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Abstract

Many everyday tasks require people to solve computationally complex problems. However, little is known

about the effects of computational hardness on the neural processes associated with solving such problems.

Here, we draw on computational complexity theory to address this issue. We performed an experiment

in which participants solved several instances of the 0-1 knapsack problem, a combinatorial optimization

problem, while undergoing ultra-high field (7T) functional magnetic resonance imaging (fMRI). Instances

varied in two task-independent measures of intrinsic computational hardness: complexity and proof hardness.

We characterise a network of brain regions whose activation was correlated with both measures but in distinct

ways, including the anterior insula, dorsal anterior cingulate cortex and the intra-parietal sulcus/angular

gyrus. Activation and connectivity changed dynamically as a function of complexity and proof hardness, in

line with theoretical computational requirements. Overall, our results suggest that computational complexity

theory provides a suitable framework to study the effects of computational hardness on the neural processes

associated with solving complex cognitive tasks.

Keywords: decision-making, computational complexity, typical-case complexity, knapsack problem,

problem-solving, cognitive control, anterior cingulate cortex (ACC), anterior insula (AI), fMRI

1. Introduction

Every day, people make decisions that require solving complex problems. Many of these problems

are known to be computationally intractable in the sense that the number of operations that need to be

performed to find a solution grows quickly to levels that makes solving correctly these problems infeasible.

Real-life examples of intractable tasks include attention gating, task scheduling, shopping, routing, bin

packing, and game play (van Rooij et al., 2019; Bossaerts and Murawski, 2017). Despite the relevance of
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intractable problems in daily life, little is known about the effects of complexity of tasks on the neural

processes during problem-solving.

Intractable problems require an extended period of time to solve and involve an extensive search space.

These two characteristics defy formal investigation of neural dynamics. Firstly, since solving such tasks

requires an extended period of time, one cannot opt for modeling based on discrete choice theories such as

those underlying neuroeconomics (Yoo et al., 2021). When deciding between, say, an apple and a candy,

the neural activation can be modeled in terms of an indicator variable whose level is modulated by the

value inferred from choices and kept constant throughout the short (couple of seconds) deliberation time

(e.g., Hare et al., 2011). When choice concerns complex alternatives, deliberation times may be an order of

magnitude longer, so neural activation can be expected to fluctuate markedly during the course of deliber-

ation. Secondly, because the search space is large, there are a plethora of paths that can be chosen during

resolution. Since human approaches to solving a complex problem exhibit substantial heterogeneity, both

across individuals and over time (e.g., Murawski and Bossaerts, 2016), modeling neural dynamics during

deliberation is bound to be challenging if it is to be based on “what people are thinking,” i.e., on individual

approaches to solving complex problems. A different strategy is called for.

Here, we propose to focus on “what people are solving,” that is, on features of the computational tasks

that are being presented. This has precedent in the analysis of probabilistic tasks, where intrinsic prop-

erties of the gamble at hand (such as mean and variance of the uncertain reward) have proven invaluable

to deciphering the neural processes leading up to choice (e.g., D’Acremont and Bossaerts, 2008). Likewise,

mathematical characteristics of the stimuli in perceptual tasks, such as signal strength, elucidate neural

dynamics during deliberation (e.g., Ploran et al., 2011; Hanks and Summerfield, 2017). Drawing on com-

putational complexity theory, we demonstrate here that a mapping exists between intrinsic properties of

instances of a problem related to computational hardness and neural dynamics during decision-making.

These properties represent generic features of computational problems that can be studied across different

tasks.

We studied the case of a canonical NP-complete (i.e., both NP-hard and NP) problem, the 0-1 knapsack

decision problem (KP). There, the decision-maker is asked to choose whether, given a set of items with

differing value and weight, there exists a subset whose total value is at least as a high as a given threshold,

while the total weight is less than or equal to a capacity constraint. We identified two properties of instances

of KP related to an instance’s computational hardness and tested whether these properties elucidated neural

signatures during deliberation. The two properties are complexity and proof hardness. Complexity captures
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the number of computational steps (or time) needed to solve an instance, while proof hardness represents

the computational steps needed to verify the correctness of the solution.

In order to measure complexity, we utilized a metric of difficulty that arises from the study of random

ensembles of instances (i.e., random cases of the problem). Variation in expected computational complexity,

regardless of the algorithm used, has been attributed to specific structural properties of instances (Cheeseman

et al., 1991; Percus et al., 2006; Gent et al., 1996; Yadav et al., 2020; Achlioptas et al., 2005; Selman and

Kirkpatrick, 1996; Krzakala et al., 2006). The resulting “typical-case complexity” (TCC) has been found

to affect human performance and effort in several intractable (NP-hard) problem-solving tasks, including

KP (Franco et al., 2021a,b). Therefore, we hypothesized that TCC would prove useful in characterising the

effects of computational hardness on neural processes. In analogy with work on neural correlates related

to deliberation during tractable tasks (Fedorenko et al., 2013; Assem et al., 2020; Duncan and Owen,

2000; Crittenden et al., 2016), we expected neural correlates of TCC to overlap with the mutliple-demand

system (MDS). Specifically, we hypothesized they would overlap with two networks, (1) the cingulo-opercular

network (CON), consisting of the dorsal anterior cingulate cortex (dACC) and the anterior insula (AI), and

(2) the frontoparietal network (FPN), composed of the intraparietal sulcus (IPS) and specific regions from

the lateral prefrontal cortex including the inferior frontal sulcus and the middle frontal gyrus (MFG) (e.g.,

Crittenden et al. (2016); Fedorenko et al. (2013); Duncan (2010); Dosenbach et al. (2007)). Additionally, we

expected the level of complexity to be associated with neural markers of efficacy (Frömer et al., 2021) and

performance (Neta et al., 2017; Bossaerts, 2018).

We appeal to the theory of proof complexity to measure proof hardness. In the context of an NP-

complete problem, such as the KP, there exists an asymmetry in the difficulty of proving that the solution is

correct, which depends on the “satisfiability” of the instance. If an instance is satisfiable (the correct choice

is ‘yes’), it suffices to find a witness (example assignment of variables) that satisfies all of the constraints;

one can then quickly verify that the witness indeed satisfies all the constraints, and this verification can be

done in polynomial time. To confirm that an instance is unsatisfiable (the correct choice is ‘no’) requires

proving that no witness exists, which is far more difficult: even if a few potential witnesses are found not

to be feasible, there may exist others that are. Theoretically, the asymmetry reflects the conjectured null

intersection between complexity classes NP-complete and co-NP-complete (Arora and Barak, 2009). We

thus conjectured that satisfiability would correlate with subjective markers of reliability, that is, the degree

to which the result of a calculation can be relied on to be accurate—much like variance modulates subjective

beliefs of choice correctness in probabilistic tasks. Therefore, we expected neural correlates of this measure
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in regions that have been previously shown to encode uncertainty, specifically in CON (Neta et al., 2017,

2014; Bossaerts, 2018; Fouragnan et al., 2018).

In our experiment, participants were asked to solve several instances of the knapsack decision problem,

while undergoing functional magnetic resonance imaging (fMRI). Instances were drawn randomly but in

a way that systematically varied their TCC and their satisfiability. Critically, in order to more precisely

localize and track neural signals during deliberation, we employed ultra-high field (7 Tesla) fMRI.

2. Results

Twenty participants (14 female, 5 male, 1 other; age range = 18-35 years, mean age = 26.6 years) took

part in this study. Each participant was asked to solve 56 instances of the knapsack decision task while

undergoing ultra-high field MRI brain scanning (Fig 1). Instances varied in their computational complexity

(TCC) and their satisfiability (2×2 balanced factorial design; see Materials and Methods).

Figure 1: Knapsack decision task. The task was composed of three main stages: items stage (3s), solving stage (22s) and
response stage (2s). Initially, participants were presented with a set of items of different values and weights. The green circle
at the center of the screen indicated the time remaining in this stage of the trial. This stage lasted 3 seconds. Then, both
capacity constraint and target profit were shown at the center of the screen. The objective of the task is to decide whether
there exists a subset of items for which (1) the sum of weights is lower or equal to the capacity constraint and (2) the sum
of values yields at least the target profit. This stage lasted 22 seconds. Finally, participants had 2 seconds to make either a
‘YES’ or ‘NO’ response using the keyboard. A fixation cross was shown during the inter-trial interval (jittered between 8 and
12 seconds). Initially, for the neuroimaging data analysis the solving stage was partitioned into four Boxcar response functions
(periods S1-S4), while the items and response stage were modeled with a single Boxcar function for the duration of the stage.

22s 2s

Solving Stage

Response 
Stage

3s

I II III IVItems Stage Response Stage 

Knapsack Decision Problem

Is there a set of items whose sum 
of weights is at most 102g and 

whose total value is at least $218?

5.5s5.5s5.5s5.5s

Additionally, participants performed, outside the scanner, a set of complementary tasks, including a

knapsack optimization task and a set of cognitive function tasks. In this section, we report the behavioral

results of the knapsack decision task, while the behavioral results from the complementary tasks are reported

in Appendices D and C.2.
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2.1. Behavioral results

2.1.1. Summary statistics

On average, participants chose the ‘YES’ option 50% of the trials (min = 25%, max = 68%). Mean

human performance, measured as the proportion of trials in which a correct response was made, was 0.78

(min = 0.48, max = 0.95, SD = 0.14). Performance increased slightly as the task progressed but the change

was not statistically significant (β0.5 = 0.009, HDI0.95 = [−0.001, 0.021], main effect of trial number on

performance, generalized logistic mixed model (GLMM); Table 4 Model 1).

2.1.2. Accuracy and instance properties

We first studied the effect of TCC on human performance. This measure is based on a prominent frame-

work in computer science that investigates the factors affecting computational hardness in computational

problems by studying the difficulty of randomly generated instances of those problems. In the knapsack

problem, TCC is explicitly connected to a set of parameters ᾱ = (αc, αp) that capture the constrainedness

of the problem: αp = p∑N
i=1 vi

and αc = c∑N
i=1 wi

(Yadav et al., 2020; Franco et al., 2021b). These parameters

determine the likelihood that a random instance is satisfiable, that is, that the solution is ‘yes’. Specifically,

they characterize where typical instances are generally satisfiable (under-constrained region), where they are

unsatisfiable (over-constrained region) and where the probability of satisfiability is close to 50% (satisfiabil-

ity threshold αs). It has been shown that the computational difficulty of solving the problem is higher when

αp is close to αs (Yadav et al., 2020; Franco et al., 2021b). TCC is then defined based on the distance of αp

to the satisfiability threshold αs. Specifically, instances with values of αp near the satisfiability threshold

have a high typical-case complexity (high TCC ) whereas instances further away from it—that is, in the

under-constrained and over-constrained regions— have low typical-case complexity (low TCC ). In line with

previous results (Franco et al., 2021b), we found participants had a better performance on instances with

low TCC compared to those with high TCC (β0.5 = −1.10, HDI0.95 = [−1.44,−0.79], main effect of TCC

on performance, GLMM; Fig 2; Table 4 Model 2).

We then studied satisfiability. This property of an instance captures the computational difficulty of

verifying that the certificate of a solutions (i.e., proof) is correct. To verify that an instance is satisfiable, it

suffices to check that a candidate set of items (satisfiability-certificate) satisfies the constraints. In contrast,

verifying unsatisfiability requires validating a proof of non-existence (unsatisfiability-certificate). For NP-

complete problems the former is tractable (P-time) whilst the latter is conjectured to be intractable (follows

from the conjecture that coNP 6= NP ; Arora and Barak (2009)). Our findings replicate previous results that

suggest there is no effect of satisfiability on human performance in the knapsack decision task (Franco et al.
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(2021b); β0.5 = 0.02, HDI0.95 = [−0.30, 0.30], main effect of satisfiability on performance, GLMM; Table 4

Model 5). Moreover, we found no significant interaction effect between TCC and satisfiability on performance

(β0.5 = 0.26, HDI0.95 = [−0.37, 0.90], interaction effect of TCC and satisfiability, GLMM; Fig 2; Table 4

Model 6). Besides studying and replicating previously reported effects of TCC and satisfiability on human

performance, we replicated other key findings presented by Franco et al. (2021b) (Appendix C).

Figure 2: Relation between TCC and human performance in the knapsack decision task. Each dot represents
an instance; human performance corresponds the proportion of participants that solved the instance correctly. Instances
are categorized according to their constrainedness region (α) and their TCC. In the underconstrained region (low TCC)
the satisfiability probability is close to one, while in the overconstrained region (low TCC) the probability is close to zero.
The region with a high TCC corresponds to a region in which the probability is close to 0.5. Additionally, instances are
categorized according to their solution (satisfiability) which is represented by their color. The box-plots represent the median,
the interquartile range (IQR) and the whiskers extend to a maximum length of 1.5*IQR
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Finally, we investigated human performance in a set of related tasks. We explored the relation between

performance in the knapsack tasks and core cognitive abilities, including working memory, episodic memory,

strategy use, as well as mental arithmetic. For this analysis we utilized the joined data set from this

study together with data collected by Franco et al. (2021b). Our results suggest a weak relation between

these cognitive abilities and performance in the knapsack tasks. The only significant correlation (at α =

0.05) shows a link between mental arithmetic ability and performance in the knapsack optimization task

(Appendix D).

2.2. Imaging results

2.2.1. Whole-brain analysis

We conducted a whole-brain analysis of the neural correlates of two intrinsic generic properties of prob-

lems: TCC and satisfiability. Additionally, we investigated the neural correlates of response accuracy

(Appendix E). We did this by fitting GLMs that partitioned the solving stage into four separate periods

(5.5s) with an additional response stage modeled in the analysis (2s) (Fig 1).
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Neural correlates of TCC. We expected to see the highTCC − lowTCC contrast capture differences in

BOLD activation in regions previously correlated with cognitive demand (i.e., MDS). We explicitly expected

to find evidence for the encoding of TCC in CON from early on during the solving stage due to its link

with expected performance and reliability. Higher TCC entails, on average, lower performance and lower

reliability of finding the solution (Fig 2). Note that the estimation of TCC early on in the trial is feasible,

because constrainedness (and thus TCC) can be potentially estimated by performing sum and division

operations (αp = p/
∑N

i=1 vi and αc = c/
∑N

i=1 wi).

We found that the neural correlates of TCC varied throughout the duration of the solving stage (Fig 3,

Table 1). Contrary to our expectations, we did not find significant correlations of TCC during the first

period of the solving stage. Interestingly, during the second period we did find a set of clusters that showed

higher BOLD activity on instances with low TCC. These regions include the angular gyrus (AG) bilaterally,

the SFG, the right MFG as well as regions in the orbitofrontal cortex (bilaterally). It is worth noting that

the negative pattern found in this period might stem from a different slope in the increased task-related

activation and not from differences in the sustained level of activity (Fig 5). This pattern would align with

previous results that support that FPN regions encode evidence accumulation towards a particular decision

(Ploran et al., 2011; Gratton et al., 2017). Indeed, in the knapsack task we would expect that lower TCC

entails faster evidence accumulation towards a solution.

Figure 3: Neural correlates of TCC. Brain activation effect estimates (β) for the high vs. low TCC contrast (βhighTCC −
βlowTCC). A positive contrast represents a higher BOLD activity on instances with high TCC compared to low TCC. Significant
cluster-wise FWE-corrected (p < 0.05) clusters (with an uncorrected threshold of p < 0.001) are presented for each of the
contrasts estimated using the Boxcar analysis. Each panel represents a different period in the solving stage. (a) Period S2,
(b) period S3, (c) period S4. No significant clusters were found for period S1 nor for the response stage parameters.

(a) RHLH

Period S1 Period S3 Period S4Items ResponsePeriod S2
No Clusters No Clusters

(b) RHLH (c) RHLH

p < .001, 
cluster-wise 
FWE-corrected 
(p < .05)

Effect 
Estimates

High TCC - Low TCC

During the third period of the solving stage, the TCC contrast still showed significant clusters along
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Table 1: TCC clusters. Significant cluster-wise FWE-corrected (p < 0.05) clusters (using an uncorrected threshold of
p < 0.001) from the High TCC - low TCC contrast. Coordinates are in MNI space.

Cluster statistics Peak statistics

Stage Region Side Volume(mm3) βmean SEM βpeak x y z

S2

SFG RH/LH 4763.6 -0.17 0.001 -0.32 13 34 61
Orbitofrontal cortex RH 3878.9 -0.21 0.002 -0.37 51 44 -19
AG RH 2662.4 -0.20 0.002 -0.31 51 -55 37
AG LH 897.0 -0.21 0.002 -0.29 -58 -66 36
Orbitofrontal cortex LH 749.6 -0.20 0.003 -0.31 -51 36 -19
MFG RH 495.6 -0.16 0.002 -0.20 48 17 36

S3

IPS LH 2043.9 0.16 0.002 0.35 -11 -79 52
Cerebelum RH 938.0 0.11 0.002 0.19 0 -60 -25
SFG LH 786.4 0.14 0.002 0.19 -26 -2 52
AG RH 495.6 -0.17 0.002 -0.24 56 -60 36
MFG/SFG RH 483.3 0.12 0.002 0.17 30 -1 61

S4

Occipital Pole LH 2732.0 0.20 0.001 0.32 -10 -97 -8
Fusiform gyrus LH 1888.3 0.19 0.002 0.31 -24 -79 -14
Middle occipital gyrus LH 1503.2 0.20 0.002 0.28 -29 -78 21
AI RH 1265.7 0.21 0.003 0.30 32 28 0
Precentral gyrus LH 1163.3 0.22 0.003 0.33 -43 4 24
IPS (precuneus) RH 1044.5 0.21 0.003 0.33 13 -76 60
SFG LH 1024.0 -0.15 0.003 -0.27 -16 36 58
dACC LH/RH 901.1 0.18 0.002 0.24 -2 22 40
IPS (AG) RH 696.3 0.24 0.004 0.35 32 -65 47
Occipital pole LH 667.6 0.26 0.003 0.34 -38 -95 -6
ACC LH 475.1 -0.22 0.003 -0.29 -5 57 8

the FPN, but the pattern overall changed, with respect to period S2. Critically, we found that a different

set of regions within the FPN now showed a positive correlation with TCC. Specifically, we found positive

clusters in the left SFG, left IPS, the cerebellum as well as a cluster in the right dorsolateral prefrontal

cortex (dlPFC) in between the MFG and the SFG. Interestingly, the right AG kept on displaying a negative

correlation with TCC during this period.

Finally, during the fourth, and last, period of the solving stage, a new set of clusters was identified.

Markedly, this new set of clusters include regions from both CON, FPN as well as significant clusters in the

occipital lobe. In general the activation in these clusters activate positively with that of TCC. These include

the dACC and right AI from the CON as well as the precentral gyrus and the IPS from the FPN. The right

IPS activation is segregated into two clusters, one medial and superior that overlaps with the precuneus and

one more lateral that overlaps with the AG. The only two clusters that correlated negatively with TCC are

those located in the ACC, as well as a cluster in the left SFG that overlaps with SFG cluster found in the

second period.

We did not find any significant clusters during the response stage.
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Neural correlates of satisfiability. We expected the asymmetry between satisfiable and unsatisfiable instances

to reflect differences in control signals associated with reliability. Specifically, we hypothesized that satisfiable

instances would be associated with higher reliability, given that once a solution witness is found, verifying

that the proposed solution is correct is a polynomial-time operation (tractable problem). In contrast,

for unsatisfiable instances, verifying a proof of non-existence is conjectured to be intractable, and thus,

computationally harder to verify.

Therefore, we expected regions that have been linked to monitoring of uncertainty to be more active

during a trial with an unsatisfiable instance compared to a satisfiable one. In particular, we conjectured

higher activation of the CON, on unsatisfiable instances, during late stages of the trial (Neta et al., 2017,

2014; Bossaerts, 2018; Fouragnan et al., 2018).

Interestingly, and contrary to our expectations, we found significant clusters from the first period of

the solving stage (Fig 4, Table 2). Moreover, significant clusters did not extend to the response screen,

which was also in opposition to our conjecture. Most of the clusters during the solving stage showed a

lower BOLD activity for unsatisfiable instances. These clusters extended from period one to period four

of the solving stage. Notably, the posterior cingulate showed a lower sustained activation on unsatisfiable

instances throughout the solving stage (periods two, three and four). Similarly, different clusters in the SFG

had significant clusters throughout the solving stage. Additionally, similar to the clusters found for the TCC

contrast, the AG showed bilateral activation during the second period of the solving stage. Interestingly, a

bigger AG cluster was found on the left hemisphere compared to the right, in contrast to the right laterality

predominance of AG found in the TCC contrast.

Figure 4: Neural correlates of satisfiability. Brain activation effect estimates (β) for the unsatisfiable vs. satisfiable contrast
(βunsatisfiable − βsatisfiable). A positive contrast represents a higher BOLD activity on unsatisfiable instances. Significant
cluster-wise FWE-corrected (p < 0.05) clusters (with an uncorrected threshold of p < 0.001) are presented for each of the
contrasts estimated using the Boxcar analysis. Each panel represents a different period in the solving stage. (a) Period S1,
(b) period S2, (c) period S3 and , (d) period S4. No significant clusters were found in the response stage.

(a) RHLH

Period S1 Period S3 Period S4Items ResponsePeriod S2
No Clusters

(b) RHLH (c) RHLH

p < .001,  cluster-wise FWE-corrected (p < .05)

Effect Estimates

Unsatisfiable – Satisfiable

(d) RHLH

0-0.2 0.2
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Table 2: Satisfiability clusters. Significant cluster-wise FWE-corrected (p < 0.05) clusters (using an uncorrected threshold
of p < 0.001) from the Unsatisfiable-Satisfiable contrast. Coordinates are in MNI space.

Cluster statistics Peak statistics

Stage Region Side Volume(mm3) βmean SEM βpeak x y z

S1

SFG LH 1876.0 -0.14 0.002 -0.23 -3 38 42
Supramarginal gyrus RH 1740.8 -0.13 0.002 -0.25 54 -46 56
Supramarginal gyrus LH 1425.4 -0.12 0.001 -0.17 -42 -47 40
Inferior occipital cortex LH 1159.2 -0.13 0.002 -0.22 -61 -65 -12
MFG LH 905.2 -0.15 0.001 -0.20 -48 18 28
Caudate LH 880.6 -0.17 0.002 -0.24 -8 2 -1
MFG RH 868.4 -0.12 0.003 -0.23 37 30 53
Cerebellum LH 667.6 -0.12 0.002 -0.18 -38 -79 -49
Precuneus LH 516.1 -0.19 0.003 -0.26 -2 -65 44
Frontal pole RH 450.6 -0.14 0.002 -0.18 29 58 -9
Caudate RH 450.6 -0.17 0.003 -0.23 8 4 0

S2

AG LH 2523.1 -0.19 0.002 -0.29 -62 -60 29
Posterior cingulate RH 696.3 -0.20 0.003 -0.25 2 -25 40
AG RH 585.7 -0.18 0.003 -0.28 62 -57 34
SFG LH 577.5 -0.23 0.004 -0.40 -38 62 -8
Posterior cingulate LH 479.2 -0.16 0.002 -0.19 -10 -41 37

S3

SFG LH 1511.4 -0.15 0.002 -0.22 -21 36 55
Anterior cingulate LH 708.6 -0.21 0.003 -0.30 -5 52 4
Supramarginal gyrus RH 696.3 -0.14 0.002 -0.20 64 -28 39
Frontal pole RH 692.2 -0.14 0.002 -0.21 13 58 31
Anterior cingulate LH 593.9 -0.15 0.002 -0.24 -6 46 12
Posterior cingulate LH 577.5 -0.17 0.002 -0.22 -2 -28 45
Posterior cingulate LH 487.4 -0.18 0.004 -0.28 -2 -44 28

S4

Posterior cingulate RH 1384.5 -0.22 0.003 -0.33 0 -18 34
SFG RH 1306.6 -0.18 0.002 -0.26 14 50 42
AI RH 901.1 0.25 0.003 0.36 32 28 0
AG LH 659.5 -0.24 0.003 -0.30 -48 -68 44
SFG LH 647.2 -0.17 0.004 -0.26 -14 52 40
Precuneus LH 581.6 -0.19 0.005 -0.27 -5 -57 31
Occipital superior cortex RH 544.8 0.17 0.005 0.27 29 -63 36
SFG / Frontal pole LH 512.0 -0.24 0.003 -0.34 -3 65 16
Orbitofrontal cortex LH 454.7 -0.23 0.003 -0.33 -46 28 -20
Supramarginal RH 438.3 -0.12 0.002 -0.18 54 -33 32

The only two clusters that showed a significantly higher activity on unsatisfiable instances were the

right AI and the occipital superior cortex, both present only during period four of the solving stage. The

significant cluster found in the AI is in line with our hypothesis that unsatisfiable instances are related to

higher markers of uncertainty, a signal which we expected to find in the CON. However, in disagreement

with our hypothesis, we did not find a significant satisfiability cluster in the dACC. This may be due to

insufficient statistical power of the whole brain analysis (see Fig 5).

Neural correlates of accuracy. Although participants did not receive any feedback during the task, we

expected to see error-related signals late in the trial. Although these signals would not represent the
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integration of novel exogenous information (since there was no feedback), we conjectured that participants

would hold a subjective belief of the expected accuracy (or reward) of their answer (e.g, Duverne and

Koechlin (2017)). In line with our hypothesis, we found that activity in both FPN and CON was positively

correlated with erring during the response stage (Appendix E).

ROI dynamics

Three ROIs were selected (see Section 4.9.3) to investigate more closely the neural dynamics of computa-

tional complexity. We included in our analysis the dACC due to its proposed involvement in the allocation

of control (Shenhav et al., 2013; Dosenbach et al., 2006; Silvetti et al., 2018; Vassena et al., 2017; Holroyd

and Yeung, 2012; Alexander and Brown, 2011) as well as the right AI because of its involvement in encoding

control signals and uncertainty in particular (Neta et al., 2017, 2014; Bossaerts, 2018; Fouragnan et al.,

2018). In order to compare the neural activity in these regions, which are generally attributed to control,

with relevant processing units, we selected a region associated with mathematical calculations, the right IPS

(Matejko and Ansari, 2018; Brannon, 2006; Arsalidou and Taylor, 2011).

We explored the BOLD effect estimates (βFIR) for the 2×2 balanced factorial design (satisfiability×TCC)

employing Finite Impulse Response (FIR) analysis at one-second resolution (see Section 4.9.4). We found

similar patterns in AI and dACC. In both regions, the BOLD signal rose throughout the task and quickly

decreased around the time the solving stage ended (Fig 5). The activity pattern in the IPS showed a different

pattern to that of CON regions. In this region, the BOLD signal increased quickly early on in the trial and

was sustained until it started decreasing later on in the trial. The moment at which the decrease started

was modulated by TCC and satisfiability (Fig 5c).

Interestingly, there seemed to be an interaction between satisfiability and TCC (Fig 5 fourth row of

panels). Specifically, satisfiable instances with low TCC started showing a decrease in activity from early

on in the trial on all three regions (Fig 5 green line). Conversely, unsatisfiable instances with high TCC

showed a more pronounced peak late in the trial in both AI and dACC (blue line).

When contrasting the effect of TCC in each of the ROIs, we find that there is a significant positive effect

of TCC from mid-way through the trial in the right IPS/AG (Fig 5 second row of panels). This differs from

the results obtained in the whole brain analysis. Similarly, when estimating the effect of satisfiability (Fig 5

third row of panels), the results marginally differ from those of the whole-brain analysis. Firstly, the ROI

analysis reveals that there is an effect of satisfiability on all three regions late in the solving-stage. Secondly,

the effect of satisfiability starts in the AI and dACC mid-way through the trial. Interestingly, the effect of

TCC seems to precede that of satisfiability in the IPS, whereas in the dACC the effect of satisfiability seems
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Figure 5: Temporal dynamics of BOLD in regions of interest. Mean effect estimate (β) for each ROI against time in
trial. The effect at each time point represents the mean βFIR over all of the voxels from each ROI: right AI (a), dACC (b),
and right IPS cluster extending to the angular gyrus (c). In the top row of figures the βFIR’s characterize the coefficients of an
FIR regression with four conditions: satisfiability×TCC. The βFIR parameters are aligned to the BOLD signal, which has a
lag with respect to the task time. To correct for this, the gray time-markers represent the task-events by assuming a 5 seconds
BOLD signal lag. In the second row, the TCC contrast (βhigh − βlow) is presented. The third row displays the satisfiability
contrast (βunsat − βsat). The bottom row shows the interaction effect between TCC and satisfiability ([βhighTCC,unsat −
βlowTCC,unsat] − [βhighTCC,sat − βlowTCC,sat]). Red asterisks represent significance at a 0.05 significance level. Significance
levels in the gray shaded regions are suggestive only; they represent the time period and contrast from which the ROIs were
selected.
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to precede that of TCC.

Altogether, these results suggest that both satisfiability and TCC correlate with activity in all three

regions, but that their effect might have different neural temporal signatures. Importantly, the sign of the

effect was in line with our hypothesis: a higher signal in these regions was generally related to higher TCC

and unsatisfiability. The only exceptions happen briefly early on in a trial.

Finally, we explored the interaction between neural markers of accuracy and the proposed metrics of

computational difficulty (Appendix E). To do this, we analyzed (employing FIR in the three ROIs) the neural
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markers of accuracy separately for each type of instance (i.e., level of TCC and satisfiability). Overall, our

results suggest a link between neural markers of accuracy and metrics of computational difficulty. Specifically,

we found a significantly lower BOLD signal on incorrect instances with low TCC and on incorrect satisfiable

instances. This effect was particularly evident in the IPS and marginally in the AI. Importantly, these trends

showed from the moment the trial started, suggesting that for instances associated with low computational

difficulty (i.e., low proof hardness and low complexity), the accuracy could be predicted from early on in

the trial from BOLD activity in the IPS.

Psychophysiological interactions (PPI)

To study the effect of TCC and satisfiability on functional connectivity we conducted a PPI analysis to

gauge the functional synchronization between each of the ROIs and other regions in the brain. Explicitly,

we performed whole-brain PPI analyses employing the three considered ROIs (dACC, rAG and rAI) as seed

regions. For these regressions we modeled the task (items and solving stages together) with two boxcar

functions of equal length (12.5s) (Fig 6). This allowed us to study PPI task interactions separately for an

early period (PPI-1: first 12.5 seconds of the task) and a late period (PPI-2: last 12.5 seconds). We found

a similar and generalized pattern of connectivity for all three ROIs and both periods when contrasting the

PPI effect compared to baseline (Appendix Fig 8). This suggest that the task has a similar effect on the

BOLD synchronization between the three ROIs and several regions.

When comparing the connectivity between instances with high and low TCC, we found one significant

cluster with differential connectivity. This cluster, located along the rAG and the supramarginal gyrus,

showed a change in connectivity to the rAI (seed region) between high and low TCC instances during the

second PPI period (Fig 6a; Table 3). We also explored the differences in the PPI connectivity between

unsatisfiable and satisfiable instances. We observed a significant PPI effect of satisfiability between the

right IPS/AG (seed) and the left MFG, as well as with the left AG, during the second PPI period (Fig 6b;

Table 3). Overall, these results suggest that instance properties have an effect on the synchronicity between

the ROIs and a limited collection of clusters. However, this effect is only significant during the later part of

the solving stage.

Granger causality analysis

In order to explore effective connectivity patterns, we studied temporal directionality with Granger

Causality (GC). We were particularly interested in the effect of complexity and proof hardness on the

effective connectivity between our three ROIs. We found a significant bidirectional connectivity between all
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Figure 6: PPI results. The effect of instances’ properties on connectivity: (a) TCC, (b) Satisfiability. The left panel
represents the seed region used for the analysis (dACC, rAG or rAI). The right panel shows the clusters that display a significant
PPI connectivity effect for a particular seed region and period. Significant cluster-wise FWE-corrected (p < 0.05) clusters (with
an uncorrected threshold of p < 0.001) are presented. “No clusters”: No significant clusters were found for this analysis.
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the ROIs at baseline during the experiment. Additionally, during the solving stage, we found that there

was a significant change in GC from dACC to rAG. However, we did not find any significant changes in

the effective connectivity between high and low TCC instances nor between unsatisfiable and satisfiable

instances. Taken together, these results suggest that the effects of TCC and satisfiability on neural activity

propagate through the ROIs via baseline effective connectivity (present during the solving stage) and not

through a direct effect on the effective connectivity (see Appendix E.2).

3. Discussion

The study of the neural underpinnings of problem-solving has, to date, been centered on tractable

problems. This line of research has led to the characterization of networks and processes that support

problem-solving. A critical shortcoming of existing studies is the lack of a formal and generic characterization

of cognitive resource requirements, which is particularly problematic in relation to intractable problems where

problems require an extended period of time to solve and involve an extensive search space (e.g., MacGregor
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Table 3: PPI clusters. The effect of instances’ properties on connectivity. Significant cluster-wise FWE-corrected (p < 0.05)
clusters (using an uncorrected threshold of p < 0.001). Coordinates in MNI space.

Cluster statistics Peak statistics

Contrast Region Side Volume(mm3) βmean SEM βpeak x y z

TCC AG/Supramarginal Gyrus RH 573.4 0.26 0.004 0.36 61 -50 36

Satisfiability
MFG LH 499.7 0.300 0.007 0.475 -43 18 59
AG LH 483.3 0.266 0.006 0.432 -54 -65 47

and Chu, 2011; Acuña and Parada, 2010; Murawski and Bossaerts, 2016; Franco et al., 2021b). Here, we

present a framework, grounded in computational complexity theory, to study the neural underpinnings of

problem-solving that overcomes previous limitations.

We empirically test this framework in the knapsack decision task using ultra-high field fMRI. Our findings

shed light into the neural processes supporting problem-solving. Firstly, our findings not only extend but

solidify the research on the neural correlates of cognitive demand by exploring the processes associated

with one specific dimension of cognitive demand: computational complexity. Importantly, this is done

in a task-independent way in the sense that these metrics can be applied to a whole class of problems

(i.e., NP-complete). Secondly, rather than studying cognitive demand starting from “what people are

thinking,” we rely on the theory of computational complexity to identify intrinsic properties of a problem to

delineate cognitive requirements. These intrinsic properties allowed us to discover relevant neural markers

and their dynamics, similar to how risk and variance have been shown to affect decisions in probabilistic

tasks (D’Acremont and Bossaerts, 2008). Finally, the results presented here complement the investigation

of cognitive control by providing a framework that can be employed to extend previous findings to tasks

that involve intractable problems. Critically, cognitive control involves the dynamic allocation of cognitive

resources that stem from an interaction between the cognitive requirements of a task and the resources

available. The framework put forward here provides a theoretical foundation for the characterization of the

former.

Extensive research has studied the neural correlates of cognitive demand. This program has characterized

the MDS, a network of regions that respond robustly to cognitive demand irregardless of the task at hand

(Fedorenko et al., 2013; Assem et al., 2020; Duncan and Owen, 2000; Crittenden et al., 2016). This has

been done using several tasks including perceptual target detection and memory retrieval, among many

others. Notably, most of the tasks employed to date have been based on tractable problems. Moreover,

many of the tasks employed modulate cognitive demand of the task by tuning the amount of processing

needed on one specific dimension of cognitive processing. For instance, in perceptual tasks, signal to noise
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ratio is modulated (e.g., Aben et al., 2020; Dubis et al., 2016; Hanks and Summerfield, 2017; Ploran et al.,

2011); alternatively, in memory retrieval tasks, the amount of information to be stored/retrieved is tuned

(e.g., Gratton et al., 2018; Fedorenko et al., 2013). The lack of a generic (problem-independent) definition

of cognitive demand hinders the generalization of this approach to new problems. Importantly, the level of

cognitive demand might be highly related to the strategies used. Here, we propose a way forward, grounded

in the assumption that hardness is, at least partially, an intrinsic characteristic of the problem at hand.

Following this approach, we operationalized cognitive demand via TCC and found that the neural corre-

lates of TCC overlapped with those associated with the MDS. In particular, the positively correlated clusters

(higher activation in high TCC instances) in the FPN and CON resembled those of the MDS. Notably, we

found clusters in the AI, the dACC, the precentral gyrus and the IPS, which have been associated with

the MDS (Fedorenko et al., 2013). Importantly, our results display a dynamic process in which the neural

correlates of TCC vary throughout the different stages of the task. This suggests that the MDS can be

construed as a heterogeneous set of regions that play a dynamic and varying role at different stages in

problem-solving.

It is worth highlighting that we are not arguing for the proposed framework to replace other methodolog-

ical approaches in the study of cognitive demand. Instead, we assert that both approaches complement each

other. Critically, complex tasks involve the interplay of several computational processing units such as work-

ing memory, logical operations, processing of numerical magnitudes among many others. Our approach, as

it stands, is not able to differentiate among these sub-processes. A proper understanding of problem-solving

requires both the study of these sub-processes independently, like in more classical approaches (e.g., Gratton

et al., 2018), as well as in tandem in order to understand how they interact to support computationally hard

problem-solving, like done in this paper.

A related effect of these properties on neural processes is through the encoding of relevant task markers

that could be employed during problem-solving (Yoo et al., 2021; Koechlin, 2016). These neural markers

include markers of performance such as expected error (Neta et al., 2017; Bossaerts, 2018), variance in

this expectation (uncertainty) (Neta et al., 2017, 2014; Bossaerts, 2018), as well as markers that encode

the evidence towards a particular response (Ploran et al., 2011; Gratton et al., 2017) or even the merit

of alternative strategies (Duverne and Koechlin, 2017; Donoso et al., 2014). Critically, we made three

conjectures with regards to these neural markers. First, we hypothesized to see markers of performance,

related to TCC, from early on in the trial. Second, we conjectured we would see markers of reliability,

related to satisfiability, in regions shown to encode uncertainty. Third, we expected to find neural correlates
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of accuracy late in the trial, which would be associated to expected performance.

With regards to our first hypothesis, we argue that TCC is a feasible metric that can be related to

markers of performance and efficacy of effort from early on in the trial. Firstly, TCC has been shown to be

correlated with human performance (Franco et al., 2021b). Secondly, TCC can be potentially estimated from

early on in the solving stage without the need to know the solution to the problem. As such, we expected

to see neural correlates of TCC from early on in the trial. Specifically, we expected to see markers of TCC

from early on in the solving stage in the CON (Shenhav et al., 2013; Bossaerts, 2018; Neta et al., 2014).

Contrary to our expectations, we only found significant clusters in the CON starting from the third period

of the solving stage. These might reflect markers of expected performance, but other explanations cannot

be excluded. For instance, this effect might reflect differences in time-on-task between TCC conditions

(Grinband et al., 2011). This explanation, however, would still allow these activation patterns to represent

differences in neural markers such as reliability and expected performance. This follows from the fact that

time-on-task is an endogenous variable of the system. That is, the agent decides when to stop reasoning

about the problem, and as such, this decision would likely follow from a subjective belief on how well they

can expect to perform given the current candidate solution. Therefore, differences in time-on-task between

high and low TCC instances may be related to differences in subjective beliefs of both expected performance

and reliability.

Additional to the reported clusters that correlated positively with computational complexity, we found a

set of clusters that correlated negatively with TCC. These clusters are concentrated in the second period of

the solving stage, but are also found in the third and fourth periods of the solving stage. These results might

be explained by the encoding of evidence accumulation signals (Ploran et al., 2011). Arguably, evidence

toward a solution can be accumulated faster in low TCC compared to high TCC instances. This would

imply that regions that encode evidence accumulation would show a higher activation on low TCC instances

early in the trial, in accordance with the pattern found on the second period of the solving stage.

Turning now to our second conjecture regarding the neural markers of reliability, we explored the corre-

lates of satisfiability during problem-solving. We expected to see activation related to satisfiability in regions

previously associated with uncertainty encoding, specifically, in the CON. In line with our hypothesis, we

found a significant positive relation between unsatisfiability and activity in the CON that started halfway

through the solving stage. In line with our conjecture, we found that the neural markers of satisfiability

overlap with regions that encode probabilistic uncertainty. This suggests that reliability and uncertainty

might constitute analogous constructs that are encoded similarly across tasks and that could serve a generic
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role in decision-making.

Contrary to our expectations, we found several regions that displayed an increase in activity during

satisfiable instances from early on in the solving stage. This result is perplexing because knowing the

satisfiability of the problem equates to having solved the problem, which would not be expected early on in

the trial. A possible explanation for this is that the clusters found encode evidence accumulation (Ploran

et al., 2011; Gratton et al., 2017) and that accumulating evidence towards the solution in satisfiable instances

occurs at a different rate than in unsatisfiable instances. Relatedly, these activation patterns might reflect

the use of different strategies. However, this account would still require participants to be implementing

different strategies, based on satisfiability, as early as during the first few seconds of the solving stage.

Overall, future research should attempt to disentangle the effect of proof hardness and the satisfiability of

instances. This could be done, for instance, through experiments aimed at testing more nuanced metrics of

proof hardness.

Moving on now to consider our conjecture related to the neural markers associated with erring, we

explored the effect of accuracy on the neural activation throughout the task. It has been proposed that

FPN and CON regions encode task signals related to error detection and error expectation (Neta et al.,

2014, 2017; Dosenbach et al., 2006). We hypothesized that participants would represent a subjective belief

on the expected accuracy (or reward) of their answer (e.g, Duverne and Koechlin (2017)). In line with our

conjecture, we found that activity in both the FPN and CON was positively correlated with erring during

the response stage (Appendix E).

Overall, we found evidence that suggests the existence of neural markers related to computational com-

plexity, proof hardness and performance. Taken together, the framework put forward here provides a way to

study neural markers associated to subjective beliefs during problem-solving. It is worth noting, however,

that while we modulated complexity and proof hardness, many other complexity-related features might be

relevant, including, for example, the size of the problem at hand (e.g., Carruthers et al., 2012; MacGre-

gor and Chu, 2011; Dry et al., 2006; van Opheusden and Ma, 2019; Stazyk et al., 1982; De Visscher and

Noël, 2014). Further work in this area is needed to understand the interaction between different sources of

computational difficulty in human problem-solving.

Finally, to explore the dynamics related to control during complex problem-solving, we analyzed the

functional interaction during problem-solving of three ROIs, two of which have been associated with cognitive

control (i.e., CON) and one region which has been associated with processes that were deemed highly relevant

for the task at hand (i.e., IPS). We studied synchronization of signals (employing PPI analysis) and explored
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their effective connectivity (using GC analysis).

Our results support the view that there is a generalized change in signal synchronization during the

solving stage compared to baseline. Moreover, when exploring the link between instance properties and

synchronicity between regions, we found several clusters whose connectivity was modulated by either satisfi-

ability or TCC. These effects were only present late in the trial. Specifically, we found that TCC modulated

the synchronicity between the rAI and the rIPS. Additionally, satisfiability modulated the functional con-

nectivity between the right IPS and two clusters in the left hemisphere, one in the AG and one in the MFG.

Overall, these results suggest a differential recruitment of regions during the task, partially modulated by

task properties late in the trial. Interestingly, the significant clusters identified in this analysis have been im-

plicated in the performance of mathematical calculations (Arsalidou and Taylor, 2011; Grabner et al., 2009),

suggesting that they could support moment-to-moment implementation of strategies. Further work would

be needed in order to asses whether the relation, found here, between instance properties and functional

synchronization is associated to the implementation of different strategies.

Additionally, we found that the effective connectivity pattern was impervious to the level of TCC and

satisfiability. This suggests that the effect of computational complexity on control would occur by generating

differential levels of activity within the regions of interest and not via modulation of the effective connectivity

between these regions. It is worth noting that the failure to reject the null hypothesis (of no effects of TCC

and satisfiability on effective connectivity), however, could be due to lack of power or due to the exclusion

of relevant ROIs from the analysis. Further research is needed to assess whether whole brain effective

connectivity patterns are affected by computational complexity.

* * *

Humans are constantly solving problems that vary in their complexity, ranging from perceptual tasks, such

as motion detection and face recognition, to reasoning tasks such as choosing an investment portfolio.

Understanding how complexity of these problems affects the neural processes involved in problem-solving

is of crucial importance for the understanding of human decision-making. Here, we present a framework

that allows for the study of computational difficulty of human problem-solving. We applied this framework

and identified a dynamic set of regions in which activation was modulated by different properties related

to computational complexity. Overall, our findings provide support to the premise that computational

complexity theory, as applied here, provides a useful characterization of cognitive demand and reliability for

the study of problem-solving in neuroscience.
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4. Materials and methods

4.1. Ethics statement

The experimental protocol was approved by the University of Melbourne Human Research Ethics Com-

mittee (Ethics ID 1749616.3). Written informed consent was obtained from all participants prior to com-

mencement of the experimental sessions. Experiments were performed in accordance with all relevant

guidelines and regulations.

4.2. Participants

Twenty right-handed volunteers from Melbourne University and the surrounding community took part in

the study (14 female, 5 male, 1 other; age range = 18-35 years, mean age = 26.6 years). Inclusion was based

on age (minimum = 18 years, maximum = 40 years) and on right-handedness. Each participant performed

the knapsack decision task in the scanner and performed outside the scanner the knapsack optimization task

and a set of basic cognitive function tasks.

4.3. Knapsack decision task

In this task, participants were asked to solve a number of instances of the (0-1) knapsack decision problem

(Fig 1). In each trial, they were shown a set of items with different values and weights as well as a capacity

constraint and a target profit. Participants had to decide whether there exists a subset of those items for

which (1) the sum of weights is lower or equal to the capacity constraint and (2) the sum of values yields at

least the target profit.
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Each trial had four stages. In the first stage (items stage; 3 seconds), only the items were presented.

Item values, in dollars, were displayed using dollar bills and weights, in grams, were shown inside a black

weight symbol. The larger the value of an item, the larger the dollar bill was in size. Similarly, the larger

the weight of an item, the larger its weight symbol was in size. At the center of the screen, a green circle

indicated the time remaining in this stage. In the second stage (solving stage; 22 seconds), target profit

and capacity constraint were added to the screen inside the green timer circle. In the third stage (response

stage; 2 seconds), participants saw a ‘YES’ and a ‘NO’ button on the screen, in addition to the timer circle,

and made a response using the keyboard (Fig 1). Finally, a jittered inter-trial rest period of 8, 10 or 12

seconds was shown before the start of the next trial.

Participants completed 56 trials (7 blocks of 8 trials), each showing a different instance of the knapsack

decision problem. The order of instances was randomized across participants. The side of the ‘YES’ and

‘NO’ buttons was also randomized.

4.4. Instance sampling

Instances were sampled following a 2×2 balanced factorial design for the factors TCC (high and low)

and satisfiability (satisfiable and unsatisfiable). Specifically, instances selected were sub-sampled from those

employed in a previous behavioral study (Franco et al., 2021b). Instances in their study were selected such

that αc was fixed (αc ∈ [0.40, 0.45]) and the instance constrainedness varied according to αp. 18 satisfiable

instances were selected from the under-constrained region (αp ∈ [0.35, 0.4]; low TCC ) and 18 unsatisfiable

instances from the over-constrained region (αp ∈ [0.85, 0.9]; low TCC ). Additionally, 18 satisfiable instances

and 18 unsatisfiable instances were sampled near the satisfiability threshold (αp ∈ [0.6, 0.65]; high TCC ).

Half of the instances with high TCC were forced to have high/low computational requirements (top/bottom

50%), according to an algorithm-specific ex-post complexity measure of a widely-used algorithm (Gecode ;

Gecode Team (2006)). All instances in the experiment had N = 6 items and wi, vi, c and p were integers.

In the current study we randomly selected 56 of the 72 instances sampled in Franco et al. (2021b). Sub-

sampling without replacement was done ensuring that the same number of instances were selected across

TCC and satisfiability conditions. Moreover, instances with high TCC were balanced to require high/low

computational requirements according to the same algorithm-specific complexity measure employed in their

study (i.e., Gecode propagations).
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4.5. Complementary tasks

Participants were presented a set of complementary tasks outside of the scanner. They were asked to

solve a number of instances of the (0-1) knapsack optimization problem. Similar to the knapsack decision

task, participants were shown a set of items with different weights and values as well as a capacity constraint.

However, unlike the decision variant, no target profit was presented. Participants had to find the subset of

items that maximized total value subject to the capacity constraint (see Appendix C.2).

We also tested participants’ performance on five aspects of cognitive function that we considered relevant

for the knapsack tasks, namely, working memory, episodic memory, strategy use, processing and psychomo-

tor speed, as well as mental arithmetic. To do so, we administered a set of tasks from the Cambridge

Neuropsychological Test Automated Battery (CANTAB; Appendix D). Specifically, we asked participants

to perform the Reaction Time (RTI), Paired Associates Learning (PAL), Spatial Working Memory (SWM)

and Spatial Span (SSP). In addition, participants were presented with a set of mental arithmetic problems

(Appendix D).

4.6. Procedure

Participants were asked to fill in an MRI screening form before attending the experiment. Once at the

experiment, participants were presented with a plain language statement and a consent form. After reading

these and providing written informed consent, participants were instructed in the tasks and completed

a practice session of the knapsack decision task. Participants then underwent an MRI safety check and

debriefing.

Before being scanned, participants solved the CANTAB RTI task outside of the scanner. This was

followed by the scan session in which they performed the knapsack decision task. Afterwards, outside of

the scanner, they completed the CANTAB RTI task again, followed by the knapsack optimization task.

Subsequently, they completed the remaining CANTAB tasks in the following order: PAL, SWM and SSP.

Finally, they performed the mental arithmetic task and completed a set of demographic and debriefing

questionnaires. Altogether, the experimental session lasted around three hours.

Participants received a show-up fee of A$10, as well as monetary compensation based on performance.

They earned A$1.2 for each correct answer in the knapsack decision task and for each correct answer in the

knapsack optimization task.
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4.7. Behavioral statistical analyses

The R programming language was used to analyze the behavioral data. All of the linear mixed models

(LMM), generalized logistic mixed models (GLMM) and censored linear mixed models (CLMM) included

random effects on the intercept for participants (unless otherwise stated). Different models were selected

according to the data structure. GLMM were used for models with binary dependent variables, LMM were

used for continuous dependent variables and CLMM were used for censored continuous dependent variables

(e.g., time-on-task).

All of the models were fitted using a Bayesian framework implemented using the probabilistic program-

ming language Stan via the R package ‘brms’ (Bürkner, 2017). Default priors were used. All population-

level effects of interest had uninformative priors; i.e., an improper flat prior over the reals. Intercepts had a

student-t prior with 3 degrees of freedom and a scale parameter that depended on the standard deviation

of the dependent variable after applying the link function. The t-student distribution was centered around

the mean of the dependent variable. Sigma values, in the case of Gaussian-link models, had a half student-t

prior (restricted to positive values) with 3 degrees of freedom and a scale parameter that depended on the

standard deviation of the dependent variable after applying the link function. Standard deviations of the

participant-level intercept had a half student-t prior that was scaled in the same way as the sigma priors.

Each of the models presented was estimated using four Markov chains. The number of iterations per

chain was by default set to 2000. This parameter was adjusted to 4000 on some models to ensure convergence,

which was verified using the convergence diagnostic R̂. All models presented reach an R̂ ≈ 1.

Statistical tests were performed based on the 95% credible interval estimated using the highest density

interval (HDI) of the posterior distributions calculated via the R package ‘parameters’ (Lüdecke et al., 2020).

For each statistical test we report both the median (β0.5) of the posterior distribution and its corresponding

credible interval (HDI0.95).

No participant nor trial was excluded from the data analysis of the knapsack decision task.

4.8. MRI data acquisition

We collected the fMRI images using a 7 Tesla Siemens MAGNETOM scanner located at the Melbourne

Brain Centre (Parkville, Victoria) with a 32-channel radio frequency coil.

The BOLD signal was measured using a multiband echo-planar imaging sequence (TR = 800 ms, TE

= 22.2 ms, FA = 45°). We acquired 84 interleaved slices (thickness = 1.6 mm, gap = 0 mm, FOV = 208

mm, matrix = 130x130, multi-band factor = 6, voxel size=1.6×1.6×1.6mm3) per volume. 380 volumes were

acquired on each run while recording cardiac and respiratory traces.
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After five functional runs (one resting state run followed by four task runs), a high resolution (0.7 mm

isotropic) anatomical image was acquired using an MP2RAGE pulse sequence (TR=5000 ms, TE=3.07

ms, TI1 = 700ms, FA1 = 4°, TI2 = 2700ms, FA1 = 5°, matrix=330×330, voxel size=0.73×0.73×0.73mm3,

FOV=240 mm, 224 slices, slice thickness = 0.73). Afterwards, another three functional runs were performed,

followed by a diffusion weighted imaging (DWI) multi-band sequence (TR=7000 ms, TE=72.4 ms, FA =90°,

FoV = 210 mm, matrix = 170x170, slice thickness =1.24, voxel size = 1.24m3, 128 slices, multi-band factor

=2).

4.9. Imaging statistical analyses

4.9.1. Preprocessing

Initial preprocessing of the data was performed using AFNI (Cox, 1996) and the Advanced Normalization

Tools (ANTs) software. For each subject, pulse and cardiac noise was regressed out from the functional scans.

These were then slice-time corrected and the volumes were motion-corrected by registering them to the first

volume of the first functional run. The mean image of the first run was co-registered to the anatomical

scan (down-sampled) and this transformation was applied to all of the functional volumes. Afterwards,

each participant’s anatomical scan was used for calculation of transformation parameters to normalize the

functional images into the Montreal Neurological Institute (MNI) space (see Appendix A for more details).

4.9.2. Whole-brain analysis (boxcar)

Whole-brain analyses were performed by fitting generalized linear models (GLM) using AFNI (Cox,

1996). Before the regressions were implemented, we spatially smoothed the functional volumes with a

4.8mm FWHM Gaussian kernel. Additionally, volumes with motion or signal outliers were censored from

each of the regressions.

We performed GLM regressions to explore three contrasts of interest. Specifically, we tested the neural

correlates of TCC (high TCC vs. low TCC), satisfiability (unsatisfiable vs. satisfiable) and accuracy (correct

vs. incorrect). In each of the regressions the solving phase (22s) was modeled using four boxcar functions

of equal duration (5.5s):

y =β0 +
4∑

i=1

[
βL0
i L0 × boxSi + βL1

i L1 × boxSi

]
+ βL0

5 L0 × boxresp + βL1
5 L1 × boxresp+

β6boxitems + βLLeft+ βRRight

where L0 and L1 correspond to the different levels of interest (e.g., high TCC and low TCC respectively)
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and boxSi, boxresp and boxitems correspond to the boxcar functions of the solving, response and items stages,

respectively. Left and Right correspond to the button pressed by the participant.

Group level analyses were performed using mixed effects multilevel modeling (Chen et al., 2012). All

whole-brain analysis results are reported with a clusterwise threshold of p < 0.05 corrected for multiple

comparisons across the whole brain, using an uncorrected voxelwise threshold of p < 0.001.

4.9.3. ROI specification

We were particularly interested in how control and subjective beliefs of cognitive demand and reliability

were involved in complex problem-solving. To study these dynamic processes we selected three regions of

interest (ROIs) that have been implicated in the processes of interest. Firstly, we included in our analysis

the CON (dACC and AI) due to its proposed involvement in the allocation of control (Shenhav et al., 2013;

Dosenbach et al., 2006; Silvetti et al., 2018; Vassena et al., 2017; Holroyd and Yeung, 2012; Alexander and

Brown, 2011) and uncertainty encoding (Neta et al., 2017, 2014; Bossaerts, 2018), which we conjectured

would be highly related to encoding of reliability. Secondly, we included a region that has been involved

in moment-to-moment processing operations during problem-solving. We expected the knapsack task to

engage processing units associated with number processing and mathematical calculations. Therefore, we

selected a region that has been widely connected to ‘processing’ in mathematical problem-solving, the right

IPS (Matejko and Ansari, 2018; Brannon, 2006; Arsalidou and Taylor, 2011).

The three ROIs were selected from the clusters found when contrasting high and low TCC in the last

boxcar during the solving stage (period S4). We chose the contrast for the fourth boxcar for a few reasons.

We expected that during this last period of the solving stage we would be able to see a marked differentiation

in the cognitive demand between instances with high and low TCC. We expected instances with low TCC

to require less computational time and thus, we hypothesized that, on average, participants would be

still making calculations during the period S4 for high TCC instance, but not for low TCC instances.

This was further indicated by a parallel pilot study that found that participants spent on average 17.9s

solving an instance with low TCC and 21.2s on those with high TCC (period S3 ends at 19.5s of solving

stage). Importantly, we believed that these differences in cognitive demand would be reflected as well in

a differentiation in the control activity in the system. Critically, we expected the monitoring of control

variables such as expected performance would differ between types of instances. For instance, we expected

the subjective markers of performance would converge to actual performance levels in the late stages of

the solving stage (Franco et al. (2021b); Fig 2), which would imply higher subjective beliefs of expected

performance for low TCC. Additionally, we expected that this contrast would allow us to control for task-set
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signals (Dosenbach et al., 2007). We conjectured that the task-set signals would be maintained during the

whole solution-stage, so the proposed contrast would not capture task-set signals encoding goals nor the

underlying structure of the task.

Among the significant clusters found around the right IPS, we chose the IPS (AG) cluster (peak: x=32,

y =-65, z=47) because of its overlap with the regions that were found to be associated with mathematical

calculations in the meta analysis by Arsalidou and Taylor (2011).

4.9.4. ROI temporal dynamics

We explored the dynamics in these ROIs by fitting generalized linear models (GLM) using AFNI (Cox,

1996). Analogous to the whole brain GLM analysis (i.e., boxcar analysis), we spatially smoothed the signal

and censored outliers from the regression. In this case, in contrast to the whole brain analysis GLMs, we

modeled the trial time using a Finite Impulse Response (FIR) approach, in which each trial was modeled

using 17 simple basis functions (tents; Fig 1).

This approach allowed us to take advantage of the short TRs (0.8s) used for the functional acquisition

sequence, which were possible due to the ultra-high-field MRI used in the experiment. Modeling the BOLD

signal using FIR allowed us to obtain 17 beta estimates βFIR for each voxel for each of the conditions

considered. Note that these estimates model the hemodynamic response directly and, therefore, they do not

factor in the lag of the BOLD signal. In order to link each βFIR to a time in the task, we assumed a lag of

5 seconds in the hemodynamic response.

We obtained a 2×2 βFIR-estimates for the factors TCC (high and low) and satisfiability (satisfiable and

unsatisfiable). We explored the dynamics of each ROI by estimating the average βFIR over all of the voxels

from each ROI for each condition. The ROI signal aggregation was performed using python 3.7 and the

nilearn library.

4.9.5. Connectivity analysis

Connectivity analysis was performed over the three ROIs. To remove non-neural sources from the neural

signal, the motion parameters were regressed out before extracting the relevant ROI signals. We then

performed connectivity analysis using two separate approaches.

Psychophysiological interaction (PPI). We performed generalized PPI analyses using AFNI. We ran two

separate regressions for each ROI; one for satisfiability and one for TCC. Each PPI regression was estimated
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according to the following:

y =β0 + β1SROI + β3L0 × boxPPI1 + β4L1 × boxPPI1 + β5L0 × boxPPI2 + β6L1 × boxPPI2+

β7L0 × boxPPI1 × SROI + β8L1 × boxPPI1 × SROI + β9L0 × boxPPI2 × SROI + β10L1 × boxPPI2 × SROI

where L0 corresponds to low TCC (or satisfiable) condition and L1 corresponds to high TCC (or unsatisfi-

able) condition. SROI is the neural signal of the seed region and boxi corresponds to a boxcar function that

separates the items and solving stages, together, into two boxcar functions (PPI-1 and PPI-2) of the same

duration (12.5s each; Fig 6). Note that these boxcar functions are different in duration to the ones used for

the boxcar GLM analysis. The contrasts of interest (β8, β7, β10 and β9) captured the PPI effects; that is,

the task-dependent connectivity to the ROIs for each of the two periods considered. Additionally, we tested

whether there were regions that showed a differential connectivity to an ROI between conditions (i.e., high

vs. low TCC, unsatisfiable vs. satisfiable). Explicitly, we performed group level analysis using mixed effects

multilevel modeling (Chen et al., 2012) on the contrasts corresponding to L1 − L0 (β8 − β7 and β10 − β9).

Results are reported with a clusterwise threshold of p < 0.05 corrected for multiple comparisons across the

whole brain, using an uncorrected voxelwise threshold of p < 0.001.

It is worth noting that the interaction between box-car functions and the seed region (box × S) was

estimated via deconvolution. That is, the BOLD time series of each seed region was deconvolved with a

canonical HRF (AFNI: BLOCK(0.1,1)) and then multiplied with the psychological boxcar function. This

was convolved back with the same HRF to form a predicted PPI time series at the hemodynamic response

level (BOLD), at which the regression takes place.

Granger causality. Additionally, we performed Granger Causality (GC) analysis on the three ROIs. To

do this, we first fitted a DCM to the BOLD time series of these ROIs. This was done to ensure that the

DCM captured all the task-relevant events and controls not strictly related to the internal solving process

itself (e.g., onset of decision screen). We report the exact specification of the DCM in Appendix A.2. We

then extracted the residual series of the DCM model for each region. We refrained from deconvolving the

BOLD residuals (in accordance with Seth et al. (2013)) because deconvolution is a smoothing operation that

introduces spurious lead-lag relationships.

GC emerges when lagged outcomes of a variable correlate significantly with values of another variable.

As such, GC is closely linked to cross-autocorrelations. Typically, GC is analyzed in the context of a Vector

Auto Regression (VAR), i.e., a model whereby a vector of outcomes is driven by a finite number of lags
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of itself. GC emerges when the presence of lags of one variable significantly improves the fit (maximum

likelihood value) of another variable. If this is the case, the former “Granger causes” (GCs) the latter. We

ran a VAR on the error series augmented with the error series during the solving stage only, and determined

incremental GC of one series on another during problem-solving.

In order to reach a GC statistic at the group level we carried out the following procedure. We first ran

a VAR for each subject. Each subject’s VAR maximum lag was determined by comparing AIC (Akaike

Information Criterium) for lags up to 10. From each regression we extracted 5 GC statistics for each ROI:

2 GCs from lagged time series of each of the other two ROIs and 3 GCs (one for each ROI) from the lagged

time series of the solving stage. This process generates 15 GC statistics per subject. To correct for multiple

comparisons among these we performed standard Bonferroni correction.

To determine statistical significance at the group level, a standard binomial test was then employed to

determine the significance of the frequency of rejections (of no GC) across the 20 participants. A p level of

was 0.05 used. FWE correction was applied using Holm-Bonferroni correction over the 15 tests.3

The Matlab method gctest was used to implement the Granger Causality estimations.

4.10. Data and code availability

The data analysis code and the behavioral data will be made available upon publication at the Open

Science Framework (OSF). The software for the knapsack decision task will be made available there as

well. The anonymized neuroimaging data will be made available (in BIDS format) upon publication. The

software for the knapsack optimization task and mental arithmetic task correspond to those employed by

Franco et al. (2021b) and are available at the OSF (DOI 10.17605/OSF.IO/T2JV7).

Appendix A fMRI preprocessing

A.1 General pipeline

Raw images were organized and converted to the relevant format according to the (BIDS) standards.

Pulse and cardiac noise were regressed out from the functional scans using RETROICOR. These were

then slice-time corrected and the volumes were motion-corrected by registering to the first volume of the first

functional run. The anatomical (T1) image was down-sampled to the functional EPI resolution (1.6mm3)

and the mean BOLD volume of the first run was co-registered to the down-sampled anatomical scan. This

3Significance is determined as follows: order p values from small (k = 1) to large (k = 15); the kth test value is deemed
to be significant at the level α if p(k) ≤ α/(m + 1 − k) where m is the number of hypotheses to be tested; here: m = 15. If
α = 0.05 then the smallest p should be ≈ 0.0033 for the corresponding test (i.e., the test with smallest p value) to reject.
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transformation was applied to all of the BOLD volumes. Afterwards, each participant’s anatomical scan

was used for calculation of transformation parameters to normalize the functional images into the Montreal

Neurological Institute (MNI) space (Fig 7).

Whole-brain analyses were performed by fitting generalized linear models (GLM) using AFNI (Cox,

1996). Before the regressions were implemented, we spatially smoothed the functional volumes with a

4.8mm FWHM Gaussian kernel. Each voxel’s signal was then scaled (per run) to have the same mean (100).

Additionally, volumes with motion or signal outliers were censored from each of the regressions. Regressions

were performed using the 3dREMLfit algorithm in AFNI. Group level statistical tests were performed using

mixed effects multilevel modeling (Chen et al., 2012).

For the connectivity analyses the volumes were not smoothed, but motion parameters were regressed out

before extracting the relevant ROI signals. Whitened (ARMA(1,1)) residuals were used in the subsequent

analyses.

A.2 Granger Causality preprocessing: DCM

Additional to the preprocessing steps presented in the previous section we fitted a dynamic causal model

(DCM) before Granger causality (GC) analysis. This was done in order to remove signals of no interest

related to perceptual processes related to screen and stage changes. The model was fit using the SPM12

software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the residuals of the resulting model were

then used to fit the VAR model and test for GC (see section 4.9.5). In this section we describe the DCM

used.

Let z denote a vector of neural activity in 3 regions, indexed i (= rAI, rAG, dACC).

Let vj denote conditions; they reflect stages in the task conditional on properties of the instance (i.e.,

satisfiability and TCC). The variable is a dummy variable that takes the value of 1 when the j condition is

ON the screen:

• j = 1: items stage and solving stage (25s),

• j = 2: response stage (2s),

Additionally, let oj denote onsets of conditions; that is, when a stage becomes visible on the screen.

We follow the SPM’s notation to describe the model employing three different types of matrices. Matrix

A specifies the baseline effective connectivity. Matrix B(j) denotes the modulation of effective connectivity

due to experimental condition j. Finally, C(j) captures the change of the neural response due to the onset

of condition j.
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Figure 7: fMRI data preprocessing pipeline. Depiction of the preprocessing steps used prior to the statistical analyses
performed on the functional data. The preprocessing steps, up to outlier detection, are shared across all types of analysis.
Afterwards, preprocessing steps differ between GLMs and functional connectivity models.

Outlier Detection (AFNI)
Signal outliers were identified (>0.1). Motion outliers were identified (>0.3)

Normalisation (ANTS) 
T1 was co-registered to MNI Template and then the transformation was applied to all EPI's

Co-registration (ANTS)
Mean image of run 1 was co-registered to T1 and transformation was applied to all EPIs

Motion Correction (AFNI)
Images were registered to the first EPI volume of run 1.

Slice Timing Correction (AFNI)

Remove cardiac and respiratory noise (AFNI)
RETROICOR

GLM (AFNI)
Outliers are censored

Signal Scaling (AFNI)

Smoothing (AFNI)
4.8 FWHM Gaussian kernel

Connectivity analysis

Regress-out motion parameters (AFNI)
Regress motion parameters and derivatives

The DCM fit is described by the following three equations; one for each ROI:

For rAG:

dzrAG

dt
= −0.5 exp (ArAG +B

(1)
rAG(u1)) zrAG +

(B
(1)
dACC→rAG(u1)) zdACC + (B

(1)
rAI→rAG(u1)) zrAI +

+ C
(1)
rAGo1;
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For rAI:

dzrAI

dt
= −0.5 exp (ArAI +B

(1)
rAI(u1)) zrAI +

(B
(1)
dACC→rAI(u1)) zdACC + (B

(1)
rAG→rAI(u1)) zrAG +

+ C
(2)
rAIo2;

As to dACC:

dzdACC

dt
= −0.5 exp (AdACC +B

(1)
dACC(u1)) zdACC +

(B
(1)
rAG→dACC(u1)) zrAG + (B

(1)
rAI→dACC(u1)) zrAI +

+ C
(2)
dACCo2;

It is worth noting the asymmetries between regions in our specification. These are found in the burst

of activity in the model (C matrix). Specifically, we expected the AG to be a processing unit with activity

starting quickly from the items stage in the task; this is reflected in the CrAG,1o1 term in the rAG equation.

In contrast, we expected the AI and dACC to present burst activity related to control and monitoring signals

at the moment the solving stage ends (i.e., CrAI,2o2 and CdACC,2o2). Besides this asymmetry, the model

allows for a symmetric inter-connectivity between ROIs during the items and solving stage of the task.
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Appendix B Tables and Figures

Table 4: Human performance in the knapsack decision task. Logistic regressions with random intercept effects for
participants relating the accuracy on an instance and trial number (1), typical-case complexity (TCC) (2), instance complexity
(IC) (3), the number of witnesses (4), satisfiability (5), as well as TCC and satisfiability (6). Parameter estimates correspond
to the median of the posterior distribution (β0.5) and the 95% HDI credible interval (HDI0.95). ELPD denotes the expected
log posterior predictive density.

Dependent variable: Human performance

(1) (2) (3) (4) (5) (6)

Trial Number 0.01
[0.00, 0.02]

TCC -1.10 -1.23
[-1.44, -0.79] [-1.66, -0.79]

IC 6.54
[4.67, 8.29]

No. of Witnesses 0.20
[0.12, 0.28]

Satisfiability 0.02 -0.14
[-0.30, 0.30] [-0.61, 0.37]

TCC:Satisfiability 0.26
[-0.37, 0.9]

Intercept 1.24 2.05 0.60 0.65 1.41 2.13
[0.83,1.66] [1.61,2.52] [0.14,1.03] [-0.02,1.33] [1.00,1.81] [1.63,2.67]

Observations 1120 1120 1120 560 1120 1120
ELPD -546.77 -523.90 -516.67 -237.33 -548.05 -525.37

Figure 8: PPI supplementary results. The effect of the task on the connectivity to each of the three seed regions used for
the analysis (dACC, rAG and rAI). Each column shows the PPI effect for a different seed region. Each row displays the period
of the task considered. Activation patterns represent the significant effect estimates for the PPI on instances with low TCC.
The effect for instances with high TCC is not displayed, but the difference with respect to the activation signatures shown
here are small. Indeed, the only significant differences between conditions are presented in figure 6a. Significant cluster-wise
FWE-corrected (p < 0.05) clusters (with an uncorrected threshold of p < 0.001) are presented.
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Appendix C Replication of previous behavioral results

C.1 Knapsack decision task

An additional aim for this study was to reproduce the key findings presented by Franco et al. (2021b).

We first looked at the effect of experience on accuracy and found a non-significant improvement as the task

progressed (β0.5 = 0.009, HDI0.95 = [−0.001, 0.021], main effect of trial number on performance, generalized

logistic mixed model (GLMM); Table 4 Model 1). This marginal improvement in the task performance might

seem to contradict previous results, which suggest that neither experience with the task nor mental fatigue

affected task performance. However, unlike Franco et al. (2021b), we performed the task in the scanner,

thus this discrepancy could be due to acclimatization to the scanner.

In the main text we show that the results regarding TCC and satisfiability are mirrored by our data

and statistical analyses. Specifically, our findings corroborate the significant effect of TCC on performance

and replicate a null effect of satisfiability on performance. Additionally, other key findings in their study

were related to two solution-space metrics of complexity: The number of solution witnesses and instance

complexity (IC). The former is defined as the number subsets of items that satisfy both profit and capacity

constraints while IC is defined as the distance between the level of the profit constraint (target profit) and

the maximum value attainable in the corresponding instance of the optimization variant of the 0-1 knapsack

problem. Specifically,

IC =
∣∣∣p− p?∑

vi

∣∣∣ =
∣∣αp − α?

p

∣∣, (1)

where p is the target profit of the decision instance and p? is the maximum value achievable in the

corresponding optimization instance, that is, the maximum value that can be packed into the knapsack

given the same set of items I and the same capacity constraint c. αp and α?
p denote the normalized values

of target profit and optimum value, respectively.

In order to estimate these metrics, unlike TCC, the problem needs to be solved. Concretely, harder

versions of the problem needs to be solved. For IC to be estimated, the optimization variant of the knapsack

problem needs to be solved, while for the number of witnesses all of the possible sets of items that satisfy

the constraints need to be found. This makes estimating these metrics more computationally intensive than

estimation of TCC. Despite this drawback, these metrics capture the hardness of a single instance of the

problem and therefore are more precise when predicting performance for each instance compared to TCC,

which captures the average hardness of an ensemble of random instances.
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Franco et al. (2021b) showed that human performance was affected by both IC and the number of

witnesses. Here we reproduced these findings. We found that higher values of IC were related to higher

accuracy (β0.5 = 6.54, HDI0.95 = [4.67, 8.29], main effect of IC, GLMM; Table 4 Model 3; Fig 9). Similarly,

among satisfiable instances, we found that a higher number of witnesses was related to better performance

(β0.5 = 0.20, HDI0.95 = [0.12, 0.28], main effect of number of witnesses in satisfiable instances, GLMM;

Table 4 Model 4). It is worth noting that the number of witnesses can only explain variability among

satisfiable instances since all unsatisfiable instances have 0 witnesses.

Figure 9: Relation between IC and human performance in the knapsack decision task. Mean accuracy per instance
and the marginal effect of IC on human performance (GLMM; Table 4 Model 3). Higher IC is related to lower computational
hardness. Instances are categorized by their TCC (shape) and satisfiability (color).

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4
Instance Complexity (IC)

Satisfiable
Unsatisfiable

Low TCC
High TCC

Overall, these results replicate previous findings (Franco et al., 2021b) and validate that the experimen-

tally modulated variable (TCC) successfully varied the computational difficulty of the task.

C.2 Knapsack optimization task

In this task, participants were asked to solve a number of instances of the (0-1) knapsack optimization

problem (Fig 10(a)). In each trial, they were shown a set of items with different weights and values as well

as a capacity constraint. Participants had to find the subset of items that maximized total value subject to

the capacity constraint. This means that while in the knapsack decision task, participants only needed to

determine whether a solution existed, in the knapsack optimization task, they also needed to determine the

nature of the solutions (i.e., the items in the optimal knapsack).

For this task we aimed at replicating the results found by Franco et al. (2021b). In their study, a

metric of complexity (TCCO) was introduced as an extension of the TCC metric to optimization problems.

Specifically, TCCO was defined as the TCC of the decision of determining whether the optimal profit
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Figure 10: Knapsack optimization task. (a) Experimental design. Participants were presented with a set of items of
different values and weights together with a capacity constraint shown at the center of the screen. The green circle at the
center of the screen indicated the time remaining in this stage of the trial. Participants had to find the subset of items with
the highest total value subject to the capacity constraint. This stage lasted up to 60 seconds. Participants selected items by
clicking on them and had the option of submitting their solution before the time limit was reached. After the time limit was
reached or they submitted their solution, a fixation cross was shown for 10 seconds before the next trial started. (b) TCCO

and human performance. Human performance corresponds to mean computational performance on each instance. (c)
TCCO and time-on-task. Mean time spent before skipping to the response screen. Each dot represents an instance and is
categorized according to its TCCO. The box-plots represent the median, the interquartile range (IQR) and the whiskers extend
to a maximum length of 1.5*IQR
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(α∗p) is attainable given the capacity constraint. We expected to replicate the negative effect of TCCO on

performance and its positive effect on time-on-task.

The task consisted of a single solving stage (60 seconds) and an inter-trial interval (fixation cross for

10 seconds). During the solving stage the items and the capacity constraint were presented in the same

way as in the knapsack decision task. Unlike in the decision task, however, there was no target profit and

participants were able to add and remove items to/from the knapsack by clicking on the items. An item

added to the knapsack was indicated by a halo around it (Fig 10). Participants could submit their solution

before the time limit was reached. If participants did not submit within the time limit, the items selected at

the end of the trial were automatically submitted as the solution. Participants were then shown a fixation

cross (10 seconds) before the start of the next trial.

Each participant completed 18 trials (2 blocks of 9 trials with a rest period of 60 seconds between

blocks). Each trial presented a different instance of the knapsack optimization problem with varying levels

of computational complexity. Specifically, we employed the same instances of the knapsack optimization

problem used in Franco et al. (2021b). In their study, 12 instances were selected to have high TCCO and 6

instances were selected to have low TCCO. All instances had N = 6 items and wi, vi, c and p were integers.
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The order of presentation of instances in the task was randomized for each participant. For the analysis, we

excluded 1 trial from one participant because solutions were submitted after less than 1 second into the task.

Additionally, 2 participants were excluded from the analysis of time-on-task because they never submitted

a solution before time ran out.

We investigated two variables related to behavior: performance and time-on-task. Performance was

quantified by computational performance, which captures participants’ ability to find the optimal solution.

Specifically, it is defined as a binary variable that is equal to 1 if the participant obtained a value equal to

the maximum value obtainable in the instance, and 0 otherwise. It is worth noting that an instance was only

characterized as correct if the sum of weights did not exceed the capacity constraint. Mean computational

performance was 69.6% (min = 0.18, max = 1, SD = 0.25) and the capacity constraint was only violated

in 3.9% of instances. Additionally, we investigated time-on-task. In contrast to the decision variant, the

optimization task was self-paced and, as such, participants were allowed to submit their answer before the

time limit (60s) was reached. We recorded the time participants spent in the solving stage before submitting

their candidate solution. Participants spent on average 41.0 seconds on an instance (min = 21.0, max = 55.8,

SD = 8.1).

We first replicated the effect of trial number in the task. We found that performance did not change

throughout the task (β0.5 = 0.03, HDI0.95 = [−0.02, 0.09], main effect of trial number on computational

performance, GLMM; Table 5 Model 1), nor did the time-on-task per instance (β0.5 = −0.02, HDI0.95 =

[−0.03, 0.22], main effect of trial number on time-on-task, CLMM; Table 5 Model 3). These results suggest,

in line with previous results (Franco et al., 2021b), that neither experience with the task nor mental fatigue

affected the quality and speed of finding the a solution.

Finally, we studied the effect of TCCO. We expected that performance in instances with high TCCO

(instances whose solutions have a corresponding decision problem with high TCC) would be lower than in

instances with low TCCO (instances whose solutions have a corresponding decision problem with low TCC).

We, indeed find this effect on both computational performance and time-on task. Mean computational

performance was lower in instances with high TCCO, relative to those with low TCCO (β0.5 = −0.75,

HDI0.95 = [−1.35,−0.14], main effect of TCCO on performance, GLMM; Fig 10b; Table 5 Model 2).

Similarly, we found a positive effect of TCCO on time-on-task (β0.5 = 8.78, HDI0.95 = [6.45, 10.97], main

effect of TCCO on time-on-task, CLMM; Fig 10c; Table 5 Model 4). These results replicate those found by

Franco et al. (2021b).
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Table 5: Computational performance and time-on-task in the knapsack optimization task. Models on computa-
tional performance represent logistic regressions with random intercept effects for participants. Regression parameters relate
performance to trial number (1), and optimization typical-case complexity (TCCO) (2). Models on time-on-task represent
censored linear regressions (with random intercept effects for participants) relating time spent on an instance to trial number
(3), and optimization typical-case complexity (TCCO) (4). Parameter estimates correspond to the median of the posterior
distribution (β0.5) and the 95% HDI credible interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable

Computational performance Time-on-task

(1) (2) (3) (4)
Trial Number 0.03 -0.02

[-0.02,0.09] [-0.26,0.22]

TCCO -0.75 8.78
[-1.35,-0.14] [6.45,10.97]

Intercept 0.84 1.61 41.21 35.12
[0.05,1.7] [0.74,2.45] [36.51,45.47] [30.98,39.98]

Observations 359 359 323 323
ELPD -184.19 -181.54 -1228.64 -1199.62

Appendix D Cognitive function tasks

In a previous study we tested participants’ performance on five aspects of cognitive function that we

considered relevant for the knapsack tasks (Franco et al., 2021b). Explicitly, we assessed working memory,

episodic memory, strategy use, processing and psychomotor speed, as well as mental arithmetic. We were

interested in finding links between these cognitive capacities and the ability to solve the knapsack task. A

complex task that would arguably require the deployment of these other, more basic, cognitive abilities.

Our original study lacked the power to identify reliably correlations between performance in these cognitive

tasks and performance in the knapsack tasks.

In this study we tested participants on the same five aspects of cognitive function with the aim of

increasing the power of these exploratory tests. For this purpose, we aggregated the data collected in this

study with that collected by (Franco et al., 2021b) and estimated the same correlations presented in our

previous study.

Following the approach by Franco et al. (2021b) we administered a set of tasks from the Cambridge Neu-

ropsychological Test Automated Battery (CANTAB; Cognition, 2017). Specifically, we asked participants to

perform the Paired Associates Learning (PAL), Spatial Working Memory (SWM) and Spatial Span (SSP).

Additionally, participants solved a set of mental arithmetic problems (Cappelletti et al., 2001). Below we

describe each of the tests performed:

Paired Associates Learning (PAL) . Boxes are displayed on the screen and open one by one in a randomized

order to reveal patterns hidden inside. The patterns are then displayed in the middle of the screen, one at
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a time, and the subject must touch the box where the pattern was originally located.

Spatial Working Memory (SWM). The test begins with colored boxes being shown on the screen. The

aim of this test is that, by touching the boxes and using a process of elimination, the subject should find

one ‘token’ in each of the boxes and use them to fill up an empty column on the right hand side of the

screen. The computer will never hide a token in the same colored box, so once a token is found in a box the

participant should not return to that box to look for another token.

Spatial Span Task (SSP). White squares briefly change color in a variable sequence. The participant must

remember the sequence and then touch the squares in that same order. The sequence length increases

through the test. There are up to 3 attempts at each sequence length and the test terminates if all three

are failed.

Mental Arithmetic Task. Participants were asked to answer a set of 33 mental arithmetic problems. They

were given 13 seconds to solve each problem. The task involved addition and division of numbers, as well

as questions in which they were asked to round to the nearest integer the result of an addition or division

operation.

From performance in these tasks we estimated five metrics of cognitive capacities and estimated their

correlation with participant’s performance on the knapsack decision and optimization tasks. Results are

presented in Table 6. We found, after correcting for multiple comparisons using Holm-Bonferroni correction,

a significant positive effect between performance in the knapsack optimization task and performance in the

mental arithmetic task (ρ = 0.617 at FWE-corrected α = 0.05). Additionally, we found (at FWE-corrected

α = 0.10) a negative correlation between the strategy use metric and performance in the knapsack decision

task (ρ = −0.421). The SWMS metric encodes the number of times a subject begins a new search pattern

from the same box they started with previously in the SWM task. Therefore, a lower score is interpreted

as higher strategy use (1 = they always begin the search from the same box). These results suggest that

participants that use a planned strategy in SWM perform better in the knapsack decision task.
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Table 6: Pearson correlations between performance in the knapsack tasks and cognitive abilities. Performance in
the knapsack decision task is characterized by accuracy and in the knapsack optimization task is characterized by computational
performance. The cognitive abilities measured used were mental arithmetic, episodic memory (PALFAMS28), working memory
(SSPFSL), strategy use (SWMS) and spatial working memory (weighted SWMTE, with errors on easier tasks being weighted
more). P-values are shown without multiple comparisons correction. 1In the mental arithmetic task df = 37. Note: FWE
significance ∗ <0.1; ∗∗ <0.05; ∗∗∗ <0.01 is assessed employing Holm-Bonferroni correction.

Knapsack Knapsack
Task decision optimization

Mental 0.311 0.617∗∗∗

arithmetic (0.156) (0.129)
p=0.054 p=0.000

Episodic 0.098 -0.017
memory (0.161) (0.162)

p=0.549 p=0.918

Working 0.033 0.218
memory (0.162) (0.158)

p=0.839 p=0.177

Strategy -0.421∗ -0.336
use (0.147) (0.153)

p=0.007 p=0.034

Spatial working -0.360 -0.348
memory (0.151) (0.152)

p=0.023 p=0.028

Degrees of
freedom1 38 38
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Appendix E Neural correlates and dynamics of accuracy

E.1 Neural correlates

It has been hypothesized that FPN as well as CON regions encode task signals related to error detection

and error expectation (Neta et al., 2017, 2014; Dosenbach et al., 2006). Although participants did not

receive any feedback during the task, we expected to see error related signals during later stages of the trial.

Although these signals would not represent the integration of novel exogenous information (since there was

no feedback) we conjectured that participants would represent a subjective belief on the expected accuracy

(or reward) of their answer (e.g, Duverne and Koechlin, 2017).

We found only one significant cluster during the solving stage (in period one) (Fig 11a; Table 7). The

other significant clusters were identified during the response stage (Fig 11b; Table 7). In line with out

hypothesis, during the response stage we found that activity in both the FPN and CON was positively cor-

related with erring. Specifically, a higher activity was found for incorrect trials in the AI (bilaterally), dACC,

left MFG and the right inferior frontal gyrus. Additionally to these regions, which are commonly associated

with the MDS, we also found significant activation in the SFG (bilaterally), ACC and paracingulate gyrus.

Figure 11: Neural correlates of accuracy. Brain activation effect estimates (β) for the correct vs. incorrect contrast
(βcorrect − βincorrect). A positive contrast represents a higher BOLD activity on instances that were answered correctly.
Significant cluster-wise FWE-corrected (p < 0.05) clusters (with an uncorrected threshold of p < 0.001) are presented for each
of the contrasts estimated using the Boxcar analysis. Each panel represents a different period in the trial. (a) Period S1, (b)
response stage. No significant clusters were found for the contrasts during periods S2-S4 of the solving stage.

(a) RH

Period S1 Period S3 Period S4Items ResponsePeriod S2

(b) RHLH

p < .001, 
cluster-wise FWE-corrected 
(p < .05)

Effect 
Estimates

Correct - Incorrect

No Clusters No Clusters No Clusters

The results of this analysis confirm our hypothesis by outlining a set of regions in both FPN and CON that

encode errors during the response stage. In contrast, this analysis did not result in any other clusters during
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Table 7: Accuracy clusters. Significant cluster-wise FWE-corrected (p < 0.05) clusters (using an uncorrected threshold of
p < 0.001) from the Correct-Incorrect contrast. Coordinates are in MNI space.

Cluster statistics Peak statistics

Stage Region Side Volume(mm3) βmean SEM βpeak x y z

S1 Occipital cortex RH 569.3 0.21 0.003 0.31 10 -100 8

Response

AI RH 2146.3 -0.22 0.002 -0.33 30 23 -8
AI LH 2048.0 -0.26 0.002 -0.40 -48 18 -12
dACC LH 1953.8 -0.24 0.002 -0.38 -2 22 40
SFG RH 1007.6 -0.18 0.003 -0.28 2 23 60
MFG LH 974.8 -0.19 0.002 -0.27 -27 50 16
SFG LH 684.0 -0.18 0.003 -0.26 -2 10 60
Inferior frontal gyrus RH 602.1 -0.22 0.003 -0.29 50 17 31
ACC LH 520.2 -0.18 0.002 -0.25 -3 31 26
Paracingulate gyrus LH 491.5 -0.24 0.004 -0.31 -5 9 50

the solving stage that correlated negatively with accuracy. The lack of negative correlation during the late

periods of the solving stage could be due to variability in the signal during the solving stage. Indeed, during

this stage participants might be updating their accuracy expectation as well as their candidate response.

Since our accuracy contrast is based on the answer provided during the response stage, it stands to reason

that our analysis does not capture accuracy markers during the solving stage because we do not have a

measure of accuracy during this period. It is worth noting that we found one significant cluster during the

solving stage (in period one) that correlated positively with accuracy in the occipital cortex. This could

reflect attentional differences, early in the trial, which affect performance on the trial.

E.2 Neural dynamics

We were particularly interested in exploring how the neural correlates of accuracy interact with the

proposed metrics of complexity and proof hardness. To do this we studied the dynamics of neural markers

of accuracy (employing FIR analysis) for each metric of interest. We first analyzed the interaction effect

between correctness and TCC on neural dynamics. We found that for instances with low TCC, there was a

significant effect of correctness of the instance from early on in the trial in the IPS. Similarly, midway through

the trial a significant accuracy neural marker appeared in the AI for instances with low TCC (Fig 12). This

effect was mainly due to a significantly lower BOLD signal on incorrect instances with low TCC. Similarly,

when studying the interaction effect between correctness and satisfiability we found a consistent significant

effect of accuracy but only during satisfiable instances in the IPS, which was driven, as well, by a lower BOLD

activity on incorrect instances (Fig 13). Importantly, this significant contrast showed from the moment the

trial started, suggesting that for satisfiable instances the accuracy could be predicted from early on in the

trial.
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Overall, our results suggest a link between neural markers of accuracy and metrics of computational

difficulty. This relation was particularly evident in the IPS and marginally in the AI. These findings suggest

that neural activity in the IPS is associated with accuracy, especially on instances with low computational

difficulty (i.e., low proff hardness and low complexity). A puzzling finding in this regard is the fact that neural

correlates of accuracy are identified early on in the trial. One possible explanation for this is attentional

engagement on the task. If a participant does not actively engage in the task they are more likely to have an

incorrect solution. In turn, the likelihood of reaching an incorrect answer due to inattention is higher among

instances with low computational difficulty. Together, these patterns would partially explain the marked

difference in BOLD activity between correct and incorrect trials in the IPS. However, other alternative

explanations are possible. Further work is needed to fully identify the dynamics of effort and attention

allocation in computationally complex tasks.

Figure 12: Accuracy and complexity. Mean effect estimate (β) of each ROI against time in trial. The effect at each time
point represents the mean βFIR over all of the voxels from each ROI: right AI (a), dACC (b), and right IPS cluster extending
to the angular gyrus (c). In the top row of figures the βFIR’s characterize the coefficients of an FIR regression with four
conditions: accuracy×TCC. The βFIR parameters are aligned to the BOLD signal, which has a lag with respect to the task
time. The gray vertical lines represent the task-events assuming a 5 seconds BOLD signal lag. The second row shows the
accuracy contrasts (βcorrect − βincorrect) for different levels of TCC. Red stars represent significance at a 0.05 significance
level.
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Figure 13: Accuracy and satisfiability. Mean effect estimate (β) of each ROI against time in trial. The effect at each
time point represents the mean βFIR over all of the voxels from each ROI: right AI (a), dACC (b), and right IPS cluster
extending to the angular gyrus (c). In the top row of figures the βFIR’s characterize the coefficients of an FIR regression with
four conditions: accuracy×satisfiability. The βFIR parameters are aligned to the BOLD signal, whilst the gray vertical lines
represent the task-events. The second row displays the accuracy contrasts (βcorrect − βincorrect) separately for satisfiable and
unsatisfiable instances. Red stars represent significance at a 0.05 significance level.

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30
−0.25

0.00
0.25
0.50
0.75

TimeC
or

re
ct

 −
 In

co
rre

ct

significant
FALSE

TRUE

contrast_group
sN

sY

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30

0.0

0.5

1.0

1.5

TimeMe
an

 R
OI

 ef
fec

t e
sti

ma
te

Accuracy
C

I

Complexity
TCC0

TCC1

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30

0.0

0.5

1.0

1.5

TimeM
ea

n 
RO

I e
ffe

ct
 e

st
im

at
e

Accuracy
C

I

Satisfiability
N

Y

dACCAI IPS (AG)(a) (b) (c)

Time in trial (s)

M
ea

n 
R

O
I e

ffe
ct

 e
st

im
at

e

TR
IA

L 
ST

AR
TS

R
ES

PO
N

SE
SC

R
EE

N

TR
IA

L 
EN

D
S

TR
IA

L 
ST

AR
TS

R
ES

PO
N

SE
 

SC
R

EE
N

TR
IA

L 
EN

D
S

TR
IA

L 
ST

AR
TS

R
ES

PO
N

SE
 

SC
R

EE
N

TR
IA

L 
EN

D
S

A
cc

ur
ac

y
C

or
re

ct
 -

In
co

rr
ec

t 

0.0

0.5

1.0

1.5

0.0

0.5

Incorrect

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30

0.0

0.5

1.0

1.5

TimeM
ea

n 
RO

I e
ffe

ct
 e

st
im

at
e

Accuracy
C

I

Complexity
TCC0

TCC1

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30

0.0

0.5

1.0

1.5

TimeM
ea

n 
RO

I e
ffe

ct
 e

st
im

at
e

Accuracy
C

I

Complexity
TCC0

TCC1

rAI dACC IPS (AG)

10 20 30 10 20 30 10 20 30

0.0

0.5

1.0

1.5

TimeM
ea

n 
RO

I e
ffe

ct
 e

st
im

at
e

Accuracy
C

I

Complexity
TCC0

TCC1

AccuracySatisfiability
Unsatisfiable

10 20 30 10 20 30 10 20 30

Satisfiable Correct

47

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.05.475102doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475102
http://creativecommons.org/licenses/by/4.0/


Granger causality analysis

PPI analysis provides a description of the functional connectivity (synchronization) between regions

based on correlations between simultaneous activity across regions. As such, this analysis is insensitive to

temporal directionality in the time series. In contrast, Granger Causality (GC) is defined based on Vector

Auto Regression (VAR) models, whereby a vector of ROI signals is driven by a finite number of lags of

itself. This allows for gradual excitatory (or inhibitory) impact of one region onto another, that might

suggest temporal directionality. This directional effect can be summarized by GC, which emerges when the

presence of lags of one variable significantly improves the fit (maximum likelihood value) of another variable.

Critical for this study, we expected the underlying neural processes of problem-solving to be internally

driven. Specifically, we expected the connectivity patterns to be linked to neural processes whose timing

could vary stochastically across trials and participants (e.g., the burst of neural activity does not have

to coincide with an experimental intervention such as initial display of items). In order to explore these

connectivity patterns we performed a GC analysis on the three ROIs. For this, we ran a VAR model on the

ROI time series augmented with the series during the solving stage only, and determined incremental GC

of one series on another during problem-solving. This allowed us to estimate effective connectivity GC tests

at baseline as well as the GC changes from baseline during the solving stage.

Our analysis shows differential activation between baseline and solving stage. At baseline, during the

experiment, we find a bidirectional connectivity between all the ROIs (Fig 14a), which then changes during

the solving stage. Specifically, there is a significant change in GC from dACC to rAG. In other words, the

dACC (lagged time series) effect on rAG is different between baseline and solving stage. Moreover, we find

that during the solving stage there was a significant change in self-activation effect in the dACC and rAG;

that is, the lagged time series of each of these two ROIs Granger-cause themselves differentially during the

solving stage compared to baseline (Fig 14b).

Employing the same methodology, we explored whether the change in effective connectivity between

solving stage and baseline is modulated by complexity and proof hardness. Specifically, we explored the

effects of TCC and satisfiability on GC. We did not find any significant changes in the effective connectivity

between high and low TCC instances (all uncorrected p-val>0.264) nor between unsatisfiable and satisfiable

instances (all uncorrected p-val>0.075).

Overall, we found that there was a change in effective connectivity from dACC to IPS during the solving

stage of the task. These results extend those previously found in perceptual tasks (Aben et al., 2020), in

which regions relevant for the task at hand showed a higher functional connectivity to the dACC during the
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Figure 14: Granger causality results. Effective connectivity estimated via Granger causality between each of three ROIs:
dACC, rAI and rAG. (a) Represents the baseline connectivity between the regions. (b) Represents the changes in effective
connectivity during the solving stage compared to baseline. Only three effects survive multiple comparisons correction: An
increased connectivity from dACC to rAG and a higher self-modulatory effect on both dACC and AG. P-values correspond
to the GC test uncorrected for multiple comparisons. Asterisks represent significant GC effects FWE-corrected at significance
threshold of 0.05.
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task. This result further supports previous research that assigns to the dACC a central role in the allocation

of control (Shenhav et al., 2013; Dosenbach et al., 2006; Silvetti et al., 2018; Vassena et al., 2017; Holroyd

and Yeung, 2012; Alexander and Brown, 2011; Sestieri et al., 2014; Aben et al., 2020; Crottaz-Herbette and

Menon, 2006). Interestingly, we did not find a significant change in the effective functional connectivity

between rAI and rIPS during the solving stage. These finding match previous research that support a

dissociation between dACC and AI (Han et al., 2019; Nelson et al., 2010; Menon and Uddin, 2010; Wu

et al., 2019). However, this results seems to be contrary to that found by Sestieri et al. (2014) who found

increased functional connectivity between AI and task relevant regions in perceptual and episodic memory

tasks. Several possible explanations could be put forward to account for this discrepancy. For instance,

the nature of the functional connectivity between rAI and task relevant regions might be task-specific.

Specifically, it has been suggested that AI is predominantly involved in processing of internal visceral and

motivational information involved in autonomic behavior (Nelson et al., 2010). This type of processing

might be more relevant in perceptual and episodic memory tasks compared to the knapsack task, in which

mathematical calculations might be more pertinent. Alternatively, other possible explanations for the lack
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of significant effective connectivity between rAI and rIPS include the lack of statistical power in this analysis,

as well as discrepancies in the ROI definition.

Another significant aspect of effective connectivity considered was its link to intrinsic properties of the

problem at hand. Our results suggest that the effective connectivity pattern was impervious to the level of

computational demand and satisfiability. Of particular relevance, we found that the effective connectivity

between dACC and IPS was not modulated by TCC. This suggests that the effect of TCC on control, if

any, occurs by generating differential levels of activity within the regions of interest and not via modulation

of the functional connectivity between these regions. It is worth noting that this failure to reject the null

hypothesis could be due to a lack of power or the exclusion of relevant ROIs from the analysis. We leave it

to future research to explore how whole brain connectivity patterns are affected by computational demand.
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