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Abstract 21 

Monitoring freshwater biodiversity is essential to understand the impacts of human activities 22 
and for effective management of ecosystems. Thereby, biodiversity can be assessed 23 
through direct collection of targeted organisms, through indirect evidence of their presence 24 
(e.g. signs, environmental DNA, camera trap, etc.), or through extrapolations from species 25 
distribution models (SDM). Differences in approaches used in biodiversity assessment, 26 
however, may come with individual challenges and hinder cross-study comparability. In the 27 
context of rapidly developing techniques, we compared a triad of approaches in order to 28 
understand assessment of aquatic macroinvertebrate biodiversity. Specifically, we compared 29 
the community composition and species richness of three orders of aquatic 30 
macroinvertebrates (mayflies, stoneflies, and caddisflies, hereafter EPT) obtained via eDNA 31 
metabarcoding and via traditional in situ kicknet sampling to catchment-level based 32 
predictions of a species distribution model. We used kicknet data from 24 sites in 33 
Switzerland and compared taxonomic lists to those obtained using eDNA amplified with two 34 
different primer sets. Richness detected by these methods was compared to the 35 
independent predictions made by a statistical species distribution model using landscape-36 
level features to estimate EPT diversity. Despite the ability of eDNA to consistently detect 37 
some EPT species found by traditional sampling, we found important discrepancies in 38 
community composition between the two approaches, particularly at local scale. Overall, the 39 
more specific set of primers, namely fwhF2/EPTDr2n, was most efficient for the detection of 40 
target species and for characterizing the diversity of EPT. Moreover, we found that the 41 
species richness measured by eDNA was poorly correlated to the richness measured by 42 
kicknet sampling and that the richness estimated by eDNA and kicknet were poorly 43 
correlated with the prediction of the statistical model. Overall, however, neither eDNA nor the 44 
traditional approach had strong links to the predictive models, indicating inherent limitations 45 
in upscaling species richness estimates. Future challenges include improving the accuracy 46 
and sensitivity of each approach individually yet also acknowledge their respective 47 
limitations, in order to best meet stakeholder demands addressing the biodiversity crisis we 48 
are facing. 49 

Keywords 50 
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Introduction 52 

The role of biodiversity in maintaining ecosystem functions and services is widely recognized 53 
(Chapin 2000, Cardinale 2012). Consequently, deleterious effects of human activities on 54 
biodiversity are a source of growing concern and are mobilising both scientists and 55 
stakeholders around the world (Pereira & Cooper 2006, Diaz et al. 2020). In a context where 56 
the loss of biodiversity is established and threatens many of the benefits that ecosystems 57 
provide to humanity, monitoring the diversity and composition of biological communities is a 58 
priority, both to prevent future adverse consequences and to establish possible restoration 59 
measures (Lindenmayer & Likens 2010). However, measuring state and change of 60 
biodiversity remains a challenge both due to questions related to its scientific definition (such 61 
as which levels of biological organisation to study and at what spatial scales) and to the 62 
limitation of the methods and technologies available to monitor life in the environment. 63 

For a long time, freshwater biodiversity monitoring has solely relied on the capture of 64 
individuals or their direct observation. These approaches, although improved over time, 65 
remain limited by sampling biases, identification errors, associated costs, and sometimes 66 
coarse taxonomic resolution. Furthermore, they do not allow upscaling and predicting to 67 
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larger spatial or temporal scales. Thus, additional approaches are needed to complement 68 
classic biodiversity data, especially with respect to a better scaling and resolving the state 69 
and change of biodiversity. Approaches can be based on novel technological advances, 70 
such as in molecular sciences, or in a more detailed use of predictive or other statistical 71 
models (Guisan and Zimmermann 2000;  Taberlet et al. 2012; Petchey et al. 2015; Altermatt 72 
et al. 2020). The implementation of these approaches, however, needs to be complemented 73 
with a thorough analysis of strengths and weaknesses, including directly comparing 74 
performance of the approaches as well as identifying what can (or cannot) be gained by 75 
either approach. Within the last decade, environmental DNA (eDNA) has been – especially 76 
in aquatic ecosystems – presented as a game-changer to traditional approaches, with the 77 
promise of being able to monitor biodiversity at unprecedented spatial and temporal scales 78 
(Hering et al., 2018; Leese et al., 2016, Deiner et al. 2017). In streams and rivers, it has also 79 
already been extensively used and compared to classic kicknet-based approaches, and 80 
complementarity and respective advantages and disadvantages have been put forward (e.g. 81 
Mächler et al., 2019, Hänfling et al., 2016, Pont et al. 2018). Several recent meta-analyses 82 
(Keck et al. 2021; McElroy et al. 2020) showed that, in aquatic environments, eDNA 83 
metabarcoding and traditional methods can provide similar estimates of taxonomic richness, 84 
but large inconsistencies remain in the taxonomic composition found by the two approaches, 85 
especially in macroinvertebrate and microbial communities. 86 

A pairwise comparison of methods, however, may be hard to resolve, as either method could 87 
be a better approximation of reality. Thus, including a third approach, using a triad of 88 
comparisons (Figure 1), offers the possibility to resolve such discussions, yet hinges on 89 
models that rely on independent and exogenous variables (e.g. environmental variables) to 90 
predict diversity (see e.g. Moraes et al. 2014; Lobo et al. 2004; Lehmann et al. 2002). This 91 
latter approach does not estimate diversity from direct observation but from mathematical 92 
functions or statistical relationships previously established (Ferrier and Guisan 2006). Since 93 
direct observations (traditional or DNA-based) are still very sparse and limited, this third 94 
approach is the only one that currently allows us to estimate biodiversity on a large scale 95 
and in a continuous manner. However, there has been little – if any – work on linking the 96 
estimates obtained by such models (usually trained with traditional observational data) with 97 
those obtained from eDNA. 98 

In this study, we used a dataset of 24 streams located in Switzerland, for which 99 
macroinvertebrate communities have been sampled at one location, both by kicknet and 100 
eDNA, and for which independent predictions on species richness have been modelled. We 101 
specifically focus on the diversity of three orders of macroinvertebrates: mayflies 102 
(Ephemeroptera, E), stoneflies (Plecoptera, P), and caddisflies (Trichoptera, T). EPT taxa 103 
are commonly found in streams and rivers, and have proven to be useful and powerful 104 
indicators of water quality (Wallace et al. 1996). We amplified eDNA with two distinct pairs of 105 
primers, a more generic one (mlCOIintF/HCO2198, Leray et al. 2013, Folmer et al. 1994) 106 
and one more specific toward benthic invertebrate taxa (fwhF2/EPTDr2n, Vamos et al. 2017, 107 
Leese et al. 2021), in order to test their respective capacity to unveil EPT diversity. We 108 
compared the diversity estimates and the species composition detected by the eDNA and 109 
kicknet approaches, both at regional (gamma diversity) and local (alpha diversity) scale. We 110 
then related these results to the diversity estimated by a predictive statistical model for EPT 111 
richness (Kaelin and Altermatt 2016). Our goal was to evaluate the ability of this triad of 112 
methods to estimate and characterize the biodiversity in streams, and to investigate their 113 
differences. 114 
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Material and Methods 115 

Sampling 116 

Water samples were collected from 24 streams in Switzerland in 2013–2014 (Figure 2). All 117 
streams were small to medium sized streams (range of catchment area 7 to 66 km2) in the 118 
Plateau and Jura part of Switzerland, covering an elevational range from 370 to 912 m a.s.l. 119 
All were headwater streams with no waste water treatment plants upstreams, and land-use 120 
types in the upstream catchment consisted mostly of forest and agriculture (dairy farming 121 
and cropping). Settlements covered between 5 and 21% of the catchment areas. At each 122 
location, we sampled two sites in the stream located a few hundreds meters apart, yet within 123 
the same habitat type and environmental conditions. Macroinvertebrate communities were 124 
sampled using kicknets and water samples were collected for eDNA analyses. Water 125 
samples were transported in a cooler on ice (maximum transport time of six hours) and were 126 
stored at –20 °C until processed further. All samples were taken within a larger research 127 
program (for details of the project and sampling procedure, see also Burdon et al. 2019, 128 
Stamm et al. 2016, 2017). Here we focus on the subset of samples taken upstream of waste 129 
water treatment plant inflows only.  130 

EPT identification 131 

At each location, all individuals of may-, stone-, and caddisflies (EPT) were identified to the 132 
species level (in few cases to pre-defined species complexes, subsequently treated as 133 
species) using expert taxonomists. Identification of all taxa followed pre-defined taxonomic 134 
lists, and all data from the two sites per location were pooled. For details see Burdon et al. 135 
(2019) and Stucki (2010). For subsequent analyses, we only used presence/absence data, 136 
and calculated species richness values per location.  137 

Water filtration and DNA extraction  138 

Methods for filtration and extraction of DNA from water samples were previously published in 139 
Mansfeldt et al. (2020). Briefly, water was filtered through a glass fiber filter (GF/F, nominal 140 
pore size of 0.7 µm, 25 mm, Whatman International Ltd., England) and was extracted with a 141 
Phenol-Chloroform Isoamyl followed by an ethanol precipitation (Mansfeldt et al. 2020). 142 
Strict adherence to contamination control was followed using a controlled lab where only 143 
eDNA isolation and pre-PCR preparations are performed (Deiner et al. 2015). Between two 144 
and eight independent extractions from filters were carried out for each sample location. 145 
Total volume of water filtered for each extraction depended on the suspended solids in the 146 
sample, which clogged the filter, and ranged from 65 to 350 mL. A total of 500 to 700 mL of 147 
filtered water was used per sample for DNA extraction (see Mansfeldt et al. 2020). A 50 µL 148 
pool was created by adding equal volumes from each independent extraction and quantified 149 
using the Qubit (1.0) fluorometer following recommended protocols for the dsDNA HS 150 
Assay, which has a high accuracy for double stranded DNA between 1 ng/mL to 500 ng/mL 151 
(Life Technologies, Carlsbad, CA, USA). Filter negative controls were created for each day 152 
that filtration took place. A filter negative control consisted of filtering 250 mL of Milli-Q® 153 
water that was secondarily decontaminated with UVC light. DNA extraction controls were 154 
used to monitor contamination and processed with each batch of extractions of which 155 
consisted of between 18 and 22 filters per batch (Table SXX: Controls tab). All pooled DNA 156 
extractions were cleaned with the OneStepTM PCR Inhibitor Removal Kit (Zymo Research, 157 
Irvine, California, USA) according to the manufacturer’s protocol as this has been shown to 158 
be effective for removal of PCR inhibition of riverine samples of environmental DNA (McKee 159 
et al. 2015). 160 
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Library construction and sequencing 161 

Library construction for each sample location followed a three step PCR process. The first 162 
PCR consisted of amplification of a 312 bp fragment of the 5’ end of the Cytochrom Oxidase 163 
I mitochondrial gene (COI) using the forward primer (mlCOIintF) from Leray et al. (2013) and 164 
the reverse primer (HCO2198) from Folmer et al. (1994). Four independent PCRs on eDNA 165 
were carried out in 15 µL volumes with final concentrations of 1x supplied buffer (Faststart 166 
TAQ, Roche, Inc., Basel, Switzerland), 1000 ng/µL BSA (New England Biolabs, Ipswich, MA, 167 
USA), 0.2 mMol dNTPs, 2.0 mMol MgCl2, 0.05 units per µL Taq DNA polymerase (Faststart 168 
TAQ, Roche, Inc., Basel, Switzerland), and 0.5 µMol of each forward and reverse primer. 2 169 
µL of extracted eDNA was added that ranged in concentration from 0.03 to 54.0 ng/µL. This 170 
range was the outcome of DNA concentrations that were extracted. The thermal-cycling 171 
regime was 95 °C for 4 minutes, followed by 35 cycles of 95 °C for 30 seconds, 48 °C for 30 172 
seconds and 72 °C for 1 minute. A final extension of 72 °C for 5 minutes was carried out and 173 
the PCR was cooled to 4 °C until removed and stored at –20 °C until products were cleaned. 174 
PCR products were visualized on a 1.5% agarose gel to confirm amplification. We cleaned 175 
each PCR replicate with Exo I Nuclease (EXO I) and Shrimp Alkaline Phosphatase (SAP) 176 
(Thermo Fisher Scientific Inc., Waltham, Maryland USA). The master mix consisted of 1.6 177 
U/µL Exo I and 0.15 U/µL SAP in a total volume of 1.1 µL which was then added to 7.5 µL of 178 
the PCR product. Products were heated to 37 °C for 15 minutes and followed by 15 minutes 179 
at 80 °C for deactivation of EXO and SAP. 180 

The second PCR was conducted with the same PCR conditions above except the forward 181 
and reverse primers were modified to include the Nextera® transposase adaptors and only 1 182 
µL of cleaned PCR product was used in the reaction. Between the forward and reverse 183 
primer sequence and the transposase adaptor a different number of random bases were 184 
inserted to create products of varying length to allow more heterogeneity on the flow cell. 185 
The thermal-cycling regime was the same except that five cycles were used. PCR products 186 
from the four independent reactions for each sample were then pooled together and cleaned 187 
using a two-step method. First, we cleaned each pooled reaction with EXO I and SAP as 188 
described above except we adjusted proportionally the volumes of EXO I and SAP for a total 189 
cleaned volume of 30 µL rather than 7.5 µL. Second, we desalted, removed buffer 190 
components with the Illustra MicroSpin S-300 HR Columns (GE Healthcare Life Sciences, 191 
Little Chalfont, United Kingdom) following the manufacturer’s recommended protocol. 192 

The third PCR was to index each pooled PCR by before pooling all PCR from each site for 193 
sequencing. We duel-indexed samples using the Nextera® index kits A and D. PCR was 194 
carried out in 50 µL were samples were added at either 5 or 10 µL, where amplicons that 195 
showed a DNA concentration less than 0.1 ng/µL were added at 10 µL and all other greater 196 
than this were added at 5 µL. We used the KAPA Library Amplification Kit following the 197 
manufacturer’s recommended protocol (KAPA Biosystems, Wilmington, MA). Each of the 198 
pooled reactions were then cleaned using Agencourt AMPure XP beads following the 199 
recommended manufacturer’s protocol (Beckman Coulter, Brea, CA, USA). 200 

Cleaned and indexed libraries were then assayed for DNA concentration using the Qubit 201 
(1.0) fluorometer following recommended protocols for the dsDNA HS Assay, normalized 202 
then pooled at a 2 nM concentration. PHiX control was added at 1%. Paired-end sequencing 203 
was performed on an Illumina MiSeq (MiSeq Reagent kit v2, 250 cycles) at the Genomic 204 
Diversity Center at the ETH, Zurich, Switzerland following manufacturer's run protocols 205 
(Illumina, Inc., San Diego, CA, USA). The MiSeq Control Software Version 2.2 including 206 
MiSeq Reporter 2.2 was used for the primary analysis and the demultiplexing of the raw 207 
reads. 208 

In order to amplify the 142 bp long fragment of the COI locus using fwhF2 forward primer 209 
(Vamos et al. 2017) and EPTDr2n reverse primer (Leese et al. 2021) a similar three-step 210 
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PCR as described above, was conducted. First PCR was carried out in three independent 211 
PCR reactions with a total volume of 25 µL containing final concentrations of 1x supplied 212 
buffer (Faststart TAQ, Roche, Inc., Basel, Switzerland), 1500 ng/µL BSA (Molecular biology 213 
grade, New England Biolabs), 0.2 mMol dNTPs, 3.0 mMol MgCl2, 0.05 units per µL Taq 214 
DNA polymerase (Faststart TAQ, Roche, Inc., Basel, Switzerland), and 0.5 µMol of each 215 
forward and reverse primer. 2 µL of extracted eDNA or PCR grade water as negative control 216 
was added to each reaction. PCR Reactions were performed with the following cycle 217 
settings on a (Biometra T1Thermocycler, Analytik Jena GMBH, Ge): denaturation was at 218 
95°C for 8 minutes, followed by 30 cycles of 95 °C for 30 seconds, 50 °C for 1 minute and 219 
72°C for 1 minute. A final extension of 72 °C for 7 minutes was performed, followed by 220 
lowering the temperature to 4°C to avoid DNA degrading. 221 

From the first PCR product, 10 µL was enzymatically cleaned by adding 0.11 U/µL 222 
Exonuclease I (E. coli), 0.2 U/µL Shrimp Alkaline Phosphatase (rSAP) (New England 223 
Biolabs) and 1.11 µL PCR grade water to each sample. The temperature cycling was carried 224 
out, as recommended by the manufacturer. 225 

In order to add the Nextera transposase sequences adaptors to the first PCR fragment, 4 µL 226 
cleaned PCR product was used in similar PCR condition as in the first PCR reaction. 227 
Thermal cycling regime was identical, except that the number of cycles were reduced. 228 
Amplification success was checked with the AM320 method on the QiAxcel Screening 229 
Cartridge (Qiagen, Germany). Most of the samples worked after 10 PCR cycles. However, 230 
the cycling number for 28 samples was adjusted up to 18 cycles, in order to see 231 
amplification success. 232 

Before we attached the index adapters with the third PCR, additional cleaning steps were 233 
performed. This consisted of first pooling the replicates of the second PCR product and then 234 
running it on a 0.8% low melting point Agarose (Analytical grade, Promega) together with 235 
100-bp ladders (Promega, Madison, WI, USA). Fragments with the correct size of 268 bp 236 
were cutted out from gel, by using a fresh scalpel. Thereafter DNA was purified, using the 237 
Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA). Exciseds DNA 238 
bands were dissolved in 250 µL Membrane Binding Solution at 65 °C shaken at 850 rpm for 239 
2 minutes. After the column bind and washing steps, DNA was eluted in 20 µL PCR grade 240 
water. 241 

Illumina Nextera XT Index set D (Illumina, Inc., San Diego, CA, USA) were attached to the 242 
purified amplicon by following the recommended protocol from the Illumina library 243 
preparation guide, except increasing cycle number from 8 to 10 cycles. After the Nextera® 244 
index adapters successfully bound to the fragment, the individual samples were cleaned up 245 
with a MagJET NGS Cleanup and Size Selection Kit running on a KingFisher Flex 246 
Purification System (Thermo Fisher Scientific Inc., MA, USA). 247 

Quantification of PCR products was conducted with a target selective fluorescence dye 248 
Qubit BR DNA Assay Kit (Life Technologies, Carlsbad, CA, USA). Fluorescence dye 249 
emission of the standard dilution series and samples were measured in replicates with a 250 
Spark Multimode Microplate Reader (Tecan, US Inc., USA). Samples, including filter, 251 
extraction and PCR controls were then merged in four equimolar pools (3nM), in relation to 252 
their concentration, with an automated liquid handling station (BRAND GMBH + CO KG, 253 
Wertheim, GE). Final pool was then three times manually purified, by using a 0.8x ratio of 254 
Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA) beads, again following the 255 
recommended manufacturer’s protocol. Amplicon size was verified by an Agilent 4200 256 
TapeStation (AgilentTechnologies, Inc., USA) run. Library was sequenced with a 257 
concentration of 10 pM in the flowcell on an Illumina MiSeq (Illumina, Inc. San Diego, CA, 258 
USA) at the Genetic Diversity Center (ETH, Zurich). The Sequencing run (MiSeq Reagent kit 259 
v2, 300 cycles, paired-ended) was spiked with 10% PHiX control. 260 
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Bioinformatics 261 

The software package DADA2 v.1.16.0 was used to infer amplicon sequence variants 262 
(ASVs) from the demultiplexed MiSeq (forward and reverse) reads following the methods 263 
described by Callahan et al. (2016). Primer sequences (mlCOIintF/HCO2198 and 264 
fwhF2/EPTDr2n) were removed from the reads using cutadapt v.2.10 (Martin, 2011). After 265 
primer removal, the forward and reverse reads were truncated to 200 and 170 nucleotides 266 
respectively for the mlCOIintF/HCO2198 run, in order to remove poor quality nucleotides at 267 
their extremities. Both the forward and reverse reads were truncated to 120 nucleotides for 268 
the fwhF2/EPTDr2n run. Reads were quality-filtered by removing any read with one or more 269 
ambiguities (“N”) and any read with a maximum expected error (maxEE) larger than 2. After 270 
dereplication, ASVs were finally selected based on the error rates model determined by the 271 
DADA2 denoising algorithm and paired reads merged into one sequence using a minimum 272 
overlap of 12 bases. Potential chimeric sequences were removed using the de novo bimera 273 
detection algorithm implemented in DADA2. 274 

We translated the ASV sequences into amino acids starting from the 2nd nucleotide and 275 
using the invertebrate mitochondrial code. Since COI is a coding sequence, it is not 276 
expected to find stop codons in the barcode region. Therefore, all the ASV sequences (2642 277 
for the mlCOIintF/HCO2198 primers, 2251 for the fwhF2/EPTDr2n primers) in which a stop 278 
codon was found were discarded. For the mlCOIintF/HCO2198 run, a total of 140 additional 279 
ASVs which were found in relative proportion > 0.1% in one of the six negative controls were 280 
also discarded from all the samples. For the fwhF2/EPTDr2n run, only 2 ASV sequences 281 
were removed at this step (2 negative controls were used). 282 

Taxonomic assignment of ASV sequences was achieved using the RDP algorithm (Wang et 283 
al. 2007) with a bootstrap threshold of 75%. The reference database used for taxonomic 284 
assignment was assembled from several sources: NCBI, Bold, MIDORI and the EPT 285 
sequences collected within the SwissBOL project. After quality filtering (removing incorrect 286 
sequences and mislabeled taxa) the reference database included 654,132 labeled COI 287 
sequences divided in 88 classes, 493 orders, 4,107 families, 33,337 genera and 120,374 288 
species. Replicates (sites) were merged by locations. For five locations (Buttisholz, 289 
Hochdorf, Hornussen, Messen, and Niederdorf, see Figure 2), only one replicate was 290 
available for mlCOIintF/HCO2198. Therefore we excluded the corresponding replicates from 291 
the analysis of fwhF2/EPTDr2n. 292 

Predictive model for EPT richness 293 

For each sampling location, we predicted the EPT species richness using a statistical 294 
species distribution (species richness) model developed by Kaelin and Altermatt (2016), and 295 
model predictions were directly taken from that publication for the respective 24 study 296 
catchments used here. Briefly, this model is a generalized linear model using a Poisson error 297 
distribution. The model was trained to predict EPT species richness from a set of 11 298 
environmental variables using lasso regularization. The model had been trained with a 299 
dataset of 410 independent locations where EPT species richness was assessed by kicknet 300 
sampling. These 410 locations did not overlap with any of the 24 study locations/catchments 301 
herein used, and had been monitored by kicknet in a systematic manner between 2009–302 
2013, ensuring random spatial and temporal coverage (for details, see Altermatt et al. 2013, 303 
Ryo et al. 2018). These sites cover a much wider environmental, geographic and temporal 304 
scale than the 24 study catchments compared to, thus should encapsulate all variation in 305 
species richness expected in the latter. Then, using generalized linear models incorporating 306 
all main land-use variables identified as relevant by Kaelin & Altermatt (2016), the model 307 
was used to predict species richness in 22,169 ~2 km2 large sub-catchments, covering the 308 
entire territory of Switzerland. Predictions on alpha diversity (richness) of EPT were retrieved 309 
for the sub-catchments corresponding to the 24 locations studied here. Thus, the predictive 310 
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species distribution model made predictions on the expected richness in the 24 study 311 
catchments further analysed here are based on a model parametrized across all of 312 
Switzerland. We note that the data used to train the predictive model are also based on 313 
kicknet samples. That is, there may be an inherent part of diversity only detectable by eDNA 314 
that cannot be assessed by the kicknet method, which would thus also not be covered by the 315 
model. Importantly, however, the model makes only predictions at the level of total richness, 316 
and not at the level of individual species’ identity. Thus, predictions are at a coarser level, 317 
such that this effect is not expected to play a major role, or maximally result in a shift in the 318 
intercept of richness predictions. 319 

Analyses 320 

We used presence-absence data and species richness (i.e. the number of species) to 321 
characterize the diversity of EPT, both from the eDNA as well as the kicknet data. Diversity 322 
was studied both at local scale (i.e. locations after merging site replicates, alpha diversity), 323 
and at regional scale (i.e. all locations merged, gamma diversity). For both alpha and 324 
gamma diversity, we compared the number of species detected by kicknet only, by eDNA 325 
only, and by the two approaches simultaneously. For each location, the sampling effort 326 
(number of identified individuals and sequencing depth) was assessed with species 327 
accumulation curves. Finally, we computed and tested Pearson correlations between the 328 
richness found by eDNA (fwhF2/EPTDr2n and mlCOIintF/HCO2198 primers separately), 329 
found by kicknet and estimated by the predictive model. Analyses were conducted using R 330 
4.0.3 (R Core Team, 2020). 331 

Data and code 332 

All raw sequencing data are available at the European Nucleotide Archive (ENA) under the 333 
accession number PRJEB26649. The processed data and R scripts to reproduce the 334 
analyses and results are available at : https://github.com/fkeck/ecoimpact. 335 

Results 336 

Library sequencing generated 4,638,809 sequences (mlCOIintF/HCO2198 primers) and 337 
8,008,677 sequences (fwhF2/EPTDr2n primers). For sequences amplified using the 338 
mlCOIintF/HCO2198 primers, the pre-processed and quality-filtered data consists of 339 
3,110,057 reads divided in 13,797 ASVs. For sequences amplified using the fwhF2/EPTDr2n 340 
primers, the pre-processed and quality-filtered data consists of 4,779,863 reads divided in 341 
2,665 ASVs. 342 

For the mlCOIintF/HCO2198 primers, taxonomic assignment failed for a significant number 343 
of ASVs for which identification was not possible, even at the highest taxonomic ranks (87% 344 
of unclassified Eukaryota). Assigned reads are dominated by insects (Diptera, Coleoptera 345 
and unclassified Insecta), Clitellata, Chromadorea and unclassified arthropods. The orders 346 
of interest (EPT) only represent a small proportion of assigned ASVs (7%), with 32 347 
Ephemeroptera, 17 Plecoptera and 34 Trichoptera taxa detected. The relative proportion of 348 
EPT is even less important when accounting for the number of reads. In total the EPT 349 
groups represent 3.1% of the assigned reads. In contrast, the fwhF2/EPTDr2n primers 350 
performed better with a lower proportion of unidentified Eukaryota (47.9%). Targeted orders 351 
were also more represented with 63 ASVs identified as Ephemeroptera, 37 as Plecoptera, 352 
and 42 as Trichoptera taxa, representing 10% of the assigned ASVs (8.6% of the assigned 353 
reads). The sampling depth (number of reads identified as EPT) was highly variable among 354 
locations (ranging from 7 at Aadorf with mlCOIintF/HCO2198 to 109,956 at Zullwil with 355 
fwhF2/EPTDr2n). The absolute number of reads identified as EPT was 10 to 100 times 356 
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higher with the fwhF2/EPTDr2n primers than with the mlCOIintF/HCO2198 primers 357 
(Supplementary Information Figure 1 and 2). In one location (Hornussen) none of the tested 358 
primers could detect EPT taxa. However, all the species accumulation curves seem to reach 359 
a plateau in the other locations (Supplementary Information Figure 1 and 2). This was not 360 
the case with the kicknet data (Supplementary Information Figure 3). 361 

Across all sites (i.e., gamma diversity), kicknet was the method that detected the highest 362 
number of different EPT taxa (64), followed by eDNA amplified with the fwhF2/EPTDr2n 363 
primers (44 taxa). Results of the regional EPT species richness (across all locations) are 364 
shown on Figure 3. Environmental DNA amplified by the mlCOIintF/HCO2198 primers 365 
detected only 28 taxa across all sites. In total, 16 taxa were detected by the three methods. 366 
We found a better congruence between the fwhF2/EPTDr2n primers and the kicknet (32 367 
common taxa) than between the mlCOIintF/HCO2198 primers and the kicknet (21 common 368 
taxa), or between the two primers (21 common taxa). 369 

The number of EPT taxa detected varied both across locations and methods (Figure 4). 370 
Additionally, the mlCOIintF/HCO2198 primers did not detect any EPT taxa in three other 371 
locations (Buttisholz, Knonau and Rothenthurm). Some locations showed particularly poor 372 
diversity (e.g. Colombey, Val de Ruz), while others exhibited a high EPT richness (e.g. 373 
Rothenthurm when assessed with the fwhF2/EPTDr2n primers). Overall, alpha diversity 374 
(local species richness) was higher with kicknet (mean = 19.6, sd = 6.5) than with eDNA 375 
amplified with mlCOIintF/HCO2198 primers (mean = 4.37, sd = 3.85) or fwhF2/EPTDr2n 376 
primers (mean = 7, sd = 7.88). The mean richness detected by the fwhF2/EPTDr2n primers 377 
was not significantly higher than the mean richness detected by the mlCOIintF/HCO2198 378 
primers (paired t-test, t = -1.48, p-value = 0.15). 379 

Some taxa commonly detected by kicknet sampling were never or rarely detected by eDNA 380 
(Figure 5). For example, this is the case for Alainites muticus, Centroptilum luteolum, 381 
Habrophlebia lauta or the genus Hydropsyche. Contrastingly, the very common species 382 
Baetis rhodani was well detected by both approaches. There is no common species 383 
detected systematically by eDNA that is not detected by the traditional sampling. However, a 384 
few species were detected only by eDNA in a few streams (e.g. Glyphotaelius pellucidus, 385 
Nemurella pictetii, and the Hydroptila-complex). 386 

We found the correlation between the richness estimates provided by the different methods 387 
to be remarkably low (Figure 6). The highest correlation (rho = 0.44, p-value = 0.03) was 388 
found between the predictive model and eDNA amplified with the fwhF2/EPTDr2n primers. 389 
Correlations between the kicknet method and the predictive model (rho = 0.3, p-value = 390 
0.16) and between the kicknet method and the fwhF2/EPTDr2n primers (rho = 0.27, p-value 391 
= 0.2) were not significant. The correlations between the mlCOIintF/HCO2198 primers and 392 
the other approaches were close to zero and non-significant (Figure 6). Merging the primers 393 
did not improve the correlations between the richness found by eDNA and the other methods 394 
(Supplementary Information Figure 4). 395 

Discussion 396 

The study of diversity on a regional scale (gamma diversity) shows the ability of 397 
environmental DNA to detect many taxa also identified by the traditional kicknet method. 398 
This result is in line with previous studies which reported several EPT taxa detected by both 399 
methods (Mächler et al. 2019, Seymour et al. 2021). However, a significant number of taxa 400 
known to be present in these rivers (according to the kicknet sampling) could not be 401 
detected by either the mlCOIintF/HCO2198 or fwhF2/EPTDr2n primers. In total, 23 EPT 402 
species were detected by kicknet and were not detected by either primer set. The non-403 
congruence between kicknet and the eDNA methods is even more pronounced when results 404 
are assessed at local scale (alpha diversity). This result is not surprising, as pooling species 405 
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information from multiple locations together across a region is likely to increase the set of 406 
species detected by both methods. It has been, however, a common practice in 407 
metabarcoding studies to perform comparisons at regional level (i.e. gamma diversity), 408 
which probably contributed to a misleading idea that eDNA and traditional methods are 409 
generally congruent. A recent meta-analysis showed, on the contrary, the low congruence 410 
between species list generated by DNA metabarcoding and traditional methods for 411 
macroinvertebrates (Keck et al. 2021). Thus, while numbers of diversity reported may be 412 
similar, the identity of taxa found by each method can substantially differ. 413 

Overall, we observed a low correlation between the diversity measures estimated by the 414 
triad of different tested methods (kicknet, eDNA and model predictions). The highest 415 
correlation was found between eDNA (fwhF2/EPTDr2n primers) and the predictive model. 416 
This relationship might be to some degree driven by the fact that both methods reflect 417 
diversity at catchment scale as eDNA integrates to some point EPT diversity at the 418 
catchment level (Deiner et al. 2016) and the model estimates EPT diversity from multiple 419 
variables, catchment-wise (Kaelin and Altermatt 2016). The low correlations observed 420 
between the diversity measures estimated by the different methods can largely be explained 421 
by the methodological biases discussed above. It should also be noted that the locations 422 
studied have been sampled across a relatively limited gradient in river size (all were small to 423 
mid sized rivers), all between 370 to 912 m a.s.l. Therefore, the expected variation in the 424 
number of EPT species is limited and this reduces our ability to detect statistical 425 
relationships between the different methods. However, the variability in land-use in the 426 
catchments was relatively pronounced, such that arable land ranged between 0.1 and 81%, 427 
urban areas between 5 and 21%, and grassland between 4 and 54%. The main goal of our 428 
study, namely to use independent model predictions from a species distribution model 429 
(Kaelin & Altermatt 2016) to evaluate the accuracy of kicknet vs. eDNA approaches through 430 
a third, independent approach was only partially successful: indeed, the triad of approaches 431 
gave a triad of partially congruent and partially complementary results. The low congruence 432 
between the species detected by eDNA and kicknet can be explained by the numerous 433 
biases that can influence species detection probabilities at every step of data collection. For 434 
eDNA this can be caused by the complex dynamics of DNA in the environment (release rate 435 
by the organisms, degradation and dilution), manipulation of the DNA in the lab 436 
(conservation, extraction, PCR-amplification, sequencing), and the bioinformatics processing 437 
(Deiner et al. 2017). For the traditional methods, possible biases may concern sampling 438 
representativity (Larras and Usseglio-Polatera 2020) and taxonomic identification, including 439 
both errors and lack of precision (Stribling et al. 2008). However, the respective role of these 440 
factors remains difficult to disentangle and to estimate. 441 

One of the reasons often cited to explain the non-detection of taxa by DNA methods is the 442 
incompleteness of reference databases (Weigand et al. 2019). This argument, although 443 
difficult to evaluate, is perfectly valid in studies dealing with the diversity of large or poorly 444 
known taxonomic groups (Lindeque et al. 2013). In the present study, this hypothesis can be 445 
excluded as all species detected by kicknet (except one) are present in the reference 446 
database used. However, this does not guarantee that the amplified regions can resolve all 447 
species detected by kicknet, nor that the intra-specific diversity of these species is fully 448 
represented in our reference database. 449 

It should be noted that the choice of the primers and the barcode region to be amplified 450 
seems to play a significant role here. Overall, we found that fwhF2/EPTDr2n primers 451 
detected more EPT taxa than the mlCOIintF/HCO2198 primers. It appears that the taxa 452 
detected by the mlCOIintF/HCO2198 primers are in majority nested within the pool of taxa 453 
detected by the fwhF2/EPTDr2n primers, which is not surprising given that they are both 454 
amplifying a region of the same marker (COI). Hence our results confirm that for a group of 455 
organisms like the EPT, primer performance changes the detection rate on the exact same 456 
extracted eDNA sample. The fwhF2/EPTDr2n primers do have a higher target to non-target 457 
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ratio for EPT compared to mlCOIintF/HCO2198 primers (but see Leese et al. 2021 for 458 
results and discussion for all benthic macroinvertebrates). 459 

The fact that the more specific primers outperformed the less specific ones raises another 460 
important question: how many EPT species could not be correctly detected by the 461 
fwhF2/EPTDr2n primers because of their lack of specificity? It should be remembered that 462 
these primers, although more specific than the mlCOIintF/HCO2198 primers, cover a 463 
paraphyletic and very large group of organisms (basically, all insects, of which EPT make 464 
only a small percentage). Therefore, gains in the number of species detected by eDNA could 465 
be expected by using markers and primers specific to these three polyphyletic groups. 466 

The large number of taxa detected only by the kicknet method should not mask the 467 
existence of several taxa that were detected only by their DNA. This result highlights the fact 468 
that DNA can provide real added value to traditional sampling techniques (Sweeney et al. 469 
2011). The presence of these taxa can be explained on the one hand by the integrative 470 
aspect of environmental DNA, which reflects diversity on a larger scale via transport of DNA 471 
from upstream to downstream of the watershed (Deiner & Altermatt, 2014), and on the other 472 
hand by the capacity of DNA to identify species that are sometimes difficult to collect or 473 
identify using morphological criteria (Haase et al. 2006, Stribling et al. 2008). 474 

In conclusion, our results suggest that the three approaches investigated here can give very 475 
different results about the species richness and the species composition of EPT 476 
communities. These differences are due to the respective biases of each method, but also to 477 
the different scales that they integrate. Kicknet sampling is carried out at one point and 478 
captures the organisms physically present at that location. In contrast, models typically 479 
provide estimates of macroinvertebrate diversity on a regular grid or at catchment level 480 
(Ferrier and Guisan 2006). Finally, environmental DNA is sampled at one point but has the 481 
characteristic of being transported from upstream to downstream, thus integrating diversity 482 
at the catchment scale (Deiner & Altermatt, 2014; Deiner et al. 2016). Therefore, although a 483 
certain degree of congruence is expected between the estimates produced by these 484 
methods, their different nature (observation vs. modelling) and the scales they incorporate 485 
can produce variable results, as shown here. Importantly, new frameworks integrating 486 
hydrological transport dynamics of  eDNA allow to derive higher resolution diversity 487 
predictions and may act as a bridge between these methods (Carraro et al. 2020), yet have 488 
hitherto only been applied to catchments/scales larger than studied here. More efforts are 489 
needed to understand the reason why we observe such differences and additional work is 490 
needed to improve compatibility and comparability between them. However the achievable 491 
congruence between these approaches is currently limited as each comes with its own 492 
specificities, strengths and weaknesses. On the one hand, kicknet sampling and 493 
morphological identification and modeling are not likely to see major advancements that 494 
would change the outcome of our analysis. Whereas on the other hand, analysis of eDNA for 495 
macroinvertebrates still suffers from major drawbacks due to their paraphyletic origin and 496 
difficulty to exclude non-target groups during genetic analysis. Thus eDNA metabarcoding 497 
has the greatest potential for advancement through further method development and 498 
research.  Here we showed that simply by changing primer sequences we could already 499 
improve correlation with the model.  Regardless, until this challenge is solved, the three 500 
methods provide different perspectives on biological diversity and should be used together to 501 
provide complementary information to make informed decisions related to biodiversity 502 
management and conservation. 503 
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 712 

Figure 1: A triad of methods (kicknet sampling, eDNA sampling, and statistical modelling) 713 
available to estimate macroinvertebrate diversity in river ecosystems. Each has its own 714 
specificities, particularly in terms of integrated spatial scale. Note that models always rely on 715 
underlying data used to train them, in this study those are independent kick-net samples. 716 
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 719 

Figure 2: Map of Switzerland showing the 24 sampling locations. Locations are named after 720 
local municipalities. 721 
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 726 

Figure 3: Regional EPT species richness (diversity across all sampling locations) detected 727 
by eDNA (mlCOIintF/HCO2198 and fwhF2/EPTDr2n primers) and kicknet method in 728 
comparison to total EPT richness known from Switzerland and the subset of species 729 
included in the molecular reference database. Horizontal bars show the total number of 730 
species in each set. The vertical bars show the number of species in each intersection 731 
between sets. 732 
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 734 

Figure 4: Number of EPT taxa detected in each location by eDNA (mlCOIintF/HCO2198 and 735 
fwhF2/EPTDr2n primers) and kicknet methods. The total number of taxa detected is divided 736 
in three fractions (in green the taxa detected by the two methods, in orange the taxa 737 
detected by eDNA only, and in blue the taxa detected by kicknet only, respectively). 738 
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 739 

Figure 5: Number of streams where each EPT taxon was detected by eDNA 740 
(mlCOIintF/HCO2198 and fwhF2/EPTDr2n primers) and kicknet methods. The total number 741 
of locations is divided in three fractions (in green the locations where the taxon was detected 742 
by the two methods, in orange the locations where the taxon was detected by eDNA only, 743 
and in blue by kicknet only, respectively). For clarity, only the taxa detected more than once 744 
(all streams and methods combined) are shown. 745 
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 747 

Figure 6: Relationships between the EPT richness estimates provided by the four 748 
investigated methods. The upper triangle provides the correlation values between each 749 
method (star indicates p-value < 0.05). Lower triangle shows the scatterplots with linear 750 
regressions (red lines). The diagonal shows the density estimate for each variable. 751 
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