytical framework for understanding rich dynamics of biomolecular 
systems, which goes beyond the quasi-steady state assumption. 
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I. INTRODUCTION 
 
Since proposed by Henri [1] and Michaelis and Menten [2], the Michaelis–Menten (MM) rate 
law has been the dominant framework for modeling the rates of enzyme-catalyzed reactions 
for over a century [1–4]. The MM rate law has also been widely adopted for describing other 
bimolecular interactions, such as reversible binding between proteins [5–7], between a gene 
and a transcription factor (TF) [8,9], and between a receptor and a ligand [10,11]. The 
derivation of the MM rate law from the underlying biochemical mechanism is based on the 
steady-state approximation by Briggs and Haldane [3], referred to as the standard quasi-
steady state approximation (sQSSA) [12–14]. The sQSSA, however, is only valid when the 
enzyme concentration is low enough and thus the concentration of enzyme–substrate 
complex is negligible compared to substrate concentration [14]. This condition may be 
acceptable for many metabolic reactions with substrate concentrations that are typically far 
higher than the enzyme concentrations. 
   Nevertheless, in the case of protein–protein interactions in various cellular activities, the 
interacting proteins as the “enzymes” and “substrates” often show the concentrations 
comparable with each other [15–17]. Therefore, the use of the MM rate law for describing 
protein–protein interactions has been challenged in its rationale, with the modified alternative 
formula from the total quasi-steady state approximation (tQSSA) [12,13,18–24]. The tQSSA-
based form is generally more accurate than the MM rate law from the sQSSA, for a broad 
range of combined molecular concentrations and thus for protein–protein interactions as well 
[12,13,18–24]. The superiority of the tQSSA has not only been proven in the quantitative, but 
also in the qualitative outcomes of systems, which the sQSSA sometimes fails to predict 
[12,18]. Later, we will provide the overview of the tQSSA and its relationship with the 
conventional MM rate law from the sQSSA. 
   Despite the correction of the MM rate law by the tQSSA, both the tQSSA and sQSSA still rely 
on the assumption that the concentration of the complex of interacting molecules, at each 
moment, approaches an equilibrium much faster than the molecular concentration changes 
[12,14,21]. Although this quasi-steady state assumption may work for a range of biochemical 
systems, the exact extent of such systems to follow that assumption is not clear. Numerous 
cellular processes do exhibit active molecular concentration changes over time, such as in 
circadian clock circuits or cell cycle systems [6,7,18,25–28], calling for a better approach to 
even cover the time-varying molecular concentrations that may not strictly adhere to the 
quasi-steady state assumption. 
   In this study, we report the revision of the MM rate law, whereby the interaction of time-
varying molecular components is more precisely described than by the existing approaches 
including the tQSSA. This revision is the correction of the tQSSA with rigorously-estimated 
time-delay effects, which improves the predictability for quantitative molecular-binding 
kinetics and retrieves the tQSSA in steady conditions. Our formulation well accounts for the 
nontrivial oscillatory dynamics and empirical patterns of biomolecular systems with the 
relevant analytical insights, which are not captured by the previous methods—the tQSSA and 
sQSSA. This work offers a new mathematical framework for interrogating rich dynamics of 
molecular interactions in various biochemical contexts. 
 
II. THEORY OVERVIEW AND DERIVATION 
 
A. General formulation 
 
We consider two different molecules A and B that bind to each other and form complex AB. 
For example, A and B may represent two participant proteins in heterodimer formation, a 
chemical substrate and an enzyme in a metabolic reaction, and a solute and a transporter in 
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membrane transport. The concentration of the complex AB at time 𝑡𝑡 , denoted by 𝐶𝐶(𝑡𝑡) , 
changes over time as in the following equation: 

d𝐶𝐶(𝑡𝑡)
d𝑡𝑡

= 𝑘𝑘a[𝐴𝐴(𝑡𝑡) − 𝐶𝐶(𝑡𝑡)][𝐵𝐵(𝑡𝑡) − 𝐶𝐶(𝑡𝑡)] − 𝑘𝑘δ𝐶𝐶(𝑡𝑡).                   (1) 
Here, 𝐴𝐴(𝑡𝑡)  and 𝐵𝐵(𝑡𝑡)  denote the total concentrations of A and B, respectively, and hence 
𝐴𝐴(𝑡𝑡) − 𝐶𝐶(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) − 𝐶𝐶(𝑡𝑡) correspond to the concentrations of free A and B. 𝑘𝑘a denotes 
the association rate of free A and B. 𝑘𝑘δ  is defined as 𝑘𝑘δ ≡ 𝑘𝑘d + 𝑟𝑟c + 𝑘𝑘loc + 𝑘𝑘dlt where 𝑘𝑘d, 
𝑘𝑘loc, and 𝑘𝑘dlt stand for the dissociation, translocation, and dilution rates of AB, respectively, 
and 𝑟𝑟c for the chemical conversion or translocation rate of A or B upon the formation of AB. 
   Using the notations 𝜏𝜏 ≡ 𝑘𝑘δ𝑡𝑡 , 𝐾𝐾 ≡ 𝑘𝑘δ/𝑘𝑘a , �̅�𝐴(𝜏𝜏) ≡ 𝐴𝐴(𝑡𝑡)/𝐾𝐾 , 𝐵𝐵�(𝜏𝜏) ≡ 𝐵𝐵(𝑡𝑡)/𝐾𝐾 , and 𝐶𝐶̅(𝜏𝜏) ≡
𝐶𝐶(𝑡𝑡)/𝐾𝐾, one can rewrite Eq. (1) as 

d𝐶𝐶̅(𝜏𝜏)
d𝜏𝜏

= [�̅�𝐴(𝜏𝜏) − 𝐶𝐶̅(𝜏𝜏)][𝐵𝐵�(𝜏𝜏) − 𝐶𝐶̅(𝜏𝜏)] − 𝐶𝐶̅(𝜏𝜏).                   (2) 
By definition, 𝐶𝐶(𝑡𝑡) ≤ 𝐴𝐴(𝑡𝑡) and 𝐶𝐶(𝑡𝑡) ≤ 𝐵𝐵(𝑡𝑡), and therefore 

 𝐶𝐶(𝑡𝑡) ≤ min[𝐴𝐴(𝑡𝑡),𝐵𝐵(𝑡𝑡)] {i.e., 𝐶𝐶(𝜏𝜏) ≤ min�𝐴𝐴(𝜏𝜏),𝐵𝐵(𝜏𝜏)�}.     (3) 
On the other hand, Eq. (2) is equivalent to 

d𝐶𝐶̅(𝜏𝜏)
d𝜏𝜏

= �𝐶𝐶̅(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)��𝐶𝐶̅(𝜏𝜏) − �𝐶𝐶t̅Q(𝜏𝜏) + �∆tQ(𝜏𝜏)��,            (4) 
where 𝐶𝐶t̅Q(𝜏𝜏) and ∆tQ(𝜏𝜏) are given by 

                       𝐶𝐶t̅Q(𝜏𝜏) ≡  1
2
�1 + 𝐴𝐴(𝜏𝜏) + 𝐵𝐵(𝜏𝜏) −  �∆tQ(𝜏𝜏)�,           (5) 

∆tQ(𝜏𝜏) ≡ [1 + 𝐴𝐴(𝜏𝜏) + 𝐵𝐵(𝜏𝜏)]2 − 4𝐴𝐴(𝜏𝜏)𝐵𝐵(𝜏𝜏) 
           = 1 + 2�𝐴𝐴(𝜏𝜏) + 𝐵𝐵(𝜏𝜏)� + [𝐴𝐴(𝜏𝜏) −𝐵𝐵(𝜏𝜏)]2.  (6) 

In the tQSSA, the assumption is that 𝐶𝐶(𝑡𝑡) approaches the equilibrium fast enough each time, 
given the values of 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) [12,21]. To understand this idea, notice that 𝐶𝐶̅′(𝜏𝜏) → 0 in 
Eq. (4) when 𝐶𝐶̅(𝜏𝜏) → 𝐶𝐶t̅Q(𝜏𝜏)  given the values of 𝐴𝐴(𝜏𝜏)  and 𝐵𝐵(𝜏𝜏)  [we use symbol ’ for a 
derivative, such as 𝐶𝐶̅′(𝜏𝜏) here]. One can prove that 𝐶𝐶t̅Q(𝜏𝜏) ≤ min�𝐴𝐴(𝜏𝜏),𝐵𝐵(𝜏𝜏)� and thus Eq. (3) 
is naturally satisfied when 𝐶𝐶̅(𝜏𝜏) = 𝐶𝐶t̅Q(𝜏𝜏). The other nominal solution of 𝐶𝐶̅′(𝜏𝜏) = 0 in Eq. (4) 
does not satisfy Eq. (3) and is thus physically senseless. 
   According to the tQSSA, one takes an estimate 𝐶𝐶̅(𝜏𝜏) ≈ 𝐶𝐶t̅Q(𝜏𝜏) , or equivalently, 𝐶𝐶(𝑡𝑡) ≈
𝐶𝐶tQ(𝑡𝑡) with this form: 

𝐶𝐶tQ(𝑡𝑡) ≡  1
2
�𝐾𝐾 + 𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡) −  �[𝐾𝐾 + 𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)]2 − 4𝐴𝐴(𝑡𝑡)𝐵𝐵(𝑡𝑡)�.           (7) 

As mentioned earlier, the tQSSA is generally more accurate than the conventional MM rate 
law [12,13,18–24]. To obtain the MM rate law, consider a rather specific condition, 
𝐵𝐵(𝑡𝑡) ≪ 𝐾𝐾 + 𝐴𝐴(𝑡𝑡) or 𝐴𝐴(𝑡𝑡) ≪ 𝐾𝐾 + 𝐵𝐵(𝑡𝑡) [i.e., 𝐵𝐵(𝜏𝜏) ≪ 1 + 𝐴𝐴(𝜏𝜏) or 𝐴𝐴(𝜏𝜏) ≪ 1 + 𝐵𝐵(𝜏𝜏)].  (8) 

In this condition, the Padé approximant for 𝐶𝐶tQ(𝑡𝑡) takes the following form: 

𝐶𝐶tQ(𝑡𝑡) ≈ 𝐴𝐴(𝑡𝑡)𝐵𝐵(𝑡𝑡)
𝐾𝐾+𝐴𝐴(𝑡𝑡)+𝐵𝐵(𝑡𝑡)  [i.e., 𝐶𝐶t̅Q(𝜏𝜏) ≈ 𝐴𝐴(𝜏𝜏)𝐵𝐵(𝜏𝜏)

1+𝐴𝐴(𝜏𝜏)+𝐵𝐵(𝜏𝜏)].     (9) 
Considering Eq. (9), Eq. (8) is similar to the condition 𝐶𝐶tQ(𝑡𝑡)/𝐴𝐴(𝑡𝑡) ≪ 1 or 𝐶𝐶tQ(𝑡𝑡)/𝐵𝐵(𝑡𝑡) ≪ 1. In 
other words, Eq. (9) would be valid when the concentration of AB complex is negligible 
compared to either A or B’s concentration. This condition is essentially identical to the 
assumption in the sQSSA resulting in the MM rate law [14]. In the example of a typical 
metabolic reaction with 𝐵𝐵(𝑡𝑡) ≪ 𝐴𝐴(𝑡𝑡) for substrate A and enzyme B, Eq. (8) is automatically 
satisfied and Eq. (9) further reduces to the familiar MM rate law 𝐶𝐶tQ(𝑡𝑡) ≈ 𝐴𝐴(𝑡𝑡)𝐵𝐵(𝑡𝑡)/[𝐾𝐾 +
𝐴𝐴(𝑡𝑡)], the same outcome of the sQSSA [1–4,12–14]. Clearly, 𝐾𝐾 here is the Michaelis constant, 
commonly known as 𝐾𝐾M. 
   The application of the MM rate law beyond the condition in Eq. (8) invites a risk of erroneous 
modeling results, whereas the tQSSA is relatively free of such errors and has wider applicability 
[12,13,18–24]. Still, both the tQSSA and sQSSA stand on the quasi-steady state assumption 
that 𝐶𝐶(𝑡𝑡) approaches the equilibrium fast enough each time before the marked temporal 
change of 𝐴𝐴(𝑡𝑡) or 𝐵𝐵(𝑡𝑡). Next, we will relieve this assumption and improve the approximation 
of 𝐶𝐶(𝑡𝑡) in the case of time-varying 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡), as the main objective of this study. 
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   Suppose that 𝐶𝐶(𝑡𝑡) may not necessarily approach the equilibrium 𝐶𝐶tQ(𝑡𝑡) but stays within 
some distance from it, satisfying the following relation: 

�𝐶𝐶̅(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)� ≪ �∆tQ(𝜏𝜏).            (10) 
We will later show that this relation is readily satisfied in physiologically-relevant conditions. 
This relation allows us to discard �𝐶𝐶̅(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)�2 compared to �∆tQ(𝜏𝜏)�𝐶𝐶̅(𝜏𝜏)− 𝐶𝐶t̅Q(𝜏𝜏)� and 
thereby reduce Eq. (4) to 

d𝐶𝐶̅(𝜏𝜏)
d𝜏𝜏

≈ �∆tQ(𝜏𝜏)�𝐶𝐶t̅Q(𝜏𝜏)− 𝐶𝐶̅(𝜏𝜏)�.            (11) 
The solution of Eq. (11) is given by 

𝐶𝐶̅(𝜏𝜏) ≈ ∫ �∆tQ(𝜏𝜏′)𝐶𝐶t̅Q(𝜏𝜏′)𝑒𝑒
−∫ �∆tQ(𝜏𝜏′′)d𝜏𝜏

𝜏𝜏′ 𝜏𝜏′′
d𝜏𝜏′𝜏𝜏

𝜏𝜏0
+ 𝐶𝐶̅(𝜏𝜏0)𝑒𝑒

−∫ �∆tQ(𝜏𝜏′)𝜏𝜏
𝜏𝜏0

d𝜏𝜏′
,       (12) 

where 𝜏𝜏0  denotes an arbitrarily assigned, initial point of 𝜏𝜏. Assume that �∆tQ(𝜏𝜏′) changes 
rather slowly over 𝜏𝜏′ to satisfy 

�∆tQ(𝜏𝜏′) ≈ �∆tQ(𝜏𝜏) for 𝜏𝜏′ in the range 𝜏𝜏 − 1

�∆tQ(𝜏𝜏)
≲ 𝜏𝜏′ ≤ 𝜏𝜏.             (13) 

As we will show later, Eq. (13) is satisfied as readily as Eq. (10) in physiologically-relevant 
conditions. With Eq. (13), Eq. (12) for 𝜏𝜏 ≫ 𝜏𝜏0 + ∆tQ

−1/2(𝜏𝜏0) is further approximated as 

𝐶𝐶̅(𝜏𝜏) ≈ �∆tQ(𝜏𝜏)∫ 𝐶𝐶t̅Q(𝜏𝜏′)𝑒𝑒
−�∆tQ(𝜏𝜏)�𝜏𝜏−𝜏𝜏′�

d𝜏𝜏′𝜏𝜏
−∞ .     (14) 

The Taylor expansion 𝐶𝐶t̅Q(𝜏𝜏′) = 𝐶𝐶t̅Q(𝜏𝜏)− (𝜏𝜏 − 𝜏𝜏′)𝐶𝐶t̅Q′ (𝜏𝜏) + (𝜏𝜏 − 𝜏𝜏′)2�̅�𝐶tQ′′ (𝜏𝜏)/2−⋯ leads Eq. 
(14) to 

𝐶𝐶̅(𝜏𝜏) ≈ 𝐶𝐶t̅Q(𝜏𝜏)−
1

�∆tQ(𝜏𝜏)
d𝐶𝐶t̅Q(𝜏𝜏)

d𝜏𝜏
� 𝑥𝑥𝑒𝑒−𝑥𝑥d𝑥𝑥
∞

0
+

1
2∆tQ(𝜏𝜏)

d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

� 𝑥𝑥2𝑒𝑒−𝑥𝑥d𝑥𝑥 −⋯
∞

0
 

                = 𝐶𝐶t̅Q(𝜏𝜏) − 1

�∆tQ(𝜏𝜏)

d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

+ 1
∆tQ(𝜏𝜏)

d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

 −⋯ 

= 𝐶𝐶t̅Qe(𝜏𝜏) + 1
∆tQ(𝜏𝜏)

d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

 −⋯,                                                                  (15) 

where 𝐶𝐶t̅Qe(𝜏𝜏) is defined as 

𝐶𝐶t̅Qe(𝜏𝜏) ≡ 𝐶𝐶t̅Q(𝜏𝜏)− 1

�∆tQ(𝜏𝜏)

d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

.                 (16) 

For the approximation of 𝐶𝐶̅(𝜏𝜏), one may be tempted to use 𝐶𝐶t̅Qe(𝜏𝜏) in Eq. (16). However, as 
proven in Text S1, the sheer use of 𝐶𝐶t̅Qe(𝜏𝜏)  is susceptible to the overestimation of the 
amplitude of 𝐶𝐶̅(𝜏𝜏) when 𝐶𝐶̅(𝜏𝜏) is rhythmic over time. To detour this overestimation problem, 
we take the Taylor expansion of the time-delayed form of 𝐶𝐶t̅Q(𝜏𝜏): 

𝐶𝐶t̅Q �𝜏𝜏 −
1

�∆tQ(𝜏𝜏)
� = 𝐶𝐶t̅Q(𝜏𝜏) − 1

�∆tQ(𝜏𝜏)

d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

+ 1
2∆tQ(𝜏𝜏)

d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

 −⋯.          (17) 

Strikingly, the zeroth-order and first-order derivative terms of 𝐶𝐶t̅Q(𝜏𝜏) on the right-hand side 
above are identical to 𝐶𝐶t̅Qe(𝜏𝜏), and the second-order derivative term still covers a half of that 

term in Eq. (15). Hence, 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� and correspondingly, 𝐶𝐶tQ �𝑡𝑡 − 𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡)� bear 
the potential for the approximants of 𝐶𝐶̅(𝜏𝜏) and 𝐶𝐶(𝑡𝑡), respectively. Besides, the overestimation 
of the amplitude of rhythmic 𝐶𝐶̅(𝜏𝜏)  by 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ

−1 2⁄ (𝜏𝜏)�  would not be as serious as by 

𝐶𝐶t̅Qe(𝜏𝜏) and at worst equals that by 𝐶𝐶t̅Q(𝜏𝜏) (Text S1), because 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� and 𝐶𝐶t̅Q(𝜏𝜏) 

themselves have the same amplitudes. 
   The distinct feature of 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ

−1 2⁄ (𝜏𝜏)�  or equivalent 𝐶𝐶tQ �𝑡𝑡 − 𝑘𝑘δ−1∆tQ
−1 2⁄ (𝑡𝑡)�  is the 

inclusion of an effective time delay 𝑘𝑘δ−1∆tQ
−1 2⁄ (𝑡𝑡) in the formation of AB complex. As we will 

address later, this feature helps to capture intriguing biomolecular dynamics with time-varying 
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molecular concentrations, which is not covered by the tQSSA. The effective time delay 
𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡) becomes prominent for small 𝑘𝑘δ and for unsaturated molecules A and B (in their 
binding) with comparable concentrations—with small 𝐴𝐴(𝜏𝜏) + 𝐵𝐵(𝜏𝜏) and [𝐴𝐴(𝜏𝜏) − 𝐵𝐵(𝜏𝜏)]2 in Eq. 
(6). In other words, in the opposite limit, the time delay becomes short and then 
𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ

−1 2⁄ (𝜏𝜏)� converges to 𝐶𝐶t̅Q(𝜏𝜏), the tQSSA. 

   One caveat with the use of 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� to estimate 𝐶𝐶̅(𝜏𝜏) is that 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ

−1 2⁄ (𝜏𝜏)� 

may not necessarily satisfy the relation 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� ≤ min�𝐴𝐴(𝜏𝜏),𝐵𝐵(𝜏𝜏)� favored by Eq. 

(3). As a practical safeguard to avoid this problem, we propose the following approximant for 
𝐶𝐶̅(𝜏𝜏) consistent with Eq. (3): 

𝐶𝐶�̅�𝛾(𝜏𝜏) ≡ min �𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� , �̅�𝐴(𝜏𝜏),𝐵𝐵�(𝜏𝜏)�.             (18) 

The corresponding approximant for 𝐶𝐶(𝑡𝑡) is 
𝐶𝐶𝛾𝛾(𝑡𝑡) ≡ min �𝐶𝐶tQ �𝑡𝑡 − 𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡)� ,𝐴𝐴(𝑡𝑡),𝐵𝐵(𝑡𝑡)�.             (19) 
As will be demonstrated later, the accuracy of this approximation [𝐶𝐶�̅�𝛾(𝜏𝜏) or 𝐶𝐶𝛾𝛾(𝑡𝑡)] surpasses 

that of the tQSSA [𝐶𝐶t̅Q(𝜏𝜏) or 𝐶𝐶tQ(𝑡𝑡)]. In the case where Eq. (8) is satisfied, 𝐶𝐶t̅Q �𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏)� 

and 𝐶𝐶tQ �𝑡𝑡 − 𝑘𝑘δ−1∆tQ
−1 2⁄ (𝑡𝑡)� in Eqs. (18) and (19) can be further approximated by the MM-like 

forms in Eq. (9) with the time-delay terms ∆tQ
−1 2⁄ (𝜏𝜏) ≈ 1/�1 + 𝐴𝐴(𝜏𝜏) + 𝐵𝐵(𝜏𝜏)�  and 

𝑘𝑘δ−1∆tQ
−1 2⁄ (𝑡𝑡) ≈ 𝑘𝑘δ−1𝐾𝐾/[𝐾𝐾 + 𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)]. On the other hand, Eqs. (18) and (19) are ill-defined 

for 𝜏𝜏 − ∆tQ
−1 2⁄ (𝜏𝜏) < 𝜏𝜏0 where 𝜏𝜏0 is an initial point of 𝜏𝜏. In fact, from the last term in Eq. (12), 𝜏𝜏 

should satisfy 𝜏𝜏 ≫ 𝜏𝜏0 + ∆tQ
−1/2(𝜏𝜏0) for the application of any rate law [e.g., Eq. (18) or (19), the 

tQSSA, and the sQSSA] whose form does not depend on the initial conditions.  
   One may question the analytical utility of 𝐶𝐶�̅�𝛾(𝜏𝜏) and 𝐶𝐶𝛾𝛾(𝑡𝑡) in Eqs. (18) and (19), regarding 
the apparent complexity of their mathematical structure. In Sec. III.E, our approach will be 
used to deliver valuable analytical insights into the system whose dynamics is otherwise not 
interpretable by the tQSSA or sQSSA.  
   To clarify the preconditions for the use of our approximation, we first revisit the condition in 
Eq. (10). Replacing 𝐶𝐶̅(𝜏𝜏) in Eq. (10) by 𝐶𝐶t̅Qe(𝜏𝜏) in Eqs. (15) and (16) leads to the following self-
consistency condition: 

𝜀𝜀1(𝜏𝜏) ≡ 1
∆tQ(𝜏𝜏) �

d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

� ≪ 1,      (20) 

where 𝐶𝐶t̅Q′ (𝜏𝜏) is given by 
d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

= 1

�∆tQ(𝜏𝜏)
��𝐵𝐵�(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)��̅�𝐴(𝜏𝜏)𝜇𝜇A(𝜏𝜏) + ��̅�𝐴(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)�𝐵𝐵�(𝜏𝜏)𝜇𝜇B(𝜏𝜏)�.  (21) 

Here, 𝜇𝜇A(𝜏𝜏) ≡ �̅�𝐴′(𝜏𝜏)/�̅�𝐴(𝜏𝜏)  , 𝜇𝜇B(𝜏𝜏) ≡ 𝐵𝐵�′(𝜏𝜏)/𝐵𝐵�(𝜏𝜏) , and the derivation of Eq. (21) is 
straightforward from Eq. (5). For the sake of simplicity, we will keep using these notations 
𝜇𝜇A(𝜏𝜏)  and 𝜇𝜇B(𝜏𝜏)  throughout this work. Next, we revisit another condition in Eq. (13). By 
applying �∆tQ(𝜏𝜏′) ≈ �∆tQ(𝜏𝜏) + (𝜏𝜏′ − 𝜏𝜏)��∆tQ(𝜏𝜏)�

′
 to Eq. (13), we obtain 

∆tQ−1(𝜏𝜏)��∆tQ(𝜏𝜏)�
′
≪ 1. By the definition of ∆tQ(𝜏𝜏) in Eq. (6), this condition is equivalent to 

𝜀𝜀2(𝜏𝜏) ≡ ∆tQ
−32(𝜏𝜏)|[1 + �̅�𝐴(𝜏𝜏) − 𝐵𝐵�(𝜏𝜏)]�̅�𝐴(𝜏𝜏)𝜇𝜇A(𝜏𝜏) + [1 + 𝐵𝐵�(𝜏𝜏) − �̅�𝐴(𝜏𝜏)]𝐵𝐵�(𝜏𝜏)𝜇𝜇B(𝜏𝜏)| ≪ 1.  (22) 

The last condition below arises from the comparison between Eqs. (15) and (17), which show 
the difference of ~∆tQ−1(𝜏𝜏)𝐶𝐶t̅Q′′ (𝜏𝜏)/2: 

𝜀𝜀𝛾𝛾(𝜏𝜏) ≡ 1
2∆tQ(𝜏𝜏)𝐶𝐶t̅Q�𝜏𝜏−∆tQ

−1 2⁄ (𝜏𝜏)�
�d

2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

� ≪ 1,     (23) 

where 𝐶𝐶t̅Q′′ (𝜏𝜏) is obtained from Eq. (21) as 
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d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

= ∆tQ
−32(𝜏𝜏) ��∆tQ(𝜏𝜏) − 2�̅�𝐴(𝜏𝜏)�1 + �̅�𝐴(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)���𝐵𝐵�(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)��̅�𝐴(𝜏𝜏)𝜇𝜇A2(𝜏𝜏) +

�∆tQ(𝜏𝜏)− 2𝐵𝐵�(𝜏𝜏)�1 + 𝐵𝐵�(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)����̅�𝐴(𝜏𝜏)− 𝐶𝐶t̅Q(𝜏𝜏)�𝐵𝐵�(𝜏𝜏)𝜇𝜇B2(𝜏𝜏) + �1 + ∆tQ(𝜏𝜏) −
[�̅�𝐴(𝜏𝜏) − 𝐵𝐵�(𝜏𝜏)]2��̅�𝐴(𝜏𝜏)𝐵𝐵�(𝜏𝜏)𝜇𝜇A(𝜏𝜏)𝜇𝜇B(𝜏𝜏) + ∆tQ(𝜏𝜏) ��𝐵𝐵�(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)��̅�𝐴(𝜏𝜏) d𝜇𝜇A(𝜏𝜏)

d𝜏𝜏
+

��̅�𝐴(𝜏𝜏) − 𝐶𝐶t̅Q(𝜏𝜏)�𝐵𝐵�(𝜏𝜏) d𝜇𝜇B(𝜏𝜏)
d𝜏𝜏

��.                                                                             (24) 

In summary, our approximant 𝐶𝐶�̅�𝛾(𝜏𝜏) shall work when Eqs. (20), (22), and (23) are satisfied. As 
we will show later, Eqs. (20) and (22) are in fact easy to satisfy and thus only Eq. (23) tends to 
serve as the relevant factor of the validity of 𝐶𝐶�̅�𝛾(𝜏𝜏). 
   On the other hand, the tQSSA would be valid in the following condition from Eq. (15), instead 
of the condition in Eq. (23): 

𝜀𝜀tQ(𝜏𝜏) ≡ 1
𝐶𝐶t̅Q(𝜏𝜏) �

1

�∆tQ(𝜏𝜏)

d𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏

− 1
∆tQ(𝜏𝜏)

d2𝐶𝐶t̅Q(𝜏𝜏)
d𝜏𝜏2

� ≪ 1,      (25) 

where 𝐶𝐶t̅Q′ (𝜏𝜏) and 𝐶𝐶t̅Q′′ (𝜏𝜏) are given by Eqs. (21) and (24), respectively. Note that this condition 
for the tQSSA is more rigorous than the previously-reported condition [21]. 
 
B. Transcription factor–DNA binding case 
 
Thus far, we have implicitly assumed the continuous nature of molecular concentrations as in 
Eq. (1) with the time derivative of 𝐶𝐶(𝑡𝑡) . However, there exist biomolecular events that 
fundamentally deviate from this assumption. For example, a transcription factor (TF) binds to 
a DNA molecule in the nucleus to regulate mRNA expression and the number of such a TF–
DNA assembly would be either 1 or 0 for a particular DNA site, which can afford at most one 
copy of the TF. This inherently discrete nature of the TF–DNA binding number is seemingly 
contrasted with the continuity of the molecular complex level in Eq. (1). To rigorously describe 
this TF–DNA binding dynamics, we harness the chemical master equation [29] instead of Eq. 
(1). 
   In this formulation, 𝑃𝑃(𝑛𝑛, 𝑡𝑡) denotes the probability that 𝑛𝑛 copies of the TF are occupying the 
target DNA site at time 𝑡𝑡. If this DNA site can afford at most 𝑁𝑁 copies of the TF at once, 𝑛𝑛 =
0, 1,⋯ ,𝑁𝑁  and ∑ 𝑃𝑃(𝑛𝑛, 𝑡𝑡)𝑁𝑁

𝑛𝑛=0 = 1 . If we further define 𝑃𝑃(𝑛𝑛, 𝑡𝑡) ≡ 0  for 𝑛𝑛 ≠ 0, 1,⋯ ,𝑁𝑁  and 
assume that the DNA-binding TFs are hardly accessible by molecular machineries such as for 
protein degradation, the temporal change of 𝑃𝑃(𝑛𝑛, 𝑡𝑡) with 𝑛𝑛 = 0, 1,⋯ ,𝑁𝑁 is governed by this 
master equation: 

𝜕𝜕𝑃𝑃(𝑛𝑛, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑘𝑘a𝑉𝑉 �𝐴𝐴TF(𝑡𝑡)−
𝑛𝑛 − 1
𝑉𝑉 � �𝐵𝐵DNA −

𝑛𝑛 − 1
𝑉𝑉

�𝑃𝑃(𝑛𝑛 − 1, 𝑡𝑡) − 

�𝑘𝑘a𝑉𝑉 �𝐴𝐴TF(𝑡𝑡) − 𝑛𝑛
𝑉𝑉
� �𝐵𝐵DNA −

𝑛𝑛
𝑉𝑉
�+ 𝑛𝑛𝑘𝑘δ�𝑃𝑃(𝑛𝑛, 𝑡𝑡) + (𝑛𝑛 + 1)𝑘𝑘δ𝑃𝑃(𝑛𝑛 + 1, 𝑡𝑡),    (26) 

where 𝑘𝑘a and 𝑘𝑘δ denote the TF–DNA binding and unbinding rates, respectively [analogous to 
the parameters in Eq. (1)], 𝑉𝑉 is the nuclear volume, 𝐴𝐴TF(𝑡𝑡) is the total TF concentration in the 
nucleus, and 𝐵𝐵DNA is the “concentration” of the target DNA site, i.e., 𝐵𝐵DNA = 𝑁𝑁𝑉𝑉−1. Here, we 
assume 𝐴𝐴TF(𝑡𝑡) ≫ 𝐵𝐵DNA  for little stochasticity in 𝐴𝐴TF(𝑡𝑡)  (i.e., 𝐴𝐴TF(𝑡𝑡)  to be uniquely 
determined at each time 𝑡𝑡) and the cell growth is negligible for a steady nuclear volume (i.e., 
𝑉𝑉 to remain constant over time). 
   Introducing a quantity 𝐶𝐶TF(𝑡𝑡) ≡ 〈𝑛𝑛𝑉𝑉−1〉 = 𝑉𝑉−1 ∑ 𝑛𝑛𝑃𝑃(𝑛𝑛, 𝑡𝑡)𝑁𝑁

𝑛𝑛=0  to Eq. (26) results in 

d𝐶𝐶TF(𝑡𝑡)
d𝑡𝑡

= 𝑘𝑘a� �𝐴𝐴TF(𝑡𝑡) −
𝑛𝑛
𝑉𝑉�
�𝐵𝐵DNA −

𝑛𝑛
𝑉𝑉
�𝑃𝑃(𝑛𝑛, 𝑡𝑡)

𝑁𝑁

𝑛𝑛=0

− 𝑘𝑘δ𝐶𝐶TF(𝑡𝑡) 

= 𝑘𝑘a �[𝐴𝐴TF(𝑡𝑡)− 𝐶𝐶TF(𝑡𝑡)][𝐵𝐵DNA − 𝐶𝐶TF(𝑡𝑡)] + 〈�𝑛𝑛
𝑉𝑉
�
2
〉 − 〈𝑛𝑛

𝑉𝑉
〉2� − 𝑘𝑘δ𝐶𝐶TF(𝑡𝑡),   (27) 

where 〈(𝑛𝑛𝑉𝑉−1)2〉 = 𝑉𝑉−2 ∑ 𝑛𝑛2𝑃𝑃(𝑛𝑛, 𝑡𝑡)𝑁𝑁
𝑛𝑛=0 . Eq. (27) is reminiscent of Eq. (1), when the stochastic 

fluctuation in the TF binding [〈(𝑛𝑛𝑉𝑉−1)2〉 − 〈𝑛𝑛𝑉𝑉−1〉2] is negligible. The stochastic fluctuation, 
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however, cannot be ignored for small 𝑁𝑁. For simplicity, we will henceforth consider the case 
of 𝑁𝑁 = 1 and thus of 𝐵𝐵DNA = 𝑉𝑉−1. In this case, Eq. (27) is rewritten as 

d𝐶𝐶T̅F(𝜏𝜏)
d𝜏𝜏

= �̅�𝐴TF(𝜏𝜏)
𝐾𝐾𝑉𝑉

− [1 + �̅�𝐴TF(𝜏𝜏)]𝐶𝐶T̅F(𝜏𝜏) = [1 + �̅�𝐴TF(𝜏𝜏)]�𝐶𝐶T̅FQ(𝜏𝜏)− 𝐶𝐶T̅F(𝜏𝜏)�,    (28) 
where 𝜏𝜏 ≡ 𝑘𝑘δ𝑡𝑡 and 𝐾𝐾 ≡ 𝑘𝑘δ/𝑘𝑘a as adopted in Eq. (2), �̅�𝐴TF(𝜏𝜏) ≡ 𝐴𝐴TF(𝑡𝑡)/𝐾𝐾, 𝐶𝐶T̅F(𝜏𝜏) ≡ 𝐶𝐶TF(𝑡𝑡)/
𝐾𝐾, and 𝐶𝐶T̅FQ(𝜏𝜏) is given by 

                       𝐶𝐶T̅FQ(𝜏𝜏) ≡  �̅�𝐴TF(𝜏𝜏)
𝐾𝐾𝑉𝑉[1+�̅�𝐴TF(𝜏𝜏)].           (29) 

In a similar fashion to the tQSSA in Sec. II.A, one may consider an estimate 𝐶𝐶T̅F(𝜏𝜏) ≈ 𝐶𝐶T̅FQ(𝜏𝜏), 
or equivalently, 𝐶𝐶TF(𝑡𝑡) ≈ 𝐶𝐶TFQ(𝑡𝑡) with this form: 

𝐶𝐶TFQ(𝑡𝑡) ≡  𝐴𝐴TF(𝑡𝑡)
𝑉𝑉[𝐾𝐾+𝐴𝐴TF(𝑡𝑡)].                      (30) 

𝐶𝐶TFQ(𝑡𝑡) looks very similar to the MM rate law, regarding 𝐵𝐵DNA = 𝑉𝑉−1. Nevertheless, 𝐶𝐶TFQ(𝑡𝑡) 
is not a mere continuum of Eq. (9), because the denominator in 𝐶𝐶TFQ(𝑡𝑡) includes 𝐾𝐾 + 𝐴𝐴TF(𝑡𝑡), 
but not 𝐾𝐾 + 𝐴𝐴TF(𝑡𝑡) + 𝑉𝑉−1 from 𝐵𝐵DNA = 𝑉𝑉−1. In fact, the discrepancy between 𝐶𝐶TFQ(𝑡𝑡) and 
Eq. (9) comes from the inherent stochasticity in the TF–DNA binding dynamics in Eqs. (26) and 
(27). In this regard, directly relevant to 𝐶𝐶TFQ(𝑡𝑡) is the stochastic version of the MM rate law 
with denominator 𝐾𝐾 + 𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡) − 𝑉𝑉−1  proposed by Levine and Hwa [30]. 𝐶𝐶TFQ(𝑡𝑡) is a 
fundamentally more correct approximant for the DNA-binding TF level with 𝑁𝑁 = 1 than both 
𝐶𝐶tQ(𝑡𝑡) [Eq. (7)] and its descendant [Eq. (9)]. 
   Still, the use of 𝐶𝐶TFQ(𝑡𝑡) to estimate 𝐶𝐶TF(𝑡𝑡) in Eq. (28) stands on the assumption that 𝐶𝐶TF(𝑡𝑡) 
approaches the equilibrium fast enough each time before the marked temporal change of 
𝐴𝐴TF(𝑡𝑡) . Following a similar procedure to Sec. II.A, we relieve this quasi-steady state 
assumption and improve the approximation of 𝐶𝐶TF(𝑡𝑡) in the case of time-varying 𝐴𝐴TF(𝑡𝑡). 
Notice that the exact solution of Eq. (28) is 

𝐶𝐶T̅F(𝜏𝜏) = � [1 + �̅�𝐴TF(𝜏𝜏′)]𝐶𝐶T̅FQ(𝜏𝜏′)𝑒𝑒−∫ �1+�̅�𝐴TF�𝜏𝜏′′��d
𝜏𝜏
𝜏𝜏′ 𝜏𝜏′′d𝜏𝜏′

𝜏𝜏

𝜏𝜏0
 

+𝐶𝐶T̅F(𝜏𝜏0)𝑒𝑒−∫ �1+�̅�𝐴TF�𝜏𝜏′��d
𝜏𝜏
𝜏𝜏0

𝜏𝜏′,                                                (31) 
where 𝜏𝜏0 denotes an arbitrarily assigned, initial point of 𝜏𝜏. Assume that 1 + �̅�𝐴TF(𝜏𝜏′) changes 
rather slowly over 𝜏𝜏′ to satisfy 

1 + �̅�𝐴TF(𝜏𝜏′) ≈ 1 + �̅�𝐴TF(𝜏𝜏) for 𝜏𝜏′ in the range 𝜏𝜏 − 1
1+�̅�𝐴TF(𝜏𝜏) ≲ 𝜏𝜏′ ≤ 𝜏𝜏.             (32) 

As we will show later, Eq. (32) is readily satisfied in physiologically-relevant conditions. With 
Eq. (32), Eq. (31) for 𝜏𝜏 ≫ 𝜏𝜏0 + [1 + �̅�𝐴TF(𝜏𝜏0)]−1 is approximated as 

𝐶𝐶T̅F(𝜏𝜏) ≈ [1 + �̅�𝐴TF(𝜏𝜏)]∫ 𝐶𝐶T̅FQ(𝜏𝜏′)𝑒𝑒−[1+�̅�𝐴TF(𝜏𝜏)]�𝜏𝜏−𝜏𝜏′�d𝜏𝜏′𝜏𝜏
−∞ .     (33) 

The Taylor expansion 𝐶𝐶T̅FQ(𝜏𝜏′) = 𝐶𝐶T̅FQ(𝜏𝜏) − (𝜏𝜏 − 𝜏𝜏′)𝐶𝐶T̅FQ′ (𝜏𝜏) + (𝜏𝜏 − 𝜏𝜏′)2�̅�𝐶TFQ′′ (𝜏𝜏)/2−⋯ 
leads Eq. (33) to 

𝐶𝐶T̅F(𝜏𝜏) ≈ 𝐶𝐶T̅FQ(𝜏𝜏)−
1

1 + �̅�𝐴TF(𝜏𝜏)
d𝐶𝐶T̅FQ(𝜏𝜏)

d𝜏𝜏
� 𝑥𝑥𝑒𝑒−𝑥𝑥d𝑥𝑥
∞

0

+
1

2[1 + �̅�𝐴TF(𝜏𝜏)]2
d2𝐶𝐶T̅FQ(𝜏𝜏)

d𝜏𝜏2
� 𝑥𝑥2𝑒𝑒−𝑥𝑥d𝑥𝑥 −⋯
∞

0
 

                = 𝐶𝐶T̅FQ(𝜏𝜏)− 1
1+�̅�𝐴TF(𝜏𝜏)

d𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏

+ 1
[1+�̅�𝐴TF(𝜏𝜏)]2

d2𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏2

 −⋯ 

= 𝐶𝐶T̅FQe(𝜏𝜏) + 1
[1+�̅�𝐴TF(𝜏𝜏)]2

d2𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏2

 −⋯,                                                (34) 

where 𝐶𝐶T̅FQe(𝜏𝜏) is defined as 

𝐶𝐶T̅FQe(𝜏𝜏) ≡ 𝐶𝐶T̅FQ(𝜏𝜏) − 1
1+�̅�𝐴TF(𝜏𝜏)

d𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏

.                 (35) 

In a similar way to Sec. II.A, we take the Taylor expansion of the time-delayed form of 𝐶𝐶T̅FQ(𝜏𝜏): 

𝐶𝐶T̅FQ �𝜏𝜏 −
1

1+�̅�𝐴TF(𝜏𝜏)� = 𝐶𝐶T̅FQ(𝜏𝜏)− 1
1+�̅�𝐴TF(𝜏𝜏)

d𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏

+ 1
2[1+�̅�𝐴TF(𝜏𝜏)]2

d2𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏2

 −⋯.  (36) 
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Interestingly, the zeroth-order and first-order derivative terms of 𝐶𝐶T̅FQ(𝜏𝜏) on the right-hand 
side above are identical to 𝐶𝐶T̅FQe(𝜏𝜏), and the second-order derivative term still covers a half 
of that term in Eq. (34). Hence, we propose the following approximant for 𝐶𝐶T̅F(𝜏𝜏): 

𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) ≡ 𝐶𝐶T̅FQ �𝜏𝜏 −
1

1+�̅�𝐴TF(𝜏𝜏)�.             (37) 

The corresponding approximant for 𝐶𝐶TF(𝑡𝑡) is 

𝐶𝐶TF𝛾𝛾(𝑡𝑡) ≡ 𝐶𝐶TFQ �𝑡𝑡 −
𝑘𝑘δ
−1𝐾𝐾

𝐾𝐾+𝐴𝐴TF(𝑡𝑡)�.             (38) 

As will be shown later, the accuracy of the approximant 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) or 𝐶𝐶TF𝛾𝛾(𝑡𝑡) surpasses that of 
𝐶𝐶T̅FQ(𝜏𝜏)  or 𝐶𝐶TFQ(𝑡𝑡) . On the other hand, Eqs. (37) and (38) are ill-defined for 𝜏𝜏 −
[1 + �̅�𝐴TF(𝜏𝜏)]−1 < 𝜏𝜏0 where 𝜏𝜏0 is an initial point of 𝜏𝜏. In fact, from the last term in Eq. (31), 𝜏𝜏 
should satisfy 𝜏𝜏 ≫ 𝜏𝜏0 + [1 + �̅�𝐴TF(𝜏𝜏0)]−1 for the application of any rate law [e.g., Eq. (37), 
(38), or (30)] whose form does not depend on the initial conditions. 
   To clarify the preconditions for the use of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) or 𝐶𝐶TF𝛾𝛾(𝑡𝑡), we first revisit the condition 
in Eq. (32). Applying 1 + �̅�𝐴TF(𝜏𝜏′) ≈ 1 + �̅�𝐴TF(𝜏𝜏) + (𝜏𝜏′ − 𝜏𝜏)�̅�𝐴TF′ (𝜏𝜏) to Eq. (32) gives rise to this 
condition: 

𝜀𝜀TF(𝜏𝜏) ≡ �̅�𝐴TF(𝜏𝜏)
[1+�̅�𝐴TF(𝜏𝜏)]2

|𝜇𝜇TF(𝜏𝜏)| ≪ 1,       (39) 

where 𝜇𝜇TF(𝜏𝜏) ≡ �̅�𝐴TF′ (𝜏𝜏)/�̅�𝐴TF(𝜏𝜏). Next, the comparison between Eqs. (34) and (36) shows the 
difference of ~𝐶𝐶T̅FQ′′ (𝜏𝜏)/{2[1 + �̅�𝐴TF(𝜏𝜏)]2} and thereby offers this condition: 

𝜀𝜀TF𝛾𝛾(𝜏𝜏) ≡ 1
2[1+�̅�𝐴TF(𝜏𝜏)]2𝐶𝐶T̅FQ{𝜏𝜏−[1+�̅�𝐴TF(𝜏𝜏)]−1} �

d2𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏2

� ≪ 1,     (40) 

where 𝐶𝐶T̅FQ′′ (𝜏𝜏) is obtained from Eq. (29) as 
d2𝐶𝐶T̅FQ(𝜏𝜏)

d𝜏𝜏2
= 𝐶𝐶T̅FQ(𝜏𝜏)

1+�̅�𝐴TF(𝜏𝜏) �
1−�̅�𝐴TF(𝜏𝜏)
1+�̅�𝐴TF(𝜏𝜏)𝜇𝜇TF

2 (𝜏𝜏) + d𝜇𝜇TF(𝜏𝜏)
d𝜏𝜏

�.      (41) 

In summary, our approximant 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) shall work when Eqs. (39) and (40) are satisfied. As we 
will show later, Eq. (39) is in fact easy to satisfy and thus only Eq. (40) tends to serve as a key 
factor for the validity of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏). 
   On the other hand, the MM-like formula 𝐶𝐶T̅FQ(𝜏𝜏) would be valid in the following condition 
from Eq. (34), instead of the condition in Eq. (40): 

𝜀𝜀TFQ(𝜏𝜏) ≡ 1
𝐶𝐶T̅FQ(𝜏𝜏) �

1
1+�̅�𝐴TF(𝜏𝜏)

d𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏

− 1
[1+�̅�𝐴TF(𝜏𝜏)]2

d2𝐶𝐶T̅FQ(𝜏𝜏)
d𝜏𝜏2

� ≪ 1,      (42) 

where 𝐶𝐶T̅FQ′ (𝜏𝜏) = 𝜇𝜇TF(𝜏𝜏)𝐶𝐶T̅FQ(𝜏𝜏)/[1 + �̅�𝐴TF(𝜏𝜏)] from Eq. (29) and 𝐶𝐶T̅FQ′′ (𝜏𝜏) is given by Eq. (41). 
 
III. BIOPHYSICAL APPLICATIONS 
 
In Sec. II, we derived the revised versions of the MM rate law for time-varying concentrations 
of molecular components. Here, we will apply this revised rate law to a number of 
biomolecular processes, in comparison with the existing approaches—the tQSSA and sQSSA. 
In Secs. III.A–III.C, we will focus on the approximation of quantitative dynamical profiles, and 
in Secs. III.D and III.E on the prediction for qualitatively new dynamical patterns not expected 
by the existing approaches. 
 
A. Biochemical reaction and transport 
 
Imagine that substrate A binds to enzyme B, which catalyzes a metabolic reaction to convert 
A to another molecule. The formation of the enzyme–substrate complex follows Eq. (1) or its 
equivalent Eq. (2). In Eq. (1), we set 𝑘𝑘δ = 𝑘𝑘d + 𝑟𝑟c where 𝑟𝑟c is interpreted as the catalytic rate 
constant of the reaction (conventionally written as 𝑘𝑘cat in literature), and 𝑘𝑘loc = 𝑘𝑘dlt = 0. In 
this system, the total substrate concentration 𝐴𝐴(𝑡𝑡) changes over time as 

d𝐴𝐴(𝑡𝑡)
d𝑡𝑡

= −𝑟𝑟c𝐶𝐶(𝑡𝑡),        (43) 
which is equivalent to 
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𝜇𝜇A(𝜏𝜏) = − 𝑟𝑟c
𝑘𝑘δ

𝐶𝐶̅(𝜏𝜏)
�̅�𝐴(𝜏𝜏)

.        (44) 

𝜇𝜇A(𝜏𝜏) is defined in Sec. II.A as 𝜇𝜇A(𝜏𝜏) ≡ �̅�𝐴′(𝜏𝜏)/�̅�𝐴(𝜏𝜏). We further assume that the total enzyme 
concentration is constant over time [𝐵𝐵�(𝜏𝜏) = 𝐵𝐵�  and 𝜇𝜇B(𝜏𝜏) = 0 when 𝜇𝜇B(𝜏𝜏) ≡ 𝐵𝐵�′(𝜏𝜏)/𝐵𝐵�(𝜏𝜏) as 
defined in Sec. II.A]. Eqs. (2) and (44) fully determine the time course of the system with given 
initial conditions and parameters. 
   Unlike other molecular events that we will consider later, the majority of known metabolic 
reactions are likely to be modeled by the sQSSA or tQSSA to a sufficient degree, without the 
need for our proposed formula 𝐶𝐶𝛾𝛾(𝑡𝑡) in Eq. (19) [or equivalently, 𝐶𝐶�̅�𝛾(𝜏𝜏) in Eq. (18)]. Indeed, (i) 
most enzymatic reactions in Table S1 satisfy Eq. (25) as well as Eqs. (20) and (22) (i.e., 
𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀tQ ≪ 1 in Table S1), although a malate dehydrogenase does not follow Eq. (25) very well 
when the substrate is oxaloacetate, and (ii) the enzyme levels in Table S1 are generally much 
lower than the substrate levels, despite two exceptions of malate dehydrogenase and 
succinate dehydrogenase (fumarate as a substrate). According to the discussion in Sec. II.A, 
these (i) and (ii) indicate that the tQSSA [relevant to (i)] or sQSSA [relevant to (i) and (ii)] would 
often suffice for the kinetic modeling of metabolic reactions. Of note, the sQSSA has long been 
considered as suitable for the modeling of metabolic reactions [1–3]. Yet, as we will analyze 
below, the malate dehydrogenase kinetics is precisely described by our formula 𝐶𝐶𝛾𝛾(𝑡𝑡) , 
whereas the tQSSA and sQSSA perform rather erroneously. 
   In addition, we examine the case of nutrient transport into a cell, where an “enzyme” is a 
transporter protein on the cell surface and a substrate is a small molecule nutrient in the 
extracellular environment. 𝑟𝑟c is then interpreted as the uptake rate of a transporter-binding 
nutrient. We assume that as the cells reproduce, the transporters increase over time with 
constant 𝜇𝜇B(𝜏𝜏) = 𝜇𝜇B, which is equal to the cell growth rate divided by 𝑘𝑘δ. With this 𝜇𝜇B(𝜏𝜏), 
Eqs. (2) and (44) govern the full kinetics of the nutrient transport. Our analysis of the well-
documented, phosphotransferase system (PTS) in bacterium Escherichia coli reveals that the 
sQSSA alone would suffice to describe this system without the need for 𝐶𝐶𝛾𝛾(𝑡𝑡), as in Table S2 
where 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀tQ ≪ 1 and the transporter level is far below the nutrient level. 
   As mentioned above, Table S1 indicates that oxaloacetate conversion by malate 
dehydrogenase would be well described by our revised MM rate law [𝐶𝐶𝛾𝛾(𝑡𝑡)], compared to the 
tQSSA and sQSSA. Indeed, the time trajectory of 𝐶𝐶𝛾𝛾(𝑡𝑡) shows remarkable agreement with the 
simulated enzyme-binding substrate levels [𝐶𝐶(𝑡𝑡)] from Eqs. (2) and (44), after some transient 
period of 𝐶𝐶(𝑡𝑡) that depends on the initial condition (Fig. 1 and Text S2); meanwhile, the tQSSA 
is ~0.3-ms more advanced than 𝐶𝐶(𝑡𝑡)  in the overall profile and the sQSSA severely 
overestimates 𝐶𝐶(𝑡𝑡) [Fig. 1(b)]. For example, at 𝑡𝑡 = 1.9 ms, 𝐶𝐶(𝑡𝑡) ≈ 𝐶𝐶𝛾𝛾(𝑡𝑡) = 0.13 μM and the 
sQSSA leads to 0.31 μM, while the tQSSA results in 0.13 μM at 𝑡𝑡 = 1.6 ms [Fig. 1(b)]. The 
overall time shift of the tQSSA from 𝐶𝐶(𝑡𝑡)  is caused by the discarding of the time delay 
[ ~𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡) ] in enzyme–substrate complex formation in the tQSSA, and the 
overestimation of 𝐶𝐶(𝑡𝑡) by the sQSSA comes from the unlimited enzyme–substrate binding 
with the increasing enzymes {𝐴𝐴(𝑡𝑡)𝐵𝐵(𝑡𝑡)/[𝐾𝐾 + 𝐴𝐴(𝑡𝑡)]} in the sQSSA. 
   To conclude, our revised MM rate law provides quantitatively better approximation of the 
above malate dehydrogenase kinetics than the existing approaches, although the latter are 
likely to be sufficient for the modeling of many metabolic reaction and transport systems. In 
the case of protein–protein and TF–DNA interactions, the utility of the revised rate law is more 
prominent, as we will address below. 
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FIG. 1. Oxaloacetate (substrate) conversion by malate dehydrogenase (enzyme). (a) The total substrate 
concentration over time, calculated by Eqs. (2) and (44) (Text S2). The initial substrate concentration is 
set as the substrate concentration in Table S1. (b) The enzyme-binding substrate concentrations 
calculated by Eq. (2) (black solid line; black dotted line for a transient period described below), by our 
revised MM rate law (blue solid line), by the tQSSA (green solid line), and by the sQSSA (green dashed 
line) (Text S2). These calculations are based on the total substrate concentration in (a). An inset shows 
a more complete range of the enzyme-binding substrate concentration from the sQSSA. In (a) and (b), 
we used the parameters and total enzyme concentration in Table S1. When solving Eqs. (2) and (44), 
the initial concentration of the enzyme-binding substrate was set to zero. As discussed in Sec. II.A, any 
form of a rate law without the initial-condition dependency would only work for 𝑡𝑡 ≫ 𝑘𝑘δ−1∆tQ

−1 2⁄ (0), and 
also our revised MM rate law is ill-defined for a period 𝑡𝑡 < 𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡) ; therefore, for the right 
comparison with our revised rate law, (b) presents the tQSSA and sQSSA results only after 𝑡𝑡 =
𝑘𝑘δ−1∆tQ

−1 2⁄ (𝑡𝑡) (vertical dashed line). 

 
B. Protein–protein interaction 
 
Next, we move to the case of protein–protein interactions. The interacting proteins often 
show the concentrations comparable with each other [15–17], and thus the tQSSA, not the 
sQSSA, has recently been recommended for the modeling of their interactions [12,18]. Here, 
we will focus on the interactions between proteins whose abundances oscillate over time with 
circadian rhythmicity, i.e., ~24-h periodicity. Circadian protein oscillations play a pivotal role 
in coordinating numerous physiological processes [25,26]. Such time-varying nature in protein 
abundances might even challenge the relevance of the tQSSA and would serve as a testbed 
for our revised MM rate law 𝐶𝐶�̅�𝛾(𝜏𝜏) in Eq. (18). 
   Suppose that proteins A and B have oscillating concentrations with sinusoidal forms: 
𝐴𝐴(𝜏𝜏) = 𝐴𝐴max �1 −

𝛼𝛼A
2
�1 + cos � 2𝜋𝜋

𝑘𝑘δ𝑇𝑇
𝜏𝜏��� and 𝐵𝐵(𝜏𝜏) = 𝐵𝐵max �1 −

𝛼𝛼B
2
�1 + cos � 2𝜋𝜋

𝑘𝑘δ𝑇𝑇
𝜏𝜏 − 𝜑𝜑B���,  

(45) 
where 𝐴𝐴max  (𝐵𝐵max ), 𝛼𝛼A(B) , 𝑇𝑇 , and 𝜑𝜑B  denote the peak level of 𝐴𝐴(𝜏𝜏) [𝐵𝐵(𝜏𝜏)], the peak-to-
trough difference of 𝐴𝐴(𝜏𝜏) [𝐵𝐵(𝜏𝜏)] divided by the peak level, the oscillation period of a circadian 
or diurnal rhythm, and the phase difference between 𝐴𝐴(𝜏𝜏) and 𝐵𝐵(𝜏𝜏), respectively. Here, 𝛼𝛼A 
and 𝛼𝛼B range from 0 to 1 (the closer they are to 1, the stronger the oscillations) and 0 ≤ 𝜑𝜑B ≤
𝜋𝜋 without loss of generality. Throughout this study, we choose 𝑇𝑇 = 24 h. Based on 𝐴𝐴(𝜏𝜏) and 
𝐵𝐵(𝜏𝜏) in Eq. (45), we numerically solve Eq. (2) to obtain 𝐶𝐶̅(𝜏𝜏) (Text S2), and evaluate how well 
𝐶𝐶̅(𝜏𝜏) is approximated by each of 𝐶𝐶�̅�𝛾(𝜏𝜏), the tQSSA 𝐶𝐶t̅Q(𝜏𝜏) in Eq. (5), and the sQSSA in Eq. (9). 
   As illustrated in Fig. 2(a), we observe that 𝐶𝐶�̅�𝛾(𝜏𝜏)  tends to better match the temporal 
trajectory of 𝐶𝐶̅(𝜏𝜏) than the tQSSA and sQSSA. For systematic evaluation, we define 𝜙𝜙𝛾𝛾𝑡𝑡 , 𝜙𝜙tQ𝑡𝑡 , 
and 𝜙𝜙sQ𝑡𝑡  as the phase differences in hours between 𝐶𝐶�̅�𝛾(𝜏𝜏) and 𝐶𝐶̅(𝜏𝜏), between the tQSSA and 
𝐶𝐶̅(𝜏𝜏), and between the sQSSA and 𝐶𝐶̅(𝜏𝜏), respectively (Text S2). The sign of a given phase 
difference is assigned positive (negative) if the corresponding trajectory has a more advanced 
(delayed) phase than 𝐶𝐶̅(𝜏𝜏). We observe that the signs of 𝜙𝜙tQ𝑡𝑡  and 𝜙𝜙sQ𝑡𝑡  are always positive and 
the sign of 𝜙𝜙𝛾𝛾𝑡𝑡  is mostly negative. In the example of Fig. 2(a), 𝜙𝜙𝛾𝛾𝑡𝑡 = −1.0 h, 𝜙𝜙tQ𝑡𝑡 = 3.05 h, 
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𝜙𝜙sQ𝑡𝑡 = 3.1 h, and hence �𝜙𝜙𝛾𝛾𝑡𝑡� is smaller than �𝜙𝜙tQ𝑡𝑡 � and �𝜙𝜙sQ𝑡𝑡 �. We did find that �𝜙𝜙𝛾𝛾𝑡𝑡� tends to 
be smaller than �𝜙𝜙tQ𝑡𝑡 � and �𝜙𝜙sQ𝑡𝑡 � across physiologically-relevant conditions [Fig. 2(b) and 𝑃𝑃 <
10−4 ; see Table S3 and Text S2]. Remarkably, when �𝜙𝜙𝛾𝛾𝑡𝑡� , �𝜙𝜙tQ𝑡𝑡 � , or �𝜙𝜙sQ𝑡𝑡 �  is ≥1 h, most 
parameter conditions (86.2%) have �𝜙𝜙𝛾𝛾𝑡𝑡� less than both �𝜙𝜙tQ𝑡𝑡 � and �𝜙𝜙sQ𝑡𝑡 � at least by one hour, 
and some of them (22.9%) even at least by two hours [Figs. 2(c) and 2(d); 𝑃𝑃 < 10−4 and Text 
S2]. These findings establish the tendency that 𝐶𝐶�̅�𝛾(𝜏𝜏) is more likely to resemble 𝐶𝐶̅(𝜏𝜏) in the 
phase than the tQSSA and sQSSA. 
 
 

 
FIG. 2. Protein–protein interaction modeling. (a) Example time series of �̅�𝐴(𝜏𝜏) (bluish) and 𝐵𝐵�(𝜏𝜏) (gray) at 
the top, 𝐶𝐶̅(𝜏𝜏) (black) and 𝐶𝐶�̅�𝛾(𝜏𝜏) (blue) at the center, and 𝐶𝐶̅(𝜏𝜏) (black), the tQSSA 𝐶𝐶t̅Q(𝜏𝜏) (green solid 
line), and the sQSSA (green dashed line) at the bottom. The calculations are based on Eqs. (2), (5), (9), 
(18), and (45), and 𝑡𝑡 = 𝑘𝑘δ−1𝜏𝜏 as defined in Sec. II.A. (b) Probability distributions of �𝜙𝜙𝛾𝛾𝑡𝑡� (blue solid line), 
�𝜙𝜙tQ𝑡𝑡 � (green solid line), and �𝜙𝜙sQ𝑡𝑡 � (green dashed line) over randomly-sampled parameter sets in Table 
S3. (c,d) Scatter plot of �𝜙𝜙tQ𝑡𝑡 � and �𝜙𝜙𝛾𝛾𝑡𝑡� (c), or that of �𝜙𝜙sQ𝑡𝑡 � and �𝜙𝜙𝛾𝛾𝑡𝑡� (d), when �𝜙𝜙𝛾𝛾𝑡𝑡�, �𝜙𝜙tQ𝑡𝑡 �, or �𝜙𝜙sQ𝑡𝑡 � is ≥1 
h with randomly-sampled parameter sets in Table S3. A solid diagonal line corresponds to �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙tQ𝑡𝑡 � 
(c) or �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙sQ𝑡𝑡 � (d), a dashed diagonal line to �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙tQ𝑡𝑡 � − 1h (c) or �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙sQ𝑡𝑡 � − 1h (d), and a 
dotted diagonal line to �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙tQ𝑡𝑡 � − 2h (c) or �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙sQ𝑡𝑡 � − 2h (d). Although not covered in (b) and 
(d), �𝜙𝜙sQ𝑡𝑡 � > 6h for a tiny portion of the parameter sets (0.03%), in which still �𝜙𝜙𝛾𝛾𝑡𝑡�, �𝜙𝜙tQ𝑡𝑡 � ≤ 1h. (e) 
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Probability distributions of 𝑆𝑆𝛾𝛾 (blue solid line), 𝑆𝑆tQ (green solid line), and 𝑆𝑆sQ (green dashed line) over 
randomly-sampled parameter sets in Table S3. (f) When based on Eq. (46), example time series of �̅�𝐴(𝜏𝜏) 
(bluish) and 𝐵𝐵�(𝜏𝜏) (gray) at the top, 𝐶𝐶̅(𝜏𝜏) (black) and 𝐶𝐶�̅�𝛾(𝜏𝜏) (blue) at the center, and 𝐶𝐶̅(𝜏𝜏) (black), the 
tQSSA 𝐶𝐶t̅Q(𝜏𝜏) (green solid line), and the sQSSA (green dashed line) at the bottom. They were calculated 
in the same way as (a), except for the use of Eq. (46) instead of Eq. (45). For the detailed methods in 
(a)–(f) and the parameters in (a) and (f), refer to Text S2. 
 
Other than phases, wave profiles (determined by the waveforms and peak levels) are the 
important features of oscillatory molecular behaviors. Therefore, we define similarity 𝑆𝑆𝛾𝛾 
between the profiles of 𝐶𝐶�̅�𝛾(𝜏𝜏) and 𝐶𝐶̅(𝜏𝜏) by aligning their phases to the same (Text S2). 𝑆𝑆𝛾𝛾 is 
devised to approach 1 away from 0, as the two wave profiles quantitatively better match each 
other. We also define the similarity measures 𝑆𝑆tQ and 𝑆𝑆sQ for the tQSSA and 𝐶𝐶̅(𝜏𝜏) and for the 
sQSSA and 𝐶𝐶̅(𝜏𝜏), respectively (Text S2). In the example of Fig. 2(a), 𝑆𝑆𝛾𝛾 = 0.86, 𝑆𝑆tQ = 0.86, and 
𝑆𝑆sQ = 0.83. Based on Eq. (18), one can expect that the main difference between 𝐶𝐶�̅�𝛾(𝜏𝜏) and 
𝐶𝐶t̅Q(𝜏𝜏) would be attributed to their phases, rather than to their shapes. As expected, 𝑆𝑆𝛾𝛾 and 
𝑆𝑆tQ tend to be almost equal to each other [Spearman's 𝜌𝜌 = 0.89 and 𝑃𝑃 < 10−4; see Fig. 2(e) 
and Text S2]. On the other hand, consistent with the previous suggestions that the tQSSA is 
more accurate than the sQSSA [12], we found that 𝑆𝑆sQ tends to be below 𝑆𝑆𝛾𝛾 and 𝑆𝑆tQ [Fig. 2(e); 
𝑃𝑃 < 10−4 and Text S2]. Together, 𝐶𝐶�̅�𝛾(𝜏𝜏) and the tQSSA better approximate the wave profile 
of 𝐶𝐶̅(𝜏𝜏) than the sQSSA. 
   To summarize, our revised rate law 𝐶𝐶�̅�𝛾(𝜏𝜏) tends to serve as a good approximant for 𝐶𝐶̅(𝜏𝜏), 
with a more accurate phase than the tQSSA and sQSSA’s and with a wave profile as accurate 
as the tQSSA’s. One may expect that such a high accuracy of 𝐶𝐶�̅�𝛾(𝜏𝜏) compared to the tQSSA’s 
might be indicated by the range of its valid conditions in Eqs. (20), (22), and (23). In fact, most 
of the physiologically-relevant conditions in Table S3 (88.1%) satisfy both max𝜏𝜏[𝜀𝜀1(𝜏𝜏)] ≤ 0.1 
and max𝜏𝜏[𝜀𝜀2(𝜏𝜏)] ≤ 0.1, and therefore only 𝜀𝜀𝛾𝛾(𝜏𝜏) and 𝜀𝜀tQ(𝜏𝜏) remain the key determinants of 
the validities of 𝐶𝐶�̅�𝛾(𝜏𝜏) and the tQSSA, respectively. Our analysis reveals that max𝜏𝜏�𝜀𝜀𝛾𝛾(𝜏𝜏)� ≤
0.1 for 55.9% of the simulated conditions and max𝜏𝜏�𝜀𝜀tQ(𝜏𝜏)� ≤ 0.1 for 45.4% of the same 
conditions, supporting the wider applicability of 𝐶𝐶�̅�𝛾(𝜏𝜏)  than the tQSSA’s. Naturally, 
max𝜏𝜏�𝜀𝜀𝛾𝛾(𝜏𝜏)�  and max𝜏𝜏�𝜀𝜀tQ(𝜏𝜏)�  correlate positively with �𝜙𝜙𝛾𝛾𝑡𝑡�  and �𝜙𝜙tQ𝑡𝑡 � , respectively 
(Spearman's 𝜌𝜌 = 0.52  between max𝜏𝜏�𝜀𝜀𝛾𝛾(𝜏𝜏)�  and �𝜙𝜙𝛾𝛾𝑡𝑡�  with 𝑃𝑃 < 10−4 , and 𝜌𝜌 = 0.74 
between max𝜏𝜏�𝜀𝜀tQ(𝜏𝜏)� and �𝜙𝜙tQ𝑡𝑡 � with 𝑃𝑃 < 10−4; see Text S2). 
   Although physiologically less relevant, the oscillatory protein levels with irregular 
rhythmicity may provide another testbed for the approximating capability of 𝐶𝐶�̅�𝛾(𝜏𝜏). Hence, 
instead of Eq. (45), we consider the following 𝐴𝐴(𝜏𝜏) and 𝐵𝐵(𝜏𝜏) and numerically solve Eq. (2): 

𝐴𝐴(𝜏𝜏) = 1
𝑁𝑁
∑ 𝐴𝐴max,𝑖𝑖 �1 −

𝛼𝛼A,𝑖𝑖
2
�1 + cos � 2𝜋𝜋

𝑘𝑘δ𝑇𝑇A,𝑖𝑖
𝜏𝜏 − 𝜑𝜑A,𝑖𝑖���𝑁𝑁

𝑖𝑖=1 , 

𝐵𝐵(𝜏𝜏) = 1
𝑁𝑁
∑ 𝐵𝐵max,𝑖𝑖 �1 −

𝛼𝛼B,𝑖𝑖
2
�1 + cos� 2𝜋𝜋

𝑘𝑘δ𝑇𝑇B,𝑖𝑖
𝜏𝜏 − 𝜑𝜑B,𝑖𝑖���𝑁𝑁

𝑖𝑖=1 .  (46) 

We further choose 𝑁𝑁 = 10 and randomly select the other parameters from the ranges in Text 
S2. Still, we find that 𝐶𝐶�̅�𝛾(𝜏𝜏) tends to better approximate even such an irregular profile of 𝐶𝐶(𝜏𝜏) 
than the tQSSA and sQSSA, as illustrated in Fig. 2(f). 
   Next, we move to a real-world example of oscillating-protein interactions. In plant 
Arabidopsis thaliana, ZEITLUPE (ZTL) is an essential protein for a normal circadian periodicity. 
ZTL is stabilized by a direct interaction with another protein GIGANTEA (GI), and this 
interaction is enhanced by blue light [31–33]. As a result, ZTL protein levels oscillate in light–
dark cycles, despite the constitutive mRNA expression of ZTL [31]. We here assess how well 
our revised MM rate law accounts for the experimental ZTL profile over time, through the 
modeling of the ZTL–GI interaction. If 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) represent the ZTL and GI concentrations, 
respectively, then the ZTL turnover dynamics can be described by the following equation: 
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d𝐴𝐴(𝑡𝑡)
d𝑡𝑡

= 𝑔𝑔A − 𝑟𝑟c𝐶𝐶(𝑡𝑡) − 𝑟𝑟A[𝐴𝐴(𝑡𝑡) − 𝐶𝐶(𝑡𝑡)],      (47) 
where 𝑔𝑔A is the ZTL synthesis rate, 𝐶𝐶(𝑡𝑡) is the concentration of ZTL–GI complex, and 𝑟𝑟A and 𝑟𝑟c 
denote the degradation rates of free ZTL and GI-binding ZTL, respectively. 𝑟𝑟c < 𝑟𝑟A because GI 
stabilizes ZTL. We assume 𝑘𝑘δ = 𝑘𝑘d + 𝑟𝑟c and 𝐶𝐶(𝑡𝑡) is determined by Eq. (1). Because blue light 
enhances the ZTL–GI interaction, we assume that 𝑘𝑘d and 𝐾𝐾 in light do not exceed 𝑘𝑘d and 𝐾𝐾 in 
darkness, respectively. We set 𝐵𝐵(𝑡𝑡) as the known GI profile [Fig. 3(a)] [31] multiplied by a 
scaling coefficient 𝑤𝑤GI, because the original GI profile is given by the concentration levels at a 
relative scale, not at the absolute scale. For the same reason, when comparing 𝐴𝐴(𝑡𝑡) with the 
experimental ZTL profile [Fig. 3(a)] [31], we use 𝐴𝐴s(𝑡𝑡) ≡ 𝐴𝐴(𝑡𝑡)/𝑤𝑤ZTL where 𝑤𝑤ZTL is another 
scaling coefficient. 
 
 

 
FIG. 3. ZTL–GI interaction in Arabidopsis. (a) The experimental GI levels (dots) [31] and their 
interpolation (dashed line) at the top, and the experimental ZTL levels (dots) [31], their interpolation 
(dashed line), and version (i)-based 𝐴𝐴s(𝑡𝑡) (solid line) at the bottom. (b) The experimental ZTL levels 
(dots) and their interpolation (dashed line) in (a), together with 𝐴𝐴s(𝑡𝑡) (solid line) from version (ii) at the 
top, or version (iii) at the bottom. In (a) and (b), 𝐴𝐴s(𝑡𝑡) and versions (i)–(iii) are defined in Sec. III.B and 
were computed with a given parameter set in Text S2. Horizontal white and black segments in (a) and 
(b) correspond to light and dark intervals, respectively. (c,d) Scatter plot of 𝑆𝑆ZTLQ and 𝑆𝑆ZTL𝛾𝛾 (c), or that 
of 𝑆𝑆ZTL and 𝑆𝑆ZTL𝛾𝛾 (d), over randomly-selected parameter sets in Table S4. A diagonal line corresponds 
to 𝑆𝑆ZTL𝛾𝛾 = 𝑆𝑆ZTLQ (c) or 𝑆𝑆ZTL𝛾𝛾 = 𝑆𝑆ZTL (d). For the detailed methods in (a)–(d), refer to Text S2. 
 
We compute three different versions of 𝐴𝐴(𝑡𝑡) for their comparison with the experimental ZTL 
profile: (i) the first version is the solution of 𝐴𝐴(𝑡𝑡) from Eqs. (1) and (47), (ii) the second version 
is the solution of only Eq. (47) with the replacement of 𝐶𝐶(𝑡𝑡) by 𝐶𝐶𝛾𝛾(𝑡𝑡) in Eq. (19), and (iii) the 
last version is similar to version (ii), but with the replacement of 𝐶𝐶(𝑡𝑡) by 𝐶𝐶tQ(𝑡𝑡) in Eq. (7). In 
other words, version (i) is the full modeling result that we treat as the gold standard to assess 
the relative accuracies of versions (ii) and (iii) from our revised MM rate law and the tQSSA, 
respectively. We do not longer consider the sQSSA because the tQSSA has already proven to 
be more accurate than the sQSSA in the previous studies [12,13,18–24] as well as in our 
analysis above (Sec. II.A. and Figs. 1 and 2). 
   We compute versions (i)–(iii) for randomly-selected parameters 𝑔𝑔A, 𝑟𝑟A, 𝑟𝑟c, 𝑤𝑤GI, and 𝑤𝑤ZTL 
with 𝑘𝑘d and 𝐾𝐾 in light and darkness (Table S4 and Text S2). We define similarity 𝑆𝑆ZTL between 
𝐴𝐴s(𝑡𝑡) and the empirical ZTL profile when 𝐴𝐴s(𝑡𝑡) is calculated from version (i) by the above 
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relation 𝐴𝐴s(𝑡𝑡) = 𝐴𝐴(𝑡𝑡)/𝑤𝑤ZTL (Text S2). 𝑆𝑆ZTL is devised to approach 1 away from 0, as 𝐴𝐴s(𝑡𝑡) 
quantitatively better matches the ZTL profile. Analogously, 𝑆𝑆ZTL𝛾𝛾 and 𝑆𝑆ZTLQ are defined for 
the cases with versions (ii) and (iii), respectively (Text S2). Figs. 3(a) and 3(b) present an 
example that 𝐴𝐴s(𝑡𝑡) from version (ii) is as close to the experimental ZTL profile as 𝐴𝐴s(𝑡𝑡) from 
version (i), and is closer to that experimental profile than 𝐴𝐴s(𝑡𝑡) from version (iii) (𝑆𝑆ZTL = 0.88, 
𝑆𝑆ZTL𝛾𝛾 = 0.88, and 𝑆𝑆ZTLQ = 0.79). Indeed, most of our simulated conditions (78.2%) show 
𝑆𝑆ZTL𝛾𝛾  higher than 𝑆𝑆ZTLQ [Fig. 3(c); 𝑃𝑃 < 10−4 and Text S2], while 𝑆𝑆ZTL𝛾𝛾  and 𝑆𝑆ZTL are almost 
the same as each other through the simulated conditions [Fig. 3(d)]. We hence conclude that 
our revised MM rate law is comparable with the full kinetic modeling in quantitative 
accounting for the experimental ZTL profile, with an improvement on the tQSSA. 
 
C. TF–DNA interaction 
 
We now examine the case of TF–DNA interactions. Suppose that the TF concentration 
oscillates over time in a sinusoidal form: 

𝐴𝐴TF(𝜏𝜏) = 𝐴𝐴max �1 −
𝛼𝛼A
2
�1 + cos � 2𝜋𝜋

𝑘𝑘δ𝑇𝑇
𝜏𝜏���,    (48) 

where 𝐴𝐴max, 𝛼𝛼A, and 𝑇𝑇 are defined the same as in Eq. (45). Based on 𝐴𝐴TF(𝜏𝜏) in Eq. (48), we 
numerically solve Eq. (28) to obtain 𝐶𝐶TF(𝜏𝜏)  (Text S2), and evaluate how well 𝐶𝐶TF(𝜏𝜏)  is 
approximated by our formula 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) in Eq. (37) or by the MM-like formula 𝐶𝐶T̅FQ(𝜏𝜏) in Eq. 
(29). Regarding 𝐶𝐶T̅FQ(𝜏𝜏) , note that the distinction between the tQSSA and sQSSA is 
meaningless here because of condition 𝐴𝐴TF(𝑡𝑡) ≫ 𝐵𝐵DNA in Sec. II.B. 
 
 

 
FIG. 4. TF–DNA interaction modeling. (a) Example time series of 𝐴𝐴TF(𝜏𝜏) at the top, 𝐶𝐶TF(𝜏𝜏) (black) and 
𝐶𝐶T̅F𝛾𝛾(𝜏𝜏)  (blue) at the center, and 𝐶𝐶TF(𝜏𝜏)  (solid line) and 𝐶𝐶T̅FQ(𝜏𝜏)  (dashed line) at the bottom. The 
calculations are based on Eqs. (28), (29), (37), and (48), and 𝑡𝑡 = 𝑘𝑘δ−1𝜏𝜏  as defined in Sec. II.B. (b) 
Probability distributions of �𝜙𝜙𝛾𝛾𝑡𝑡� (solid line) and �𝜙𝜙Q𝑡𝑡 � (dashed line) over randomly-sampled parameter 
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sets in Table S3. (c) Scatter plot of �𝜙𝜙Q𝑡𝑡 �  and �𝜙𝜙𝛾𝛾𝑡𝑡�  when �𝜙𝜙Q𝑡𝑡 �  or �𝜙𝜙𝛾𝛾𝑡𝑡�  ≥1 h with randomly-sampled 
parameter sets in Table S3. A solid diagonal line corresponds to �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙Q𝑡𝑡 �, a dashed diagonal line to 
�𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙Q𝑡𝑡 � − 1h, and a dotted diagonal line to �𝜙𝜙𝛾𝛾𝑡𝑡� = �𝜙𝜙Q𝑡𝑡 � − 2h. (d) When based on Eq. (49), example 
time series of 𝐴𝐴TF(𝜏𝜏) on the left and 𝐶𝐶TF(𝜏𝜏) (black solid line), 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) (blue solid line), and 𝐶𝐶T̅FQ(𝜏𝜏) 
(green dashed line) on the right. They were calculated in the same way as (a), except for the use of Eq. 
(49) instead of Eq. (48). For the detailed methods in (a)–(d) and the parameters in (a) and (d), refer to 
Text S2. 
 
As illustrated in Fig. 4(a), we observe that 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) tends to better match the time trajectory 
of 𝐶𝐶T̅F(𝜏𝜏) than 𝐶𝐶T̅FQ(𝜏𝜏). In a similar fashion to Sec. III.B, we use quantities 𝜙𝜙𝛾𝛾𝑡𝑡  and 𝜙𝜙Q𝑡𝑡  as the 
phase differences in hours between 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) and 𝐶𝐶TF(𝜏𝜏), and between 𝐶𝐶T̅FQ(𝜏𝜏) and 𝐶𝐶TF(𝜏𝜏), 
respectively (Text S2). The magnitudes of these phase differences reach up to ~5 h in 
physiologically-relevant parameter conditions [Fig. 4(b) and Table S3]. The sign of a given 
phase difference is assigned positive (negative) if the corresponding trajectory has a more 
advanced (delayed) phase than 𝐶𝐶T̅F(𝜏𝜏). In the simulated conditions (Table S3), we observe 
𝜙𝜙Q𝑡𝑡 ≥ 0 and 𝜙𝜙𝛾𝛾𝑡𝑡 ≤ 0. In the example of Fig. 4(a), 𝜙𝜙𝛾𝛾𝑡𝑡 = −0.3 h and 𝜙𝜙Q𝑡𝑡 = 2.3 h, and here �𝜙𝜙𝛾𝛾𝑡𝑡� 
is smaller than �𝜙𝜙Q𝑡𝑡 �. Indeed, our analysis suggests that �𝜙𝜙𝛾𝛾𝑡𝑡� tends to be smaller than �𝜙𝜙Q𝑡𝑡 � over 
the physiologically-relevant conditions [Fig. 4(b); 𝑃𝑃 < 10−4 and Text S2]. When �𝜙𝜙𝛾𝛾𝑡𝑡� or �𝜙𝜙Q𝑡𝑡 � 
is ≥1 h, most parameter conditions (91.6%) have �𝜙𝜙𝛾𝛾𝑡𝑡� less than �𝜙𝜙Q𝑡𝑡 � at least by one hour, and 
a quarter of them even at least by two hours [Fig. 4(c); 𝑃𝑃 < 10−4 and Text S2]. These results 
suggest that 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) is more likely to resemble 𝐶𝐶T̅F(𝜏𝜏) in its phase than 𝐶𝐶T̅FQ(𝜏𝜏) is. 
   Unlike the cases of phases, we expect that the wave profiles predicted by 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) and 
𝐶𝐶T̅FQ(𝜏𝜏) would be almost the same, with regards to Eq. (37). We examine this issue in a similar 
way to Sec. III.B: we measure similarity 𝑆𝑆𝛾𝛾 between the profiles of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) and 𝐶𝐶T̅F(𝜏𝜏) after 
aligning their phases to the same (Text S2). Analogously, 𝑆𝑆Q is defined for 𝐶𝐶T̅FQ(𝜏𝜏) and 𝐶𝐶T̅F(𝜏𝜏). 
𝑆𝑆𝛾𝛾  and 𝑆𝑆Q range from 0 to 1: the larger a value of 𝑆𝑆𝛾𝛾  (𝑆𝑆Q), the more similar are the wave 
profiles of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) [𝐶𝐶T̅FQ(𝜏𝜏)] and 𝐶𝐶T̅F(𝜏𝜏) (Text S2). As anticipated, 𝑆𝑆𝛾𝛾 and 𝑆𝑆Q take almost the 
same values as each other (Spearman's 𝜌𝜌 = 0.94 and 𝑃𝑃 < 10−4) and both are > 0.7 for the 
physiologically-relevant conditions (Text S2). 
   To summarize, our revised MM rate law 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) improves a phase approximation of 𝐶𝐶T̅F(𝜏𝜏), 
while 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) and 𝐶𝐶T̅FQ(𝜏𝜏) exhibit very similar wave profiles. One may expect that such a 
higher accuracy of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏)  in the phases might be indicated by the range of the valid 
conditions of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) in Eqs. (39) and (40). In fact, most of our simulated conditions (92.0%) 
in Table S3 satisfy max𝜏𝜏[𝜀𝜀TF(𝜏𝜏)] ≤ 0.1 and therefore only 𝜀𝜀TF𝛾𝛾(𝜏𝜏) and 𝜀𝜀TFQ(𝜏𝜏) in Eqs. (40) 
and (42) remain the key determinants of the validities of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) and 𝐶𝐶T̅FQ(𝜏𝜏), respectively. 
Our analysis shows that max𝜏𝜏�𝜀𝜀TF𝛾𝛾(𝜏𝜏)� ≤ 0.1 for 81.6% of the conditions, slightly more than 
the conditions (69.9%) with max𝜏𝜏�𝜀𝜀TFQ(𝜏𝜏)� ≤ 0.1 . Naturally, max𝜏𝜏�𝜀𝜀TF𝛾𝛾(𝜏𝜏)�  and 
max𝜏𝜏�𝜀𝜀TFQ(𝜏𝜏)�  strongly correlate with �𝜙𝜙𝛾𝛾𝑡𝑡�  and �𝜙𝜙Q𝑡𝑡 � , respectively (Spearman's 𝜌𝜌 = 0.69 
between max𝜏𝜏�𝜀𝜀TF𝛾𝛾(𝜏𝜏)�  and �𝜙𝜙𝛾𝛾𝑡𝑡� , and 𝜌𝜌 = 0.89  between max𝜏𝜏�𝜀𝜀TFQ(𝜏𝜏)�  and �𝜙𝜙Q𝑡𝑡 � ; 𝑃𝑃 <
10−4 and Text S2). 
   Although physiologically less relevant, the oscillatory TF level with irregular rhythmicity may 
provide another testbed for the approximating capability of 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏). Hence, instead of Eq. 
(48), we consider the following 𝐴𝐴TF(𝜏𝜏) and numerically solve Eq. (28): 

𝐴𝐴TF(𝜏𝜏) = 1
𝑁𝑁
∑ 𝐴𝐴max,𝑖𝑖 �1−

𝛼𝛼A,𝑖𝑖
2
�1 + cos � 2𝜋𝜋

𝑘𝑘δ𝑇𝑇A,𝑖𝑖
𝜏𝜏 − 𝜑𝜑A,𝑖𝑖���𝑁𝑁

𝑖𝑖=1 ,    (49) 

We choose 𝑁𝑁 = 10 and randomly select the other parameters from the ranges in Text S2. 
Even with such irregularity of the rhythms, 𝐶𝐶T̅F𝛾𝛾(𝜏𝜏) is still found to improve the approximation 
of 𝐶𝐶T̅F(𝜏𝜏) compared to 𝐶𝐶T̅FQ(𝜏𝜏), as illustrated in Fig. 4(d). 
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D. Mammalian circadian clock 
 
The quantitatively more accurate results from our revised MM rate law than from the previous 
approaches motivate us to ask the following question: can the revised MM rate law predict 
qualitatively new patterns of a dynamical system beyond its quantitative characterization? We 
will answer this question through the study of the mammalian circadian system. 
   The core part of the mammalian circadian clock harbors a transcriptional/post-translational 
negative feedback loop that generates autonomous protein oscillations with circadian 
rhythmicity [25,34]. Heterodimers of CLOCK and BMAL1 proteins activate the transcription of 
Period (Per) and Cryptochrome (Cry) genes, and the encoded PER and CRY proteins form PER–
CRY complexes that are translocated to the nucleus. In the nucleus, they interact with CLOCK–
BMAL1 complexes to inhibit the CLOCK–BMAL1 transcriptional activities. These positive 
(CLOCK and BMAL1) and negative (PER and CRY) arms constitute the negative feedback loop 
for circadian oscillations in protein levels and activities. 
   A previous study suggests that the tQSSA for the interaction between activator (CLOCK–
BMAL1) and repressor (PER–CRY) leads to more natural rhythm generation than the sQSSA, 
because the tQSSA captures the ultrasensitive response of the repressor’s transcription to the 
activator’s or repressor’s concentration—that is, a large change in the transcription rate from 
a small change in the activator or repressor level [18]. This ultrasensitive response, which is 
manifested by small 𝐾𝐾 and balanced activator and repressor levels, amplifies rhythms and 
prevents their dampening [18,20]. Here, we will show that our revised MM rate law further 
captures the intrinsic time delays in the protein–protein and protein–DNA assembly formation 
and thereby predicts the rhythmic patterns not expected by the tQSSA. 
   For the modeling of the mammalian clock, we interpret 𝐴𝐴(𝑡𝑡), 𝐵𝐵(𝑡𝑡), and 𝐶𝐶(𝑡𝑡) in Eq. (1) as the 
concentrations of activator, repressor, and their complex in the nucleus, respectively. For 
simplicity, we assume the constancy of 𝐴𝐴(𝑡𝑡), i.e., 𝐴𝐴(𝑡𝑡) = 𝐴𝐴 as the activator’s oscillation is 
weaker than the repressor’s and dispensable for the circadian rhythmicity [34–37]. The 
resulting model comprises Eq. (1) with 𝐴𝐴(𝑡𝑡) = 𝐴𝐴 and the following equations modified from a 
previous model [18]: 

d𝑀𝑀(𝑡𝑡)
d𝑡𝑡

= 𝑎𝑎0𝐶𝐶TF(𝑡𝑡) − 𝑏𝑏0𝑀𝑀(𝑡𝑡),   (50) 
d𝐵𝐵cy(𝑡𝑡)
d𝑡𝑡

= 𝑎𝑎1𝑀𝑀(𝑡𝑡) − 𝑏𝑏1𝐵𝐵cy(𝑡𝑡),   (51) 
d𝐵𝐵(𝑡𝑡)
d𝑡𝑡

= 𝑎𝑎2𝐵𝐵cy(𝑡𝑡) − 𝑟𝑟f[𝐵𝐵(𝑡𝑡) − 𝐶𝐶(𝑡𝑡)] − 𝑟𝑟c𝐶𝐶(𝑡𝑡),   (52) 
d𝐶𝐶TF(𝑡𝑡)

d𝑡𝑡
= 𝑘𝑘TFa[𝐴𝐴 − 𝐶𝐶(𝑡𝑡)] �1

𝑉𝑉
− 𝐶𝐶TF(𝑡𝑡)� − 𝑘𝑘TFδ𝐶𝐶TF(𝑡𝑡).   (53) 

Here, 𝑀𝑀(𝑡𝑡) , 𝐵𝐵cy(𝑡𝑡) , and 𝐶𝐶TF(𝑡𝑡)  are the concentrations of repressor mRNA, cytoplasmic 
repressor protein, and activator on repressor’s promoter, respectively. Eq. (53) is equivalent 
to Eq. (28) in its content. 𝑎𝑎0 , 𝑎𝑎1 , and 𝑎𝑎2  denote the transcription, translation, and 
translocation rates of the repressor, respectively. 𝑏𝑏1 represents the sum of the translocation 
and degradation rates of the repressor in the cytoplasm, and thus satisfies 𝑏𝑏1𝑁𝑁c > 𝑎𝑎2 where 
𝑁𝑁c  is the cytoplasm-to-nucleus volume ratio. 𝑏𝑏0 , 𝑟𝑟f , and 𝑟𝑟c  are the degradation rates of 
repressor mRNA, free repressor protein, and activator-binding repressor protein, respectively. 
By definition, 𝑟𝑟c satisfies 𝑟𝑟c < 𝑘𝑘δ for 𝑘𝑘δ in Eq. (1). 𝑘𝑘TFa, 𝑘𝑘TFδ, and 𝑉𝑉 are the same as 𝑘𝑘a, 𝑘𝑘δ, 
and 𝑉𝑉 in Eqs. (26)–(28), respectively. To be precise, 𝐴𝐴 − 𝐶𝐶(𝑡𝑡) in Eqs. (1) and (53) should be 
replaced by 𝐴𝐴 − 𝐶𝐶(𝑡𝑡) − 𝐶𝐶TF(𝑡𝑡) ; however, this replacement does not much affect our 
simulation results, and we thus keep Eqs. (1) and (53) for the straightforward use of 
approximants for 𝐶𝐶(𝑡𝑡) and 𝐶𝐶TF(𝑡𝑡) as will be demonstrated later. 
   Our model simulation with Eqs. (1) and (50)–(53) leads to the oscillation of the variables in a 
subset of the parameter conditions in Table S5 (Text S2). For comparison, we test another 
model with our revised MM rate law. This model consists only of Eqs. (50)–(52) where 𝐶𝐶(𝑡𝑡) 
and 𝐶𝐶TF(𝑡𝑡) are replaced by 𝐶𝐶𝛾𝛾(𝑡𝑡) and 𝐶𝐶TF𝛾𝛾(𝑡𝑡) in Eqs. (19) and (38), respectively, and 𝐴𝐴 −
𝐶𝐶𝛾𝛾(𝑡𝑡) corresponds to 𝐴𝐴TF(𝑡𝑡), 𝑘𝑘TFδ to 𝑘𝑘δ, and 𝑘𝑘TFδ/𝑘𝑘TFa to 𝐾𝐾 in Eqs. (30) and (38). Likewise, 
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the tQSSA- and sQSSA-based models are constructed by using the approximants in Eqs. (7) and 
(9) instead of 𝐶𝐶𝛾𝛾(𝑡𝑡), respectively, and using 𝐶𝐶TFQ(𝑡𝑡) in Eq. (30) instead of 𝐶𝐶TF𝛾𝛾(𝑡𝑡). 
 
 

 
FIG. 5. Mammalian clock simulation with varying parameters. In (a)–(d), the parameter ranges with 
observed oscillations from each simulation scheme are colored by their oscillation periods, according 
to the color scale on the rightmost side. (a) and (b) have the same parameters except 𝐾𝐾TF  (𝐾𝐾TF ≡
𝑘𝑘TFδ𝑘𝑘TFa−1 ), 𝑘𝑘TFδ, 𝐾𝐾, and 𝑘𝑘δ. Likewise, (c) and (d) have the same parameters except 𝐾𝐾TF, 𝑘𝑘TFδ, 𝐾𝐾, and 
𝑘𝑘δ. The simulation results from the full model with Eqs. (1) and (50)–(53) (left), from our revised MM 
rate law (center), and from the tQSSA (right) are presented over the ranges of 𝐾𝐾TF and 𝑘𝑘TFδ in (a) and 
(c), or the ranges of 𝐾𝐾 and 𝑘𝑘δ in (b) and (d), while the other parameters are fixed. For the simulation 
methods and parameters in (a)–(d), refer to Sec. III.D and Text S2. 
 
Consistent with the previous work and the characteristics of the well-studied Goodwin model 
[18,38], the sQSSA-based model fails to produce oscillations for any simulated conditions 
(Table S5 and Text S2). On the other hand, the tQSSA-based model generates oscillations as 
previously demonstrated [18], but with substantial deviations from the exact model 
simulation with Eqs. (1) and (50)–(53) (Fig. 5 and Text S2). For example, a decrease in 𝑘𝑘TFδ in 
the exact model simulation tends to facilitate the development of oscillations to some extent 
by widening the oscillatory range of 𝐾𝐾TF ≡ 𝑘𝑘TFδ𝑘𝑘TFa−1 , and concurrently lengthens the 
oscillation period [Figs. 5(a) and 5(c)]; the tQSSA-based model does not reproduce these 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475310doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475310
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

patterns, though [Figs. 5(a) and 5(c)]. Besides, the exact simulation results exhibit the 
oscillations over the range of 𝐾𝐾 far beyond small 𝐾𝐾 values from the tQSSA-based results [Figs. 
5(b) and 5(d)]. Moreover, the tQSSA-based oscillation periods are limited to short periods 
compared to the exact simulation results (Fig. 5). 
   In contrast, the simulation with our revised MM rate law shows good agreement with the 
exact model simulation in terms of the overall patterns of oscillation onset and periods (Fig. 5 
and Text S2). For example, the revised MM rate law predicts the periods of 13.6 to 49.6 h with 
varying 𝑘𝑘TFδ at 𝐾𝐾TF = 11.9 nM in Fig. 5(a), and the exact periods span 13.0 to 33.4 h in the 
same conditions. Meanwhile, the tQSSA-based period is limited to 11.6 h there [Fig. 5(a)]. 
Regarding the revised rate law, the wide range of the oscillatory parameters and the period 
variations comparable to the exact simulation results comes from the time-delay terms in 
protein–protein and protein–DNA assembly formation in Eqs. (19) and (38). These intrinsic 
time-delay effects, which are absent in the tQSSA, enhance the rhythmicity of the dynamics 
and lengthen the oscillation periods. A caveat is that the revised rate law tends to rather 
overestimate the oscillatory parameter ranges compared to the exact model simulation (Fig. 
5). Aside from this caveat, the revised rate law accounts for the overall qualitative and 
quantitative outcomes of the mammalian clock model not expected by the tQSSA or sQSSA. 
 
E. Rhythmic degradation of proteins 
 
Our revised MM rate law bears the potential to offer analytical insights into biomolecular 
dynamics otherwise hardly addressable. We demonstrate this potential through the analysis 
of circadian protein degradation. Some circadian clock proteins are not only rhythmically 
produced but also decompose with rhythmic degradation rates [Figs. 6(a) and 6(b)] [39–43]. 
Recently, we have suggested that the rhythmic degradation rates of proteins with circadian 
production can spontaneously emerge without any explicitly time-dependent regulatory 
mechanism of the degradation processes [39,44]. If the rhythmic degradation rate peaks at 
the descending phase of the protein profile and stays relatively low elsewhere, it is supposed 
to save much of the biosynthetic cost in maintaining a circadian rhythm [39,42]. Can our 
revised MM rate law explain this inherent rhythmicity in the degradation rates of circadian 
proteins? 
   In the following analysis, 𝐴𝐴(𝑡𝑡), 𝐵𝐵(𝑡𝑡), and 𝐶𝐶(𝑡𝑡) represent the concentrations of substrate 
protein, its rate-limiting proteolytic mediator (e.g., E3 ubiquitin ligase, or kinase in the case of 
phospho-dependent ubiquitination), and their complex, respectively. The protein turnover 
dynamics is described by Eq. (1) and the following equation: 

d𝐴𝐴(𝑡𝑡)
d𝑡𝑡

= 𝑔𝑔(𝑡𝑡) − 𝑟𝑟(𝑡𝑡)𝐴𝐴(𝑡𝑡),    (54) 
where 𝑔𝑔(𝑡𝑡)  and 𝑟𝑟(𝑡𝑡)  are the protein synthesis (translation) and degradation rates, 
respectively. Here, 𝑟𝑟(𝑡𝑡)𝐴𝐴(𝑡𝑡) = 𝑟𝑟c𝐶𝐶(𝑡𝑡)  with substrate turnover rate 𝑟𝑟c  upon the complex 
formation and 𝑘𝑘δ = 𝑘𝑘d + 𝑟𝑟c in Eq. (1). Straightforwardly, 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟c
𝐶𝐶(𝑡𝑡)
𝐴𝐴(𝑡𝑡)

.    (55) 

To exclude the possibility of the time-dependent regulation of the degradation process, we 
assume the constancy of 𝐵𝐵(𝑡𝑡) in Eq. (1) with 𝐵𝐵(𝑡𝑡) = 𝐵𝐵. Given the circadian profile of protein 
synthesis rate 𝑔𝑔(𝑡𝑡) , the numerical solution of Eqs. (1), (54), and (55) gives rise to the 
degradation rate 𝑟𝑟(𝑡𝑡) (Text S2). In this calculation, we use the sinusoidal form of 𝑔𝑔(𝑡𝑡): 

𝑔𝑔(𝑡𝑡) = 𝑔𝑔max �1 −
𝛼𝛼g
2
�1 + cos �2𝜋𝜋𝑡𝑡

𝑇𝑇
���,     (56) 

where 𝑔𝑔max, 𝛼𝛼g, and 𝑇𝑇 are constants. 
   On the other hand, our revised MM rate law 𝐶𝐶𝛾𝛾(𝑡𝑡) and the tQSSA 𝐶𝐶tQ(𝑡𝑡) in Eqs. (7) and (19) 
provide the following approximants for 𝑟𝑟(𝑡𝑡): 

𝑟𝑟𝛾𝛾(𝑡𝑡) ≡ 𝑟𝑟c
𝐶𝐶𝛾𝛾(𝑡𝑡)
𝐴𝐴(𝑡𝑡)

 and 𝑟𝑟tQ(𝑡𝑡) ≡ 𝑟𝑟c
𝐶𝐶tQ(𝑡𝑡)
𝐴𝐴(𝑡𝑡)

.  (57) 
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In addition, the sQSSA-based approximant for 𝑟𝑟(𝑡𝑡) is 𝑟𝑟c𝐵𝐵/[𝐾𝐾 + 𝐴𝐴(𝑡𝑡)], although not of focus 
here because the tQSSA is more accurate than the sQSSA as discussed above. In the case of 
oscillating protein profile 𝐴𝐴(𝑡𝑡), one may expect that rhythmicity in the degradation rate is 
readily realized by the tQSSA or sQSSA, because the tQSSA- or sQSSA-based degradation rate 
shows the 𝐴𝐴(𝑡𝑡)-dependency such as 𝑟𝑟c𝐵𝐵/[𝐾𝐾 + 𝐴𝐴(𝑡𝑡)] in the sQSSA. However, the tQSSA- or 
sQSSA-based degradation rate is a decreasing function of 𝐴𝐴(𝑡𝑡), which does not match the 
experimental degradation patterns in Figs. 6(a) and 6(b). Moreover, the degradation 
rhythmicity from the tQSSA or sQSSA is only manifested when the substrate protein becomes 
saturated, e.g., when 𝐴𝐴(𝑡𝑡) approaches or exceeds 𝐾𝐾 + 𝐵𝐵 in the tQSSA. 
 
 

 
FIG. 6. Rhythmic degradation of circadian proteins. (a) The experimental abundance levels (solid line) 
and degradation rates (open circles) of the mouse PERIOD2 (PER2) protein [40]. (b) The experimental 
abundance levels (dots, interpolated by a solid line) and degradation rates (open circles) of PSEUDO 
RESPONSE REGULATOR 7 (PRR7) protein in Arabidopsis [41,42,50]. Horizontal white and black segments 
correspond to light and dark intervals, respectively. (c) Simulated protein abundance 𝐴𝐴(𝑡𝑡) (gray solid 
line) and degradation rate 𝑟𝑟(𝑡𝑡) (black dashed line), along with the approximate degradation rates 𝑟𝑟𝛾𝛾(𝑡𝑡) 
(blue solid line), 𝑟𝑟𝛾𝛾2(𝑡𝑡) (blue dashed line), and 𝑟𝑟tQ(𝑡𝑡) (green dashed line) from Eqs. (1) and (54)–(58). 
𝑟𝑟𝛾𝛾(𝑡𝑡)  and 𝑟𝑟𝛾𝛾2(𝑡𝑡)  highly overlap and are not visually distinguishable here. A vertical dashed line 
corresponds to the peak time of −𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡). The simulation was performed with a given parameter 
set in Text S2. (d) The probability distribution of the peak-time difference between 𝑟𝑟(𝑡𝑡)  and 
−𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡) over randomly-sampled parameter sets in Table S6. For the detailed methods in (a)–(d), 
refer to Text S2. 
 
In contrast, our revised MM rate law naturally accounts for the experimental degradation 
patterns through the inherent time delay in protein complex formation. For mathematical 
simplicity, we consider condition max𝑡𝑡[𝐴𝐴(𝑡𝑡)] ≪ 𝐵𝐵 , and then 𝑟𝑟𝛾𝛾(𝑡𝑡)  in Eq. (57) becomes 
approximated by 

𝑟𝑟𝛾𝛾(𝑡𝑡) ~ 𝑟𝑟𝛾𝛾2(𝑡𝑡) ≡ 𝑟𝑟c𝐵𝐵
𝐾𝐾+𝐵𝐵

𝐴𝐴�𝑡𝑡−𝑘𝑘δ
−1 𝐾𝐾

𝐾𝐾+𝐵𝐵�

𝐴𝐴(𝑡𝑡) = 𝑟𝑟c𝐵𝐵
𝐾𝐾+𝐵𝐵

�1− 𝑘𝑘δ
−1𝐾𝐾
𝐾𝐾+𝐵𝐵

� 1
𝐴𝐴(𝑡𝑡)

d𝐴𝐴(𝑡𝑡)
d𝑡𝑡

� +⋯�.       (58) 
In this condition, the tQSSA does not predict rhythmicity in the degradation rate, as 𝑟𝑟tQ(𝑡𝑡) in 
Eq. (57) is roughly constant [𝑟𝑟tQ(𝑡𝑡) ~ 𝑟𝑟c𝐵𝐵/(𝐾𝐾 + 𝐵𝐵)]. On the other hand, 𝑟𝑟𝛾𝛾2(𝑡𝑡) in Eq. (58) is an 
approximately increasing function of −𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡), and thus our revised MM rate law predicts 
that the degradation rate would increase as time goes from the ascending to descending 
phases of the protein profile. This tendency in degradation rhythmicity is consistent with the 
experimental observation of mammalian and plant clock proteins in Figs. 6(a) and 6(b). This 
rhythmicity can be explained by an unsynchronized interplay between protein translation and 
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degradation processes [39] due to their inter-event time delay. For example, in the case of 
protein ubiquitination, ubiquitin ligases with a finite binding affinity would not always capture 
all newly-translated substrates, and therefore, a lower proportion of the substrates may be 
ubiquitinated during the ascending phase of the substrate profile than during the descending 
phase. The degradation rate hence tends to be lower at times other than the descending 
phase. One may expect that this effect would be enhanced with more limited ubiquitin ligases, 
under the condition when the substrate level with circadian production undergoes a steeply 
rising and falling oscillation. This expectation is supported by Eq. (58), where the amplitude 
of 𝑟𝑟𝛾𝛾2(𝑡𝑡) is roughly proportional to 𝐾𝐾/(𝐾𝐾 + 𝐵𝐵) as well as to the amplitude of −𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡). 
Eq. (58) further predicts that the degradation rate would peak around the peak time of 
−𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡). 
   In the example of Fig. 6(c), the degradation rate 𝑟𝑟(𝑡𝑡) computed fully from Eqs. (1) and (54)–
(56) does exhibit the rhythmic profile in excellent agreement with our predictions [𝑟𝑟𝛾𝛾(𝑡𝑡) and 
𝑟𝑟𝛾𝛾2(𝑡𝑡)  in Eqs. (57) and (58)], compared to the tQSSA [𝑟𝑟tQ(𝑡𝑡)  in Eq. (57)]. In fact, for the 
parameter conditions of max𝑡𝑡[𝐴𝐴(𝑡𝑡)] ≪ 𝐵𝐵, the simulated 𝑟𝑟tQ(𝑡𝑡) is found to be almost constant 
as previously anticipated, even though we focus on markedly rhythmic 𝑟𝑟(𝑡𝑡) {{max𝑡𝑡[𝑟𝑟(𝑡𝑡)] −
min𝑡𝑡[𝑟𝑟(𝑡𝑡)]}/max𝑡𝑡[𝑟𝑟(𝑡𝑡)] > 0.4; Table S6 and Text S2}. We next define similarity 𝑆𝑆r𝛾𝛾 between 
𝑟𝑟𝛾𝛾(𝑡𝑡) and 𝑟𝑟(𝑡𝑡), so that 𝑆𝑆r𝛾𝛾  approaches 1 away from 0 as the profiles of 𝑟𝑟𝛾𝛾(𝑡𝑡) and 𝑟𝑟(𝑡𝑡) are 
similar to each other (Text S2). Likewise, we define similarity 𝑆𝑆r𝛾𝛾2 between 𝑟𝑟𝛾𝛾2(𝑡𝑡) and 𝑟𝑟(𝑡𝑡). All 
our simulated conditions with rhythmic 𝑟𝑟(𝑡𝑡)  and max𝑡𝑡[𝐴𝐴(𝑡𝑡)] ≪ 𝐵𝐵  show 𝑆𝑆r𝛾𝛾,𝑆𝑆r𝛾𝛾2 > 0.97 
(𝑃𝑃 < 10−4; Table S6 and Text S2), indicating that both 𝑟𝑟𝛾𝛾(𝑡𝑡) and 𝑟𝑟𝛾𝛾2(𝑡𝑡) well approximate 𝑟𝑟(𝑡𝑡) 
in these simulated conditions. 
   Notably, the peak time of 𝑟𝑟(𝑡𝑡)  in Fig. 6(c) is 24.5 h, close to 24.2 h of the maximum 
−𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡) as predicted in Eq. (58). Indeed, the peaks of the 𝑟𝑟(𝑡𝑡) profiles show only ≤ 0.8h 
time differences from the maximum −𝐴𝐴′(𝑡𝑡)/𝐴𝐴(𝑡𝑡) values across the simulated conditions [Fig. 
6(d); Table S6 and Text S2], supporting our prediction from Eq. (58). Together, our revised MM 
rate law provides a useful analytical framework of the rhythmic degradation of circadian 
proteins, which is hardly addressable by the conventional ways. 
 
IV. PARAMETER ESTIMATION 
 
An accurate function of variables and parameters is required for good parameter estimation 
based on the fitting of the function [13,45,46]. In this regard, we compare the accuracies of 
parameters estimated from our revised MM rate law and the tQSSA by their fitting to the full 
model simulation results. Specifically, we consider protein–protein interactions with time-
varying protein concentrations 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) from Eq. (45) by 𝐴𝐴(𝑡𝑡) = 𝐾𝐾𝐴𝐴(𝜏𝜏), 𝐵𝐵(𝑡𝑡) = 𝐾𝐾𝐵𝐵(𝜏𝜏), 
𝑡𝑡 = 𝑘𝑘δ−1𝜏𝜏 , and parameters set as in Text S2. Given these profiles 𝐴𝐴(𝑡𝑡)  and 𝐵𝐵(𝑡𝑡)  and the 
parameters 𝐾𝐾  and 𝑘𝑘δ , 𝐶𝐶(𝑡𝑡)  is determined by Eq. (1) and we treat this 𝐶𝐶(𝑡𝑡)  as the “true” 
concentration of protein complex. To the profile of 𝐶𝐶(𝑡𝑡), we then fit our revised MM rate law 
[𝐶𝐶𝛾𝛾(𝑡𝑡) in Eq. (19)] or the tQSSA [𝐶𝐶tQ(𝑡𝑡) in Eq. (7)] based on the given 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡), and 
estimate the original parameters of 𝐶𝐶(𝑡𝑡): the fitting of 𝐶𝐶𝛾𝛾(𝑡𝑡) estimates both 𝐾𝐾 and 𝑘𝑘δ, and 
the fitting of 𝐶𝐶tQ(𝑡𝑡) estimates only 𝐾𝐾 (Text S2). Because the tQSSA has already been reported 
for its better parameter-estimation capability than the sQSSA’s [12,46], we here do not 
evaluate the case of the sQSSA. In this work, the parameters were estimated by Powell’s 
method [47], and an alternative method hardly changed our results (Text S2).   
   Likewise, we consider TF–DNA interactions with time-varying TF concentration 𝐴𝐴TF(𝑡𝑡) from 
Eq. (48) by 𝐴𝐴TF(𝑡𝑡) = 𝐾𝐾𝐴𝐴TF(𝜏𝜏), 𝑡𝑡 = 𝑘𝑘δ−1𝜏𝜏, and parameters set as in Text S2. Given the profile 
𝐴𝐴TF(𝑡𝑡), 𝐵𝐵DNA (= 𝑉𝑉−1), and the kinetic parameters 𝐾𝐾 and 𝑘𝑘δ, 𝐶𝐶TF(𝑡𝑡) is determined by Eq. (28) 
and we treat this 𝐶𝐶TF(𝑡𝑡) as the “true” concentration of TF–DNA assembly. To the profile of 
𝐶𝐶TF(𝑡𝑡), we then fit 𝐶𝐶TF𝛾𝛾(𝑡𝑡) in Eq. (38) and 𝐶𝐶TFQ(𝑡𝑡) in Eq. (30) based on the given 𝐴𝐴TF(𝑡𝑡) and 
𝑉𝑉−1, and estimate the original parameters of 𝐶𝐶TF(𝑡𝑡): the fitting of 𝐶𝐶TF𝛾𝛾(𝑡𝑡) estimates both 𝐾𝐾 
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and 𝑘𝑘δ, and the fitting of 𝐶𝐶TFQ(𝑡𝑡) estimates only 𝐾𝐾 (Text S2). Like the above protein–protein 
interaction case, we used Powell’s method to estimate the parameters [47], while an 
alternative method did not much affect our results (Text S2). 
   In the case of protein–protein interactions, Fig. 7(a) reveals that the use of our revised rate 
law improves parameter estimation compared to the tQSSA, as 𝐶𝐶𝛾𝛾(𝑡𝑡) tends to give a more 
accurate estimate of 𝐾𝐾 than 𝐶𝐶tQ(𝑡𝑡). For example, in the cases that the relative error of 𝐾𝐾 
estimated from 𝐶𝐶tQ(𝑡𝑡) is ≥ 0.2, most of the 𝐶𝐶𝛾𝛾(𝑡𝑡)-based estimates (75.9%) show the relative 
error < 0.2 (𝑃𝑃 < 10−4 and Text S2), and even their 65.9% show the relative error < 0.1 [Fig. 
7(a)]. In the case of TF–DNA interactions, our revised MM rate law allows a comparably weak 
improvement in the estimation of 𝐾𝐾, though [Fig. 7(b)]. 
 
 

 
FIG. 7. Parameter estimation for protein–protein and TF–DNA interaction models. (a) The probability 
distribution of the relative error of estimated 𝐾𝐾 for a protein–protein interaction model in Eqs. (1) and 
(45). The estimation was performed by the fitting of 𝐶𝐶𝛾𝛾(𝑡𝑡) [Eq. (19)] to 𝐶𝐶(𝑡𝑡) [Eq. (1)], when the relative 
error of the estimated 𝐾𝐾 from 𝐶𝐶tQ(𝑡𝑡) [Eq. (7)] is < 0.1 (top), ≥ 0.1 and < 0.2 (center), or ≥ 0.2 (bottom). 
(b) The probability distribution of the relative error of estimated 𝐾𝐾 for a TF–DNA interaction model in 
Eqs. (28) and (48). The estimation was performed by the fitting of 𝐶𝐶TF𝛾𝛾(𝑡𝑡) [Eq. (38)] to 𝐶𝐶TF(𝑡𝑡) [Eq. (28)], 
when the relative error of the estimated 𝐾𝐾 from 𝐶𝐶TFQ(𝑡𝑡) [Eq. (30)] is < 0.1 (top), ≥ 0.1 and < 0.2 (center), 
or ≥ 0.2 (bottom). In (a) and (b), shaded is the actually-observed range of the relative error of the 
estimated 𝐾𝐾 from 𝐶𝐶tQ(𝑡𝑡) (a) or 𝐶𝐶TFQ(𝑡𝑡) (b) across our simulated conditions (Text S2). More than a half 
of the simulated conditions show that the relative error of the estimated 𝐾𝐾 from 𝐶𝐶𝛾𝛾(𝑡𝑡) (a) or 𝐶𝐶TF𝛾𝛾(𝑡𝑡) 
(b) is < 0.1 (top and center) or < 0.2 (bottom). (c) The probability distribution of the relative error of 𝑘𝑘δ 
estimated by 𝐶𝐶𝛾𝛾(𝑡𝑡)  for the protein–protein interaction model used in (a). (d) The probability 
distribution of the relative error of 𝑘𝑘δ estimated by 𝐶𝐶TF𝛾𝛾(𝑡𝑡) for the TF–DNA interaction model used in 
(b). Although not shown in (c) and (d), there exist a negligible portion of the simulated conditions where 
the relative error of the estimated 𝑘𝑘δ is > 0.6. For the detailed methods in (a)–(d), refer to Text S2. 
 
Unlike 𝐾𝐾, 𝑘𝑘δ can only be estimated through 𝐶𝐶𝛾𝛾(𝑡𝑡) and 𝐶𝐶TF𝛾𝛾(𝑡𝑡), and hence the comparison to 
its estimates from 𝐶𝐶tQ(𝑡𝑡) and 𝐶𝐶TFQ(𝑡𝑡) is not possible. Of note, 𝑘𝑘δ is found to have the relative 
error < 0.1 for most of the 𝐶𝐶𝛾𝛾(𝑡𝑡)- and 𝐶𝐶TF𝛾𝛾(𝑡𝑡)-based estimates, 86.6% and 80.7%, respectively 
[Figs. 7(c) and 7(d)]. 
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V. CONCLUSION AND DISCUSSION 
 
In this study, we proposed the revised MM rate law, which improves the description of 
molecular interaction dynamics with time-varying molecular concentrations. When applied to 
protein–protein and TF–DNA interaction dynamics, our revised MM rate law tends to capture 
the correct phases of the oscillatory profiles, compared to the existing rate laws. The revised 
rate law also improves the relevant parameter estimation. In the case of the mammalian 
circadian clock, the revised rate law well accounts for the overall patterns of oscillation onsets 
and periods from the full model simulations, which are not captured by the tQSSA or sQSSA. 
Notwithstanding the apparent complexity of our revised rate law, it provides valuable 
analytical insights into the spontaneous establishment and temporal profiles of the rhythmic 
degradation rates of circadian proteins, hardly addressable by the previous rate laws. This 
demonstrated predictability of our revised MM rate law for the dynamics of various model 
and empirical systems originates from the rigorously derived, time-delay effects in the 
molecular complex formation. 
   Further elaboration and physical interpretation of our theoretical framework, in concert with 
extensive experimental profiling of molecular complexes in regulatory or signaling pathways 
[15,16,31–33], are warranted for correct understanding and modeling of the interplay 
between cellular components and its functional consequences. Although the mammalian and 
plant data presented here are supportive of our theoretical predictions, experimental tests 
are clearly warranted including direct validation of the proposed rate law. This validation could 
involve the measurement of the time series of molecular complex concentrations by co-
immunoprecipitation assays or other techniques, and high-temporal resolution data are 
preferred for the comparison with the proposed rate law. Besides, comprehensive 
consideration of stochastic fluctuation and nonlinearity in molecular binding events [29,48,49] 
would be needed for more complete development of our theory, although the stochasticity in 
TF–DNA interactions was partially reflected in this work. 
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