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ABSTRACT

Nonlinearity is a characteristic of complex biological regulatory networks that has implications
ranging from therapy to control. To better understand its nature, we analyzed a suite of published
Boolean network models, containing a variety of complex nonlinear interactions, with an approach
involving a probabilistic generalization of Boolean logic that George Boole himself had proposed.
Leveraging the continuous-nature of this formulation using Taylor-decomposition methods revealed
the distinct layers of nonlinearity of the models. A comparison of the resulting series of model-
approximations with the corresponding sets of randomized ensembles furthermore revealed that the
biological networks are relatively more linearly approximable. We hypothesize that this is a result of
optimization by natural selection for the purpose of controllability.
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1 Introduction

How nonlinear are biological regulatory networks? That is, to what extent do the biochemical components of these
networks non-independently interact in influencing downstream processes? Research on this front has hitherto focused
on the various manifestations of nonlinearity in the dynamics of biological systems, such as chaos, bifurcation,
multistability, synchronization, patterning, dissipation, etc.[1]], but a characterization of nonlinearity in the underlying
systems that give rise to those phenomena is lacking. A more complete understanding of biological nonlinearity would
have theoretical implications ranging from canalization to control [2, 3] and practical implications such as therapy,
synthetic biology, etc. [1,4]. A good example of this concerns the mapping between molecular or genetic information
and the resulting system-level anatomical structure and function of an organism. Advances in regenerative medicine and
synthetic morphology require rational control of physiological and anatomical outcomes [5]], but progress in genetics
and molecular biology produce methods and knowledge targeting the lowest-level cellular hardware. There is no
one-to-one mapping from genetic information to tissue- and organ-level structure; similarly, ion channels open and
close post-translationally, driving physiological dynamics that are not readily inferred from proteomic or transcriptomic
data. System-level properties in biology are often highly emergent, with gene-regulatory or bioelectric circuit dynamics
connecting initial state information and transition rules to large-scale structure and function. Thus, the difficult
inverse problem [6] of inferring outcomes and desirable interventions across scales of biology illustrates some of the
fundamental questions about the directness or nonlinearity of encodings of information, as well as the importance of
this question for practical advances in biomedicine and bioengineering that exploit the plasticity and robustness of
cellular collectives. Many deep questions remain about the potential limitations and best strategies to bridge scales
for prediction and control in developmental, evolutionary, and cell biology. To that end, we introduce here a formal
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characterization of the nonlinearity of models of biological regulatory networks, such as those often used to describe
relationships between regulatory genes. Specifically, we consider a class of discrete models of biological regulatory
systems called "Boolean models" that are known for their relative simplicity and tractability compared to continuous
ordinary differential equation-based (ODE) models [7]].

A Boolean network is a discrete network model characterized by the following features. Each node in a Boolean network
can only be in one of two states, ON or OFF, which represents the expression or activity of that node. The state of a
node depends on the states of other input nodes which are represented as a Boolean rule of these input nodes. Many of
the available Boolean network models were created via literature search of the regulatory mechanisms and subsequently
validated via experiments [8]]. Some of the publicly available models were generated via network inference methods
from time course data [2].

Previous studies have found that certain characteristic features of the biological Boolean models, such as the mean
in-degree, output bias, sensitivity and canalization, tend to assume an optimal range of values that support optimal
function [9,[10]]. Here we study a new but generic feature of complex systems, namely, nonlinearity. To characterize the
nonlinearity of Boolean networks we formalize an approach to generalizing Boolean logic by casting it as a form of
probability, which was originally proposed by George Boole himself [11]. We leverage the continuous nature of these
polynomials to decompose a Boolean function using Taylor-series and reveal its distinct layers of nonlinearity (Fig 1).
Various other methods, both discrete and continuous, of decomposing Boolean functions exist, such as Reed-Muller,
Walsh spectrum, Fourier and discrete Taylor [[12} 13 [14]. Our continuous Taylor decomposition method is distinct in
that it offers a clear and systematic way to characterize nonlinearity.

By characterizing the nonlinearity of networks in this way, we answer the following questions: 1) how well could
biological Boolean models be approximated, that is, faithfully represented with only partial information containing
lower levels of nonlinearity relative to that of the original?; and 2) is there an optimal level of nonlinearity that these
models may have been selected for by evolution? To answer these questions, we first approximate the biological
models by systematically composing the various nonlinear layers resulting in a sequence of model-approximations with
increasing levels of nonlinearity. We then estimate the accuracy of these approximations by comparing the outputs of
their simulations with that of the original unapproximated model. Finally, we construct an appropriate random ensemble
for each biological model and compare their mean accuracies for fixed levels of approximation. The main idea is that a
biological model that is more approximable than expected for a particular level of nonlinearity would mean that the
network may have been optimized for that level nonlinearity.

Methods

Probabilistic generalization*

Here we provide a continuous-variable formulation of a Boolean function by casting Boolean values as probabilities.
Consider random variables X, : {0,1} — [0,1],4 = 1,...,n, with Bernoulli distributions. That is, p; = Pr(X; =
H)=1-Pr(X;=0)=1—¢q;,fori =1,...,n. Let X = X; X --- x X,, be the product of random variables
and f : X — {0,1} a Boolean function. Let R} = {z € X : f(z) = 0} and R] = {z € X : f(z) = 1}. Note
that X is a disjoint union of Ré and R{. Then, Pr(f = 1) = Pr(R]) = erR{ Pr(z) = Z:EER{ [T, p; where
ﬁi = Di if T; = 1 and ﬁz =1- Pi if T; = 0. Let f(pl; PN ,pn) = erR{ HZLZI ﬁz ThllS, f : [O, l]n — [O, 1] is a
continuous-variable function. The following theorem shows that f is a generalization of f in the sense that f () = f(z)
forall x € {0,1}"™;

Theorem 1.1. For discrete values of x; € {0,1}, i =1,...,n, we have f(acl, censTp) = f(@1, .., T0)

Proof. Letz = (21,...,2,) € {0,1}™. Since each z; is either O or 1, we have that p; = 1if z; = lorp; =0if z;, =0

for: = 1,...,n. We want to show that f(pl, cespn) = f(21,.-.,2n). Since X = R(f) U R{, we have that either

ze€Rlorze Rl If z € Rf, then f(z) = 1 and Pr(z) = [T, p; = 1. Moreover, for any other = € RI withz # =

we have that Pr(z) = 0. Thus, f(z) = Z Pr(z) = Pr(z) = 1. Now if z € R}, then f(z) = 0 because > =0.
z€R!

Thus, f(z) = f(x) forall z € {0,1}"™. O

Corollary 1.2. Ifp; = 1/2foralli =1,...,n, then f(pl, .« .y Dn) i the output bias of f.
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Figure 1: The various approximations of a Boolean function. The logical OR function is represented as a 2D
hypercube (top left) with the coordinate values representing input combinations and the color of the circles representing
the corresponding outputs (white=0, black=1) and is approximated using Taylor decomposition as the 0" order
approximation (top right) showing only the first term, the mean output bias; the 1¢ order approximation (bottom left)
including the linear terms; and finally the 2" order exact form (bottom right) including all the terms.

Example 1.3. Consider the AND, OR, XOR, and NOT Boolean functions given in Table[I} The continuous-variable
generaltzatlon of f1, fo, f3, and [y are: f1 = 21Z9, f2 =1 -2z +21(1 — 22) + T122 = 21 + T2 — T129,
f3 =(1—z1)xa+x1(1 —22) =21 + T2 — 2x120, and fy =1 — 2.

Note that the above expressions have previously been derived via other (not probability-based) means [14]].

1 |z | fi] fo | f3
0 0 0 0 0 T | fa
0 1 0 1 1 0| 1
1 0 0 1 1 1 0
1 1 1 1 0

Table 1: Truth tables of basic Boolean functions.

Taylor Decomposition*

Since f is a continuous-variable function, we can calculate its Taylor expansion. And since f is a square-free polynomial,
its Taylor expansion is finite and simplified (any term containing multiple derivatives of the same variable is zeroed
out), as described in Propositionusing the standard multi-index notation. Let & = (aq, . . ., o, ) where o; € {0, 1}.

oy, o 1 Ho ol
Wedeﬁne|a|=a1+-~-+an, ¢ ={zs? -zt and 0% f = 00105 90 f = W

Proposition 1.4. For p € [0, 1]™, we have
F@) = () + X1 jaj<n 0 F(p) (@ — p)™. (1)
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Note that f (p) in Equation |1]is the output bias of f as was seen in Corollary A natural choice for p is p =
(1/2,...,1/2) as it represents an unbiased selection for each variable and it also gives the output bias of the function.
Being a natural generalization of the discrete Taylor decomposition, it thus offers certain unique advantages over the
latter. The Taylor decomposition can be used to approximate a Boolean function by considering a subset of the terms.
For example, a linear approximation consists of terms only up to || < 1, a bilinear approximation up to || < 2, etc.
A visual illustration is provided in Figure[I] The approximation order of a Boolean network therefore varies between its
minimum and maximum in-degrees.

Derivative f1 f2 f3
o1 0.5 05 ] 0 || Derivative | f4

02 05105] 0 01 -1
0102 1 -1 ] -2
Table 2: Values of partial the derivatives in the Taylor decompositions of the generalizations of basic Boolean functions.

Example 1.5. Consider the continuous generalizations of the AND, OR, XOR and NOT functions given in Example
The corresponding Taylor expansions using Equationand using the derivatives shown in Tablewith p=(1/2,1/2)

are: fi = 0.25+0.5(z1 — 0.5) + 0.5(a2 — 0.5) + (21 — 0.5) (2 — 0.5), fo = 0.75+0.5(z1 — 0.5) + 0.5(x2 — 0.5) —
(1 — 0.5)(x2 — 0.5), f3 =0.5—2(x1 — 0.5)(x2 — 0.5), and fy = 0.5 — (x —0.5) =1 — .

Note that f1(1/2,1/2) = 0.25, f2(1/2,1/2) = 0.75, f3(1/2,1/2) = 0.5, and f4(1/2) = 0.5 in the above equations
are the output biases of the AND, OR, XOR, and NOT functions respectively. Also note that both the AND and OR
functions contain the linear and the second order terms in their Taylor decomposition while the XOR function only
contains the second order term. This difference is because both the AND and OR functions are monotone while XOR is
not since it requires both inputs to be known.

Simulation and analysis*

We considered a suite of Boolean network models of biochemical regulation from two sources namely the cell collective
[8]] and reference [2]. This suite consists of 138 networks with the number of nodes ranging from 5 to 321. The mean
in-degree of these models ranges from 1.1818 to 4.9375 with the variances ranging between 0.1636 and 9.2941, while
the mean output bias is limited to the range [0.1625,0.65625] with the variances between 0.0070 and 0.0933. For each
biological model we generated an associated ensemble of 100 randomized models, where the connectivity and the
output bias of the nodes of the original model were preserved and the logic rules were randomly chosen under the above
constraints. This approach helps avoid confounding the causes of any observed effects with network structure or output
bias, thereby narrowing the focus on the nonlinearity of the Boolean functions. We applied the Taylor decomposition to
both the biological models and the associated ensembles and computed all possible nonlinear approximations. We then
simulated each biological model and the associated random ensemble using the same set of 1000 randomly chosen
initial states iterated through 500 update steps for all orders of approximation. The states of the variables were restricted
to the interval [0,1] at every step in the simulations. We then computed the mean squared error (MSE) between the
exact Boolean state and the approximated state at the end of the simulations, the inverse of which could be defined as a
measure of the approximation accuracy. For each random ensemble, we computed a single average MSE.

Results and Discussion

The central result is that the biological models are relatively more approximable for various degrees of nonlinearity
when compared to a reference ensemble (Figure[2). The contrast is most prominent at the linear regime where the
biological models are about 2% more accurately approximable (p < 10~5) compared to their random counterparts.
This suggests that the biological regulatory networks may have been optimized (presumably by evolution) for linearity
in terms of the nonlinearity of the Boolean rules, given that the reference ensemble preserves the network structure
and the output biases of the corresponding biological models. This has implications not only for the feasibility of
biomedical approaches to control emergent somatic complexity or guided self-assembly of novel forms [[15]], but also
for models of anatomical homeostasis and evolvability: linearity implies easier control of its own complex processes by
any biological system, and more efficient credit assignment during evolution. The main methodological contribution
of this paper is the introduction of ‘nonlinearity’ as a new measure of characterization for Boolean networks. Our
results hint at a connection with other existing measures such as canalization, effective connectivity, symmetry and
controllability since it has been previously reported that the levels of canalization (a measure of the extent to which
fewer inputs influence the outputs of a Boolean function) and the mean effective connectivity (a measure of collective
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Figure 2: Biological models are more approximable for various degrees of nonlinearity compared to a reference random
ensemble. Every point in the light blue plots represent the average approximation accuracy of an ensemble of 100
random networks associated with each biological model. The maximum order of approximation for a model is equal to
its max in-degree. The inset shows the spread of the absolute approximation orders for every proportion bucket. See
main text for details.

canalization) are high in biological networks [2} [10]. Furthermore, it has been found that biological networks need few
inputs to reprogram [16] and are relatively easier to control [3]]. Since less nonlinearity suggests more apportioning of
influence to smaller sets of inputs, we hypothesize that the observed optimization of biological networks for linearity
may serve the purpose of better controllability. The main limitation of our analysis is that the approximation accuracy
will necessarily increase with higher orders of approximation for arbitrary Boolean networks (the highest order of
approximation yields the exact function). However, this does not affect the falsifiability of our framework since it’s
possible to construct networks, say with XOR-like functions, that are less linearly approximable than the associated
ensembles. Also, the notion of nonlinearity is limited to the local level of the Boolean rules in our framework, whereas
its possible to conceive network-level measures of nonlinearity where the role of the network structure is included.
Lastly, our conclusions about the linearity of biological regulatory networks may be a reflection of a hidden bias built in
the inference methods that produced the models in the first place. We leave it to future work to explore these realms.
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