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Abstract: 17 

Background: In vitro migration assays are a cornerstone of cell biology and have found 18 

extensive utility in research. Over the past decade, several variations of the two-dimensional 19 

(2D) migration assay have improved our understanding of this fundamental process. 20 

However, the ability of these approaches to capture the functional heterogeneity during 21 

migration and their accessibility to inexperienced users has been limited. 22 

Methods: We downloaded published time-lapse 2D cell migration datasets and subjected 23 

them to feature extraction with the Fiji software. We used the ‘Analyze Particles’ tool to 24 

extract ten cell geometry features (CGFs), which were grouped into ‘shape’, ‘size’ and 25 

‘position’ descriptors. Next, we defined the migratory status of cells using the ‘MTrack2’ 26 

plugin. All data obtained from Fiji were further subjected to rigorous statistical analysis with R 27 

version 4.0.2. 28 

Results: We observed consistent associative trends between size and shape descriptors and 29 

validated the robustness of our observations across four independent datasets. We used 30 

these descriptors to resolve the functional heterogeneity during migration by identifying and 31 

characterizing ‘non-migrators (NM)’ and ‘migrators (M)’. Statistical analysis allowed us to 32 

identify considerable heterogeneity in the NM subset, that has not been previously reported. 33 

Interestingly, differences in 2D-packing appeared to affect CGF trends and heterogeneity of 34 

the migratory subsets for the datasets under investigation. 35 

Conclusion: We developed an analytical pipeline using open source tools, to identify and 36 

morphologically characterize functional migratory subsets from label-free, time-lapse 37 

migration data. Our quantitative approach identified a previously unappreciated 38 

heterogeneity of non-migratory cells and predicted the influence of 2D-packing on migration.  39 
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Introduction  40 

Migration is a fundamental cellular function which contributes to development, tissue 41 

maintenance and disease progression across biological systems. Initiated during early 42 

embryonic morphogenesis, migration involves dynamic changes to the cellular architecture 43 

and cell-niche interactions1–3. Apart from well-defined molecular signatures, phenotypic 44 

parameters are often used to identify migrating cells albeit with limited accuracy during 45 

homeostasis. Changes in cell phenotype or, from a quantitative perspective, geometry are 46 

most evident during processes like the epithelial-mesenchymal transition (EMT) or immune 47 

cell homing which involve shifts between distinct cellular states4. Dependent grossly on 48 

tissue architecture and spatial arrangement, cells can adopt a defined repertoire of 49 

geometric configurations which in turn influence their patterns of motility5–8. While the 50 

physiological relevance of distinct migratory modalities has been widely studied in vitro, the 51 

functional heterogeneity of migration in the context of cell geometry remains poorly 52 

understood. 53 

The in vitro two-dimensional (2D) scratch assay is routinely used to quantify and examine 54 

the effect of exogenous cues on cell migration9. In recent years, several alterations to its 55 

experimental setup in conjunction with quantitative tools have provided insight into the 56 

biophysical properties of migrating cells10–15. In a previous study, we coupled time lapse 57 

microscopy with the 2D scratch assay and defined three distinct migratory modes in ovarian 58 

cancer cell lines, viz., passive collective cell migration (pCCM), active collective cell 59 

migration (aCCM) and EMT. We further demonstrated the switching of migration modalities 60 

in response to extrinsic cues for these cell lines and observed that cells which undertook 61 

aCCM exhibited higher chemoresistance and a greater inherent plasticity16. A similar study 62 

with breast cancer cell lines associated monolayer migratory patterns with specific 63 

mutational signatures, thus providing a clinically relevant readout for metastatic potential17. 64 

Independent reports have further discerned the leader-follower dynamics, cell polarity and 65 

orientation, and directionality of collective cell migration with similar experimental 66 

approaches18–20. Cell tracking and particle image velocimetry (PIV) approaches have also 67 

been adopted in tissue-derived scaffolds21 and developing embryos22 to dissect niche 68 

dependent migratory dynamics. In addition to the use of time lapse microscopy, the recent 69 

development of high-throughput analytical tools has allowed efficient handling of large 70 

migration datasets13. Microfluidic devices in conjunction with machine learning have been 71 

used to discern the shape-shifting dynamics of single cells23. However, despite their utility, 72 

most of these platforms require high-end computing and are often inaccessible to users with 73 

limited coding experience. 74 
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We developed an open source quantitative approach, utilizing cell geometry features 75 

(CGFs), for label-free time lapse microscopy data. Our analysis allowed the identification 76 

and characterization of migratory subsets within otherwise homogenous cell systems. 77 

Interestingly, CGF trends and functional heterogeneity observed in our study extended 78 

across multiple experimental models of cell migration. These results allowed us to speculate 79 

the effects of 2D-packing, growth factor treatment and ECM coating on migratory subsets, 80 

and emphasized the widespread utility of our pipeline. Our approach to conduct image 81 

analysis with Fiji and the availability of well-annotated codes would allow experimental 82 

biologists to efficiently integrate this pipeline for analysing cell migration data. 83 

 84 

Materials and Methods: 85 

Imaging Datasets, Processing and Quantification of imaging data: 86 

Label-free time-lapse imaging data acquired with phase-contrast microscopy were 87 

downloaded from published studies16,24–26 and processed with Fiji software 88 

(https://imagej.net/Fiji/Downloads) as previously described12. Briefly, images from individual 89 

datasets were converted into an 8-bit format, adjusted for contrast and threshold, and 90 

analysed with the ‘Analyze Particles’ tool and ‘MTrack2’ plugin in Fiji. CGFs were extracted 91 

across the time course for each experimental dataset. Migratory and non-migratory cells 92 

were identified by comparing and merging cell position co-ordinates from the ‘Analyze 93 

Particle’ and ‘MTrack2’ outputs in R version 4.0.2. Codes used for data wrangling have been 94 

uploaded to Github and can be found at https://github.com/askhari139/CGF. 95 

 96 

Cumulative Correlation Scores: 97 

Cumulative correlation scores were calculated as follows: 98 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	𝐶𝑒𝑙𝑙	𝑆𝑖𝑧𝑒 = 	/𝑟𝐶𝐺𝐹!"#$ 	 99 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	𝐶𝑒𝑙𝑙	𝑆ℎ𝑎𝑝𝑒 = 	/𝑟𝐶𝐺𝐹!%&'$ 100 

where, rCGFsize = Pearsons’ Correlation coefficient between two Size CGFs 101 

rCGFshape = Pearsons’ Correlation coefficient between two Shape CGFs 102 

Only ‘r’ values with a p<0.05 were used for this calculation 103 

 104 
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Statistical analysis: 105 

Statistical analyses were performed with Prism software package version 6.0 (GraphPad). 106 

P values were calculated using two-tailed paired Student’s t test and considered significant if 107 

P<0.05. Pearson’s Correlation Co-efficient and Principal Component Analysis were 108 

calculated in R version 4.0.2 using the functions cor.test and prcomp from the Base package 109 

respectively.  110 

 111 

Results: 112 

In vitro 2-D cell migration exhibits conserved geometric features across cell line models 113 

To investigate the differences in cell geometry during 2D-migration, we first defined 114 

quantitative morphological features which could be consistently extracted from in vitro 115 

imaging data. Due to its open-source availability, multi-operating system compatibility and 116 

user-friendly interface, the Fiji software was used in this study. Cell geometry features 117 

(CGFs) identified with the ‘Analyze Particles’ tool in Fiji were broadly categorized into size 118 

(Area, Perimeter, Width Height, Feret Diameter), shape (Circularity, Solidity, Roundness, 119 

Aspect Ratio) and position descriptors (X/Y co-ordinates, Feret Angle) as detailed in Figure 120 

1. Prior to examining trends during migration, we evaluated the statistical relationships 121 

between these CGFs using a migration dataset for high grade serous ovarian cancer 122 

(HGSC) cell lines16. The HGSC data comprised of six cell lines A4, OVMZ6, OVCA420, 123 

PEO14, OVCAR3, CAOV3 which were exposed to four distinct culture conditions during the 124 

in vitro wound healing assay viz., in the presence of 5% serum, serum starvation, exposure 125 

to chemotherapeutic drug paclitaxel (IC50 concentration as previously defined for individual 126 

cell lines16) and 0.1% DMSO as a drug-associated vehicle control. Quantification of wound 127 

closure over the course of the time-lapse experiment (16 hours) reiterated previous 128 

observations of efficacy in the following order A4> OVMZ6 > OVCA420 > PEO14 > OVCAR3 129 

> CAOV3 (Figure 2a). 130 
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 131 

 132 

We previously associated the phenotypic properties of each HGSC cell line with their 133 

migration capacity16; however, the dynamic changes in cell geometry were beyond the scope 134 

of the study. To obtain a preliminary understanding of their statistical inter-dependencies, 135 

pairwise correlation co-efficient between the ten CGFs were quantified without temporal 136 

segregation of data points. This revealed a significant positive correlation among cell size 137 

descriptors and independently, between the two cell shape descriptors ‘circularity’ and 138 

‘solidity’. Further, these two CGF subsets (shape and size) negatively correlated with each 139 

other, but demonstrated no significant correlations with aspect ratio (AR), roundness and 140 

ferret angle (FA). While roundness and AR were negatively correlated, none of the CGFs 141 

correlated significantly with FA suggesting that CGF associations may be independent of cell 142 

orientation in a migrating monolayer (Supplemental Figure 1). To consolidate CGF 143 

correlative trends across multiple samples, we developed a cumulative correlation score 144 

(CCS) for cell size and shape descriptors separately (Outlined in Materials and Methods); FA 145 

Figure 1. Cell Geometry Features. Schematic depiction of cell geometry features (CGFs) quantified 
for individual cells in migration datasets. CGFs were broadly classified into three categories viz., cell 
size, cell shape, and cell position. ‘Area’, ‘Perimeter’ and ‘Position Co-ordinates’ for each cell were 
directly quantified while other CGFs were derived by an artificial overlay of ‘fit ellipse’ and ‘bounding 
rectangle’ by the Fiji software. Formulae employed for quantifying CGFs by Fiji are outlined in the 
schematic.  
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was excluded from the analysis due to aforementioned observations. Distribution based on 146 

CCSs generated a tight cluster of samples with few outliers, despite the distinct phenotypic 147 

differences between cell lines (Figure 2b). To examine whether these distributions were 148 

affected over time during cell migration, we quantified the CCS across 30-minute intervals 149 

for each cell line-treatment pair and obtained comparable outcomes to what was seen in the 150 

earlier analysis (Supplemental Figure 2). These observations were conserved across the 151 

entire dataset, irrespective of the cell type or treatment, thus demonstrating the time- and 152 

position-independent nature of associations among the CGFs, which provided a robust 153 

framework for further analysis. 154 

 155 

 156 

Next, we examined the contribution of individual CGFs to the variance and heterogeneity of 157 

cell migration. Principal component analysis (PCA) on temporally unsegregated CGF data 158 

reiterated the non-significant contribution of FA, hence cell orientation, to geometry 159 

(Supplemental Figure 3a). Principal components 1 and 2 (PC1 and PC2) captured 160 

approximately 65% of the total variance with the size descriptors, circularity, solidity and AR, 161 

roundness contributing to maximum variance in PC1 and PC2, respectively (Supplemental 162 

Figures 3b, 3c). Contribution of individual CGF pairs to PC axes was reminiscent of 163 

previous correlative trends wherein FA exhibited no quantitative significance (Figure 2c). 164 

Figure 2. Conserved statistical relationships between cell geometry features are characteristic of 
2D-cell migration. a. Percent open wound area quantified for a panel of high grade serous ovarian 
cancer (HGSC) cell lines in response to distinct assay conditions: DMSO, Paclitaxel (Pax), Serum, 
Serum Starved (SS). b. Cumulative correlation score-based (detailed in Materials and Methods) 
distribution of samples. c. Correlation coefficients computed for CGF-specific Eigen vectors for PC1 and 
PC2. Correlation coefficients were broadly calculated for five types of CGF pairs: (i) Size-size, (ii) 
shape-shape, (iii) size-shape, (iv) size-position and (v) shape-position. Except for panel (a), the data has 
not been segregated temporally and includes CGFs for individual cells from the HGSC migration. 
dataset. 
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These observations resulted in the exclusion of FA from subsequent analysis and 165 

established the fundamental nature of CGF associations. 166 

 167 

Cell shape heterogeneity represents the plasticity of migratory cells 168 

While we observed a consistent pattern of CGF associations, it was unclear whether these 169 

resulted from an averaging of heterogeneous sub-populations or the absence of phenotypic 170 

heterogeneity within cell lines. To examine the first hypothesis, individual cells across the 171 

HGSC migration dataset were assigned a motility status viz., non-migratory (NM) and 172 

migratory (M), based on the minimal distance covered by them during the experiment. The 173 

proportion of ‘NM’ and ‘M’ cells across the dataset exhibited cell line and treatment specific 174 

differences, with a majority of the cells being assigned the ‘NM’ phenotype (Figure 3a). 175 

Correlative trends quantified for ‘NM’ and ‘M’ cells were strikingly similar to those observed 176 

in the whole population data, thus affirming the absence of normalization effects 177 

(Supplemental Figure 4, Supplemental Table 1). Next, we tested whether the conserved 178 

CGF correlations emerged from the lack of morphological differences between the ‘NM’ and 179 

‘M’ subsets. Examination of mean CGF values revealed that ‘M’ cells were larger in size and 180 

less circular than the ‘NM’ subset (Figure 3b, Supplemental Figures 5 and 6). While 181 

observations pertaining to circularity of ‘M’ cells were unsurprising, it was interesting to note 182 

the relatively small cell sizes of the ‘NM’ population.  183 

To further examine the heterogeneity of our cell systems, we evaluated the co-efficient of 184 

variance (CoV) for individual CGFs in the ‘NM’ and ‘M’ subsets. ‘NMs’ displayed a previously 185 

unappreciated heterogeneity in cell size which may be an outcome of differential proliferation 186 

and/or migratory-cell induced packing. On the other hand, the ‘M’ subset demonstrated 187 

greater heterogeneity of cell shape further reflecting its morphological plasticity (Figure 3c, 188 

Supplemental Table 2). The observed differences in CGF trends between ‘NM’ and ‘M’ 189 

cells thus, confirm the universal conservation of correlative trends and identify greater 190 

heterogeneity in functional subsets during 2-D cell migration. 191 
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 193 

CGF features are conserved in an independent system of 2D monolayer migration 194 

Robust statistical CGF trends prompted us to investigate whether similar observations could 195 

be extrapolated to an independent dataset. Literature search for articles with in vitro time-196 

lapse migration data, provided a large cohort. Studies were selected based on the 197 

availability of good quality imaging data, processability with Fiji, the presence of appropriate 198 

controls and existence of relevant technical replicates. To examine CGF trends during in 199 

vitro wound healing, we extracted data from the Zaritsky et al. study wherein the wound 200 

healing efficacy of a mouse mammary adenocarinoma cell line (DA3) was examined in 201 

response to the growth factor HGF-SF. Differences in the cell system and, experimental 202 

setup permitted an unbiased assessment of CGF associations25. Data were not temporally 203 

segregated based on previous observations and analysed between control and HGF-SF 204 

treated samples (Supplemental Figure 2). Assignment of motility status identified a large 205 

population of ‘M’ cells in the control samples which were significantly enriched in response to 206 

Figure 3. Consistent geometric trends identify heterogeneity in cell size for non-migrators 
and cell shape for migrators. a. Proportion of non-migratory (NM) and migratory (M) cells across 
the HGSC migration dataset. 1= DMSO, 2= Paclitaxel, 3= Serum, 4= SS. b. Mean distribution of 
CGFs between NM and M cells depicted for individual cell lines. Each data point depicts a specific 
treatment for individual cell lines. c. Heatmap depicting the co-efficient of variance for individual 
CGFs between NM and M cells. Data are not temporally segregated. 
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HGF-SF (Figure 4a). A similar trend of large, non-circular ‘M’ cells as compared to the ‘NM’ 207 

subset was observed in both, control and HGF-SF treated samples (Figure 4b). 208 

Interestingly, increase in cell size for both, ‘NM’ and ‘M’ subsets along with reduced 209 

circularity for the non-migrators was evident following HGF-SF treatment. Changes in 210 

circularity can be attributed to an ‘NM’ to ‘M’ transition which explains the enhanced wound 211 

healing capacities in response to HGF-SF25. Quantifying CoV for DA3 cells revealed greater 212 

heterogeneity in ‘NM’ size as compared to the ‘M’ subset (Figure 4c). These observations 213 

can be explained by the existence of ‘M’ cells which have achieved homogeneity through 214 

extensive morphological changes as opposed to ‘NMs’ which are in the process of acquiring 215 

migratory properties. Thus, the Zaritsky, et al., dataset validated our CGF trends and 216 

provided an in vitro model for examining ‘NM’ to ‘M’ transition. 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

Sparsely seeded cells exhibit greater geometric plasticity in non-migratory as compared to 227 

migratory subset 228 

We then investigated the utility of CGF trends in a dataset where directional migration, F-229 

actin organization and focal adhesion maturation were examined in response to anisotropic 230 

substrate alignment26. Due to differences in image quality, we only extracted data for 231 

individually migrating T47D and KPC-derived cells. Annotation of migratory subsets revealed 232 

a higher proportion of ‘M’ cells in KPC as compared to T47D (Supplementary Figure 7a).  233 

Unlike previous observations, CGF trends demonstrated a cell line specific trend with T47D 234 

and KPC exhibiting larger cell size in ‘M’ and ‘NM’ subsets, respectively (Supplementary 235 

Figure 4. Mouse DA3 cells 
exhibit extensive non-
migrator cell size variability. 
a. Proportion of non-migratory 
(NM) and migratory (M) cells in 
response to HGF-SF treatment. 
b. Mean distribution of CGFs 
between the NM and M cells. c. 
Heatmap depicting the trend for 
co-efficient of variance for 
individual CGFs between the 
NM and M cells. Data are not 
temporally segregated. Dataset 
represented: Zaritsky, et al. 
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Figure 7b). Both systems demonstrated heterogeneity in size with relatively homogenous 236 

cell shape features irrespective of the migratory subset analysed (Supplementary Figure 237 

7c). While these observations may be an outcome of the experimental setup, they could also 238 

result from differences in cell packing which is non-existent in sparsely seeded, individually 239 

migrating cells. 240 

 241 

2D packing contributes to CGF variability in a system of confluent monolayer migration 242 

To examine the effects of 2D-packing on cell geometry, we used a dataset where the 243 

biophysical dynamics of collective migration were studied on confined PolyDiMethylSiloxane 244 

(PDMS) islands 24. Data were extracted for MDCK cells subject to three experimental setups 245 

viz., cytochalasin ‘D’ treatment (CytoD), high cell density (High) and low cell density (Low). 246 

While a higher proportion of ‘M’ cells was observed in all samples, their frequency increased 247 

in the following order CytoD < High < Low (Figure 5a). These observations could be 248 

explained by the inhibitory effects of CytoD on cytoskeletal re-organization and effects of cell 249 

density on 2D-packing and -motility. Unlike previous data, CGF trends were reversed for 250 

‘NM’ and ‘M’ subsets. Large, less circular ‘NMs’ were observed for both ‘High’ and ‘Low’ 251 

experimental groups while ‘CytoD’ did not significantly affect either migratory subset (Figure 252 

5b). Differences in CGF trends can be explained by the extent of ‘NM’ spreading, potentially 253 

facilitated by collagen coated growth surfaces which were absent in the HGSC and DA3 254 

datasets. CoV analysis identified more heterogeneity in ‘NMs’ versus ‘Ms’ with ‘CytoD’ 255 

samples exhibiting highest variability in NM size. While cell size variability can be explained 256 

as an outcome of CytoD treatment, the greater homogeneity of Ms may be attributed to 257 

multiple factors some of which include cell system bias, collagen/ECM-driven uniformity in 258 

cell shape and restricted migratory spaces due to NM spreading resulting in limited 259 

morphological conformations (Figure 5c). Due to the use of a cell monolayer in this data, the 260 

CGF trends would principally depend on the extent of cell packing which are influenced by 261 

cell division/cell death events, and the frequency of NM-M transitions. These observations 262 

highlight the influence of spatial constraints on, driving CGF trends and differentially affecting 263 

the migratory subsets. 264 
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 265 

 266 

Discussion 267 

Decades of research on cell migration and recent developments with in vitro assays have 268 

been fruitful in understanding several biological processes and for evaluating therapeutic 269 

strategies. Due to their widespread utility, analytical pipelines that augment migration read 270 

outs have received plenty of attention. In the present study, we have designed a quantitative 271 

approach based entirely on open source algorithms for label-free time lapse migration data 272 

and applied it for the resolution of functional heterogeneity during migration. Cell geometry 273 

was the key parameter evaluated in this analysis and its associated features exhibited 274 

consistent trends across experimental systems (Supplemental Figures 2 and 8). Our 275 

pipeline allows the evaluation of migratory subsets in response to extrinsic cues, wound 276 

induction, 2D-packing and provides a foundation to understand migratory transitions. 277 

Our primary dataset for the development of this approach was a panel of HGSC cell lines, 278 

where we had previously identified distinct migratory modalities at the population level27. Our 279 

Figure 5. Migration associated CGF trends in a confluent monolayer a. Proportion of non-migratory 
(NM; grey) and migratory (M; white) cells in response to Cytochalasin D (CytoD) treatment, high density 
(High) and low density seeding (Low) on micropattern wells. b. Mean distribution of CGFs between NM 
and M cells. c. Heatmap depicting the co-efficient of variance for individual CGFs between the NM and M 
cells. Data are not temporally segregated. Dataset represented: Saraswathibhatla, et al. 
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previous approach had precluded the heterogeneous behaviour of individual cells and 280 

exclusively focused on cells that undertook quantifiable displacement during migration. 281 

Incorporation of CGFs at a single cell resolution demonstrated the fundamental geometric 282 

differences between migratory and non-migratory subsets across phenotypically diverse cell 283 

systems including independent datasets; importantly, these trends were unaltered by 284 

exogenous cues25,27,28. We also observed an unprecedented heterogeneity in the non-285 

migratory subset which may result from one or more of the following reasons: cells existing 286 

in different, (i) states of proliferation29, (ii) functional states while transitioning between 287 

migratory subsets30, or (iii) a greater plasticity of cells with non-specialized functions31. The 288 

ability of our pipeline to discern proportion of NM to M cells (NM/M) describes the functional 289 

composition of cell systems and can prove useful in pharmacological screens. Our 290 

observations suggest that the pre-existence of specific migratory subsets and dynamics of 291 

their interconversions may be crucial for migration efficiency. 292 

Predictive models designed around tissue- and assay-specific variables have suggested the 293 

role of cell geometry during in vitro migration29, metastatic invasion32, and cell polarization for 294 

morphogenesis33. Experimental evidence linking cell geometry with molecular 295 

compartmentalization34, intercellular crosstalk35, surface topographies36 and mechano-296 

reciprocity35 have further indicated the utility of this parameter in distinguishing functionally 297 

distinct cells. Previous reports on colon and breast cancer have also utilized CGFs to predict 298 

the chemo-responsiveness37 and invasive potential38, respectively, in cell line models. Unlike 299 

published studies, our pipeline can be applied not only to scratch assay but also data from 300 

confluent monolayers and individual cells. The Saraswathibhatla et al., and Zaritsky et al., 301 

datasets were two such distinct studies which upon CGF analysis allowed us to speculate 302 

the role of 2D-packing on migratory heterogeneity24,25. While we cannot ignore the cell and 303 

experimental system specific effects, these trends between migratory subsets do 304 

recapitulate jamming-unjamming transitions which are reported during tissue development 305 

and disease progression8,39,40. While not entirely evident from our analysis, previous reports 306 

have provided evidence of cell state transitions in response to spatial packing41,42.  307 

Our analytical pipeline relies on open source free software which can be used across recent 308 

computing systems, irrespective of their processing capacity. The application of our 309 

approach to label-free systems reduces the dependence on sophisticated labelling or 310 

microscopy techniques to capture cell migration. However, due to its reliance on phase 311 

differences for distinguishing cells, the quality of input data and presence of debris in the 312 

field of view can affect the analysis. We trust that the inclusion of fluorescence microscopy 313 

approaches will enhance the sensitivity of our approach and may further resolve CGF 314 

trends. We are aware of several image analysis pipelines developed specifically to study cell 315 
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migration, with each approach presenting a distinct set of advantages13. We believe that our 316 

pipeline builds on existing quantitative measures and provides a simple analytical platform to 317 

dissect the functional heterogeneity during 2D migration. We acknowledge the speculative 318 

nature of our conclusions and the need to experimentally validate transitions between NM 319 

and M subsets, as well as spatio-temporal specific patterns of NM and M subpopulations. 320 

While we initially intended to examine the temporal and spatial heterogeneity influencing 321 

migration dynamics, we were unable to capture this information with our current approach, 322 

thereby limiting our capacity to investigate the degree of influence of neighbouring cells on 323 

migratory behaviour. 324 

Overall, we have developed an image analysis pipeline and demonstrated its utility across 325 

experimental systems for identifying distinct migratory subsets. While future development will 326 

add to its value, we believe that in its current form our analytical approach will greatly benefit 327 

biologists interested in the comprehending the process of cell migration. 328 
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