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Abstract
We present a new, carefully designed and well-annotated dataset of images and image-based
profiles of cells that have been treated with chemical compounds and genetic perturbations.
Each gene that is perturbed is a known target of at least two compounds in the dataset. The
dataset can thus serve as a benchmark to evaluate methods for predicting similarities between
compounds and between genes and compounds, measuring the effect size of a perturbation,
and more generally, learning effective representations for measuring cellular state from
microscopy images. Advancements in these applications can accelerate the development of
new medicines.

Introduction
Computer vision has benefitted dramatically from the revolution in deep learning. Biomedical
research is an exceptionally satisfying domain on which to apply advances in machine learning,
and yet its application has been relatively limited to supervised learning for medical imaging
from patients, including classification and segmentation of X rays and MRI, PET, and CT scans.
Similarly, deep-learning based image analysis for cell biology has generally focused on
supervised tasks, such as segmentation (Caicedo et al., 2019; Moen et al., 2019), while
representation learning and other image modeling applications have lagged behind (Pratapa,
Doron, & Caicedo, 2021).

One cell biology method – image-based profiling of cell samples – is proving increasingly useful
for the discovery of disease underpinnings and useful drugs (Chandrasekaran, Ceulemans,
Boyd, & Carpenter, 2020). In image-based profiling, human cells are cultured in samples of a
few hundred cells, each sample treated with a different chemical or genetic perturbation. The
resulting morphology (visual appearance) of each sample is observed by microscopy, then
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compared to identify meaningful differences and similarities. More than a dozen applications in
biology and drug discovery have been demonstrated, including: (a) identifying the mechanisms
of a disease by comparing cells from patients with a disease to those without the disorder and
(b) identifying gene functions or the impact of chemicals on cells by unsupervised clustering of
large sets of samples to determine relationships among the genes or chemicals tested in the
experiment. Thus, image-based profiling can reveal disease mechanisms and potential
therapeutics.

However, image-based profiling has yet to fully benefit from the latest machine learning
research. The vast majority of studies use classical segmentation and feature extraction; deep
learning methods are beginning to be explored (Pratapa et al., 2021) and there is much room for
advancement. Historically, the lack of ground truth has been a major limiting factor in the field,
for instance, the “correct” relationships among perturbations (e.g. genes and compounds) are
unknown. While this is exciting because the potential for biological discovery is high, the lack of
ground truth presents a challenge for optimizing deep learning pipelines. In fact, image-based
profiling applications typically can be described as representation learning tasks (in the absence
of ground truth); if samples are represented optimally and ideal distance metrics are applied,
then biologically meaningful differences between samples will be detectable and technical
artifacts will be suppressed.

To push forward advancements in this field, we assembled a consortium of ten pharmaceutical
companies, two non-profit institutions, and several supporting companies, known as the
JUMP-Cell Painting Consortium (Joint Undertaking in Morphological Profiling). After extensive
optimization of the main assay used in image-based profiling, called the Cell Painting assay
(Bray et al., 2016), this Consortium created a ground truth dataset, presented here, to move
methods in the field forward. We selected and curated a set of genes and compounds with
(relatively) known relationships among each other, and designed an experimental layout to
enable testing and comparing methods to quantify their relationships.

Here, we describe our design and creation of this dataset via a single large experiment
comprising roughly three million images and seventy five million single cells, called CPJUMP1,
which contains chemical and genetic perturbation pairs that target the same genes in cells and
therefore ought to match. It allows exploring a number of technical and biological parameters
that might affect matching ability and testing computational strategies to optimally represent the
samples so that they can be compared and thus uncover valuable biological relationships.

Framing the dataset for the ML community
An essential aspect of what we present here is that a very limited amount of rather noisy ground
truth exists; each known drug-gene interaction was painstakingly discovered after hundreds of
thousands of dollars of effort over many years, and many pairings are uncertain. By contrast,
many mainstream machine learning (ML) tasks are oriented to replicate specific human skills
where ground truth can be collected at large scale (e.g. translation or image recognition), given
sufficient resources.
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Our hope is that novel ML methods developed using our dataset will be used to discover new
gene-compound connections (Rohban et al., 2021). This can yield new therapeutics for
particular diseases, or identify how a potential drug is working and thus add to ground truth for
this problem in the future.

Further, our dataset provides a challenging, real world testbed for many kinds of ML algorithms.
It is a large-scale perturbation experiment with complex multi-dimensional, hierarchical data
(images displaying dozens of cells each), and we believe new ML strategies still need to be
developed to realize its full potential. In addition to the prediction problems we present in this
paper, it also opens up problems in high-level reasoning on experimental data, allowing the
study of complex artificial intelligence strategies, such as causal inference (observations from
interventional experiments), planning (optimizing the next intervention that maximizes
discovery), and simulations (what would have happened if other interventions are applied).

Finally, unusual aspects of the data type that we present pose challenges to ML algorithms and
will require they be pushed in different directions to adapt. This may spark creative solutions
with broader impact in ML. For example:

● Multiplexed imaging (in our case, with five channels) will push the field of machine
learning to adapt to domains outside of RGB natural images, where the number and
relationship among the channels (e.g. the extent of correlation) is very different than for
natural images. This may require more generic data modeling to include visual tasks
other than natural images.

● Lack of manually-assigned ground truth, or inability to crowdsource specialized
annotations: the traditional cross-validation experimental model needs rethinking how to
ensure that observations are statistically consistent across experiments using quality
metrics (e.g. replicate correlation) rather than hard ground truth comparisons. In addition
to the ground truth we provide for the gene-compound benchmark, this dataset has
additional weak labels in a real world domain (e.g. sample locations, batches, cell type,
time point), which can guide experts on interpreting their findings, but cannot be used as
traditional ground truth data to guide learning algorithms.

● Fairness in machine learning: batch effects in experimental biology can generate biases
similar to those observed in other applications due to lack or unawareness of data
distributions (e.g. underrepresented minorities). Training on one batch may fail to make
accurate predictions in data from other batches. Other problems related to data
distributions include unbalanced classes and rare phenotypes.

Related datasets
We are not aware of any other Cell Painting image-based datasets that include pairs of genetic
and chemical perturbations with their relationships to each other annotated, and executed in
parallel so as to minimize technical variations that may confound the signal; this latter point
makes this dataset unique and highly valuable for developing methods to match chemical and
genetic perturbations. Furthermore, this is the only image-based dataset with two different
genetic perturbation types, CRISPR and ORF (described later), which allows exploring their
relationship and efficacy. Although there are other datasets that can be used for the purpose of
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representation learning (see next paragraph), this is a small, well-controlled dataset which in
some contexts might be advantageous for training, over larger, disorderly datasets. Another
advantage of this dataset is that it enables learning representations on one domain (a particular
cell line or time point) and then testing on another domain. Finally, for the gene-compound
matching problem, there are no other genetic perturbation Cell Painting datasets that are large
enough for both training and testing.

Nevertheless, other Cell Painting datasets are public and may be useful to the community, for
example as training data for self-supervised representation learning methods. These
single-perturbation-type experiments include several datasets from the Carpenter-Singh
laboratory (available through the Image Data Resource (Williams et al., 2017) at
https://idr.openmicroscopy.org/search/?query=Publication%20Authors:Carpenter and the 2018
CytoData challenge https://github.com/cytodata/cytodata-hackathon-2018), one from the New
York Stem Cell Foundation (Schiff et al., 2020) and several from Recursion, a clinical-stage
biotechnology company (available at http://rxrx.ai). Almost all of these datasets involve chemical
perturbations or different patient cell lines rather than genetic perturbations.

Data acquisition
Compound and gene selection
The CPJUMP1 dataset consists of images and profiles of cells that were perturbed separately
by chemical and genetic perturbations, where both sets were chosen based on known
“matching” relationships among them. Chemical perturbations are small molecules (i.e. chemical
compounds) that affect the function of cells while the genetic perturbations are either open
reading frames (ORFs) that overexpress genes (i.e. yield more of the gene’s product in the cell)
or guide RNAs that mediate CRISPR-Cas9 (clustered regularly interspaced short palindromic
repeats), which knockdown gene function (i.e. yield less of the gene’s product in the cell).

We therefore designed CPJUMP1 such that for each gene, we have one ORF that produces a
higher-than-normal amount of that gene’s product, two CRISPR guides that yield a
lower-than-normal amount of that gene’s product, and one or two compounds that are thought to
impact the cell by influencing the function of that gene’s product.

Most compounds are thought to inhibit the function of their target gene’s product (as opposed to
making it overly active), so we expect image-based profiles from cells treated with CRISPR to
generally correlate to (mimic) the corresponding compound’s profile, whereas ORF profiles are
generally expected to anti-correlate (oppose) the corresponding small molecule’s profile, and
ORFs and CRISPRs targeting the same gene should generally yield opposite (anti-correlated)
effects on the cells’ profiles. However, we strongly note that there will be numerous exceptions
given the non-linear behavior of many biological systems and a number of distinct mechanisms
by which these general principles may not hold (Rohban et al., 2021). In fact, one aim of
generating this dataset is to quantify how often the expected relationships and directionalities
occur.
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We derived the list of compounds from Broad's Drug Repurposing Hub dataset (Corsello et al.,
2017), a curated and annotated collection of FDA-approved drugs, clinical trial drugs, and
pre-clinical tool compounds (Figure 1d). The genes perturbed by genetic perturbations were
chosen because they are the annotated targets of the compounds. The specific criteria for
compounds, genetic reagents (considering their on- and off-target effects), and controls, and
their layout on the plates (Figure 1a-c), are described in the supplementary materials. After
applying the filters and including controls, we selected a total of 306 compounds and 160 genes
such that they could fit into three 384-well plates.

Figure 1: Plate maps and clinical phase status. Maps in a-c show a) Compound plate b)
CRISPR plate and c) ORF plate. The control wells and the treatment (trt) wells are shown in
different colors. Poscon are positive controls (additional details in the supplementary materials)
and negcon is the negative control. d) Over a third of the compounds in the dataset have been
launched whereas others have progressed to various stages of human clinical trials.

Experimental conditions
Although constrained by cost, we captured the compound, ORF, and CRISPR plates under
various experimental conditions in order to identify those that improve gene-compound and
gene-gene matching. We did more replicate plates for conditions that were less expensive or
that were the most promising, and for the compound and CRISPR plates which had only
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singlicates of most samples (as compared to ORFs which had duplicates within the plate; see
supplementary materials for more details and to see the full list of treatments).

In addition to being used in optimizing the assay conditions, these plates can be used as
multiple separate held-out test sets; tremendously valuable in any machine learning benchmark.
As well, these conditions offer multiple “views” on cells treated with each chemical or genetic
perturbation, and therefore can be used for many interesting machine learning explorations,
such as style transfer e.g. to attempt prediction of one experimental condition from another.

Potential uses
Benchmarking representation learning methods
The holy grail of image-based profiling is a representation derived from the visual appearance of
cell samples such that samples in biologically similar states have similar representations. Given
such a representation, solutions for many of the applications discussed become immediately
accessible, and can help us uncover mechanisms of disease and their potential cures.

Hand-engineered features have been carefully developed and optimized to capture cellular
morphology variations in multi-dimensional representations. These features are the current
standard in the field and still require extensive post-processing, including normalization, feature
selection and dimensionality reduction. With advances in representation learning during the last
decade, it is natural to ask what set of features could be automatically identified by machine
learning algorithms directly from pixels.

Previous work in representation learning for image-based profiling has focused on using
convolutional neural networks trained in four main ways: 1) Pre-trained in non-cellular datasets
such as ImageNet (Ando, McLean, & Berndl, 2017; Pawlowski, Caicedo, Singh, Carpenter, &
Storkey, 2016). Also known as transfer learning, this approach leverages generic feature
extractors to measure cellular variations after proper feature normalization and rescaling. 2)
Trained on cellular images using unsupervised learning (Lafarge et al., 2019; Lu, Kraus, Cooper,
& Moses, 2019), including pretext tasks such as predicting certain image channels or all
channels using autoencoders. 3) Trained on cellular images using weakly-supervised learning
(Caicedo, McQuin, Goodman, Singh, & Carpenter, 2018; Cuccarese et al., 2020; Doan et al.,
2020), where metadata about the experimental conditions has been used as weak labels to train
models. 4) Self-supervised learning on cellular images (Perakis et al., 2021). More recently,
approaches based on contrastive learning have been used to characterize cellular variations in
image-based profiling as well.

All of these advancements have been explored in small-scale imaging screens, usually based
on other imaging assays different from Cell Painting. The performance evaluation across
approaches is not uniform, and it is unclear how these advancements could benefit the
identification of phenotypic matches in large scale Cell Painting images with a diverse set of
perturbations. Most works also make the assumption that it is ideal for convolutional nets to take
the full stack of channels simultaneously (following standard practices in RGB image analysis),
however, each image channel in Cell Painting has its own semantics. We envision the use of
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other architectures, such as extensions of attention-based models (e.g. Vision Transformers
(Dosovitskiy et al., 2020)) where the sequence of channels could be modeled in different and
meaningful ways.

As a way to compare different representation methods, we created a benchmark based on
detecting how many samples are measurably different from negative controls. Although other
tasks might be defined, we chose perturbation detection as the task to evaluate representations
because it is a task that often precedes other useful applications, and is equivalent to measuring
statistical significance of the perturbation’s signal. For example, a set of chemical or genetic
perturbations might be filtered by this criterion before embarking on subsequent laboratory
experiments, or prior to training a model, or other analysis that could be confounded by noisy
signals. It can also be useful for determining what experimental protocol or computational
analysis pipeline to use among several alternatives. It should be noted that even given perfect
computational methods for feature extraction, batch correction, and profile comparison, not all
samples will be detectably different from negative controls for several biological reasons. For
example, a drug or genetic perturbation may only impact cell morphology in a particular cell
type, under particular environmental conditions, at a particular time, or if particular stains were
used, conditions which may not have been met in the experiment.

To detect the number of samples with a measurably distinct phenotype, we estimated the
standard metric used in the field, Percent Replicating (Figure 2), which is the proportion of
samples that are distinct from the null distribution built from samples that are non-replicates. A
sample is considered to have a detectable signature if the median of the correlation between the
replicates of the sample is greater than the 95th percentile of the null distribution.
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Figure 2: Percent Replicating for each perturbation modality and under several experimental
conditions. Across all experimental conditions and using CellProfiler-derived features (blue),
including cell type (columns) and time points (rows), compounds have a stronger within-replicate
correlation compared to CRISPRs, which are themselves stronger than ORFs. The same is true
for features extracted using an ImageNet pretrained network (EfficientNet; red).

We also created a deep-learning baseline by extracting features using an ImageNet pretrained
network (EfficientNet (Tan & Le, 2019)) for a subset of samples. This is a useful baseline to
evaluate transfer learning strategies, which have been reported to be competitive on this
problem (Ando et al., 2017; Pawlowski et al., 2016). In this baseline, the Percent Replicating
values (Figure 2, red) show a similar trend compared to that of CellProfiler-derived features,
where the compounds have higher within-replicate correlation compared to the genetic
perturbations. It seems likely that a more specialized network would perform better and we
propose this as a ripe direction for future research.

Benchmarking gene-compound matching methods
We next established a benchmark and evaluation setup for researchers to develop and test
strategies for a real-world retrieval task, where we search for genes or compounds that have a
similar impact on cell morphologies as the query gene or compound. This dataset presents a
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unique opportunity to match profiles of perturbations across modalities (chemical versus
genetic), because genes in this dataset that are targeted by two types of genetic perturbations
(ORF and CRISPR) are also targeted by two compounds. To establish a baseline approach to
match profiles across modalities, we computed the Pearson correlation (used as a similarity
metric) between all chemical and genetic perturbation pairs. We then evaluated the performance
by estimating Percent Matching (Figure 3), which is the proportion of “true” connections
(chemical-genetic perturbation pairs that target the same gene) that are distinct from a null
distribution built from “false” connections (chemical-genetic perturbation pairs that are not
known to target the same gene). A true connection is considered to be correctly detected if its
correlation is greater than the 95th percentile of the null distribution.

The baseline results show that there is a signal in this dataset for matching chemical and
genetic perturbations that target the same gene (~7-11%, against a false positive rate of 5%),
but there is much room for improvement. It should be strongly noted, though, that significant
time and resources are otherwise required to identify the target of a compound, and similarly to
identify compounds that target a particular gene. Therefore, even the baseline’s relatively low
matching rates can accelerate drug development by yielding a list of possibilities for biologists to
test directly in subsequent experiments; improving image representations and therefore the
accuracy of predicted matches by a few percentage points could have a major impact on the
pharmaceutical industry.
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Figure 3: Percent Matching between compounds and genetic perturbations. Axis labels include
the cell lines (A549 or U2OS) and the timepoints (48 hour, 96 hour, and 144 hour).
Compound-compound matching could be evaluated similarly, given that there are pairs of
compounds targeting the same gene; however, many larger datasets exist for this purpose.

Conclusion
Drug discovery would benefit greatly from the machine learning community turning its attention
to rich, single-cell imaging data. The simple benchmarks we created aim to provide a foundation
on which researchers can develop and test novel methods for representation learning,
multi-view learning, information retrieval, and style transfer, among many others.

Code and Data availability
Morphological profiles (both CellProfiler and DeepProfiler-derived), image analysis pipelines,
profile generation pipelines, plate maps and plate and compound metadata, and instructions for
retrieving the cell images are publicly available online at
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted. The code for
reproducing the benchmark results is available at
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/tree/ed0f918e5920021a3
c6f9a8c2d63cf22c2067039/benchmark
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Code for generating Figure 1 is available at
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/tree/ed0f918e5920021a3
c6f9a8c2d63cf22c2067039/visualization

Code for generating Figure 2 is available at
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/blob/ed0f918e5920021a
3c6f9a8c2d63cf22c2067039/benchmark/1.percent_replicating.ipynb,
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/blob/ed0f918e5920021a
3c6f9a8c2d63cf22c2067039/benchmark/4.percent_replicating_dl.ipynb and
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/blob/ed0f918e5920021a
3c6f9a8c2d63cf22c2067039/benchmark/7.generate_figure.ipynb

Code for generating Figure 3 is available at
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/blob/ed0f918e5920021a
3c6f9a8c2d63cf22c2067039/benchmark/2.percent_matching_across_modalities.ipynb

Methods
Sample preparation and image acquisition
The Cell Painting assay involves staining eight components of cells with six fluorescent dyes:
nucleus (Hoechst), nucleoli and cytoplasmic RNA (SYTO 14), endoplasmic reticulum
(concanavalin A), Golgi and plasma membrane (wheat germ agglutinin; WGA), mitochondria
(MitoTracker), and the actin cytoskeleton (phalloidin) (Figure 4). We optimized the Cell Painting
assay described in (Bray et al., 2016) by changing the concentrations of Hoechst, phalloidin,
concanavalin A and SYTO14 and combining dye addition and dye permeabilization steps.
These changes will be described in more detail in (Cimini et al., in preparation) and are currently
publicly available at
https://github.com/carpenterlab/2016_bray_natprot/wiki#updates-to-the-cell-painting-protocol.
The images were acquired across five fluorescent channels plus three brightfield planes using a
Perkin Elmer Opera Phenix HCI microscope at 20x magnification.
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Figure 4: Sample images from the dataset. A single 5-channel image of U2OS cells treated
with the compound PFI-1. The channel names indicate the cellular structures identified in each
image (see main text for details). The width of each image is 645 um (and are 1080 pixels
height and width). Other example images are available on
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/tree/ed0f918e5920021a3
c6f9a8c2d63cf22c2067039/example_images.

Image processing
We used the CellProfiler (McQuin et al., 2018) bioimage analysis software to process the
images. We corrected for variations in background intensity, and then segmented cells,
distinguishing between nuclei and cytoplasm. Then, across the various channels captured, we
measure various features of cells across several categories including fluorescence intensity,
texture, granularity, density, location (see
http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html for more details).
Following the image analysis pipeline (see (Bray et al., 2016) for the pipeline), we obtain more
than 75 million cells and 5792 feature measurements.

Deep learning feature extraction
Segmentation bounding boxes around each cell are produced by CellProfiler and centered and
cropped to 224x224 pixels keeping the aspect ratio. Each of the five channels is copied three
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times to mimic RGB images, so that it can be given as input to the EfficientNet (Tan & Le, 2019)
pretrained in the ImageNet classification task. The five vectors extracted from the second-to-last
layer are concatenated, generating 6400 features that represent the cell’s profile. Finally, all the
cell feature vectors extracted from the same well are averaged to get a single representation for
the well. This process was implemented using the DeepProfiler open source library
(https://github.com/cytomining/DeepProfiler). The well-level aggregated features are spherized
(Ando et al., 2017) for each set of replicate plates.

Image-based profiling
We used cytominer (Singh et al., 2020) (https://cytomining.github.io/profiling-handbook/) and
pycytominer workflows (https://github.com/jump-cellpainting/profiling-recipe) to process the
single cell features. We aggregated the single cell profiles by computing the mean. We then
normalized the averaged profiles by subtracting the median and dividing by the median absolute
deviation (m.a.d.) of each feature. This was done in two ways: using the median and m.a.d. of
(i) the negative control wells on the plate (used in the analysis shown here), and (ii) all the wells
on the plate. Finally, we filtered out redundant features as well as features with low variance. All
the steps in the profiling workflow were performed for each individual plate separately.

Recommended dataset splits
The methods presented in the benchmarks do not involve any training (we simply use a
predetermined similarity metric and hand-engineered features or a pre-trained model) and thus
did not require creating the typical train-validate-test data splits. For the two benchmarks,
representation learning and gene-compound matching, we offer the following guidelines for
creating data splits when training is involved:

Representation learning: Depending on the use case, we suggest using different splits. For a
general representation learning task, the compound, CRISPR or ORF dataset could be used
with a 60-20-20 split. For a domain adaptation task, one could train on the dataset from one cell
line or time point and test it on the other cell line or time point. All the replicates of a perturbation
should be in the same split.

Gene-compound matching:
1. All replicates of a perturbation should be in the same split.
2. For the CRISPR dataset, both guides should be in the same split.
3. Three of the compounds (BVT-948, dexamethasone, and thiostrepton) have two different
identifiers each in the dataset (because of small differences in structures) but the same
compound name. Each pair should be in the same split.
4. If analyzing data at the single cell level, all cells from a well should be in the same split.

We provide recommended data splits in
https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted/tree/ed0f918e5920021a3
c6f9a8c2d63cf22c2067039/datasplits
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Limitations and Ethical concerns
This data can accelerate drug discovery and therefore improve human health and reduce drug
development costs. Nevertheless, we note an ethical concern: the cell types are commonly
used historical lines derived from two white patients, one male (A549) and one female (U2OS).
Therefore, conclusions from this data may only hold true for the demographics or genomics of
those persons and not broader groups. They were chosen because the lines are both
well-suited for microscopy and they offer the advantage of enabling direct comparison to
extensive prior studies using them.

There are additional limitations for the presented datasets, aside from their data quality as
already noted. The number of gene perturbations captured in these datasets are in the few
hundreds whereas there are roughly 21,000 genes in the genome and numerous variations
within each. Likewise, a few hundred compounds are tested here but pharmaceutical
companies often have collections of compounds numbering in the millions. In terms of the assay
itself, the Cell Painting assay includes only six stains, which is insufficient to capture the
localization and morphological variation of all cellular components. The only limitation for
expanding these datasets are the financial resources to carry out the experiments (more
samples, different microscopes, etc.).

We created this dataset using a single cell line and single facility; this choice limits the potential
for generalizability of any models using it as training data. We note that generalizability of
models across datasets is often unnecessary in biology experiments where controls can be
included within each experiment; in fact, we recommend those creating large datasets to include
these sets of controls in the experiment in order to have internal controls/landmarks for the
assay. We also made this choice in order to minimize technical variability and therefore
maximize the biological signal in the data. Given the relatively low percent matching of genes to
compounds, the primary aim in the field is to develop methods that work well within a single
dataset and only later is it worthwhile to aim for generalizability. Nevertheless, our consortium is
currently collecting new data across ten sites as a resource for addressing the generalizability
problem.

Acknowledgements and Disclosure of Funding
The authors appreciate the more than 100 scientists who have contributed to the organization
and scientific direction of the JUMP Cell Painting Consortium. We thank Max Macaluso
(operations) and Tanaz Abid (technical) at the Broad Institute for their assistance as well.

The authors gratefully acknowledge a grant from the Massachusetts Life Sciences Center Bits
to Bytes Capital Call program for funding the data production. We appreciate funding to support
data analysis and interpretation from members of the JUMP Cell Painting Consortium and from
the National Institutes of Health (NIH MIRA R35 GM122547 to AEC). The authors also gratefully
acknowledge the use of the PerkinElmer Opera Phenix High-Content/High-Throughput imaging
system at the Broad Institute, funded by the S10 Grant NIH OD-026839-01.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.05.475090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475090
http://creativecommons.org/licenses/by/4.0/


AEC has optional ownership interest in Recursion, a public biotechnology company using
image-based profiling for drug discovery. SES is an employee of Dewpoint Therapeutics. Daniel
Kuhn is an employee of Merck Healthcare KGaA, Darmstadt, Germany.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.05.475090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475090
http://creativecommons.org/licenses/by/4.0/


Appendix
The landing page of the GitHub repository for this dataset has all the relevant additional
information: https://github.com/jump-cellpainting/2021_Chandrasekaran_submitted.

We have released the data with a CC0 license and the code with a BSD 3-Clause license.

We have chosen GitHub as the hosting platform, and use GitLFS to store large files.
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