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Abstract 
 
Cellular membranes are formed from many different lipids in various amounts and 
proportions depending on the subcellular localization. The lipid composition of membranes is 
sensitive to changes in the cellular environment, and their alterations are linked to several 
diseases, including cancer. Lipids not only form lipid-lipid interactions but also interact with 
other biomolecules, including proteins, profoundly impacting each other.  
Molecular dynamics (MD) simulations are a powerful tool to study the properties of cellular 
membranes and membrane-protein interactions on different timescales and at varying levels 
of resolution. Over the last few years, software and hardware for biomolecular simulations 
have been optimized to routinely run long simulations of large and complex biological 
systems. On the other hand, high-throughput techniques based on lipidomics provide accurate 
estimates of the composition of cellular membranes at the level of subcellular compartments. 
The community needs computational tools for lipidomics and simulation data effectively 
interacting to better understand how changes in lipid compositions impact membrane 
function and structure. Lipidomic data can be analyzed to design biologically relevant models 
of membranes for MD simulations. Similar applications easily result in a massive amount of 
simulation data where the bottleneck becomes the analysis of the data to understand how 
membrane properties and membrane-protein interactions are changing in the different 
conditions. In this context, we developed LipidDyn, an in silico pipeline to streamline the 
analyses of MD simulations of membranes of different compositions. Once the simulations 
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are collected, LipidDyn provides average properties and time series for several membrane 
properties such as area per lipid, thickness, diffusion motions, the density of lipid bilayers, 
and lipid enrichment/depletion. The calculations exploit parallelization and the pipelines 
include graphical outputs in a publication-ready form. We applied LipidDyn to different case 
studies to illustrate its potential, including membranes from cellular compartments and 
transmembrane protein domains. LipidDyn is implemented in Python and relies on open-
source libraries. LipidDyn is available free of charge under the GNU General Public License 
from https://github.com/ELELAB/LipidDyn.  
 
Keywords 
molecular dynamics, lipid structure, lipidomics, organelles, protein-lipid interactions, 
autophagy 
 
Introduction  
 
Lipids are essential metabolites with crucial cellular functions and play a major role in most 
biological systems [1–3]. Lipid diversity, which depends on their chemical composition, is 
enormous and predicted to be in the range of hundreds of thousands [4,5], reflecting the 
variety of biological functions that lipids fulfil. Many different lipid species form the building 
blocks of cellular membranes [6]. Lipid compositions of cellular membranes can vary 
depending on the subcellular localization and are sensitive to cellular conditions and other 
factors [6]. Indeed, lipid alterations have been linked to different pathophysiological 
conditions, from cancer [5,7,8] to neurodegenerative diseases [9–11]. Lipid components of 
membranes are crucial determinants in the mechanism of action of several drugs [12]. Hence, 
targeting membrane lipids is becoming a possible therapeutic approach [13]. For instance, 
multidrug-resistant cancer cells present redistribution of phosphatidylserines from the inner 
leaflet of the plasma membrane, in which they mainly exist under physiological conditions, to 
the outer leaflet.  
Lipids interact with other biomolecules, including proteins, and the two classes of 
biomolecules profoundly impact each other [14]. For example, lipids can influence protein 
dynamics and protein conformation [15]. On the other hand, membrane proteins can alter the 
biophysical properties of the lipids in the biological membranes [16]. 
Molecular dynamics (MD) simulations are a suitable tool to study the properties of cellular 
membranes and the membrane-protein interactions on different timescales and different 
levels of resolution, from coarse grain to all-atom representations [17]. The most commonly 
used physical models, i.e., force fields, for MD simulations, are Martini [18,19] and the ones 
in the CHARMM [20,21] and AMBER [22,23] families. These force fields cover most of the 
biologically relevant lipids and allow an accurate description of membranes including various 
lipid species and interaction with proteins. However, for complex systems, other force fields, 
as Slipids [24] or FUJI [25] may represent valuable alternatives. Recent developments in 
software and hardware for biomolecular simulations allow access to the microsecond-
millisecond timescale of large and complex biological systems [26–28], such as lipid bilayers 
of heterogeneous composition [29]. 
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A robust framework for MD simulations opens new venues to understand the complexity of 
biological membranes at the organelle level. One of the open challenges is how to design the 
lipid species and their ratio for the membrane models to use in simulations. On the 
experimental side, high throughput lipidomics provide elegant methodological solutions to 
profile lipids at the cellular [30–33] and organelle level [34,35]. In this context, we could 
envision using lipidomics data from assays performed in different cellular conditions on 
different subcellular fractions to design the bilayers to study with MD simulations. Similar 
applications will easily result in massive simulation data to analyze. Different tools calculate 
properties from MD simulations that can be compared to experimental observables from 
biophysical spectroscopies [36–42]. A bottleneck is making reproducible and simplifying the 
steps for analysis when several simulations should be analyzed in parallel. Pipeline engines 
can help in this regard. 
In this context, we developed LipidDyn, an automated pipeline to streamline the analyses of 
MD simulations of membranes of different compositions. Our pipeline allows the estimate, in 
a non-time-consuming manner, of average properties and time series for different 
membranes. We also applied it to three cases studies as an example of LipidDyn applicability. 
 
Results  
 
Overview on LipidDyn   
 
LipidDyn is a Python package for analyzing biophysical membrane properties and facilitating 
their interpretation in a non-time-consuming manner (Figure 1). LipidDyn allows to perform 
the analyses through an easy and practical Application Programming Interface (API) and 
implements full-fledged user programs accessible from the command line, including support 
for both analysis and plotting of the results. In this way, users can perform standard analyses 
of general interests on their molecular ensembles and write custom Python scripts that 
integrate several calculations seamlessly.  
LipidDyn is based on popular and well-maintained open-source packages, such as 
MDAnalysis [43], to handle trajectory files and other packages as back-ends [44]. 
While using the provided API ensures the highest degree of flexibility, it also requires extra 
programming work and expects the user to be familiar with Python packages. Nonetheless, 
the LipidDyn user scripts still allow for fine-tuning some aspects of the calculation either by 
command-line options or by using configuration files. This flexibility makes it possible to 
support simulations using different molecular mechanics physical models to represent the 
system under investigation. In addition, the workflow supports both the analyses of time-
series and average properties. LipidDyn applies to both full-atom and coarse-grained 
topologies and trajectories. We include configuration files in the package for both short 
trajectories with all-atom (CHARMM36) and coarse-grained topologies (Martini). 
We designed LipidDyn to process trajectory files in GROMACS format. It requires three 
input files: i) a configuration file (YAML format) including the definition (using the 
MDanalysis syntax) of each headgroup of the lipid species included in the system and the 
ratio of each lipid species to the total number of lipids in the system, ii) a topology file (.gro 
file), iii) a trajectory file (.xtc, .trr, or .gro).  
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LipiDyn handles trajectory files that contain many frames with data for large systems, 
including lipid bilayers and proteins. We tested LipiDyn with full-atom and coarse-grained 
trajectories of lipid bilayers and membrane proteins, including a different number of frames 
(10,000-200,000) and atoms/coarse-grained beads (10,000-50,000).    
We focused on parameters that can be compared with experimental data. 
LipidDyn includes different analyses, which can be performed independently or collectively. 
It consists of the calculation of i) membrane thickness, ii) area per lipid (APL), iii) two-
dimensional (2D) lipid density maps, iv) lipid movements, v) lipid enrichment/depletion 
maps, vi) order parameter (Figure 1). 
An essential prerequisite for analysis is the identification of the leaflets (defined as upper and 
lower leaflets) of the bilayer. In LipidDyn, we use the LeafletFinder class from MDAnalysis 
to identify which lipids belong to each leaflet, considering their headgroups or, in some cases, 
other atoms as representatives of each lipid molecule. 
 
Membrane thickness and area per lipid (APL) 
The FATSLiM class performs APL and membrane thickness calculations [44]. The thickness 
is calculated for each lipid by using its neighborhood-averaged coordinates to remove the 
noise associated with fluctuations of lipid positions and then searching the neighbor lipids 
that belong to its opposite leaflet, using a cutoff distance (default: 6.0 nm). The thickness 
corresponds to the projection of the distance vector between each lipid and its neighbors in 
the opposite leaflet. 
APL is estimated for each lipid by performing a neighbor search to identify its surrounding 
lipids in the leaflet and using them to compute a Voronoi tessellation. The implementation 
uses the Voronoi cell’s area to approximate the lipid’s APL. The program returns the upper 
and lower leaflet areas as the sum of the individual lipid areas and the membrane area as the 
average value of the two leaflet areas [44]. Compared to other existing tools [42,45–47], the 
computation with FATSLiM does not depend on the bilayer morphology, and it can accurately 
handle also vesicles. The user can visualize APL and thickness outputs with the profiler 
plotting tool included in the pipeline with options to customize the plot.  
 
Lipid density maps 
The Density class performs lipid density calculation on both the upper and lower leaflet of the 
bilayer, providing 2D density maps. The class consists of a Python-based reimplementation 
of the density calculation algorithm provided by the densmap tool of GROMACS [48]. This 
algorithm divides the simulation box into a lattice of three-dimensional cells spanning a 
chosen dimension. Further, it calculates the time average of the number density of atoms 
across the plane of the remaining two dimensions. It visualizes local differences in lipid 
density with insights on lipid dynamics and system phase. The computed arrays are stored in 
.dat files for upper and lower leaflets. The user can visualize the outputs using the dmaps 
plotting tool to obtain 2D density maps.  
 
Lipid enrichment/depletion 
The Enrichment class calculates the enrichment/depletion of each lipid species in specific 
regions of the bilayer, for example, around a membrane protein included in the system. For a 
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given lipid species L, the class uses the Density class to compute the density map of the lipid 
L in the upper and lower leaflet averaged over the trajectory time. Then, the density map 
obtained is divided by the total number of lipids in the given leaflet. The resulting map is 
divided by the ratio of the lipid L in bulk. 
The enrichment/depletion calculation is performed separately for the upper and lower leaflet 
of the bilayer. The user can visualize the outputs with the dmaps plotting tool to obtain 2D 
enrichment/depletion maps. 
 
Lipid movements maps. 
The Movements class provides graphical support for how each lipid moves along the X-Y 
plane of the bilayer. This analysis is useful to describe the motions of groups of lipids or even 
a single molecule of interest over trajectory time. The user can visualize the output with the 
diffusion tool to obtain 2D maps of lipid movements. 
 
Order Parameters 
The Order Parameter class implements the calculation of the order parameter for the acyl 
chain tails of each lipid moiety. This analysis gives insight into the overall order of the lipid 
bilayer and the conformations that the acyl chains assume [49]. 
For the full-atom trajectories, the class includes a reimplementation of the algorithm in 
NMRlipids [https://github.com/NMRLipids] to calculate the carbon-hydrogen order 
parameter (SCH) of the acyl chains. For the coarse-grained trajectories, the class includes the 
Lipyphilic SCC() class [40] to calculate the carbon-carbon order parameter (SCC) of the acyl 
chains. For each lipid species, consecutive carbon atom pairs composing the sn-1 and sn-2 
acyl chains are defined inside the configuration file. The Order Parameter class calculates 
SCH or SCC for the sn-1 and sn-2 acyl chains of each lipid species over trajectory time. The 
user can visualize the output with the ordpar plotting tool. 
 
Comparison with other tools  
We compared the analyses provided by LipidDyn with other available tools (Figure 2) [40–
42]. Each tool focuses on a group of analyses, with some classical ones in common, such as 
order parameter, thickness, and APL. LiPyphilic [40] and Memsurfer [42] provide mostly 
data on the bilayer’s geometrical properties as in the case of domain registration, z-positions, 
and z-angles calculations or membrane surface and curvature. On the other hand, LOOS [41] 
includes tools for analyzing membranes and accounts for an embedded protein. We noticed 
that most of these tools are either a suite of different scripts for analyses or a collection of 
Python classes to be imported. They do not provide complete workflows to streamline 
analysis collection and visualization and ensure reproducibility.   
 
Case study 1 - Analyses of the lipid behavior in ATG9A positive compartments  
Autophagy is a catabolic process that mediates the degradation of cellular components by 
forming autophagosomes [50]. During autophagy, vesicles loaded with ATG9A translocate at 
the sites of the autophagosome formation, delivering lipids and proteins [51]. There is still 
scarce information about ATG9A-positive compartments, and structural studies on these 
compartments can bring new knowledge [52]. We performed liquid chromatography-mass 
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spectrometry-based lipidomics of ATG9A-positive compartments immuno-isolated from 
amino acid–starved (i.e., autophagy-induced) HEK293A cells (see GitHub repository for 
tables summarizing the data). We then designed two models of membranes for full-atom MD 
simulations. The bilayers include a mixture of lipids designed from the composition of 
sphingomyelins quantified in the lipidomics data described above. 
We used LipidDyn to analyze the MD simulations and compare them with a reference bilayer 
including only 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Figure 3). In particular, 
we calculated the time-series and average values for APL and thickness using the FATSLiM 
class. We also estimated the order parameter using the Order Parameter class of LipidDyn 
(Figure 3). APL and thickness are commonly used for the validation of bilayer MD 
ensembles. The average values of APL and thickness calculated from the DOPC trajectory 
are in good agreement with experimental values ~0.67 nm2 [53] and ~3.8 nm [54], 
respectively (Figure 3A-B). Our analysis shows that the presence of sphingomyelin is 
associated with a decrease of APL (average around 0.63 nm2) and a corresponding increase 
of thickness (average around 4.12 nm) (Figure 3A-B). The addition of cholesterol leads to 
higher lipid packing (average APL around 0.49 nm2), increased lipid chains order, and thicker 
bilayer (average thickness around 4.41 nm) (Figure 3A-C), showing a reorganization of the 
membrane structure. Our data are in agreement with experiments and simulations on the 
condensing effect of cholesterol on the membranes, which increases the order of the lipid 
packing and lowers the membrane permeability while maintaining membrane fluidity by 
forming liquid-ordered–phase lipid rafts with sphingolipids [55–58]. Our analyses shed light 
on the biophysical properties of the ATG9A-positive compartments upon autophagy 
induction, suggesting a certain degree of rigidity and packing dictated by the lipids that are 
enriched in these compartments.  
  
Case study 2 - Lipidomics of single-organelle: structural properties of endoplasmic reticulum 
in HeLa cells  
To analyze membranes from subcellular compartments in terms of structural and biophysical 
properties is essential not only for fundamental research but also for health-related 
applications [33,59]. Indeed, many diseases, including cancer, are associated with 
dysregulation of lipid metabolism [60]. 
We thus used immunoaffinity purification and mass spectrometry-based shotgun lipidomics 
to collect data from the endoplasmic reticulum (ER) of HeLa cells, quantifying 19 different 
lipid classes. We modeled a coarse-grained heterogeneous bilayer designed from the 
experimental lipidomics data, hereafter indicated as ER bilayer, and collected 10 μs MD 
simulation. The modeled ER bilayer includes 1,000 lipids for each leaflet. In detail, we had 
lipid species from the class of phosphatidylcholines (approximately 77%), a low 
concentration of cholesterol (approx. 6.3%), and sphingolipids (approx. 0.6%), in agreement 
with compositions previously reported [1]. As a comparison, we designed a coarse-grained 
bilayer with the same number of lipids per leaflet composed only by phosphatidylcholine 
(70% POPC) and higher cholesterol concentration (30%). With LipidDyn, we calculated the 
time-series and average values for APL and thickness using the FATSLiM class, and we 
estimated the average 2D lipid density using the Density class (Figure 4). The average values 
of the membrane thickness (average around 3.85 nm) and APL (average around 0.51 nm2) 
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calculated from the reference POPC-cholesterol trajectory are in agreement with the known 
condensing effect of cholesterol [61], causing the thickening of the bilayer, reduction of APL, 
and ordering of the lipid tails (Figure 4A-B). Our analysis shows that the bilayer with a 
complex mixture and low content of cholesterol is associated with an increase of APL 
(average around 0.65 nm2) and a slight increase of thickness (average around 3.89 nm) 
(Figure 4A-B) in comparison to the POPC–cholesterol bilayer. The analysis of the average 
2D lipid density maps shows regions of higher density in the POPC–cholesterol bilayer. In 
contrast, the ER bilayer shows a more uniform lipid density (Figure 4C), suggesting a more 
disordered lipid membrane. Our analyses shed light on the biophysical properties of ER 
bilayer, showing loose packing and low ordering of lipids that may reflect membrane 
dynamics involved in the functions of ER. Indeed, ER is at the beginning of the secretory 
pathway and at the level of its membrane happen the insertion and transport of newly 
synthesized proteins and lipids, as cholesterol which is synthesized at ER and then rapidly 
transported to other organelles [1,62,63]. 
 
Case study 3 - Study of the lipid interactions of the transmembrane emp24 domain 2 (p24) 
protein 
The interactions of the transmembrane p24 protein with lipids [64–66] regulate its activity in 
the secretory pathway and vesicular trafficking [67]. The cytosolic part of the p24 
transmembrane domain includes a sphingolipid-binding motif [64,68]. It has been shown that 
sphingolipids and ether lipids interact with the transmembrane helix of p24 and regulate 
p24’s cycling between ER and Golgi membranes, contributing to the early secretory pathway 
[65].  
We used coarse-grained MD simulations to investigate if, with this approach, we can study 
the interaction of p24 with sphingomyelin, previously observed with full-atom MD 
simulations [64,65], and observe effects associated with the presence of cholesterol (Figure 
5). We collected two 20 μs MD simulations of the transmembrane helix of p24, including 
residues 163-193, in the bilayer with lipid composition of phosphatidylcholine (70%-50% 
POPC), cholesterol (30%), and sphingomyelin (0%-20%). We used LipidDyn to investigate if 
p24 prefers interactions with specific lipid species in our systems. In particular, we used the 
Density class to calculate the 2D lateral density of the lipids and the Enrichment class to 
compute the enrichment-depletion map of each lipid species, considering the last μs of MD 
simulations (Figure 5). The analysis of the enrichment-depletion map in the POPC 70% 
cholesterol 30% system shows that cholesterol is enriched around the transmembrane helix of 
p24. This effect is more pronounced in the cytosolic leaflet of the membrane than the luminal 
one (Figure 5A). In sphingomyelin-rich membranes, cholesterol enrichment is reduced in the 
cytosolic leaflet, suggesting that sphingomyelin may affect cholesterol binding to p24 
(Figure 5B). The map of sphingomyelin shows a diffused and more pronounced enrichment 
around the cytosolic portion of the transmembrane helix of p24, which is where the 
sphingolipid binding motif is located, than around the luminal part (Figure 5C). Although the 
limitations and approximations of the coarse-grained force field employed, especially in 
overestimating interactions [69], our analysis shed light on the interactions of the 
transmembrane helix of p24 with cholesterol and sphingomyelin, in agreement with previous 
data [64–66].  
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Materials and Methods 
 
Lipidomics of the endoplasmic reticulum of HeLa cells 
 
The post-nuclear lysate of HeLa cervical cancer cells was prepared as previously described 
[70]. 300 µl post-nuclear lysate was incubated with 0.6 µg/ml rabbit anti-calnexin antibody 
(ab22595, Abcam) for 45 minutes and for an additional one hour after addition of magnetic 
microbeads conjugated to anti-rabbit IgG (25 µl, 30-048-602; Miltenyi Biotec) to purify the 
endoplasmic reticulum. The endoplasmic reticulum was then captured on an MS column 
(130-042-201; Miltenyi Biotec) mounted on an OctoMacs magnetic separator (130-042-108; 
Miltenyi Biotec) and eluted after washing and demounting of the column. The eluted 
endoplasmic reticulum was pelleted by centrifugation for 20 minutes at 21,100 g and 
resuspended in 200 µl 155 mM ammonium bicarbonate. The entire purification procedure 
was performed at 4 ºC. Lipid extraction and mass spectrometry-based lipidomics analysis was 
carried out as previously described [71]. 
 
Lipidomics of ATG9A-positive lipid compartments 
 
HEK293A cells were cultivated in a full medium composed of DMEM supplemented with 
10% FCS and 4 mM l-glutamine as described in [51]. We performed the immunoisolation of 
ATG9A-positive compartments from HEK293 cells as previously described [51]. We carried 
out metabolite extraction by fractionating the cell samples into pools of species with similar 
physicochemical properties, using combinations of organic solvents. Cell pellets were 
resuspended in cold water and briefly mixed. Proteins were precipitated from the lysed cells 
by adding methanol. The samples were spiked with chloroform after vortex mixing. The 
extraction solvents were spiked with metabolites not detected in unspiked cell extracts used 
as internal standards. We incubated the samples at -20 ˚C for 30 minutes and collected two 
different phases after a vortex step. Cell extracts were mixed with water (pH 9), and after 
brief vortexing, the samples were incubated for 1 hour at -20 ˚C. After centrifugation at 
16,000 x g for 15 minutes, the organic phase was collected. We reconstituted the dried 
extracts in acetonitrile/isopropanol (50:50), resuspended them for 10 minutes, centrifuged 
(16,000 x g for 5 minutes), and transferred them to vials for UPLC-MS analysis.  
We used two quality controls described in [72]. Randomized duplicate sample injections 
were performed. We performed pre-processing, normalization, and statistical analysis with 
TargetLynx application manager for MassLynx 4.1 software (Waters Corp., Milford, USA). 
The processing was executed using a set of predefined retention time, mass-to-charge ratio 
pairs, Rt-m/z, corresponding to metabolites included in the analysis. The ion chromatograms 
were denoised and peak-detected with a mass tolerance window of 0.05 Da. For each sample 
injection, a list of chromatographic peak areas was generated. We used representative MS 
detection curves to identify the metabolites using internal standards. The normalization 
factors were calculated for each metabolite by dividing their intensities in each sample by the 
recorded intensity of an appropriate internal standard in that same sample, as described in 
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[72]. Statistical analysis included principal component analysis, Shapiro-Wilk test, Student t-
test, and Wilcoxon-signed-rank test.   
 
From lipidomics to MD design  
 
We designed a Python script (see GitHub) to analyze the ATG9A-positive lipidomic dataset. 
We quantified the average lipid concentration from the raw data among the two starved 
samples. To design the lipid composition for the MD simulation, we associated the 
sphingomyelin species identified in the lipidomic dataset with those available in the 
CHARMM36 force field, querying the LipidDyn internal database.  
We designed a Python script (see GitHub) to analyze the lipidomics dataset of the 
endoplasmic reticulum from HeLa cells at the level of classes of lipids and to design the lipid 
composition of the bilayer for the coarse-grained MD simulations using Martini force field. 
In addition, we have been curating a more general dictionary to link lipid species to the 
corresponding available molecules in all-atom and coarse-grained force fields to assist the 
design of the lipid composition for MD simulations. 
 
MD simulations 
 
We used CHARMM-GUI Membrane Builder [73,74] to build the systems for simulations. 
The MD simulations were carried out using GROMACS [48]. 
We used CHARMM36 force field [21] and the TIP3P water model adjusted for CHARMM 
force fields[75] for all-atom MD simulations and Martini 2 for coarse-grained simulations 
[76]. Each bilayer system was built in a rectangular box in the x and y dimension. The water 
thickness (minimum water height on top and bottom of the system) was set between 25 Å and 
35 Å to ensure that the two layers of water molecules were sufficient to avoid artificial 
contacts between the image boxes. Each system was simulated for different timescales 
ranging from 0.5 to 20 μs. Periodic boundary conditions were applied in all three dimensions. 
More details, including the preparation steps, are reported in the readme files in the GitHub 
or OSF repositories for each set of simulations. 
 
 
Availability and future perspective 
 
The package and test cases are available at https://github.com/ELELAB/LipidDyn. 
LipidDyn has been released in its first version to provide a well-organized workflow for 
analyses of lipid and protein-lipid simulations and streamline cases where many bilayers with 
different compositions need to be analyzed in parallel. We selected the most important 
parameters that often need to be scrutinized, with emphasis on supporting properties that can 
also be experimentally determined. Nevertheless, LipidDyn at the moment does not cover all 
the available portfolio of analyses of structural and biophysical properties that can be applied 
to membrane simulations. In the future, we will widen the range of analyses supported by the 
package and also find new visualization solutions. For example, we will include tools to 
calculate the shapes and curvatures of lipid membranes. In terms of protein-lipid interaction, 
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we will implement analyses of occurrence, maximal occupancy and time life of contacts 
along the simulation time. We will provide LipidDyn outputs compatible with Pyinteraph2 
[77,78] so that protein-membrane simulations can be analyzed using methods from graph 
theory.  
Furthermore, we plan to include in LipidDyn automated support to convert the information in 
the processed lipidomics data to design models of membranes for MD simulations that 
resemble experimentally observed lipid compositions. Our focus is to provide a tool in 
LipidDyn that includes a dictionary to automatize the mapping and conversion of the lipid 
species in the lipidomics datasets to the corresponding molecules for which parameters are 
available in the commonly used force fields for MD simulations.  
 
 
Figure legends  
 
Figure 1. Overview of LipidDyn. The figure illustrates the workflow implemented in 
LipidDyn and its dependencies. The membrane is identified from the input files by the 
MDAnalysis tool LeafletFinder. Depending on the force field employed different methods are 
used for the analysis of choice.  
Figure 2. Comparison with other tools to analyze membrane simulations. The Venn 
diagram illustrates the comparison between the analyses covered by other available tools and 
LipidDyn. Most of the tools include the analysis of biophysical properties of lipid bilayers 
such as area per lipid, thickness, and order parameter. However, none of the tools currently 
cover all the possible analyses. Only LipidDyn has been designed as a workflow.  
Figure 3. Analyses of MD simulations of ATG9A-positive compartments. A-B) Boxplot 
of the area per lipid and membrane thickness calculated for the full-atom simulations of the 
bilayers with lipid ratio DOPC 100%, DOPC 59% sphingomyelins (SMs) 41%, and DOPC 
35% cholesterol (CHOL) 24% SMs 41%. C) Comparison of average order parameters for sn1 
and sn2 acyl chain of DOPC between the presented systems. The ATG9A-positive 
compartments are associated with a decrease of area per lipid and an increase of thickness 
compared to the reference system. The addition of cholesterol leads to a higher lipid packing 
and lipid chains order and a thicker bilayer. 
Figure 4. Analysis of coarse-grained MD simulations of the ER and POPC-cholesterol 
bilayers. A-B) Line plots of the area per lipid (panel A) and membrane thickness (panel B) 
calculated for the bilayer composed of phosphatidylcholine (POPC 70%) and cholesterol 
(CHOL 30%) and the bilayer designed from the lipidomics data of the endoplasmic reticulum 
(ER), which includes phosphatidylcholines (77.1%), CHOL (6.3%), sphingolipids (0.6%) and 
lipid species from other classes as phosphatidylethanolamine (6 %), phosphatidylinositol (5.8 
%), ceramide (0.4 %), phosphatidylserine (0.3 %). Side distributions are also shown along 
with the line plots. C) Average 2D lipid density maps calculated for the upper leaflet of the 
bilayers. The ER bilayer is associated with an increase in the area per lipid and a more 
uniform lipid density than the POPC-cholesterol bilayer, suggesting loose packing and low 
ordering of lipids.  
Figure 5. Analyses of coarse-grained MD simulations of the transmembrane domain of 
p24 embedded in different lipid bilayers. Enrichment-depletion map of A) CHOL in the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.04.474788doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.04.474788


 

11 

cytosolic and luminal leaflet of the phosphatidylcholine (POPC 70%) and cholesterol (CHOL 
30%) bilayer and of B) CHOL and C) sphingomyelin (DPSM) in the cytosolic and luminal 
leaflet of the phosphatidylcholine (POPC 50%), cholesterol (CHOL 30%) and sphingomyelin 
(DPSM 20%) bilayer. Our analysis shows a more pronounced sphingomyelin enrichment 
around the cytosolic part of the transmembrane domain of p24, which includes the 
sphingolipid binding motif. The inclusion of sphingomyelin in the bilayer affects the binding 
of cholesterol to p24 in the cytosolic leaflet. 
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