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ABSTRACT  

The search for effective therapeutic targets in fields like regenerative medicine and cancer 

research has generated interest in cell fate reprogramming. This cellular reprogramming 

paradigm can drive cells to a desired target state from any initial state. However, methods for 

identifying reprogramming targets remain limited for biological systems that lack large sets of 

experimental data or a dynamical characterization. We present NETISCE, a novel 

computational tool for identifying cell fate reprogramming targets in static networks. NETISCE 

identifies reprogramming targets through the innovative use of control theory within a dynamical 

systems framework. Through validations in studies of cell fate reprogramming from 

developmental, stem cell, and cancer biology, we show that NETISCE can predict previously 

identified cell fate reprogramming targets and identify potentially novel combinations of targets. 

NETISCE extends cell fate reprogramming studies to larger-scale biological networks without 

the need for full model parameterization and can be implemented by experimental and 

computational biologists to identify parts of a biological system that are relevant for the desired 

reprogramming task. 
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INTRODUCTION 1 

Cell reprogramming redefines a cell's identity by altering its epigenetic or transcriptional 2 

landscapes through the forced expression of transcription factors, small molecules, non-coding 3 

RNAs, or microenvironment-mediated changes. One type of cellular reprogramming, cell fate 4 

reprogramming, aims to control the internal state of a cell so that it is driven from a selected 5 

state to a target state or phenotype1–7. Practical applications of cell reprogramming in stem cell 6 

engineering8–10 and cancer biology11–13 have generated a great interest in the task of cell-fate 7 

reprogramming. Identifying combinations of reprogramming targets is especially useful for 8 

treating complex diseases, regenerating tissue, or reversing acquired resistance to canonical 9 

treatment regimens, where multi-drug approaches may be more effective than single drug 10 

therapy1,14–18.  11 

Genome-wide and computational systems biology approaches are being broadly adopted for 12 

cell fate reprogramming studies. The majority of methods can be divided between those that 13 

take a network-based approach19–24 and those that take a dynamical systems-based 14 

approach25–30 to the task of cell fate reprogramming30–37. However, these methods either do not 15 

capture all the essential information for cellular reprogramming38, or require mechanistic details 16 

and kinetic parameters to build a mathematical model of the system (for a brief overview of 17 

these approaches, please see Supplementary Text 1 and Supplementary Figure 1).  18 
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Fig.1 Control Theory View of Cell Fate Reprogramming. The Feedback Vertex Set control is a structure-based 
control method that can be applied to cell-fate reprogramming. By performing appropriate concerted perturbations to 
the minimal Feedback Vertex set on an initial state of the system that leads to an undesired attractor (green circle), 
the system can be shifted (yellow dashed lines) to a trajectory that leads to a desired attractor (purple circle). 

Though many network-based and dynamical systems-based methods take a trial-and-error 19 

approach to identify reprogramming targets, cell fate reprogramming can be viewed as a 20 

classical attractor-based control theory problem. The goal here is to systematically determine 21 

how to shift the cell's system from one attractor (stable state) to another with some degree of 22 

optimality. Previous theoretical studies on the controllability of systems show that even for large, 23 

non-linear biological systems, few targets need to be controlled to guide a system towards a 24 

biologically admissible target state3,5. This has been shown experimentally in cell fate 25 

reprogramming studies, such as in the transition of embryonic stem cells to somatic cells via 26 

knockdown of pluripotency-associated transcription factors39, the reversion of tumorigenesis by 27 

impairment of oncogenic signaling40, and fibroblast cell reprogramming41. The use of control 28 

theory to identify cellular reprogramming targets has been limited and is not directly applicable 29 

to large cell signaling networks42,43. Among the reasons for this limitation is the scarcity of 30 
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available mechanistic details and kinetic parameters to build a mathematical model of the 31 

system and, when the mechanistic rules are known, linear functions are used to describe them; 32 

however, it is unclear how the commonly observed switch-like behavior of biochemical 33 

processes44,45, can influence the results1,27,46.  34 

A new method for identifying attractor-based reprogramming targets using only network 35 

topology extends from Control Theory for non-linear dynamics. The Feedback Vertex Set (FVS) 36 

Control is a structure-based, attractor-based control method especially suited to non-linear 37 

dynamical systems5. A network’s minimal FVS is the minimal set of nodes that intersects all 38 

cycles in a graph. FVS control states that appropriate perturbations on an FVS, which we refer 39 

to herein as FVS control nodes, can drive the system from any arbitrary initial state to any of the 40 

attractors of that system (Fig 1).  41 

While the FVS control method provides a powerful cell fate reprogramming framework, it does 42 

not identify the specific perturbations needed on FVS control nodes (knockouts or 43 

overexpressions) to drive the system towards a specific set of attractors. By proceeding 44 

analogously to Boolean networks, estimating the system's attractor landscape can aid in the 45 

search for the perturbations needed to be applied on FVS control nodes. To that end, signal 46 

flow estimation algorithms aim to estimate steady-states without full dynamical information of 47 

the system. They can be useful to evaluate the effect of node perturbations in static 48 

networks47,48. The Signal Flow Analysis (SFA) method is especially suited to estimate system 49 

dynamics for non-linear complex systems47, and its application to biology has been recently 50 

explored47,49. SFA successfully reproduced the steady-states of signaling networks derived from 51 

ODE models and the changes in expression for network elements under different perturbations 52 

from perturbation biology experiments with up to 80% accuracy47. Latterly, SFA was applied to 53 

an aging-related gene regulatory network (GRN) to identify potential aging reversion targets49. 54 

Though Lee and colleagues did not take a control theory-based approach, aging reversion 55 

targets were predicted by evaluating SFA-simulated single node perturbations that decreased 56 
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the estimated steady-state expression values of aging-related biomarker nodes compared to an 57 

unperturbed simulation. 58 

Previously, we introduced OCSANA+ (Optimal Control and Simulation of Signaling Networks 59 

from Network Analysis), a Cytoscape application that implements an FVS finding algorithm and 60 

SFA to perform perturbation analyses on static networks50. OCSANA+ can be used to observe 61 

the effect of perturbations on FVS control nodes for biological networks in a user-friendly 62 

graphical interface. However, the application cannot customize the SFA algorithm to include 63 

gene expression data. Additionally, the current software requires the user to configure every 64 

perturbation simulation manually. 65 

In this work, we introduce NETISCE (NETwork-drIven analysiS of CEllular reprogramming), a 66 

novel computational method for identifying cell fate reprogramming targets. Our method can be 67 

applied to any static network and only requires gene expression data from the undesired 68 

phenotype for the initial state of the system. NETISCE employs the FVS control, Signal Flow 69 

Analysis, and machine learning methods to identify FVS control nodes and their specific 70 

combinations of perturbations that drive the system towards the desired cell fate.  71 

To illustrate and validate our approach, we apply NETISCE to three very different examples of 72 

cell fate reprogramming in the fields of developmental, stem cell, and cancer biology using both 73 

GRNs and signaling networks. We show that NETISCE can reproduce the results of 74 

experimentally validated cell fate reprogramming studies and identify new reprogramming 75 

targets and perturbations.  76 

We conclude that NETISCE extends the usefulness of static biological networks to analyses 77 

that currently require full parameterization. This is implemented by approaching cell fate 78 

reprogramming from the framework of control theory and dynamical systems, and applying 79 

these concepts to a network-based analysis. Our method provides a useful and informative step 80 

for researchers designing experimental or mathematical modeling studies of cell fate 81 

reprogramming by identifying parts of the system relevant to the desired reprogramming task. 82 
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NETISCE is a user-friendly tool implemented as a command-line Nextflow pipeline and Galaxy 83 

Project workflow that non-experts can use in modeling or computational approaches to analyze 84 

the biological systems of their interest.  85 

RESULTS 86 

NETISCE identifies combinations of perturbations to be applied on a GRN or signaling network 87 

to trigger a shift from an undesired to the desired cell fate (Figure 2a). The core of the pipeline is 88 

(1) the application of the FVS control to identify reprogramming targets and (2) an attractor 89 

landscape estimation coupled with machine learning methods to predict the precise 90 

perturbations that drive the system from an initial state (that would lead to an attractor 91 

associated with an undesired phenotype) and towards an attractor associated with the desired 92 

phenotype.  93 

Method's Validation 94 

Reproducing experimentally validated perturbations to FVS control nodes for Cell Fate 95 

Specification in Ascidian Embryos. Using a GRN of cell fate specification in ascidian 96 

embryos, Kobayashi and colleagues experimentally verified that concerted perturbations to the 97 

network's FVS could induce embryonic cells to the epithelial, mesenchymal, endodermal, 98 

notochord, brain, and pan-neural, and muscle tissue fates51,52. We performed simulations of the 99 

experimentally verified perturbations on FVS control nodes for cell fate specification in ascidian 100 

embryos using SFA.  101 

The ascidian embryo GRN contained 92 nodes and 329 edges (Figure 3a). We identified 26 102 

FVSes within the ascidian embryo GRN, including the set of six FVS control nodes 103 

experimentally tested by Kobayashi et al.52: Foxa.A, Foxd, Erk Signaling, Neurog, Tbx6-r.b, and 104 

Zic-r.b. Without available normalized expression data, we simulated in silico unperturbed 105 

embryonic development and the seven experimentally validated combinations of perturbations 106 

(synchronous overexpression and knockout simulations) on FVS control nodes that induced the  107 
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Fig. 2 NETISCE Pipeline and Method Overview. a Researchers can collect data from cells exhibiting desired and 
undesired phenotypes, and construct the signaling and regulatory networks governing cell reprogramming processes. 
The outputs of NETISCE are the combinations of network perturbations that shift the system from an undesired to a 
desired phenotype. b With the Signal Flow Analysis (SFA) algorithm47, in the first step, attractors are estimated by 
simulating the network with the initial states from normalized expression data and randomly generated initial states. 
The attractors are clustered via k-means and the clusters are associated with desired (purple) and undesired (green) 
phenotypes. c In the second step, FVS control nodes are identified using an FVS-finding algorithm53. Perturbations 
on FVS control nodes are performed by setting the initial states of the system to the gene expression value of the 
undesired phenotype, and overriding the states of FVS control nodes. In the third step, the sets of perturbations on 
FVS control nodes that achieve the desired reprogramming are identified using two filtering criteria. In the first 
criterion, the attractors generated from the perturbations on FVS control nodes are filtered using machine learning 
classification algorithms to obtain a set of perturbations whose attractors shifted from the cluster associated with the 
undesired phenotype to the cluster associated with the desired phenotype. In the second criterion, for user-defined 
internal-marker nodes, the steady-state expression values of the perturbations that passed the first filtering criterion 
(light purple) are evaluated to determine if their values have shifted to the gene expression range of the attractors 
associated to the desired phenotype.  

embryonic tissue fates using SFA. To evaluate the perturbations, we analyzed the steady-state 108 

expression values of the seven internal-marker nodes (one marker for each tissue) representing 109 

genes measured in the experimental study (Figure 3b, Supplementary Table 1). Attractors 110 

estimated by SFA can be compared analogously to the logarithm of the fold-change (𝑙𝑜𝑔2𝐹𝐶) in 111 

differential gene expression analysis47, where the difference between the steady-state 112 

expression value of a node in attractors generated from different initial states and/or 113 

perturbations indicates that the gene expression of the node is upregulated if the difference is 114 

positive, or downregulated if the difference is negative (see Methods for details).  115 

 116 
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 9 

 
Fig. 3 Cell Fate Specification in Ascidian Embryo Model. a Gene regulatory network of cell fate specification in the 
Ascidian Embryo ciona intestinalis from Kobayashi et a.l52. The network contains 92 nodes and 329 edges. Nodes 
highlighted in blue are FVS control nodes, and nodes colored in magenta are the internal-marker nodes used to 
evaluate if the perturbations on FVS control nodes successfully specified the desired cell fate. b The six control nodes 
identified by Kobayashi et al., which comprise the network's minimal Feedback Vertex Set (FVS). Uppercase or 
lowercase abbreviations for each node indicate up or downregulation of the FVS control node in a given combination 
of perturbations (see Figure 4). These nodes are used as the FVS control nodes in our simulations. c The seven 
internal-marker nodes and the respective tissue fates where they are upregulated as identified by Kobayashi et al. 
experimental studies. These nodes were also used to identify successful perturbations in our simulations. 

We successfully reprogrammed the unperturbed embryo to six of the seven tissue fates using 117 

the corresponding experimentally verified perturbations on FVS control nodes, giving the SFA in 118 

our pipeline an overall 85% accuracy (Figure 4, Supplementary Table 2). We could not 119 

reproduce reprogramming to the pan-neural tissue fate. However, the internal-marker node for 120 

the pan-neural cell fate (Celf3.a) was upregulated when we simulated the perturbation on FVS 121 

control nodes that experimentally induced the brain+pan-neural tissue fates.  122 

 123 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2022. ; https://doi.org/10.1101/2021.12.30.474582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474582
http://creativecommons.org/licenses/by-nc/4.0/


 10 

 
Fig. 4 SFA simulations of perturbations on FVS control nodes for cell fate specification in Ascidian Embryos. 
Kobayashi et al.52 performed experimental combinations of perturbations on FVS control nodes to induce seven tissue 
fates in ascidian embryos. We aimed to reproduce these results in silico by simulating the combinations of perturbations 
on FVS control nodes using SFA. The results of each combination of perturbations are displayed in the radar plot. Each 
axis on the radar plot displays the steady-state expression value for an internal-marker node, with the tissue each 
internal-marker node represents in parentheses. The blue polygon is the steady-state expression values of the internal-
marker nodes in the attractor associated with the unperturbed state. The yellow polygon displays the internal-marker 
node steady-state expression values produced by applying a combination of perturbations on FVS control nodes to the 
unperturbed initial state. The outer colored ring denotes the combination of perturbations on FVS control nodes 
performed, and which results are displayed at that axis. The tissue that was induced experimentally by a perturbation 
is denoted in parentheses. Each letter and capitalization stands for a separate FVS control node and its perturbed 
state, as described in the bottom table. For a simulation of the perturbations on FVS control nodes to be considered 
successful, the steady-state expression value of the internal-marker node must be greater in the attractor produced by 
the perturbation on the FVS control nodes than the steady-state expression value in the attractor associated with the 
unperturbed state (the yellow polygon extends out past the blue polygon on the radar plot). We were able to reproduce 
the cell fate specification results for 6/7 cell fates, excluding adentZ inducing the pan-neural cell fate. 

Identification of perturbations on FVS control nodes for induced pluripotent stem cell 124 

reprogramming from primed to naïve pluripotency. The mechanisms that maintain stem 125 

cells' pluripotency or signal development are complex. Yachie-Kinoshita and colleagues 126 
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constructed a Boolean Model to study pluripotent cell fate transitions under the constraint of 127 

signaling inputs54. They simulated perturbations to every network node and identified targets to 128 

reverse primed pluripotency to naïve pluripotency. Yachie-Kinoshita et al. experimentally 129 

validated that the predicted targets reprogrammed primed pluripotency epiblast stem cells 130 

(EpiSCs) towards a naïve pluripotency embryonic stem cell (ESC) state. Here, we used 131 

NETISCE to identify combinations of perturbations on FVS control nodes that reprogram 132 

EpiSCs towards the ESC state (Figure 5a).  133 

 
Fig 5. Reprogramming of Epiblast stem cells (EpiSCs) to Embryonic Stem Cells (ESCs). a The goal of this 
study is for NETISCE to identify the perturbations on FVS control nodes that shift EpiSCs towards ESCs, reverting 
from a primed to a naïve pluripotent state. To that end, we initialize the system with the gene expression data from 
EpiSC cells (𝑥0), and, with the correct combination of perturbations on FVS control nodes, shift the system to a state 
(yellow arrow leading to 𝑥’0) that leads to the ESC cell fate (purple circle). b Pluripotent Stem Cell signaling network 
as constructed by Yachie-Kinoshita et al.54. The network contains 36 nodes and 143 edges. Nodes colored in blue 
are FVS control nodes, nodes with magenta coloring are the internal-marker nodes used by Yachie-Kinoshita et al., 
and gold nodes are the additional internal-marker nodes we used for further selection of perturbations on FVS control 
nodes. Note that the nodes Sox2, Nanog, and Oct4 are FVS control nodes and internal-marker nodes, and thus 
colored with both blue and purple. c Key nodes for the desired cell fate reprogramming. There are six FVS control 
nodes within the system. Four internal-marker nodes were used by Yachie-Kinoshita et al. to identify successful 
reprogramming targets for the ESC state. We identified an additional three internal-marker nodes to filter 
perturbations on FVS control nodes. For the internal-marker nodes, we denote which behavior they represent in 
pluripotency signaling in the second column. 

The pluripotency signaling network contained 36 nodes and 143 edges (Figure 5b). Using 134 

NETISCE, we estimated the attractors from EpiSC and ESC gene expression data and 135 

attractors from 100,000 randomly generated initial states. On these 100,006 attractors, we 136 

performed k-means clustering. The optimal number of clusters identified by the elbow and 137 
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silhouette metrics was k=2. One cluster contained the attractors generated from the initial state 138 

values of the EpiSC cells gene expression. The second cluster included the attractors 139 

generated from the ESC cell gene expression initialization.  140 

NETISCE identified one FVS in the network, comprising six nodes: Nanog, Oct4, Klf4, Sox2, 141 

Gata6, and Tbx3 (Figure 5c). Then, we simulated the 729 combinations of perturbations on the 142 

FVS control nodes. Of the 729 perturbations, 375 passed the machine learning classification 143 

filtering criterion. Here, we used the same four internal-marker nodes as Yachie-Kinoshita et al.: 144 

Oct4, Sox2, and Nanog as markers of naïve pluripotency, and EpiTFs as the marker of enriched 145 

transcription factors in EpiSCs. The steady-state expression values of the internal-marker nodes 146 

in 132 of the 375 attractors calculated from the perturbations on FVS control nodes were in the 147 

range of gene expression values of the ESC associated attractors and thus passed criterion 2 148 

for all replicates. Notably, one perturbation on FVS control nodes that passed both filtering 149 

criteria — overexpression of Nanog — was also identified and experimentally validated by 150 

Yachie-Kinoshita et al. (Figure 6a). In the Boolean simulations and experimental validation by 151 

Yachie-Kinoshita et al., Klf4 overexpression also induced the ESC fate. Although Klf4 was an 152 

FVS control node in the network and its overexpression passed the machine learning filtering 153 

criterion, the perturbation did not pass the internal-marker node filtering criterion (Figure 6a). In 154 

this case, the steady-state expression values of Nanog, Sox2, and Oct4 (when considered as 155 

internal-marker nodes) did not reach the gene expression levels of the ESC state (Figure 6a). 156 

Overall, we show that overexpression of the FVS control node Nanog results in cell fate 157 

reprogramming to naïve pluripotency, in agreement with the results from the Boolean Model 158 

simulations and experimental validations.  159 

We explored the ability to further filter the perturbations on FVS control nodes by increasing the 160 

number of internal-marker nodes. We identified three additional nodes from gene expression 161 

data provided by Yachie-Kinoshita et al. These included Lefty1, Pitx2 (transcription factors 162 

active in EpiSCs), and Esrrb (a transcription factor active in ESCs). This reduced the 132  163 
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Fig. 6 Results of simulations of perturbations on FVS control nodes for EpiSC reprogramming to ESCs. 
Radar plots for SFA simulations of perturbations on FVS control nodes in the pluripotent stem cell model. The title of 
each plot indicates the perturbation on FVS control nodes. Each axis on the radar plot displays the steady-state 
expression value for an internal-marker node. The blue polygon are the average steady-state expression values of 
the internal-marker nodes for attractors generated from the EpiSC experimental samples. The yellow polygon are the 
average steady-state expression values of the internal-marker nodes for attractors generated from the ESC 
experimental samples. The orange polygon are the steady-state expression values of the internal-marker nodes in 
the attractor produced by the specified perturbation on FVS control nodes. A perturbation is considered successful if 
90% of the internal-marker nodes have steady-state expression values within the gene expression range of the ESC-
associated attractor. In other words, if the yellow polygon at the axis of a specific internal-marker node extends 
beyond the blue polygon, the orange polygon must extend beyond the yellow polygon at that internal-marker axis. 
Conversely, if the yellow polygon at the axis of a specific internal-marker node does not extend past the blue polygon, 
the orange polygon must not extend past the yellow polygon at that internal-marker axis. a Radar plots using the four 
internal-marker nodes used in Yachie-Kinoshita et al. for the perturbations of Nanog overexpression and Klf4 
overexpression. Klf4 overexpression does not pass the internal-marker node filtering criteria because the steady-
state expression values of Oct4, Sox2, and Nanog are not within the range of expression of these genes in the 
attractor produced from ESC gene expression data. b Radar plots using the four internal-marker nodes used in 
Yachie-Kinoshita et al., and the additional 3 internal-marker nodes identified from differential gene expression data for 
two successful perturbations — Nanog overexpression and combined Nanog+Klf4 overexpression. 

perturbations that passed filtering criterion 2 to 15 perturbations. Nanog upregulation was 164 

present in all 15 perturbations (Supplementary Figure 2). Nanog overexpression and the 165 
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combination of Nanog+Klf4 overexpression were two of the fifteen perturbations that passed the 166 

internal-marker node criteria (Figure 6b, Supplementary Table 3). The combination of 167 

Nanog+Klf4 was not previously identified by Yachie-Kinoshita et al. However, combination Klf4 168 

and Nanog overexpression may play an essential role in maintaining pluripotency, as Klf4 links 169 

extracellular signaling information to positively regulate downstream Nanog transcription, and 170 

overexpression of Nanog was found to rescue pluripotency in the case of Klf4 knockdown55.  171 

Identification of perturbations on FVS control nodes to overcome adaptive resistance to 172 

targeted MAPK inhibitor therapy in colorectal cancers. BRAF inhibition (BRAFi) therapy is a 173 

form of MAPK inhibitor (MAPKi) therapy used to treat cancer patients with mutant BRAF. BRAFi 174 

inhibits the MAPK signaling pathway, suppressing proliferation and inducing apoptosis. In 175 

colorectal cancers (CRCs), adaptive resistance emerges against BRAFi through the activation 176 

of MAPK signaling by upstream regulator EGFR. Park et al. were interested in identifying a 177 

gene that, when perturbed in combination with BRAFi, could prevent the development of 178 

adaptive resistance to BRAFi56. However, instead of inhibiting upstream molecules like in the 179 

BRAFi + EGRFi treatment, they searched for a target within the MAPK signaling pathway that 180 

could sensitize HT29 CRC cells to MAPKi therapy. By constructing a Boolean model of 181 

signaling pathways in CRC and simulating perturbations to every node in the model, Park et al. 182 

showed that BRAFi combined with SRC inhibition (SRCi) prevented the development of 183 

adaptive resistance via inhibition of ERK (MAPK1), a member of the MAPK signaling pathway. 184 

This result was validated experimentally in HT29 CRC cells. Therefore, with only the CRC signal 185 

pathway network structure, RNA-seq data from untreated HT29 cells, and functionally annotated 186 

mutational information as input to NETISCE, we sought to identify perturbations on FVS control 187 

nodes in combination with BRAFi that overcome adaptive resistance to MAPKi therapy (Figure 188 

7a). 189 

Park and colleagues built a network of CRC signaling pathways containing 95 nodes and 337 190 

edges (Figure 7b). We adapted the PROFILE method57 to verify that the generic CRC network 191 
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and our SFA simulations preserved the phenotypic signatures of apoptosis and proliferation 192 

(see Supplementary Text and Supplementary Figure 3).  193 

 
Fig. 7 Overcoming adaptive resistance in the Colorectal Cancer model. a In this study, we use NETISCE to 
identify perturbations on FVS control nodes that shift BRAFi-treated HT29 cells from a state of resistance to MAPK 
inhibitor (MAPKi) therapy and towards a MAPKi therapy sensitivity. We initialize the system with gene expression 
data from untreated HT29 cells (𝑥0), and simulate BRAFi together with perturbations on FVS control nodes to shift the 
system to a state (yellow arrow leading to 𝑥’0) that leads to sensitivity to MAPKi therapy (purple circle). b Colorectal 
cancer signaling network introduced in Park et al.56. Blue nodes are control nodes, magenta nodes are internal-
marker nodes, and gold nodes are additional internal-marker nodes used for further filtering of perturbations of FVS 
control nodes. c Key nodes for the cell fate reprogramming. Presented here is one of the 68 FVS control node sets 
within the network, called Set 1. There are three internal-marker nodes used by Park et al. to identify targets to 
reprogram the system towards the MAPKi therapy-sensitive state. The three nodes are used to measure the 
phenotypes of apoptosis, proliferation, and MAPK signaling activity within the perturbed system. We identified an 
additional 17 internal-marker nodes to filter perturbations on FVS control nodes. The phenotypes associated with the 
internal-marker nodes are denoted in the second column. 

The normalized gene expression data from an untreated HT29 sample was used for the initial 194 

activities for all SFA simulations, as data for HT29 cells with BRAFi and BRAFi+EGFRi 195 

treatment is unavailable. In HT29 cells, PIK3CA and BRAF have gain-of-function mutations, 196 

while APC, SMAD4, and TP53 have loss-of-function mutations. Therefore, states of nodes with 197 

gain-of-function/loss-of-function mutations were overridden to the appropriate overexpression or 198 

knockout state using our modified SFA equation for perturbations (see Methods). Next, we 199 

simulated the treatment of an untreated HT29 cell with BRAFi (HT29_BRAFi) or BRAFi+EGFRi 200 

(HT29_BRAFi+EGFRi) to obtain attractors related to the MAPKi therapy-resistant state and 201 

MAPKi therapy-sensitive state, respectively. These simulations used the normalized expression 202 
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data of the untreated HT29 sample as initial state values and included the appropriate 203 

mutational overrides. To simulate BRAFi and EGFRi, the state of these nodes was overridden to 204 

a knockout state using the modified SFA equation for perturbations. The optimal k-means 205 

clustering of the attractors obtained from the untreated HT29, HT29_BRAFi, 206 

HT29_BRAFi+EGFRi treated initial conditions, and the attractors from 100,000 randomly 207 

generated initial states, was k=3; as desired, the untreated-state, MAPKi therapy-resistant state, 208 

and MAPKi therapy-sensitive state associated attractors were found in separate clusters. 209 

NETISCE identified 68 FVSes in the CRC static signaling network; the union of all FVSes 210 

contained 25 nodes, and each FVS had a combination of 14 out of the 25 nodes. All FVSes 211 

contained SRC. In addition, each FVS included TP53, a loss-of-function mutant gene in HT29 212 

cells whose state was already overridden to a knockout state in our simulations; therefore, 213 

additional perturbations to TP53 were not performed, reducing the number of FVS control nodes 214 

that could be perturbed to 13 (Supplementary Data 1). 215 

We present the results of using one FVS, referred to as Set 1 (Figure 7c), to identify 216 

combinations of perturbations that shift the system from the MAPKi therapy-resistant phenotype 217 

to the MAPKi therapy-sensitive phenotype. We simulated 1,594,323 combinations of 218 

perturbations to the 13 FVS control nodes in Set 1 to identify their corresponding attractors. 219 

First, 232,114 of the 1,594,323 attractors generated from the perturbations on FVS control 220 

nodes were classified to the MAPKi therapy-sensitivity associated cluster by at least two out of 221 

three machine learning classification algorithms. Then, the 232,114 perturbations that produced 222 

the attractors that passed criterion 1 were filtered by the three internal-marker nodes that were 223 

used as output readout nodes in Park et al. (Figure 7c): CASP3 (apoptosis marker), Cyclin E 224 

(proliferation marker), and MAPK1/ERK (MAPK signaling activity marker). The internal-marker 225 

nodes in the attractors produced by 52,703 of the 232,114 perturbations on FVS control nodes 226 

had steady-state expression values in the range of gene expression values of the MAPKi 227 
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therapy sensitivity associated attractors. Notably, the combination of BRAFi + SRCi was the 228 

smallest perturbation set that passed both filtering criteria (Figure 8a).  229 

 
Fig. 8 Results of simulations of perturbations on FVS control nodes for overcoming adaptive resistance in 
colorectal cancer. Radar plots for perturbations on FVS control nodes in HT29 cells in the colorectal cancer 
signaling network. The title of each plot indicates the perturbation on the FVS control nodes with BRAFi. Each axis on 
the radar plot displays the steady-state expression value for an internal-marker node. The blue polygons are the 
steady-state expression values of the internal-marker nodes in the HT29_BRAFi+EGFRi (MAPKi therapy-sensitive) 
associated attractor. The yellow polygons are the average steady-state expression values of the internal-marker 
nodes in the HT29_BRAFi (MAPKi therapy-resistant) associated attractor. The orange polygons are the steady-state 
expression values of the internal-marker nodes in the attractor produced by the specified perturbation on FVS control 
nodes with BRAFi. A perturbation is considered successful if 90% of the internal-marker nodes’ steady-state 
expression values are within the gene expression range of the HT29_BRAFi+EGFRi-associated attractor. a Radar 
plot of the three internal-marker nodes used by Park et al. for the simulated BRAFi+SRCi perturbation. The radar plot 
shows that the perturbation of BRAFi+SRCi increases apoptosis and decreases proliferation and MAPK activity 
based on the internal-marker nodes. b Radar plots for the two smallest sets of perturbations on FVS control nodes 
(SRCi+TSC1 overexpression, and SRCi+GRB2i) with 20 internal-marker nodes, separated by the apoptosis, MAPK 
signaling, and proliferation phenotypes. The plots show that for all internal-marker nodes, the internal-marker node 
values are within the ranges of the MAPK sensitivity associated phenotype. 

We considered an additional 17 internal-marker nodes related to apoptosis, proliferation, and 230 

MAPK signaling (Figure 7c). Of the 52,703 perturbations on FVS control nodes, 1,266 met the 231 

filtering threshold of 90% for the apoptosis, proliferation, and MAPK internal-marker node 232 

steady-state values. SCRi was present in all combinations of control nodes that passed the two 233 

criteria (Supplementary Figure 4).  234 
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The smallest sets of perturbations were two pairs of two control nodes. The first reprogramming 235 

pair consisted of SRCi and TSC1 overexpression (SRCi+TSC1ovr) (Figure 8b), while the 236 

second reprogramming pair was comprised of SRCi and GRB2i (SRCi+GRB2i) (Figure 8c). 237 

TSC1 overexpression has been studied in the context of adaptive resistance to MAPKi. TSC1 238 

promotes cell death by inhibiting mTOR activity, and mTOR inhibition in combination with BRAFi 239 

has been shown to overcome adaptive resistance in BRAF-mutant melanoma58. However, a 240 

complex of TSC1 and TSC2 can be inactivated by ERK phosphorylation, leading to increased 241 

mTOR signaling59. In the context of CRC, GRB2 is an important protein for transmitting 242 

oncogenic signaling and promoting tumorigenesis and metastasis60. Interestingly, the protein 243 

Gab2, a binding partner of GRB2, was found to be directly upregulated by BRAFi in BRAF 244 

mutated cancers61. Impairing the interaction between GRB2 and Gab2 sensitized cells to BRAFi 245 

therapy and prevented additional oncogenic signaling and metastasis in HT29 cells61,62.  246 

DISCUSSION 247 

With the rise in availability of multi-omics datasets and tools for constructing gene regulatory 248 

and intracellular signaling networks from these data, there is a growing need for cell 249 

reprogramming methods that are data-driven and amenable for larger-scale biological networks 250 

where parameters to model all the system components may not be available or be difficult to 251 

estimate. We have developed NETISCE, a tool that identifies cell fate reprogramming targets 252 

using the FVS control, attractor landscape estimation, and machine learning methods. By 253 

reproducing experimental and mathematical model results, we show that NETISCE can identify 254 

cell fate reprogramming targets and their perturbations using the system's static network, gene 255 

expression data from the undesired cell phenotype, and a set of nodes used as internal-markers 256 

for the desired and undesired phenotypes. 257 

NETISCE offers a unique approach to identifying cell fate reprogramming targets through its 258 

application of control theory and a dynamical systems-based framework. First, by employing the 259 

structure-based FVS control, we consider feedback loops that commonly regulate biological 260 
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functions essential for identifying reprogramming targets. Since our target search focuses on 261 

FVS control nodes, we guarantee that the identified nodes are sufficient for cell fate 262 

reprogramming. Applying the FVS control to the problem of identifying cell fate reprogramming 263 

targets has distinct advantages. In comparison to network-based approaches, we do not need 264 

to compare the structure of multiple networks to identify cell fate reprogramming targets; in 265 

contrast to dynamical systems-based methods that do not apply control theory, full dynamical 266 

information for all network components is not required, nor is there a need to screen all network 267 

elements. Additionally, FVS control contrasts with other control theory approaches for identifying 268 

targets like Data Guided Control, which may fail to capture cell reprogramming dynamics due to 269 

its linear assumption of regulatory dynamics41. It is important to note that FVS control for 270 

identifying reprogramming targets requires a high-fidelity static network. As Mochizuki and 271 

colleagues observed5 and later, Kobayashi and colleagues showed experimentally51,52, if a cell 272 

state cannot be reached by perturbations to the FVS control nodes, then the FVS was not 273 

correctly identified, and network revision should be performed. 274 

Secondly, the SFA algorithm and machine learning methods allow us to identify the specific 275 

perturbations on FVS control nodes required for cell fate reprogramming by estimating system 276 

dynamics and the attractor landscape. In our approach, by associating phenotypes to the 277 

attractor landscape via k-means clustering and classifying the attractors produced by 278 

perturbations on FVS control nodes via machine learning classification methods, we observe 279 

when the system has shifted towards the attractor associated with the desired phenotype. 280 

Lastly, we have modified the original SFA algorithm47 to apply FVS control-based perturbations. 281 

Unlike the SFA control method introduced by Lee and Cho47, where edge modifications 282 

(removals or additions) were implemented to perform perturbations, our method of perturbations 283 

to a node's state maintains the FVS of the network. Additionally, we have implemented 284 

permanent overrides on FVS control nodes rather than the original form of SFA perturbations 285 

that are transiently applied by changing the initial states of nodes. Transient perturbations are 286 
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not applicable in the context of FVS control. First, as defined by Fielder et al. and Mochizuki et 287 

al., overrides to the states of the FVS control nodes guarantee that the system will arrive at any 288 

desired attractor5,6. Second, our implementation mimics the experimental perturbations in 289 

Kobayashi et al., where FVS genes were permanently overexpressed or knocked out in the 290 

ascidian embryo. While transient perturbations could be used to simulate some types of single-291 

drug treatments, their use in the context of the FVS control may not produce the desired 292 

reprogramming.  293 

NETISCE reproduced the simulated and experimentally validated results in applications of cell 294 

fate reprogramming. Importantly, we have shown that NETISCE can be used to personalize 295 

simulations on a network when provided with expression (and, if available, mutational profiles) 296 

data for a specified sample. In the cell fate specification in ascidian embryos example, our SFA 297 

simulations had an overall success of 85% in reproducing the experimentally validated 298 

perturbations. The inability to induce the pan-neural tissue fate by Neurog overexpression may 299 

be explained by the biological process of pan-neural tissue specification. Otx – a gene 300 

downstream of Neurog involved in pan-neural cell fate specification – is inactive in the ascidian 301 

embryo until the 32-cell stage of development63. Since overexpression of Neurog was 302 

performed at the start of the simulation, we may not be accurately simulating the timing of its 303 

pan-neural inducing effect. A future update to the SFA algorithm could perform asynchronous 304 

stochastic simulations, allowing for time-delayed perturbations, and potentially producing 305 

information regarding the specific timings of perturbations to be performed for successful 306 

cellular reprogramming41,64.  307 

Our FVS control-guided method reduces the number of simulations needed to be performed to 308 

identify targets for cell fate reprogramming. In the reprogramming tasks for the pluripotent stem 309 

cells and CRC problems, some of the perturbations to the FVS control nodes that NETISCE 310 

identified as successful were a subset of the perturbations found in Boolean models, where 311 

reprogramming targets were identified by simulating perturbations to every node in the system. 312 
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In addition, NETISCE revealed combinatorial strategies for cell fate reprogramming in both 313 

models. In the case of the pluripotent stem cell model, Nanog is essential to maintain 314 

pluripotency and additional overexpression of Klf4 could make the reprogrammed cell 315 

unreceptive to extracellular signaling that may signal to exit from pluripotency, preserving high 316 

levels of Nanog activity55. In the model of adaptive resistance to MAPKi therapy in CRC, the 317 

combination of BRAFi+SRCi+TSC1ovr could further increase sensitivity to treatment and the 318 

rate of apoptosis by MAPK and mTOR signaling inhibition59. Alternatively, BRAFi+SRCi+GRB2i 319 

can increase sensitivity to MAPKi therapy and prevent the metastatic spread of CRC tumors61.  320 

With the potential to identify hundreds of thousands of perturbations that satisfy NETISCE's 321 

filtering criteria, a method for prioritizing perturbations on FVS control nodes is essential. A 322 

simple method employed in NETISCE is generating a secondary set of internal-marker nodes to 323 

filter perturbations. Depending on the system, it may also be beneficial to prioritize the smallest 324 

combinations of perturbations on FVS control nodes to ease experiments or prevent off-target 325 

effects. Another prioritization approach could score perturbations based on the strength of their 326 

effect on the target phenotypes while minimizing side-effects, similar to the method 327 

implemented by Park et al. in the CRC Boolean model simulations56. A node received a high 328 

score if, when the probability of its activity in the results of the asynchronous stochastic 329 

simulations indicated inhibition, it would prevent adaptive resistance via ERK reactivation, 330 

promote the therapeutic side-effect of increased apoptosis, and prevent the adverse side-effect 331 

of increased proliferation. This scoring could be modified for NETISCE. Majorly, NETISCE 332 

would need to perform stochastic asynchronous simulations like the Boolean Model simulation 333 

framework used by Park and colleagues. The scoring also needs to consider overexpression, 334 

knockout, and combinations of perturbations on FVS control nodes. Next, the processing of 335 

internal-marker nodes could be modified to consider nodes related to side-effects. Finally, an 336 

algorithm for path-finding and determining the effect of a perturbation on FVS control nodes on 337 

off-target nodes would need to be implemented.  338 
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In the context of stem-cell reprogramming, where changes to the epigenetic profile are a 339 

significant factor in reprogramming efficiency65, implementing a scoring of combinations of 340 

perturbations on FVS control nodes that considers epigenetic information could be highly 341 

effective to rank reprogramming targets. This information, which is incorporated into the tool, 342 

IRENE, for both GRN construction and scoring of potential transcription factor-reprogramming 343 

targets, increased reprogramming protocol efficiencies in some cases by more than 900%37. 344 

Similar to the method of Park et al., this would also require implementing a stochastic simulation 345 

framework and could only be considered if the epigenetic information was available for both the 346 

undesired and desired states.  347 

Additionally, if applicable, such as in a disease model, information like druggability or drug 348 

synergies could be incorporated into prioritizing combinations of perturbations on FVS control 349 

nodes66,67. For example, PHAROS67, a meta-database of drug-target information, can be used 350 

to assess the druggability of SRC, GRB2, and TSC1. Currently, six drugs are approved SRC 351 

inhibitors. However, there are no approved drugs for GRB2 inhibition nor known drugs or 352 

molecules that bind to TSC1 and promote its overexpression. Therefore, SRCi would be a likely 353 

first candidate for preventing adaptive resistance in combination with BRAFi. 354 

Our dynamical systems-based analysis using static biological networks and experimental data 355 

to estimate the attractor landscape and perform combinations of perturbations to control nodes 356 

provides a valuable tool for intracellular signaling analysis. Because NETISCE can be applied to 357 

biological networks of a larger scale that are not fully parameterized, we envision it as a primary 358 

tool for cell fate reprogramming studies. Experimentalists can use the results generated from 359 

NETISCE to prioritize wet-lab perturbation experiments. At the same time, mathematical 360 

modelers can focus model construction towards regions that appear to be more relevant to the 361 

desired reprogramming task. Finally, our method produces useful and potentially novel 362 

combinations of perturbations for cell fate reprogramming that could eventually be applied for 363 

treatments in disease models to recover healthy cell phenotypes in biological systems. 364 
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METHODS 365 

NETISCE Overview 366 

INPUT. There are three required inputs for NETISCE: (1) a static network representing a 367 

biological system, (2) a set of normalized gene expression data from cells with an undesired 368 

phenotype, and (3) a set of internal-marker nodes — user-defined nodes within the network that 369 

can be used as a point of reference to verify that their gene expression levels match the expected 370 

values in desired and undesired phenotypes. Normalized gene expression data for cells with the 371 

desired phenotype can also be provided (see the Pluripotent Stem Cell example) but is not 372 

required for all use cases, such as simulating adaptive resistance to treatment (see the Colorectal 373 

Cancer example). Optionally, the input can include mutational data to further specify the rules for 374 

the network's simulations. 375 

Step 1. Estimation of the attractor landscape. The goal of the first step of NETISCE is to estimate 376 

the region of the attractor landscape containing steady-states associated with the desired and 377 

undesired phenotype (Figure 2b). The network is simulated using an adapted version of SFA46. 378 

SFA estimates signal flow, the information conveyed by a series of reactions as represented in a 379 

signaling network or GRN, based only on topological information in the network and an initial state 380 

of the network nodes. The output of SFA is the logarithm of the steady-state value, which we refer 381 

to as the steady-state expression value for each network node. The initial states of the network 382 

nodes are based on the normalized gene expression levels. We simulate the system using SFA 383 

for each provided experimental sample until reaching the attractor.  384 

We generate randomly sampled initial states and apply SFA to compute a sufficiently large 385 

number of attractor states34. All the computed attractors are then clustered via k-means clustering. 386 

The elbow and silhouette metrics are calculated to determine an optimal k51,52. The clusters are 387 

also evaluated using the internal-marker node values.  388 

Step 2. Virtual screenings on FVS control nodes. In this step, NETISCE identifies FVS control 389 

nodes and simulates combinations of perturbations to their activity (Figure 2c). First, the FVS 390 
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control nodes are identified via a simulated annealing algorithm to determine the FVS of the 391 

network53. Then, virtual screenings of combinations of perturbations on the FVS control nodes 392 

are performed using the SFA algorithm. In these simulations, the initial states of the network 393 

nodes are set to the normalized expression values of the cells with an undesired phenotype. We 394 

have modified the SFA pipeline to implement overrides to control nodes to simulate 395 

overexpression, knockout or no change to a node's activity. 396 

Step 3. Filtering sets of perturbations on the FVS control nodes. The final step of the pipeline aims 397 

to identify the combinations of perturbations on the FVS control nodes that result in the desired 398 

cell fate reprogramming (Figure 2c). We employ two filtering criteria to evaluate the combinations 399 

of perturbations on FVS control nodes. The first criterion uses Random Forest, Support Vector 400 

Machine, and Naïve Bayes machine learning classification algorithms to classify the attractors 401 

generated by perturbations on FVS control nodes. In this classification step, using the previously 402 

clustered attractors by the k-means analysis, the attractors generated by perturbations on FVS 403 

control nodes are classified either in the cluster(s) associated with the undesired or desired 404 

phenotype54–56. To pass this filtering criterion, an attractor generated from the perturbation on FVS 405 

control nodes must be classified to the cluster associated with the desired phenotype by at least 406 

2 out of 3 classification algorithms. After passing the first criterion, perturbations on FVS control 407 

nodes are evaluated by the second filtering criterion, which focuses on the steady-state 408 

expression values of the internal-marker nodes. Perturbations on FVS control nodes where at 409 

least 90% of the internal-marker node steady-state expression values are within the expression 410 

ranges of the attractors associated with the desired phenotype pass this filtration step. These 411 

criteria produce a final set of perturbations on FVS control nodes that are considered capable of 412 

reprogramming from an undesired cell fate towards the desired cell fate. 413 

 414 

 415 

 416 
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Estimation of Steady-States using Signal Flow Analysis 417 

Signal Flow Analysis (SFA) is based on the Signal Propagation algorithm developed by Lee and 418 

Cho47. The algorithm is a linear difference equation that computes the activity of a network node 419 

at a given time in terms of the state of the network node at the previous time step, the effect 420 

(activating or inhibiting), and weight of the influence of its 𝑚 incoming edges, and the initial state 421 

of the node. Specifically, the logarithm (𝑙𝑜𝑔2) of the steady-state activity 𝑥𝑖(𝑡 + 1) of a node 𝑖 at 422 

time 𝑡 + 1 is estimated by the initial state of the node and the activities of its regulators at time t 423 

using the following equation: 424 

𝑥𝑖(𝑡 + 1) = 𝛼 ∑ (𝑊𝑖𝑗𝑥𝑗(𝑡))𝑚
𝑗=1 + (1 − 𝛼)𝑏𝑖  (1) 425 

where 𝑥𝑗(𝑡) is the logarithm of the activity of 𝑗, a node connected to 𝑖 by an incoming edge, at 426 

time 𝑡. The 𝑊𝑖𝑗 is the weight of the edge between node 𝑗 and node 𝑖, which represents how much 427 

influence node 𝑗 exerts on node 𝑖 through the edge. 𝑊𝑖𝑗 is defined as: 428 

𝑊𝑖𝑗 =
𝑠𝑖𝑔𝑛(𝑖𝑗)

√(𝐷𝑜𝑢𝑡)𝑗(𝐷𝑖𝑛)𝑖
   (2) 429 

where 𝑠𝑖𝑔𝑛(𝑖𝑗) is the value of the edge between 𝑖 and 𝑗 (1 for activating edges, -1 for inhibiting 430 

edges), 𝐷𝑜𝑢𝑡 is the out-degree of 𝑗, and 𝐷𝑖𝑛 is the in-degree of 𝑖. Finally, 𝑏 is the logarithm of the 431 

initial state of node 𝑖 and 𝛼 is a hyperparameter used to weigh the influence of the network 432 

structure and initial node state on the Signal Flow. By default, in our pipeline, the hyperparameter 433 

𝛼 is set to 0.9 to provide greater weight to the network topology rather than the initial activity 434 

based on the parameter settings used in previous control studies using SFA68.  435 

To identify an attractor of the system, the signal propagation equation is solved for all network 436 

nodes until the difference between 𝑥(𝑡 + 1) and 𝑥(𝑡) is less than a tolerance threshold (by default, 437 

this tolerance threshold is 10−6). The steady-state expression values of two attractors under 438 

different simulation inputs can be compared by computing the difference between two logarithms 439 

of the steady-state expression values produced from SFA, analogously to a logarithm of the fold-440 
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change (𝑙𝑜𝑔2FC) in differential gene expression analysis47. Though the actual numerical value 441 

cannot be used to measure the magnitude of the change in expression, positive difference values 442 

indicate that the specified perturbation led to a shift in signal flow that increases the gene's activity 443 

at the steady-state. In contrast, negative values predict a decrease in activity at the steady-state 444 

due to the perturbation.  445 

When estimating the attractor landscape, we begin by solving the signal propagation equation for 446 

the system using the experimental data for each sample; the initial activity of network nodes is 447 

set to the normalized expression values. In most cases, the number of experimental samples is 448 

insufficient for landscape estimation. Therefore, NETISCE can generate randomly sampled initial 449 

states (100,000 by default), whose initial state values are calculated from the ranges of the 450 

normalized expression values for each of the supplied phenotypes in the experimental data. 451 

Association of the Attractor Landscape Clusters to Experimental Phenotypes 452 

We employ k-means clustering to partition the attractors estimated from the normalized 453 

expression data and the randomly generated initial states. We confirm that the attractors 454 

computed from the undesired and desired experimental samples are different. We use two metrics 455 

to determine the optimal number of k clusters. The first is the elbow metric, which determines the 456 

optimal k by finding the minimal intra-cluster variation69. The second is the silhouette metric, which 457 

aims to identify the optimal k as the number of clusters with minimal intra-cluster variation and 458 

maximal inter-cluster variations70. When the two metrics disagree on the optimal k, the smallest 459 

of the potential optimal k-values is chosen where the attractors estimated from the undesired and 460 

desired phenotype experimental samples do not appear within the same cluster(s).  461 

Finally, we use the internal-marker nodes to confirm that the steady-state expression values of 462 

these nodes agree with experimental data or literature. NETISCE checks that the steady-state 463 

expression value of each internal-marker node in the attractors associated with the undesired 464 

phenotype and desired phenotype matches the expected differential gene expression patterns. 465 

In the scenario where only the experimental data for the undesired phenotype was provided for 466 
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the initial states, NETISCE verifies that the cluster(s) containing the attractors generated from the 467 

experimental data only have attractors where the internal-marker node steady-state expression 468 

values are within the range of expression values of the undesired phenotype. If experimental data 469 

for both the undesired and desired phenotype is supplied for initial states, then NETISCE confirms 470 

that the attractors generated from the two phenotypes do not appear in the same cluster and that 471 

their internal-marker node steady-state expression values are within the appropriate expression 472 

value ranges. For example, consider a gene known to have a higher expression in cells in the 473 

desired phenotype than that of the undesired phenotype. NETISCE will verify that the steady-474 

state expression value in the attractor associated with the desired phenotype is greater than the 475 

value in the attractor associated with the undesired phenotype (i.e., that the difference between 476 

the steady-state expression value for the internal-marker node in the attractor associated with the 477 

desired phenotype and the undesired phenotype is positive). Also, when multiple samples are 478 

given for each phenotype, NETISCE verifies that the steady-state expression values of the 479 

internal-marker nodes in the attractors of the undesired phenotype do not overlap with the values 480 

in the attractors of the desired phenotypes. If an overlap occurs, the internal-marker node is 481 

unreliable for analysis to separate the attractors in the different phenotypes. Thus, if the values of 482 

the internal-marker nodes do not match the literature or do not separate well between the 483 

attractors of the undesired and desired phenotype clusters, the user may elect to revise network 484 

structure, remove specific internal-marker nodes, or adjust simulation settings. 485 

Identification of the minimal Feedback Vertex Set 486 

Structure-based methods study the controllability of systems based solely on the structure of the 487 

network5,71,72. In recent years, structure-based control methods for systems with non-linear 488 

dynamics have been proposed. One such structure-based control method for non-linear dynamics 489 

is the Feedback Vertex Set Control introduced by Mochizuki et al.5,6. Feedback Vertex Set Control 490 

is a structure-based control method focused on the controllability of the system by restricting the 491 

target states to attractors. Mochizuki et al. mathematically proved that for a network governed by 492 
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non-linear dynamics like those of cell signaling, the control action of overriding the state variables 493 

of the feedback vertex set (FVS) into a targeted desired trajectory ensures that the system will 494 

asymptotically approach the desired trajectory. Consider a directed graph 𝐺 = (𝑉, 𝐸) comprised 495 

of node set 𝑉 and edge set 𝐸. The node states of 𝐺 are described by the ODE 496 

𝑥𝑛̇ = 𝐹𝑛(𝑥𝑛, 𝑥𝐼𝑛
), 𝑛 = 1,2, … , 𝑁  (3) 497 

where for the dynamics 𝑥 of node 𝑛 ∈ 𝑉, 𝐼𝑛 is the set of nodes that regulate node 𝑛, such that 498 

self-regulatory loops (𝑛 ∈ 𝐼𝑛)are only positive. Additionally, we assume 𝐹𝑛 satisfies decay 499 

condition: 500 

𝜕1(𝐹𝑛  (𝑥𝑛 , 𝑥𝐼𝑛
) <  0  (4) 501 

for all 𝑛 where 𝜕1 is the partial derivative w.r.t. the first occurrence of𝑥𝑛 and not 𝑥𝐼𝑛
. 502 

Definition 1.1: In 𝐺, a subset 𝐼 ⊆  𝑉 of nodes is Feedback Vertex Set (FVS) if and only if removal 503 

of set 𝐺 ∖  𝐼 leaves a graph without directed cycles. An FVS is minimal if it does not contain a 504 

proper subset that is an FVS itself. For simplicity, in this paper, we will consider all the FVSes to 505 

be minimal.  506 

Definition 1.2: In a dynamic system, a subset 𝐽 ⊆  𝑉 of nodes is a set of determining nodes if and 507 

only if two solutions satisfy 𝑙𝑖𝑚
𝑥→∞

𝑥𝐽̃(𝑡) − 𝑥𝐽(𝑡)  →  0 whenever 𝑙𝑖𝑚
𝑥→∞

𝑥𝑛̃(𝑡) − 𝑥𝑛(𝑡)  → 0 for all 508 

components 𝑛 ∈ 𝐽 ⊆ 𝑉. 509 

In Fielder et al. and Mochizuki et al. these two definitions were proven to be equivalent for 510 

dynamics in a network5,6. Therefore, observation of the long-term dynamics of the FVS is sufficient 511 

to identify all possible attractors of an entire system. Controlling the dynamics of the FVS 512 

(𝑥𝐼
∗(𝑡) − 𝑥𝐼(𝑡) → 0) is sufficient to drive the dynamics 𝑥(𝑡) of a whole system to converge on one 513 

of any attractors 𝑥∗(𝑡). 514 

The minimal Feedback Vertex Set problem is a well-known NP-hard problem. Many algorithms 515 

have been developed to find the near-minimum FVS. Based on the implementation in Zañudo et 516 

al.72, we use a simulated annealing local search approach, SA-FVSP, originally described in 517 
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Galinier et al.53. SA-FVSP has been shown to outperform the greedy adaptive search procedure73. 518 

A network may have multiple FVSes depending on the size and structure, but each FVS has the 519 

same capabilities for controlling cell fates. 520 

Simulating Perturbations on FVS Control Nodes  521 

After identifying the FVS control nodes to be used for virtual screenings, combinations of 522 

perturbations (overexpression/upregulation, knockouts/downregulation, or no change) to an FVS 523 

node's activity are generated. NETISCE generates 3𝑛 combinations of control nodes 524 

perturbations, where n is the number of FVS control nodes. 525 

The initial state of a node not contained in the FVS or an FVS node whose perturbation is "no 526 

change" is set to the normalized expression value of the experimental sample(s) for the selected 527 

undesired phenotype.  528 

To simulate the perturbations on FVS control nodes, we modified the SFA algorithm to override 529 

the activity of perturbed control nodes. Specifically, the values of the perturbed FVS control nodes 530 

are fixed and unaffected by the incoming signal flow. The fixed state 𝑝 of an upregulated 531 

(downregulated) FVS control nodes 𝑖 is defined as: 532 

𝑝𝑖
𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑚𝑎𝑥(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖) + 2.5(𝑚𝑎𝑥(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖))         (5) 533 

𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑚𝑖𝑛(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖) − 2.5(𝑚𝑖𝑛(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖))        (6) 534 

 535 

Where 𝑚𝑎𝑥(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖) and 𝑚𝑖𝑛(𝑛𝑜𝑟𝑚𝑒𝑥𝑝𝑖) are the maximum and minimum normalized 536 

expression value of 𝑖 across the experimental samples of the undesired phenotype, respectively. 537 

These equations are also used when gain-of or loss-of-function information from mutational data 538 

is supplied to NETISCE. For example, the value of a node that represents a gene with a gain-of-539 

function mutation is fixed to the corresponding 𝑝𝑖
𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 based on the normalized gene 540 

expression data. 541 

 542 
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Classification of Perturbations on FVS Control Nodes 543 

To systematically identify which perturbations on the FVS control nodes shifted the system away 544 

from the attractor associated with the undesired phenotype and towards the desired phenotype, 545 

we filter the resultant attractors with two criteria. Criterion 1 considers a combination of 546 

perturbations on FVS control nodes successful if the perturbation's corresponding attractor is 547 

classified to the cluster associated with the desired phenotype by at least two of three machine 548 

learning classification algorithms. The three classification algorithms considered in NETISCE are 549 

Naïve Bayes, Support Vector Machines, and Random Forest classifiers. Naïve Bayes and 550 

Support Vector Machines are well suited for high dimensional datasets74,75, while Random Forest 551 

Classifiers improve predictive accuracy and reduce over-fitting76. Criterion 2 focuses on the 552 

steady-state expression values of the internal-marker nodes. In this second criterion, the attractor 553 

obtained after simulating the system under the studied combination of perturbations on FVS 554 

control nodes must have at least 90% of the steady-state expression values of its internal-marker 555 

nodes within the expected gene expression value ranges of the desired attractors. This ensures 556 

that beyond the machine learning classification based on the entire attractor, the known biological 557 

internal-marker nodes have the expected values of the desired phenotype. By default, NETISCE 558 

is set to strict filtering criteria, where the steady-state expression values of the attractor produced 559 

by the control node perturbation must be within the range of the desired phenotype expression 560 

values. For example, consider an internal-marker node whose steady-state expression values in 561 

the attractors associated with the desired phenotype is 2.0. The steady-state expression values 562 

in the attractors associated with the undesired phenotype are 1.0. For a perturbation on the FVS 563 

control nodes to pass the filtering criterion, the steady-state expression value of the internal-564 

marker node must be greater than 2.0. Alternatively, the user can select a more relaxed filtering 565 

threshold. In this case, for the example described above, a perturbation on the FVS control nodes 566 

would pass the filtering criterion if the steady-state expression value of the internal-marker node 567 

is greater than 1.0. All the perturbations to the FVS control nodes that pass both filtering criteria 568 
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are considered to successfully shift the initial state to an attractor associated with the desired 569 

phenotype. If NETISCE is run with replicates for the undesired phenotype, then a perturbation on 570 

FVS nodes must pass the first filtering criteria on all replicates. All replicates are individually 571 

analyzed in the second filtering criterion, and NETISCE produces a separate list of perturbations 572 

that pass the criterion for each replicate. In our pluripotent stem cell example that contained three 573 

replicates, the perturbations on FVS control nodes that passed both criteria in the replicates were 574 

identical. However, users familiar with their data may be interested in perturbations that only work 575 

for a subset of replicates.  576 

Data for Developmental, Stem Cell, and Cancer Biology Validations 577 

Cell fate specification in the ascidian embryo.  578 

The network structure was obtained from Kobayashi et al. 55. Since the focus of this example was 579 

to reproduce the experimental results of embryonic cell fate specification using Feedback Vertex 580 

Set Control and SFA, we performed computations separate from the NETISCE pipeline but using 581 

the essential scripts (see GitHub repository and tutorial). Without available normalized gene 582 

expression data for the unperturbed embryo, we performed in silico simulations to reproduce the 583 

cell fate specification results with SFA. The attractor for an unperturbed embryo was estimated 584 

by setting the initial activities of two genes necessary for normal embryonic development, Gata.a 585 

and Zic-r.a, to 1, representing an activated state63. All other nodes were initialized to 0, 586 

representing an initial inactive activity. The attractor estimation function was employed to simulate 587 

the seven perturbations to the FVS control nodes that induced the seven tissue fates 588 

experimentally: (Foxa.A, Foxd, Erk Signaling, Neurog, Tbx6-r.b, and Zic-r.b.). Specifically, in 589 

these simulations, Gata.a and Zic-r.a had initial activities set to 1 and all other nodes set to 0. 590 

Then, the values of the FVS control nodes were overridden using the 𝑝𝑖
𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 or 591 

𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 equations. Since there was no gene expression data, for all FVS control genes the 592 

𝑝𝑖
𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑=2.5 and 𝑝𝑖

𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑=-2.5 The internal-marker node steady-state expression 593 
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values for the unperturbed and perturbations on FVS node simulation results can be found in 594 

Supplementary Table 1. A perturbation was considered successful in replicating the experimental 595 

results if the difference of the steady-state expression values between the specified internal-596 

marker node for the relevant tissue in attractor generated from a perturbation on FVS control 597 

nodes and the attractor generated from the unperturbed state was positive (Supplementary Table 598 

2). These values were additionally graphed using radar plots to visualize the respective 599 

upregulations for each perturbation (Figure 4).  600 

Induced pluripotent stem cell reprogramming from primed to naïve pluripotency.  601 

The intracellular signaling network for induced pluripotent stem cell signaling was obtained from 602 

Yachie-Kinoshita et al.54. The normalized expression data for EpiSCs and ESCs were 603 

downloaded from the Gene Expression Omnibus (GSE88928)77. There were three replicates for 604 

each experimental sample. Each replicate was used separately as initial state values to simulate 605 

the network, compute their associated steady-states, and perform perturbations on the FVS 606 

control nodes. Initially, we selected as internal-marker nodes the four output nodes used in the 607 

Boolean Model of Yachie-Kinoshita et al.: Oct4, Sox2, Nanog, and EpiTFs. Although these three 608 

nodes were also FVS control nodes, they were used as internal-marker nodes to be consistent 609 

with the output nodes in the Boolean simulations. To further filter our perturbations, we selected 610 

additional internal-marker nodes from gene expression data provided by Yachie-Kinoshita et al. 611 

54. Based on the gene expression data for the network nodes, there were six genes whose values 612 

differed significantly between the ESC and EpiSC states. These included Lefty1, Pitx2, and Esrrb. 613 

The three other genes, Tbx3, Gata6, and Klf4, were not included as internal-marker nodes as 614 

they were FVS control nodes. Radar plots were used to visualize the perturbations of Klf4 615 

upregulation, Nanog upregulation, and the combined Klf4+Nanog upregulation (Figure 6).  616 

 617 

 618 

 619 
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Overcoming adaptive resistance to MAPK inhibitory therapy in colorectal cancers.  620 

The colorectal cancer (CRC) tumorigenesis signaling network and annotated HT29 mutational 621 

profile for network nodes was provided by Park et al.56. The RNA-seq from untreated HT29 cells 622 

was obtained from the Cancer Cell Line Encyclopedia (CCLE)78.  623 

In this study of adaptive resistance to MAPKi therapy in CRC, the ultimate therapeutic goal is to 624 

decrease proliferation and increase apoptosis in tumor cells. In a method adapted from Beal et 625 

al.57, we verify that CRC tumors' proliferation and apoptosis signatures are preserved under the 626 

SFA simulation of the generic CRC network for patient tumors (Supplementary Text 2). 627 

The network was simulated using as initial conditions the normalized expression and mutational 628 

profile of an untreated HT29 as there was no available gene expression data for treated HT29 629 

cells. As annotated in Park et al.56, PIK3CA and BRAF have gain-of-function mutations, while 630 

APC, SMAD4, and TP53 have loss-of-function mutations in HT29 cells. Therefore, the values of 631 

these nodes were fixed to the appropriate 𝑝𝑖
𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 or 𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 value. To simulate BRAFi 632 

(HT29_BRAFi), 𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑  override was applied to the state of BRAF. To simulate 633 

BRAFi+EGRFi (HT29_BRAFi+EGRFi), BRAF and EGFRi also had the appropriate overrides 634 

applied using the 𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑  equation. We used the FVS finding algorithm to search for a 635 

sufficiently large number of FVS in the CRC network, which identified 68 FVSes of size 14. TP53 636 

was removed from the FVSes since it was already fixed to its 𝑝𝑖
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 value due to the loss-637 

of-function mutation in HT29 cells (Supplementary Data 1). Based on Feedback Vertex Set control 638 

theory5, all FVSes of a system can guide the system to any of its natural attractors; therefore, we 639 

randomly selected the first FVS identified by the algorithm to perform perturbations on. For 640 

simulating perturbations on FVS control nodes, the system was initialized with the same 641 

parameters as the (HT29_BRAFi) simulation, with the additional perturbations to the FVS control 642 

nodes.  643 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2022. ; https://doi.org/10.1101/2021.12.30.474582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474582
http://creativecommons.org/licenses/by-nc/4.0/


 34 

Control node perturbations were filtered first by the set of 3 internal-marker nodes used by Park 644 

et al.56: CASP3, a marker of apoptosis, CCNE1 (also known as Cyclin E), a proliferation marker, 645 

and ERK (also known as MAPK1), a downstream molecule of the MAPK signaling pathway whose 646 

activity after BRAFi treatment indicates adaptive resistance. Potential additional internal-marker 647 

nodes were selected from downstream signaling elements of MAPK signaling, apoptosis-related, 648 

and proliferation-related pathways56. These sets were filtered using the internal-marker node 649 

checking step of NETISCE to ensure that their steady-state expression values in the attractors 650 

associated with MAPK inhibitor therapy and MAPK inhibitor resistance were appropriate based 651 

on literature evidence. This resulted in an additional 17 internal-marker nodes: four genes from 652 

apoptosis-related pathways (CASP9, DIABLO, MAPKAPK2, PPP2CA), seven genes related to 653 

proliferation (CCNB1, CCND1, CDC25A, CDKN1A, CDKN2B, E2F1, RB1), and six genes from 654 

MAPK signaling pathways (DUSP1, ELK1, HNF1B, MAPK8, MLK3, RPS6KA1). 655 

NETISCE Implementation 656 

The main computational scripts of our pipeline are written in Python, utilizing the extensively 657 

optimized machine learning algorithms of the Scikit Learn package79. Scripts for analyzing the 658 

internal-marker node values are written in R. NETISCE is implemented as a Nextflow workflow80. 659 

Nextflow is a state-of-the-art workflow manager tool that is language agnostic and designed for 660 

parallel processing as a dataflow manager. Checkpoints are implemented for the user to 661 

investigate any possible errors or make changes to run configuration, and the code can easily be 662 

resumed without having to re-run all computations. We provide Nextflow pipelines for local 663 

machine use and high-performance cluster implementations. We also provide NETISCE within a 664 

Docker container to further enhance the reproducibility of NETISCE simulations81. In addition to 665 

the command-line tool, our pipeline is available through the Galaxy Project, a cloud-based open-666 

source tool that requires little to no programming experience for biological analysis and 667 

workflows82. 668 

 669 
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Data availability: 670 

The NETISCE's Nextflow pipeline version, the Docker image documentation, and data are 671 

available at https://github.com/veraliconaresearchgroup/netisce. The installation, tutorials, 672 

information for installing the Galaxy Project version of NETISCE, and walkthroughs for 673 

reproducing the above results are found at https://veraliconaresearchgroup.github.io/Netisce/.  674 
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