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Abstract 

The network of neurons in the brain is considered the primary substrate of information 

processing. Despite growing evidence on the possible role of cerebral blood flow in 

information processing[1–3], the cerebrovascular network is generally viewed as an irrigation 

system that ensures a timely supply of oxygen, glucose, and nutrients to the neural tissue. 

However, a recent study has shown that cerebral microvessels, like neurons, also exhibit tuned 

responses to sensory stimuli. Tuned neural responses to sensory stimuli are certainly enhanced 

with experience-dependent Hebbian plasticity and other forms of learning. Hence it is possible 

that the densely interconnected microvascular network might also be subject to some form of 

plasticity or competitive learning rules during early postnatal development such that its fine-

scale structure becomes optimized for metabolic delivery to a given neural micro-architecture. 

To explore the possibility of adaptive lateral interactions and tuned responses in cerebral 

microvessels, we modeled the cortical neurovascular network by interconnecting two laterally 

connected self-organizing networks (Laterally Interconnected Synergetically Self-Organizing 

Map - LISSOM). The afferent and lateral connections of the LISSOM were defined by trainable 

weights. By varying the topology of lateral connectivity in the vascular network layer, we 

observed that the partial correspondence of feature selectivity between neural and 

hemodynamic responses could be explained by lateral coupling across local blood vessels such 

that the central domain receives an excitatory drive of more blood flow and a more distal 

surrounding region where blood flow is reduced. Critically, our simulations suggest a new role 
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for feedback from the vascular to the neural network because the radius of vascular perfusion 

seems to determine whether the cortical neural map develops into a clustered and columnar vs. 

salt-and-pepper organization. 

Introduction 

It has been long-known that neurons that exhibit tuned responses to various visual properties 

like orientation, direction, ocular dominance, color[4–6], and complex form[7,8] are present in 

various visual cortical areas in the brain. Responses to oriented stimuli have been observed 

even in the astrocytes of the visual cortex[9]. Taking a step further, O’Herron and colleagues 

[10] observed that even the microvessels in V1 exhibit tuned responses to oriented moving 

gratings, even though the specificity of the response to the preferred stimulus is not as sharp as 

that of the neurons. More specifically, in a given orientation column of neurons, even though 

an individual arteriole responded maximally to the same preferred orientation as all of its 

neighboring neurons, that blood vessel also responded to other stimulus orientations, whose 

neural signals had to come from adjacent orientation columns.  

Computational studies have shown that a neural network is capable of generating tuned 

responses to input stimuli by means of competitive learning, which can be implemented in a 

neural network by lateral interactions among the neurons characterized by long range inhibitory 

signaling and local excitatory signaling, often described as an ON-Center, OFF-surround 

neighborhood interaction[11–13]. The existence of the lateral excitatory and inhibitory 

connections among cortical neurons was supported by experimental studies[14–17]. A recent 

study shows the relevance of tightly coupled excitatory and inhibitory networks in the 

developing visual cortex with self-organizing ability. These various experimental findings led 

us to determine if competitive learning mechanisms could also underlie the generation of tuned 

responses in cerebral microvessels. 

O’Herron et al. [10] presented data which suggested that the reduced selectivity in the vessels 

(as compared to the neurons in their perfusion field) was likely due to long-range propagation 

of dilation from one cortical column to a neighboring column. But other mechanisms, none of 

which were tested, are also possible. For example, the long-range release of vasodilator, or the 

modulation of arteriolar diameter by transmitters released from inhibitory neurons and the 

release of vasodilatory substances by astrocytes, are some plausible mechanisms. We argue 

that the effect brought about by all the aforementioned biological mechanisms of vessel-to-

vessel interactions can be computationally visualized as manifestations of lateral interactions 

among the vessels. The arterioles with their ability to release nitric oxide, a well-known 
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vasodilator[18], can directly mediate lateral interactions among the vessels. Propagation of 

vasodilatory signals along endothelial gap junctions is yet another source of long-range 

signaling among the vessels[19–22]. Likewise, the ability of interneurons and astrocytes to 

mediate vasodilation and vasoconstriction [23–26] can also be invoked as an indirect basis for 

lateral interactions among the vessels. 

Tuned responses in vessels could suggest the existence of some kind of competitive learning 

mechanism in the vascular network. Computational models that implement ON-Center, OFF-

surround neighborhood interactions have been successful in describing topographic maps in 

the brain, not just in the visual cortex, but in several other sensory cortical areas as well [19, 

21]. It would be worthwhile to investigate if ON-Center, OFF-surround neighborhood 

interactions among microvessels of the visual system can result in tuned responses. We 

therefore explored these possible mechanisms by using a computational model of the 

neurovascular network in the visual cortex. 

To investigate the presence of competitive learning in the cerebrovascular layer, we propose a 

computational model of the development of a neurovascular network where both neural and 

vascular layers are described as self-organizing networks, each with its own lateral 

connectivity. The model is termed ‘Neuro Vascular coupling using Laterally Interconnected 

Networks’ (NV-LIN) (fig.1). NV-LIN explores the different lateral connectivity patterns in the 

vascular layer to identify the best configuration of the lateral interactions in the vascular layer 

that produces tuned responses in the single vessel that match the tuned vascular responses in 

the experimental study [10]. To simulate the neural network in V1 of the non-rodent cortex 

with a columnar organization for orientation selectivity, we used a biologically plausible self-

organizing network architecture like the Laterally Interconnected Synergetically Self-

Organizing Map (LISSOM) architecture [27].  

An assumption that forms the basis for the interpretation of functional neuroimaging techniques 

[26,28,29] is that functional hyperemia observed in cerebral blood vessels is largely a 

consequence of the proximal neural activity[28,29]. In our recent work, where a rate-coded 

neural network (modeled using LISSOM) was bidirectionally coupled with a vascular 

anatomical network model, it was observed that the spatial distribution of hemodynamic 

response pattern closely follows the proximal neural firing rate (see fig.6A and B in Ref. [30]). 

Since our current goal is to account only for the spatial distribution pattern of the hemodynamic 

response, we propose modeling the vascular response using a network with fundamental units 

similar to that of LISSOM (sigmoid neural units). This approach simplifies the computational 
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complexity required to design a bidirectionally coupled model, where the lateral connectivity 

architecture of one of the layers (vascular layer in this case) needs to be explored by trying all 

possible topologies. 

A LISSOM used to simulate the neural layer is well known to have a lateral connectivity pattern 

with near excitatory (ON center) and far inhibitory (OFF surround) connections[27,31]. But 

this is not the case when the network is used to simulate the vascular layer. Since the lateral 

connectivity pattern among the blood vessels is unknown, we explore several possible 

topologies including, for example, OFF-center ON-surround, to identify the lateral 

connectivity pattern which would closely approximate the experimentally observed vascular 

responses. 

Our new NV_LIN model architecture consists of 3 layers: input layer, neural layer and vascular 

layer (see fig. 1 and Methods). The input layer represents the visual input that is presented to 

the neural layer. The neural layer, in turn, projects to the vascular layer. In biological terms, 

these feedforward connections could be treated as lumped representations of the many ways in 

which neurons activate proximal microvessels[32]. For example, directly by the release of 

nitric oxide (NO)[33–35] from neurons, the release of a neuromodulators like dopamine[36] 

and indirectly by activating astrocytes [37,38] which release arachidonic acid (AA) metabolites 

like EET and PGE2 [39–42]. The neurovascular coupling in our NV_LIN model was designed 

by also keeping in mind the proof-of-concept ideas proposed in the hemoneural hypothesis[1]. 

Many experimental observations[2,3], as well as the results from our previous computational 

models [30,43,44] support the hypothesis by Moore and Cao[1] that hemodynamics could 

impact neural activity directly or indirectly.  Hence in our NV_LIN model, the vascular layer 

is designed to send feedback to the neural layer. These feedback connections can be thought to 

represent one of many ways in which vessels can influence neural activity – release of 

metabolic substrates like glucose and oxygen that directly sustain neural activity[45], the 

release of the same metabolic substrates to astrocytes, thereby indirectly influencing neural 

activity[46–48], mechano-sensation of changes in arterial wall diameter, a mechanism that has 

been dubbed vasculo-neural coupling [2]. In view of this changing perspective of neurovascular 

coupling, we introduce bidirectional coupling between neural and vascular layers in NV_LIN 

model. 

In the first phase of our study, our NV-LIN model was simulated under three different lateral 

connectivity topologies in the vascular layer: (i) No lateral connectivity, (ii) ON center OFF 

surround and (iii) OFF center ON surround. The bidirectional connectivity between the neural 
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and vascular layers in NV-LIN simulates the bidirectional neurovascular coupling. The 

vascular response depends on the afferent neural input, and this neural input, in turn, depends 

on the feedback from the vascular network, in addition to the external stimulus. The tuned 

response of neural and vascular units was compared with the experimental data to find the 

optimal lateral connectivity topology in the vascular network. 

In the second phase of our study we examined whether vascular feedback influences the 

specific kind of neural map architecture that may be formed. This is because of the known 

effects of the vasculature in maintaining neural firing rates (see earlier discussion paragraphs). 

More broadly, the functional significance of clustered neural maps in the cerebral cortex is 

poorly understood, where the default role is largely ascribed as an epiphenomenon of 

development in minimizing neuronal wiring. We addressed the role of vascular feedback on 

neural map formation in our model by altering the vascular feedback to the neural network in 

terms of the perfusion field of the vessel while keeping the sensory input to the neural layer 

and the network parameters like excitatory radius, inhibitory radius, learning rate and scaling 

parameters unchanged. We show that the type of neural functional architecture that develops, 

can be dramatically influenced by a change in vessel perfusion field. 

Methods 

The model consists of two layers of a bidirectionally connected LISSOM network (fig. 1).   The 

LISSOM network is a biologically plausible self-organizing network capable of generating 

tuned responses to input stimuli at individual unit level and organizational maps of the input 

stimuli at a global level. The first LISSOM layer represents the neural layer and is named the 

Neural LISSOM Layer (NLL), and the second LISSOM network represents the vascular layer 

and is named the Vascular LISSOM Layer (VLL). The network was trained using moving 

sinusoidal grating stimuli of different orientations and a temporal frequency of 2 Hz. The 

gratings were presented in eight different directions in increments of 45°. A total area of 3mm 

x 3mm from the V1 area in the visual cortex was considered. The receptive field of the vessels, 

which indicates how far a neuron can cause vasodilation in that vessel, was fixed to be close to 

430μm. We fixed this value by assuming that the vasodilatory signals resulting from neural 

activity could impact vessels in approximately same area equal to the typical perfusion field of 

a vessel (~400μm[49]). The perfusion area of a vessel was fixed to be ~430 μm in the model. 

The VLL was provided with a constant input to simulate the baseline vascular tone. The 

network was evaluated by considering the activity of each vascular unit and the average neural 

activity of the neural units in the perfusion domain of that vessel (~430 μm). 
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Figure 1: A Schematic Representation of the architecture of the NV-LIN Model. Neural 

LISSOM Layer (NLL) is bidirectionally connected with Vascular LISSOM Layer (VLL). 

Each unit of NLL receives the weighted sum of a region of the moving grating stimulus from 

its receptive field in the input layer and also receives metabolic feedback from the vascular 

units in VLL, which perfuse them. Each unit of VLL receives the vasodilatory signal from 

the neural units in its receptive field in the NLL. 

 

In the neural layer, each unit receives afferent connections from the input, lateral connections 

from the neighboring neurons, and feedback connections from the vascular layer (fig 2. a). The 

total input (𝑍𝑖𝑗
𝑛 ) received by the neural unit at location (𝑖, 𝑗) is given by 

 

𝑍𝑖𝑗
𝑛 = 𝑃1 (∑𝑊𝑖𝑗,𝑝𝑞

𝐴1 𝐼𝑝𝑞(𝑡)

𝑝𝑞

) + 𝑄1(𝑍𝑖𝑗
𝑛𝐸) − 𝑅1(𝑍𝑖𝑗

𝑛𝐼) + 𝑆 (∑𝑊𝑖𝑗,𝑚𝑛
𝜎 𝑍𝑚𝑛

𝑣𝑓

𝑚𝑛

) (1) 

where P1, Q1, R1, and S are constants, 𝑊𝐴1 is the afferent weight stage from the input layer I 

to the neural layer. 𝑍𝑚𝑛
𝑣𝑓

 is the activity at the vascular node (𝑚, 𝑛) and the vasculo-neuronal 
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feedback weights, 𝑊𝜎 is denoted by a two-dimensional Gaussian function representing the 

diffusion of the energy substrates from the vessels to the neural tissues. The width of the 

isotropic Gaussian curve depends on the perfusion field defined for the vessel. The perfusion 

field of a vessel indicates the field over which a vessel can perfuse neurons in the neural layer. 

𝑍𝑖𝑗
𝑛𝐸  and 𝑍𝑖𝑗

𝑛𝐼  are the lateral inputs from the neighboring excitatory neural units and the 

inhibitory neural units, respectively, and are estimated as follows.  

 𝑍𝑖𝑗
𝑛𝐸(𝑡) =∑𝑊𝑖𝑗,𝑘𝑙 

𝐸 𝑍𝑘𝑙
𝑛 (𝑡 − 1)

𝑘𝑙

 (2) 

 𝑍𝑖𝑗
𝑛𝐼(𝑡) =∑𝑊𝑖𝑗,𝑘𝑙

𝐼  𝑍𝑘𝑙
𝑛 (𝑡 − 1)

𝑘𝑙

 (3) 

𝑊𝐸 are the weights connecting the excitatory neighborhood and 𝑊𝐼  are the weights 

connecting the inhibitory neighborhood. (𝑖, 𝑗) denotes the index of a neural unit in the two-

dimensional grid; (𝑘, 𝑙) denotes the index of a neural unit in the neighborhood, which gives 

excitatory or inhibitory projections to the neural unit at location (𝑖, 𝑗) depending on their 

proximity.  

 

(a) 
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Figure 2: (a) Inputs received by a unit in the NLL (b) Inputs received by a unit in VLL. 

 

Similarly, the total input (𝑍𝑖𝑗
𝑣 ) received by the vascular unit at location (𝑖, 𝑗) is given by (fig.2b) 

 

𝑍𝑖𝑗
𝑣 = 𝑃2 (∑𝑊𝑖𝑗,𝑝𝑞

𝐴2 𝑍𝑝𝑞
𝑛 (𝑡)

𝑝𝑞

) + 𝑄2(𝑍𝑖𝑗
𝑣𝐸) − 𝑅2(𝑍𝑖𝑗

𝑣𝐼) + 𝑇𝑣 (4) 

where 𝑃2, 𝑄2, 𝑅2, are constants, 𝑊𝐴2 is the afferent weight stage from the NLL to the VLL 

and 𝑍𝑖𝑗
𝑣𝐸  and 𝑍𝑖𝑗

𝑣  are the inputs from the neighboring excitatory vascular units and the inhibitory 

vascular units, respectively. 𝑇𝑣 is a constant representing the minimum constant tone of the 

vessels. The receptive field of each vessel was defined in such a way that a neuron as far as 

600 μm from it could send a vasodilatory signal to the vessel.   

 𝑍𝑖𝑗
𝑣𝐸(𝑡) =∑𝑊𝑖𝑗,𝑘𝑙 

𝐸 𝑍𝑘𝑙
𝑣 (𝑡 − 1)

𝑘𝑙

 (5) 

 𝑍𝑖𝑗
𝑣𝐼(𝑡) =∑𝑊𝑖𝑗,𝑘𝑙

𝐼  𝑍𝑘𝑙
𝑣 (𝑡 − 1)

𝑘𝑙

 (6) 

𝑊𝐸  are the weights connecting the vessel to its excitatory neighborhood and 𝑊𝐼 are the 

weights connecting the vessel to its inhibitory neighborhood. (𝑖, 𝑗) denotes the index of a 

(b) 
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vascular unit in the two-dimensional grid; (𝑘, 𝑙) denotes the index of a vascular unit in the 

neighborhood, which has excitatory or inhibitory connections with the vascular unit at location 

(𝑖, 𝑗) depending on their proximity.  

The weighted sums of inputs (𝑍𝑖𝑗
𝑛  𝑎𝑛𝑑 𝑍𝑖𝑗

𝑣 ) are passed through an activation function, in this 

case, a piecewise-linear sigmoid function (𝜎), 

 𝐴𝑖𝑗(𝑡) = 𝜎(𝑍𝑖𝑗) (7) 

where 𝜎 is defined as, 

 

𝜎(𝑠) =

{
 

 
0                                       𝑠 ≤ 𝜃𝐿

(𝑠 − 𝜃𝐿)

(𝜃𝑈 − 𝜃𝐿  )
                        𝜃𝐿 < 𝑠 < 𝜃𝑈  

1                                      𝑠 ≥ 𝜃𝑈

 

 

(8) 

and the parameters 𝜃𝐿  𝑎𝑛𝑑 𝜃𝑈 represent the transition points between the three branches of the 

sigmoid function.  

The activity of the LISSOM layer is allowed to settle for each frame of the input. The afferent 

and lateral weights of both NLL and VLL are trainable. These weights are updated after every 

frame. The afferent weights to both NLL and VLL are trained using symmetric Hebbian 

learning, and the lateral connections are trained using asymmetric Hebbian learning. Given that 

an afferent weight 𝑊𝑖𝑗,𝑝𝑞
𝐴  connects node (𝑖, 𝑗) to node (𝑝, 𝑞) and that Z is the activity of a given 

node, the weight is updated using symmetric Hebbian learning defined as, 

 
𝑊𝑖𝑗,𝑝𝑞

𝐴 (𝑡) =
𝑊𝑖𝑗,𝑝𝑞(𝑡 − 1) + 𝜂𝑍𝑝𝑞(𝑡)𝑍𝑖𝑗(𝑡)

∑ 𝑊𝑖𝑗,𝑢𝑣(𝑡 − 1) + 𝜂𝑍𝑝𝑞(𝑡)𝑍𝑖𝑗(𝑡)𝑢𝑣
 

(9) 

Given that a lateral weight 𝑊𝑘𝑙,𝑝𝑞
𝐿  connects node (𝑘, 𝑙) and node (𝑝, 𝑞) and that Z is the activity 

of a given node, the weight is updated using asymmetric Hebbian learning defined as; 

 
𝑊𝑘𝑙,𝑝𝑞

𝐿 (𝑡) =
𝑊𝑘𝑙,𝑝𝑞(𝑡 − 1) + 𝜂𝑍𝑝𝑞(𝑡 − 1)𝑍𝑘𝑙(𝑡)

∑ 𝑊𝑘𝑙,𝑢𝑣(𝑡 − 1) + 𝜂𝑍𝑝𝑞(𝑡 − 1)𝑍𝑘𝑙(𝑡)𝑢𝑣
 

(10) 

 

Note that whereas in the case of symmetric Hebbian learning, the pre- and post- activations are 

considered at the same time instant, in the case of asymmetric Hebbian learning, the pre-

activation is considered at the previous time instant (t-1), and the post-activation is considered 

at the current (t) time instant. 
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The model performance was evaluated using two metrics, (i) Directionality Index (DI) and (ii) 

Orientation Selectivity Index (OSI). Directionality Index (DI) quantifies the ability of a unit to 

differentiate the direction of the motion among similar orientations,  

 DI = 1 −
𝑟𝑛𝑢𝑙𝑙
𝑟𝑝𝑟𝑒𝑓

 (11) 

 

where 𝑟𝑛𝑢𝑙𝑙  is the response of the unit to the stimulus with the same orientation drifting in the 

opposite direction and 𝑟𝑝𝑟𝑒𝑓 is the response of the unit to the preferred stimulus. 

Orientation Selectivity Index (OSI) measures how specific the response of a neuron or a vessel 

is to a given orientated stimulus.  

 
𝑂𝑆𝐼 =

√𝑉𝑥2 + 𝑉𝑦2

∑ 𝑟𝑘𝑘
 

(12) 

 𝑉𝑥  = ∑𝑟𝑘 𝑐𝑜𝑠 2𝜃𝑘
𝑘

 
(13) 

 𝑉𝑦  =  ∑𝑟𝑘 𝑠𝑖𝑛 2𝜃𝑘
𝑘

 
(14) 

 

where 𝜃𝑘 is the orientation of the k’th stimulus and 𝑟𝑘 is the response of each unit to that 

stimulus. 

The Orientation Preference (OP) identifies the orientation to which the neuron or the vessel 

responds maximally and is calculated as,  

 
𝑂𝑃 = 𝑡𝑎𝑛−1 (

𝑉𝑥
𝑉𝑦
) 

(15) 

 

where 𝜃𝑘 is the Orientation of the k’th stimulus and 𝑟𝑘 is the response of each unit to that 

stimulus. 

The direction sensitivity of the neurons and vessels are indicated by means of a direction map 

that labels each unit in the LISSOM as the direction to which it responds maximally. To 

understand the nature of map formation in the neural network in response to change in the 

vascular perfusion field, we defined two metrics to evaluate the maps. (i) Number of Active 
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Units (NAU) and (ii) Mean Area of Active Units (MAAU). For higher values of NAU, the 

response map tends to have a salt and pepper in nature. 

The settled response of NLL is passed through a hard thresholding filter to obtain a binary 

image. NAU is then estimated by running connected component analysis [50,51] on these 

settled binary images. The number of connected components gives the value of NAU. The 

mean area of the NAU determines the MAAU.  

Table 1: Values and units of constants 

Constants Value 

Size of neural layer 63x63 

Size of vascular layer 27x27 

Receptive field from input 

layer to neural layer 

9x9 

Receptive field from neural 

layer to vascular layer 

9x9 

Stride in neural layer 1 

Stride in vascular layer 2 

[P1, Q1, R1, S] [0.4,1,1,0.6] 

[P2, Q2, R2] [0.5,0.8,0.3] 

Excitatory Radius in neural 

layer 

5x5 

Excitatory Radius in 

vascular layer 

6x6 

Inhibitory Radius in neural 

layer 

15x15 

Inhibitory Radius in 

vascular layer 

15x15 

Radius of perfusion field 9x9 

Threshold for connected 

component analysis 

0.2 for neural layer 

 

 

Results  

The network was studied in two phases. In the first phase, the possibility of lateral connectivity 

in vessels was investigated. The experimentally observed values of OSI and DI in neural and 

vascular networks were used to validate the model. In the later part of the study, the model was 

explored to predict the influence of the vascular perfusion field on the neural network map 

formation. 
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The lateral connectivity architecture in the vessels 

In computational neural models, orientation selectivity of neurons often arises from the 

competitive learning facilitated by the distant lateral inhibitory connections[27]. Latest 

experimental studies also support the existence of such long range inhibitory connections 

among cortical neurons facilitating the self-organizing ability of the cortex during the 

developmental stage[16]. Since the vascular network also exhibits tuned responses, it indicates 

the possibility of inhibitory lateral connections among the vessels, which enable competitive 

learning.  

Three different lateral connectivity patterns were assigned to the VLL in order to identify the 

ideal pattern: (i) No lateral connectivity, (ii) ON-center, OFF-surround  (iii) OFF-center, ON-

surround. In the first case of “No lateral connectivity,” each vessel receives only afferent 

signals from the neurons and a constant input (fig. 3.a). In the second case of “ON-center, OFF 

surround,” in addition to the afferent signals from neurons, a vessel receives excitatory signals 

from its immediate neighborhood, and receives inhibitory signals from the vessels that reside 

in the annular region beyond the excitatory region (fig 3.b). In the third case of “OFF-center, 

ON-surround,” in addition to the afferent signals from neurons, a vessel receives inhibitory 

signals from its immediate neighboring vessels, and excitatory signals from the vessels located 

in the annular region beyond the inhibitory region (fig 3.c). 

 

Fig. 3. Schematic of the possible lateral connectivity architectures in the VLL. (a) No laterals 

(b) ON-center, OFF-surround (c) OFF-center, ON-surround. 
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 The tuned responses of the NLL and VLL to oriented moving gratings were evaluated in terms 

of OSI and DI. Each unit in the VLL was given a lateral connection with a center-surround 

topology. For a fixed central region of 6x6 units and a surround region of 15x15 units, the 

lateral connectivity pattern was varied over the three defined conditions (Fig 3). The 

architecture was varied by varying the signs of the scaling factors Q2 and R2 in equation (4) 

accordingly. 

The OSI and DI exhibited by all the three vascular architectures were compared with the 

experimentally observed tuned response indices, as shown in fig. 4. The VLL with ON center 

OFF surround later connectivity architecture gave the evaluation metric closest to experimental 

observations[10]. 

 

 

 

Fig. 4: The comparison of model simulations with various architectures to the experimental 

values. 
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The OSI and DI of each vascular unit were estimated from the VLL. For each vessel, the 

perfusion field (~430 μm) surrounding it was identified in the NLL, and the average activity in 

that area was used to calculate the average neural OSI and DI. The orientation preference of 

the center vessels matched the orientation preference of the average activity of the neural units 

in their surrounding perfusion field (fig. 5). The distributions of the OSI in the neural and 

vascular units for all the three vascular topologies are compared in fig. 6. While all the three 

topologies resulted in a comparable value of OSI in NLL (~0.6), close to experimentally 

observed value [10], only the ON center OFF surround topology in VLL resulted in the OSI of 

vascular units close to the experimental observations (~0.3)[10] as seen in fig. 6c. In the right 

panel, the scatter plot shows that even though the blood vessels show tuned responses, their 

orientation selectivity is not correlated to the neural OSI (Pearson correlation coefficient = 

0.15). The other topologies, No laterals (fig 6.a) and OFF center On surround (Fig 6.b), the 

vessels have weak to nil orientation selectivity. 

 

Figure 5: Orientation  preference of vessels and the neural units around it (~430μm) 

 

Similarly, fig. 7 describes the DI of the VLL units with all three vascular topologies. Here also, 

it was observed that the ON center OFF surround topology (fig. 7c) resulted in a DI in NLL 

(~0.6) and in VLL (~0.3) closest to the value observed experimentally [10]. The other two 

topologies, No laterals and the OFF center ON surround resulted in a weak direction sensitivity 

in the vascular units. Similar to the case in OSI, the neural and vascular units showed no 
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correlation (right panel of fig. 7c) with regard to the DI values (Pearson correlation coefficient 

= 0.14). 

The average neural activity was estimated by considering the perfusion field of the vessel to be 

~430 μm in the figs. 6 and 7. This was inspired by the idea that occlusion of a single penetrating 

arteriole in the neocortex could result in tissue damage over an area around ~400 μm 

surrounding the arteriole [10,49]. But we also calculated the selectivity of neural responses by 

varying window size of averaging neural activity between 100 μm and 600μm following the 

experimental protocol adapted by O’Herron et al [10]. As seen in fig. 8, regardless of the 

window of neural activity considered, the selectivity of neural units was higher than that of the 

vascular units. 

The activity of the NLL and VLL (ON center OFF Surround topology), in response to the 

drifting gratings in directions 45º and 135º is shown in fig.9. The left column shows the input 

stimulus, the middle column shows the NLL response to the input stimulus and the right 

column shows the response of VLL to the input stimulus. The vascular responses, although 

they follow the neural patterns, are clearly more diffuse and thus consistent with the 

experimental data shown by O’Herron et al.[10] 
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Figure 6: Left panel: The comparison of OSI in NLL and VLL by varying vascular 

toplogy. Right panel: The scatter plot of the OSI of NLL units and VLL units for the three 

VLL topologies (a) No laterals (b) OFF center ON surround (c) ON center OFF surround 
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Figure 7: Left panel: The comparison of DI in NLL and VLL by varying vascular toplogy . 

Right panel : The scatter plot of the DI of NLL units and VLL units for the three VLL 

topologies (a) No laterals (b) OFF center ON surround (c) ON center OFF surround 
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Figure 8: The OSI based on neural activity averaged over different diameters around the 

central vessel. 
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Figure 9: An example of activity in NLL and VLL in response to moving gratings with 

directions (a) 45º and (b)135º. The left column shows the input stimuli, middle column shows 

the activity of NLL and Right column shows the activity of VLL in response to the input 

stimulus. 

 

The influence of vascular feedback on the neural map formation 

The vascular feedback to the neural network is critical to ensure the continuous energy supply 

to the neurons. The impact of vascular feedback on neural network characteristics has been 

explored by both experimental [52] and modeling studies [30]. The lateral connectivity and the 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474094


20 

 

tuned response in vessels define the vascular feedback to the neural layer in a totally different 

perspective. It implies that an alteration in the vascular feedback could change the way the 

neural layer encodes the input stimuli, thereby playing a critical role in the information 

processing. 

The neural map characteristics are known to depend on the receptive fields of V1 neurons. The 

orientation map, especially in the visual cortex (V1), is observed to have a columnar 

organization or salt and pepper organization in different animals based on the ratio of the size 

of V1 to the size of the retina [53], or, more specifically, based on the size of the receptive field 

of V1 onto the retina.  Keeping this in mind and considering that the neural responses are 

dependent on vascular feedback as well, we ask: “Would the perfusion field (PF) of the vessel 

affect the neural map formation?” To answer this question, we used bidirectional coupling 

between NLL and VLL, where internally both layers had ON-center, OFF-surround lateral 

connectivity. It was verified that the model reproduced the experimentally observed direction 

sensitivity values.  

To observe the effect of the perfusion field of vessels on neural map formation, we varied the 

perfusion field from as small as 1x1 to as high as 40x40. The map was characterized as 

“columnar” or “salt and pepper” based on the attributes of the  NLL’s response pattern to input 

stimuli. These attributes are defined as:  (i) Number of Active Units (NAU) and (ii) Mean Area 

of Active Units (MAAU). When the perfusion field was small, the NAU was high, and the 

MAAU was small, indicating multiple activity blobs, each with a small area resembling a salt 

and pepper map (fig 10.b). As the perfusion field of the vessel increased, the NAU reduced 

while increasing the MAAU showing a transition to columnar map formation (fig. 10c). From 

fig. 10a, it is evident that neural networks with similar lateral connectivity architecture could 

encode the same input signal in a different way based on the perfusion field of the vascular 

network.  
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Figure 10: (a) The variation in the number of active neuron groups (blue) and the area of each neural 

activity group (red) in response to change in the perfusion field area. (b) The salt and pepper 

organization resulting from a small PF (1x1) and, (c) the columnar organization resulting from the 

larger PF (11x11). The black border in the surrounding region is due to the edge effect caused by 

taking limited size sheets to represent neural and vascular layers. 

 

Discussion 

While information processing functions in the brain are primarily attributed to the neuronal 

network, the vascular network, which densely spans the entire brain area, is generally 

considered a passive irrigation system that ensures a timely supply of oxygen and nutrients to 

the neuronal network. It is generally assumed that the neural activity exerts a unidirectional 

(a) 

(b) (c) 
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influence on the vascular activity, rendering the vascular activity a faithful echo of the neural 

activity, an assumption that forms the basis of interpreting functional neuroimaging techniques 

[26,28,29]. In reality, the two networks (vascular and neural) are coupled in a bidirectional 

fashion, a fact that confronts the traditional view of leader-follower relationship between neural 

and vascular systems. There is a continuous flow of vasodilatory signals from the neurons to 

vessels and a continuous flow of energy substrates from vessels to the neural tissues. It is 

established by prior studies that any significant change in vascular feedback could alter the 

neural characteristics, especially during development [30,43,44,52]. The possibility of 

retrograde signaling from vessels to neurons was confirmed by Kim and colleagues[2] where 

the tone of the vessels influenced the firing rate of pyramidal neurons. Moore and Cao[1] 

predicted that the hemodynamics can potentially alter the gain of the cortical circuits. The 

computational model of Chander and Chakravarthy [43] also shows that hemodynamics can 

alter neural firing pattern by a retrograde influence. Hence the vascular network could play a 

significant role in modulating the information processing carried out by the neural network and 

therefore influence the long-term neural response to stimuli. In spite of this, the key aspects of 

an information processing network, such as tuned vascular responses were rarely sought out, 

until recently[10]. In their pioneering study, O’Herron and colleagues observed that the vessels 

in the cat visual cortex are capable of exhibiting tuned response to oriented moving gratings. 

We modeled the development of a neurovascular coupling network by considering both the 

neural layer and the vascular layer as self-organizing networks with lateral connectivity 

(LISSOM) and introducing bidirectional coupling between them (fig.1). LISSOM has been 

used as a biologically plausible model to simulate the development of topographic visual maps 

[27]. The lateral connections with short-range excitatory projections and long-range inhibitory 

projections facilitate competitive learning and are ideal for modeling the retinotopic map 

formation seen in the primary visual cortex (V1). The lateral connections trained using 

asymmetric Hebbian learning [31] make the neural units naturally direction sensitive. There 

are advanced models of LISSOM like Gain-Controlled Adaptive LISSOM (GCAL) [54,55], 

which are more stable and robust. However, the threshold of the neural units in GCAL is 

adaptive and adapts depending on the average activity of the network. In NV-LIN, the threshold 

of the neural layer should depend on the vascular feedback – a feature that was earlier used in 

neurovascular models [44] and not the average neural activity in order to capture the effects of 

the vascular feedback. Hence, we used the LISSOM model and modified the equations in such 

a way that the vascular feedback is reflected in the output of the neural unit (eqn.1 and eqn.8).  
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The lateral connectivity of cortical neurons is known [27] to have an ON center OFF surround 

neighborhood connectivity. But the only hint that the tuned response in vessels gives is that 

there is a possibility of competitive learning among them, most likely brought about by 

inhibitory lateral connections [16]. To verify this, we varied the lateral architecture of vessels 

in the NV-LIN in three possible ways, (i) No lateral connectivity, (ii) ON center OFF surround, 

and (iii) OFF center ON surround. The resulting network was evaluated in terms of its OSI and 

DI and comparing it to the experimentally observed [10] OSI and DI in both neurons and 

vessels. The simulations led to the conclusion that the vessels are more likely to have lateral 

connectivity with an ON center OFF surround architecture similar to the neural network (fig.4). 

The ‘ON center’ signaling causing vasodilation in proximal vessels can be attributed to the 

endothelium-derived relaxing factors like nitric oxide [18]. The ‘OFF surround’ or 

vasoconstriction of distant vessels was observed by previous experimental studies[56]. The 

possible origin of these vasoconstrictions could be the activity of inhibitory interneurons 

[23,24] or astrocyte mediated pathways [57], which are capable of inducing vasodilation or 

vasoconstriction [25,26]. 

The role of vascular feedback in modulating the neural response is often overlooked while 

simulating the development of biological neural networks. The simulations from our NV-LIN 

model re-emphasize the relevance of vascular feedback in neural information processing. The 

OSI and DI exhibited by the neurons in our model matched the biologically observed values 

only when the vascular lateral connectivity architectures was ON center OFF surround. In 

addition, by varying the perfusion field of the vessel, our NV-LIN model demonstrated that the 

neurons respond differently to the same input stimulus. Note that there is considerable 

circumstantial evidence that the maturation of neural and vascular circuits is tightly coupled 

during early postnatal development [58,59]. Moreover, smooth muscle cells on blood vessels 

have molecules that serve as guidance cues for axons [60]. Quite remarkably, our simulations 

also suggest for the first time that the vasculature could also play a critical role in the formation 

of specific types of known functional architectures of neural maps in the cortex (see Fig. 10). 

Specifically, in our simulations, small perfusion areas result in a salt-and-pepper neural map 

(Fig. 10b). Presumably, small vascular perfusion areas may be sufficient for the metabolic 

needs in thin and small neocortical regions, e.g., mouse V1 (~750 um thick)[61] Our 

simulations further reveal that large perfusion areas produce highly clustered neural maps. We 

believe that more efficient functional hyperemia will occur when neural maps are highly 

clustered, as is seen in cat and monkey V1 and mouse barrel cortex which is ~ 1.75 mm thick. 
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Studies have shown that alterations in blood flow patterns and hypoperfusion are some of the 

early indications of several neurodegenerative diseases [63–65]. But the vasculature could play 

a critical role even at the onset of normal sensory experience in early postnatal development. 

It is possible that a salt-and-pepper orientation map organization might appear as a consequence 

of spatially-restricted blood flow in the vessels of V1, i.e., in non-rodent mammals such as cats, 

ferrets and monkeys; a spatially-restricted perfusion field could lead to a failure in the 

maturation of clustered and columnar cortical maps. This could be validated biologically by 

designing an experiment where the cortical map formation in early post-natal development is 

analyzed after varying the vascular perfusion area by using optogenetic techniques that can 

directly and selectively control the dilation in a subset of arteries[66]  

Communication between microvascular networks is facilitated by mechanisms like 

hemodynamic coupling, diffusive and convective transport, and conducted responses [67]. 

Similar to brain regions, the metabolic demand patterns of other organs also exhibit 

considerable spatio-temporal variation [68]. Therefore, it is plausible that the nearby vessels 

should be able to sense the local energy demand of the metabolizing tissue and convey it to the 

larger proximal feeding and draining vessels. Dynamical interaction among the vessels which 

seeks to optimize microcirculation is thought to be the origin of a spatio-temporal phenomenon 

called vasomotion [69]. 

To conclude, our NV-LIN model of neuro-vascular map development confirms recent 

biological observations that sensory-evoked response in the vascular network is not merely a 

mirror of the tuned neural responses. The vascular network likely has an active ON-center 

OFF-surround lateral connectivity (equivalent to ON-center increases in blood flow vs. OFF-

center decreases in blood flow) to display the tuned response observed biologically. Quite 

surprisingly, vascular characteristics such as the perfusion field of the vessels can impart 

significant influence on how functional architecture of the neural network develops. The 

cerebral microvessels, like neurons, are capable of having trainable connections and exhibiting 

competitive learning leading to tuned responses. Thus, vascular networks are likely much more 

than irrigation networks, and they might actually be critical modulators of neural map 

formation and information processing in the brain. 
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