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Understanding Harmonic Structures
Through Instantaneous Frequency

Marco S. Fabus, Mark W. Woolrich, Catherine W. Warnaby, and Andrew J. Quinn
ABSTRACT. The analysis of harmonics and non-sinusoidal waveform shape in neurophysiological data is growing in importance.

However, a precise definition of what constitutes a harmonic is lacking. In this paper, we propose a rigorous definition of when
to consider signals to be in a harmonic relationship based on an integer frequency ratio, constant phase, and a well-defined joint
instantaneous frequency. We show this definition is linked to extrema counting and Empirical Mode Decomposition (EMD). We
explore the mathematics of our definition and link it to results from analytic number theory. This naturally leads to us to define two
classes of harmonic structures, termed strong and weak, with different extrema behaviour. We validate our framework using both
simulations and real data. Specifically, we look at the harmonics structure in the FitzHugh-Nagumo model and the non-sinusoidal
hippocampal theta oscillation in rat local field potential data. We further discuss how our definition helps to address mode splitting
in EMD. A clear understanding of when harmonics are present in signals will enable a deeper understanding of the functional and
clinical roles of non-sinusoidal neural oscillations.

Index Terms—Electrophysiology, Empirical Mode Decomposition, Harmonic Analysis, Hilbert Transform, Instantaneous Frequency

I. INTRODUCTION

NEUROPHYSIOLOGICAL recordings often show non-
sinusoidal features [1]. Non-sinusoidality has been ob-

served across multiple species and different modalities, and
such features have functional roles [2], [3], [4] Non-sinusoidal
waveforms have harmonics in their spectra, which can pro-
duce spurious results when using cross-frequency connectivity
metrics, such as phase-amplitude coupling (PAC) [5], [6]
and phase-phase coupling (PPC) [7]. This difficulty in distin-
guishing whether a signal comprises a single non-sinusoidal
oscillation or several interacting oscillations has practical
consequences for signal processing. For instance, harmonic
coupling may account for most, if not all, PAC detected in
human magnetoencephalography (MEG) studies [8].

To tackle this ambiguity, we need a complete definition for
the question “what exactly is a harmonic?”. The reader might
think this a trivial question, and agree with the definition given
by Wikipedia: “A harmonic is a wave with a frequency that is a
positive integer multiple of the frequency of the original wave,
known as the fundamental frequency [9].” Existing literature in
neuroscience often uses this ‘integer frequency ratio’ definition
of a harmonic [10], with some authors including a stable phase
relationship between harmonics as a condition [8]. We contend
that these definitions are correct but incomplete in that they
allow for a wide set of cases where intuitively separate signals
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would be labelled as harmonics. For instance, with one set of
amplitude and phase values, the sum of a 10Hz and a 20Hz
oscillation may create a single non-sinusoidal oscillation in
which the 20Hz signal “blends in” to the 10Hz base (Fig.
1A). Another amplitude and phase configuration may create
a summed signal in which dynamics from both the 10Hz and
20Hz signals are clearly and separately visible (particularly if
the amplitude of the 20Hz signal is relatively high, Fig. 1B).
The integer frequency ratio and consistent phase conditions
are not sufficient to separate these cases.

How do we distinguish non-sinusoidality driven harmonics
from independent oscillations (perhaps synchronised in fre-
quency and coherent for purposes of information transfer [11]
[12])? A complete and intuitive definition of when signals are
in a harmonic relationship is lacking.

Empirical Mode Decomposition (EMD) is an alternative
spectral decomposition method to Fourier-based techniques
[13]. It decomposes data into a handful of Intrinsic Mode
Functions (IMFs). EMD does this by a sifting algorithm where
progressively slower oscillations are identified by finding
extrema in the time-series. As such, it is intimately linked
to the harmonic definition we propose. For instance, in a
signal made of two sinusoidal components, EMD treats them
as separate or joint based on which tone dominates the
extrema rate [14]. Moreover, each IMF has a well-defined,
non-negative Instantaneous Frequency (IF), theoretically able
to represent any non-sinusoidal oscillation. However, in noisy
real-world data, the bandwidth of an IMF is limited, even with
improved EMD-based techniques [15]. Highly non-sinusoidal
waveforms may thus have harmonics split across different
IMFs, which we refer to as mode splitting.

Following intuitions from the Empirical Model Decompo-
sition [13] [14], we propose that the Instantaneous Frequency
[16] is the missing ingredient for a full definition of a
harmonic. IF is able to fully characterise the shape of a mono-
component, non-sinusoidal oscillation but will collapse into
non-physical negative frequencies when representing a multi-
component signal [2]. We can utilise this property to define
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an intuitive set of conditions for deciding when two signal
components are in harmonic relation.

In this work, we propose a simple yet powerful set of
conditions to define harmonics. We formalise the notion using
instantaneous frequency and show this can be intuitively
interpreted through notions of extrema counting. We find a
natural interpretation of our results in the language of EMD.
Choosing an analytically tractable model, we further explore
the mathematical properties of our definition. We link them to
results from analytic number theory and find two types of har-
monics differing in their extrema. We then study harmonics in
a simulated neuronal oscillations using the FitzHugh-Nagumo
model. Finally, we apply our framework together with masked
EMD to study rat local field potential (LFP) data. We validate
our conditions on the asymmetric theta oscillation shape and
illustrate how to decide whether to combine IMFs to address
the mode splitting problem.

II. HARMONIC STRUCTURES

A. Intuition
What do we mean when we say oscillatory time-series are

in a harmonic relation? In lay terms, we mean that one time-
series, the base, determines “most” of the wave properties (e.g.
the period, most of the amplitude), whereas the other time-
series, the harmonics, determine fine details of the waveform
shape. For an example, see Fig. 1. In top panels A and B,
we see the sums of two waveforms, a base 10Hz sine and a
20Hz cosine. In panel A, the 10Hz waveform is five times
the amplitude of the 20Hz waveform. The waveforms have
an integer frequency ratio and a constant phase relationship,
which guarantees the resulting waveform has the same period
as the base sine function. Additionally, the joint waveform has
a well-defined instantaneous frequency (panel C). Following
from the Introduction, harmonic signals thus blend into a
single waveform. In panel B, the 20Hz waveform is now 0.75x
the amplitude of the 10Hz waveform. New prominent extrema
appear in each resulting cycle. The summed signals retain
their dynamics, making them nonharmonic. Instantaneous Fre-
quency (IF) is emerging as a robust way to characterise non-
sinusoidal waveform shape, but this frequency only makes
sense if it is non-negative [2]. Prominent extrema are what
causes IF to be negative, as in panel D. As such, we propose
to define that in addition to an integer frequency ratio and a
constant phase relationship, harmonics are signals that added
to the base have a non-negative joint IF. The reader is
encouraged to further explore the link between harmonics and
instantaneous frequency using our custom shape generator and
an interactive notebook accompanying this paper. The latter is
a repository which includes code to reproduce all figures in
this paper.

B. Formalising Harmonic Conditions
Here we formalise the above intuitions. We shall say that the

resultant signal x(t) formed as a sum of N sinusoids ordered
by increasing frequency,

x(t) =
N∑

n=1

an cos(ωnt+ ϕn), (1)

Fig. 1. Harmonic intuitions. Top plots show the sum of a 10Hz wave (base,
unit amplitude) and a 20Hz wave (HF) in red and a reference sine wave
(black). In (A), the HF amplitude is low (0.2) and shape changes without
introducing prominent extrema. In (B), HF amplitude is high (0.75) and
new extrema are introduced. (C) and (D) show the associated instantaneous
frequencies. (C) is well-defined everywhere, whilst (D) goes negative due to
prominent secondary extrema.

is to be considered a harmonic structure if:
1) All sinusoids have an integer frequency relationship to

the base and a constant phase relationship, i.e. ωn =
nω0, n ∈ Z and dϕn

dt = 0,
2) The joint instantaneous frequency fJ is finite and non-

negative for all t, i.e. (fJ ≥ 0)∀t,
where an are the sinusoids’ amplitudes.
The first condition is the same as that typically used in the

literature [8]. In lay terms, it means the joint waveform repeats
and is the same at t and t+T , where T is the period of the base
function. We can easily show this: Noting that ω1 = 2π/T,

x(t+ T ) =
N∑

n=1

an cos(nω1(t+ T ) + ϕn) (2)

=⇒ x(t+ T ) =
N∑

n=1

an cos(nω1t+ ϕn + 2πn) (3)

=⇒ x(t+ T ) =
N∑

n=1

an cos(ωnt+ ϕn) = x(t), (4)

as all functions are 2π periodic.
Our signal model considers continuous oscillations with

constant an, but we note that all of the analysis in this
paper also applies if this waveform experiences amplitude
modulation (so long it happens slowly with a time scale
TAM > 2π/ω1). This is a consequence of Bedrosian’s Theo-
rem [17] and is outlined further in the Discussion.

C. Instantaneous Frequency

We aim to understand non-sinusoidal signals through instan-
taneous frequency, which fully characterises waveform shapes.
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Hence, in this section, we analytically derive the instantaneous
frequency for our signal model (1).

Following [13], we define the instantaneous frequency using
the analytic signal phase. For a real signal u(t), define its
analytic counterpart as xA = u(t) + iv(t), where v(t) is the
Hilbert transform of u(t). We can rewrite the analytic signal
as xA = A(t)eiθ(t), where the instantaneous phase is obtained
from the real and imaginary components of xA as tan θ =
v/u. From this we define the instantaneous frequency as

f(t) =
1

2π

dθ

dt
=

1

2π

uv̇ − vu̇

u2 + v2
, (5)

where u̇, v̇ signify the time derivatives. This right-most ex-
pression is derived in Appendix A.

Using linearity of the Hilbert transform and equation (5),
we can find the general joint instantaneous frequency for our
sum of sinusoids (1):

2πf(t) =

∑
n,m

[anamωm cos((ωn − ωm)t+ (ϕn − ϕm))]

A2
,

(6)

where the denominator is

A2 = (
∑
n

an cos(ωnt+ ϕn))
2
+ (

∑
n

an sin(ωnt+ ϕn))
2
,

(7)
and we used the standard Hilbert transform v = an sin(ωnt+
ϕn) for u = an cos(ωnt + ϕn). The full derivation of this
expression is in Appendix B.

D. Case N = 2 and Link to Extrema Counting

Harmonic condition 2 requires the instantaneous frequency
to be non-negative. Recall that this is based on the premise
that signals that cause prominent extrema are not harmonics,
and that prominent extrema cause ill-defined, negative IF (see
Fig. 1). Here we illustrate how harmonic condition 2 is linked
extrema present in the waveform (Fig. 2).

It is instructive to consider the case with N = 2. With only
two sinusoids, we can write our signal model (1), without loss
of generality as

x(t) = cos t+ a cos(ωt+ ϕ), t ∈ R, (8)

where a and ω are the amplitude / frequency ratios of the
waveforms and ϕ their phase difference. We further restrain
ourselves to the case ω > 1, such that the cos t term can
be referred to as the base (or lower frequency component,
LF), with the other termed the potential harmonic (or higher
frequency component, HF). This simplified case follows that
of [14], except for swapping a and ω (f in the original paper)
into the HF term for greater clarity.

We now re-state the harmonic conditions for the case of
N = 2, i.e. the conditions that need to be met for us to consider
HF as a harmonic to LF.

The first condition simply amounts to ω = n, n ∈ Z (purple
lines in Fig. 2), and ϕ = 0.

Fig. 2. EMD separation of simulated two-tone signals with amplitude ratio a
and frequency ratio ω in relation to harmonics. Gray shading shows whether
EMD treats signals as separate oscillations (light) a single waveform (dark), or
a mixture of waveforms (gray). Purple lines show where harmonic condition
1 (integer frequency ratio) is satisfied. The lines aω = 1 (red, solid) and aω2

(red, dashed) are also shown. Insets show three possible types of two-tone
signals. (i) A strong harmonic structure - HF adds to the non-sinusoidal shape
with no secondary extrema.(ii) A weak harmonic structure - small secondary
extrema are present but the joint IF is still well-defined. (iii) Two tones are
separate and not harmonically related. Strong secondary extrema are present
and the IF is not well-defined. The separation map is reproduced from [14].

The second condition requires that the joint IF is non-
negative for all time points. The joint IF from (6) simplifies
to

2πfJ =
1 + ωa2 + a(1 + ω) cos[(ω − 1)t− ϕ]

1 + a2 + 2a cos[(ω − 1)t− ϕ]
. (9)

The denominator in (6) is always non-negative, so to have
a non-negative joint IF we demand a non-negative numerator,
noting the minimum value of a cosine expression is −1:

1 + ωa2 − a(1 + ω) ≥ 0

=⇒ aω(a− 1) ≥ a− 1.
(10)

If a > 1, we can divide both sides by (a − 1) freely, but
if a < 1, we must flip the equality sign when dividing by
(a − 1). Case a = 1 satisfies the inequality trivially, thus we
obtain the following restrictions on a and ω:{

aω > 1 if a > 1
aω ≤ 1 if a ≤ 1.

(11)

As was demonstrated in [14], the aω multiple is a key
determinant of extrema locations in a joint two-tone signal
such as x. Specifically, aω > 1 means the extrema rate is
exactly the same as that of the HF component. HF is the
dominant mode, and we could consider LF to be its ‘sub-
harmonic’. However, harmonics typically have progressively
lower amplitudes (a < 1), so we shall reserve the term
‘harmonic’ only for the cases of decreasing amplitudes. This
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case might potentially be useful when fixing specific instances
of EMD mode splitting issues.

If a ≤ 1, in order to have a well-defined IF, we demand
the extrema rate to not be set by HF. If aω2 < 1, it is
set by LF ([14], Fig. 2), otherwise the extrema rate is a
mixture of HF and LF extrema. The a < 1 case is the more
the common situation for non-sinusoidal functions present in
neurophysiological recordings.

The aω = 1 line is also crucial in the behaviour of EMD
when splitting signals [14]. In the gray shading of Fig. 2, we
can see the space of potential harmonics crosses both regions
where EMD treats tones separately and as one modulated
signal. This means that waveform shape reconstruction (com-
bining several IMFs) may be necessary in cases where EMD
separates them. This issue is even more widespread in real-
world data including noise due to dyadic behaviour intrinsic
to EMD [18]. If two IMFs satisfy the harmonic conditions,
we can say to have identified a base and a harmonic. Due to
linearity of the Hilbert transform, adding them to produce a
single broad instantaneous frequency shape is then valid.

Superimposed on the EMD separation map, Fig. 2 shows the
possible types of joint two-tone signals. For low amplitudes
such that aω ≤ 1, the joint waveform forms a harmonic
structure as its properties are dominated by the LF base and
its joint IF is well-defined (inset (i)). Small secondary extrema
are present when aω2 > 1 (inset (ii)). This anticipates the
distinction between strong and weak harmonics we describe
below. Finally, if the HF amplitude is too high (inset (iii)),
the IF ceases to be well-defined, large secondary extrema are
present, and we no longer consider HF to be a harmonic.

We can also re-write this result in a more general form that
will be useful when considering multiple harmonics. Because
ω = n, we can write aω ≤ 1 =⇒ an ≤ 1 =⇒ a ≤ 1/n.
Similarly, aω2 ≤ 1 =⇒ a ≤ 1/n2. Thus amplitude
conditions are of the form a = 1/nγ , where γ is a real
exponent. For γ ≥ 1, we are guaranteed a non-negative joint
instantanous frequency.

In summary, the N = 2 case illustrates key insights into
harmonic systems. We see how demanding the instantaneous
frequency to be non-negative is directly linked to the presence
of extrema and the extrema rate. This is linked to EMD
as it is a decomposition technique built on sifting extrema.
We also see that cases with non-negative IF may have small
secondary extrema, and whether these are present anticipates
the strong/weak harmonic types introduced below.

E. Examples of Harmonic Structures

Here we briefly consider three common examples of peri-
odic signals with strong harmonics - the triangular wave (y1),
saw-tooth wave (y2), and square wave (y3). Electrophysiolog-
ical data often shows aspects of these waves (e.g. the ‘flat top’
of motor mu waves [19]), so they serve as a useful reference
point. Their Fourier series are well-known:

y1(x) =
8

π2

∞∑
n=0

1

(2n+ 1)2
cos(2n+ 1)x (12)

y2(x) =
2

π

∞∑
n=1

1

n
sinnx (13)

y3(x) =
4

π

∞∑
n=0

1

2n+ 1
sin(2n+ 1)x (14)

All three trivially satisfy Condition 1 as their frequency ratios
are integers only and all phases are constant and zero. We
are in the regime a < 1 for all three as HF harmonics
get progressively smaller in amplitude. From the Fourier
coefficients, the aiωi product for neighbouring harmonics n
and n+ 1 in structure yi is as follows:

a1ω1 = 1/(2n+ 1) (15)
a2ω2 = 1 (16)
a3ω3 = 1 (17)

It is clear all three examples satisfy the aω ≤ 1 condition
for neighbouring harmonics and are thus bona fide harmonic
structures as expected. Alternatively, given the frequencies are
some integers m, the amplitude falls as a = 1/mγ with
γ1 = 2, γ2,3 = 1. These waveforms and their instantaneous
frequencies are plotted in the Appendix Figure 8.

F. Case N = 3

The general case of (6) is not conducive to simple conditions
such as (11). However, we know that in reality, the amplitude
falls with frequency. For this and the following section, we
explore the amplitude-frequency relationship of the form ωn =
n, an = 1/nγ , that is anωn = 1/nγ−1 with γ ≥ 1 ∈ R. This
is the generalised form of the standard harmonic structures
above and it will turn out to be insightful in the N = ∞ case.
The reader can explore a wide variety of harmonic structures
and their IF in the interactive notebook attached to this paper.
The case of an exponentially falling amplitude is explored in
Appendix E.

We have seen that for N = 2, γ ≥ 1 always leads to a
non-negative instantaneous frequency. Here we show how this
is modified in the case of N = 3. This is relevant e.g. for an
EMD sift where an IMF includes two harmonics [7].

Our signal model is

x(t) = cos t+ a1 cos(ω1t) + a2 cos(ω2t), t ∈ R, (18)

with an = 1/nγ , ωn = n, and a constant phase assumed.
We again use (6), noting its denominator is always positive.
As such, demanding a non-negative IF to satisfy harmonic
condition 2 means

4

3γ
cos 2t+ (

3

2γ
+

5

2γ3γ
) cos t+ 1 +

2

22γ
+

3

32γ
≥ 0. (19)

We can rewrite this as a quadratic in cos t using the double
angle formula and compute the discriminant to find the restric-
tions on γ. This is done in Appendix D. Here we note that
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Fig. 3. Two types of harmonic structures. (A) Weak harmonics: First N = 20
harmonics from (13). Secondary extrema are present and IF tends to a delta
function. (B) Strong harmonics: First N = 20 harmonics from (23). No
secondary extrema are present and the waveform is smooth with a finite IF
in the N = ∞ limit.

the critical exponent γc which guarantees a non-negative IF is
found as the solution to

9

4γc
+

25

36γc
+

128

9γc
− 32

3γc
− 34

12γc
− 96

27γc
= 0, (20)

which we numerically find to be γc = 1.0177, which is only
very slightly different from the N = 2 case where γc = 1. As
the number of harmonics in a given IMF can be expected to
be small, we can therefore apply the aω ≤ 1 condition to find
harmonic structure.

G. Case N = ∞ and Two Types of Harmonics Structures

In this section, we use an analytically tractable harmonic
model to look at shapes with an infinite number of harmonics.
In doing this, we find some shapes gain no secondary extrema
even with infinitely many harmonics, whilst some do. We use
this to classify harmonics into two types.

In the previous section, we found that for N = 3, requiring
a non-negative IF is equivalent to having a critical exponent
γ > 1 for a signal model (6) with an = 1/nγ and ωn = n.
Here we ask the question: if we have an infinite number of
harmonics, are there any exponents γ for which no secondary
extrema are introduced?

Consider the the sum to infinity of the numerator in (6). If
all phases have the same value, the IF has a maximum at t = 0
and, where all cosines add constructively. For a well-defined
waveform, IF needs to remain finite even in the infinite limit.
If all phases are the same, consider the case with all ϕn = 0
without loss of generality. The numerator becomes

∞∑
n,m

anamωm =
∞∑

n=1

1

nγ

∞∑
m=1

1

mγ−1
, (21)

where as mentioned we again used the form ωn = n,
an = 1/nγ . We recognise these sums as the hyper-harmonic
series (p-series). These diverge to infinity for exponent values
≤ 1 [20], and lie on the real line of the Riemann Zeta
function for exponent values > 1 [21] [22]. Thus, including
the denominator, we can write

IF(t = 0) =
ζ(γ − 1)

ζ(γ)
, (22)

where ζ(x) =
∞∑

n=1

1
nx . This converges to a finite real number

only provided γ > 2. We therefore get two types of harmonic
structures:

1) Weak harmonic structures. These have neighbouring
harmonic that can be added to form a well-defined IF,
but their IF diverges to infinity in the N = ∞ limit and
ceases to be well-defined. They have γ ≤ 2, such as
(13), and have small secondary extrema.

2) Strong harmonic structures. These have a well-defined
(non-negative and finite) instantaneous frequency, even
in the infinite limit. Harmonics do not introduce any new
extrema and γ > 2. An example is

y4(x) =
∞∑

n=1

1/n2 sinnx. (23)

This distinction can be observed in Fig. 3. A weak harmonic
structure (left) has small secondary extrema, whereas a strong
harmonic structure (right) does not.

To illustrate how no new extrema are present in strongly
harmonic structures, we can consider an analytically tractable
example of (1) with an = 1/nγ , ωn = n and ϕn = 0 (Fig.
5). Restrict ourselves to the case of even N for simplicity.
These structures have an extremum at t = π for any number
of harmonics. If this is to be the only extremum in (0, 2π), it
must be convex. This is as a concave extremum would imply
a local maximum and thus at least two additional secondary
minima either side as the function must eventually turn to form
maxima at t = 0 and t = 2π. We therefore demand a positive
second derivative at t = π for no new secondary extrema:

ẍ = −
N∑

n=1

cosnπ

nγ−2
=

N∑
n=1

(−1)n−1

nγ−2
> 0. (24)

This sum as a function of γ is plotted in panel (C) of Fig. 5
for example values of N . We can see the second derivative is
positive above γ > 2, indicating no new extrema are present as
proposed. Interestingly, this function converges to the Dirichlet
η function [23] in the N = ∞ limit, though its properties were
not used here as we are interested in even N cases only. Odd
N cases have an odd number of secondary extrema and are
thus more tedious to analyse. We finally note here that this
weak/strong distinction can be also understood as a constraint
on the amplitude part of the analytic signal xA = aeiθ cardioid
traced out in the complex (or equivalently polar) plane. This
is illustrated in the middle panels of Fig. 5.

In summary, a well-defined IF and a harmonic amplitudes
falling off fast enough means harmonics introduce no new
extrema, which we class as strong harmonics. Harmonic
structures with amplitude modulation dynamics introducing
small secondary extrema are then of the weak type. We studied
the analytically tractable harmonic model of a = 1/nγ because
it appears in common waveshapes. However, below we also
present results from a more realistic neural waveshape based
on the FitzHugh-Nagumo model and in the Appendix we look
at exponentially decaying harmonic amplitudes.
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Fig. 4. Harmonic assessment decision tree. Depending on whether signals meet condition 1 (light grey), condition 2 (dark grey), and how quickly harmonic
amplitude falls, the joint signal is either not a harmonic (bottom left, multiple oscillatory processes present and IF sometimes negative), a weak harmonic
structure (bottom centre, small secondary extrema present but IF non-negative), or a strong harmonic structure (bottom right, no secondary extrema).

Fig. 5. Two types of harmonics driven by the analytic amplitude term. (A)
Weak harmonic structure with γ = 1.25. Left - time series (4 harmonics),
right - equivalent polar plot of aeiθ . A secondary maximum is present at
t = π (red line). (B) Strong harmonic structure with γ = 2.25. Left - time
series (4 harmonics), right - equivalent polar plot of aeiθ . No secondary
maximum is present as curves are convex at t = π. (C) Second derivative of
a sum of cosines at t = π for different numbers of harmonics N It is clear
the concave/convex transition is at γ = 2, marking the change from weak
to strong harmonics. Note both curves (A) and (B) here have a well-defined
IF > 0 everywhere.

H. Summary: How to assess a harmonic

In this section, we summarise key metrics we have identified
whilst exploring the theory of harmonic structures above. We
list their role in studying harmonics and their practicability.
Assessing harmonics using these quantities can be reduced to
a simple decision tree (Fig. 4).

• ωn, the frequency ratio between signals. Needs to be

an integer for harmonic structures. Tests whether signals
align such that the base period is unchanged. For neuro-
physiological data, it is easy to check from peaks in the
power spectrum.

• ϕn, the phase relationship between signals. Needs to
be constant for harmonic structures. Can be checked
using metrics such as the phase locking value or distance
correlation.

• fJ , the joint instantaneous frequency. Non-negative if
signals are harmonics. Tests that the waveform does not
contain prominent extrema which would indicate separate
oscillatory dynamics. It can be assessed in multiple ways:

– Equation 6 - analytical expression for when all
parameters are known. Useful for forward modelling
and simulation, but impractical to assess in real
signals.

– aω, the harmonic ratio multiple. Tests a single pair
of components with amplitude ratio a and frequency
ratio ω. Computationally cheaper and easier to use
than assessing fJ > 0 directly.

– The Hilbert transform. In complex signals, instanta-
neous frequency can be numerically estimated with
software packages such as emd in Python [24].

• γ, the harmonic amplitude drop-off exponent. It distin-
guishes weak and strong harmonic structures, i.e. the
presence of any secondary extrema. Assesses any number
of harmonics at once. It is a good fit if amplitude roughly
falls according to a power law.
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III. METHODS

Analysis of experimental data was done in Python 3.9.0.
EMD was applied using the Python EMD package (v0.4.0),
available with tutorials at https://emd.readthedocs.io/ [24].
Packages NumPy [25], SciPy [26], dcor [27], and Statsmodels
[28] were used for analysis. Package Matplotlib [29] was used
for plotting.

A. Simulations

We simulated 10 seconds of a FitzHugh-Nagumo neuron
with a sampling rate of 100kHz and parameters giving rise to
a continuous 25Hz oscillation (stimulation current I = 0.475,
initial membrane potential V0 = 0, recovery parameter W0 =
−0.4, scaling parameters a = 0.7, b = 0.8, and τ = 12.5
[30]). This is a dynamical system governed by the coupled
equations

V̇ = V − V 3

3
−W + I (25)

τẆ = V + a− bW. (26)

Its instantaneous frequency was computed with the Hilbert
transform (emd.spectra.frequency transform) and its power
spectrum with the Fourier transform (scipy.fft.fft). Harmonic
peaks were found using scipy.signal.find peaks. For com-
parison with our analytical results, the log harmonic peak
amplitudes were fitted against their log frequency using lin-
ear regression to estimate the harmonic amplitude drop off
exponent γ.

B. Rat Data

The rodent hippocampal theta oscillation is known to be
non-sinusoidal [31], [32]. Therefore, to demonstrate our results
on experimental data, we chose a publicly available hippocam-
pal data set of Long-Evans rats [33], [34]. A 1000s local
field potentials (LFP) recording from rat EC-013 sampled at
1250Hz was used for analysis. The electrode analysed was
implanted in the hippocampal region CA1. The recording was
first downsampled to 625Hz using scipy.signal.decimate. EMD
sift was then computed with NIMF = 8 modes using the
mask sift [35] with the first mask frequency found from zero
crossings in the signal and the rest as divided by increasing
powers of 2. The sift threshold was 10−8 and mask amplitudes
were all equal to the standard deviation of the input signal.
Instantaneous phase, frequency, and amplitude were computed
from the IMFs using the Hilbert transform with an instanta-
neous phase smoothing window of five time-points. The base
theta IMF was chosen as that whose average instantaneous
frequency was closest to the Fourier spectral theta peak
estimated using Welch’s method (peak in 4-8Hz, function
scipy.signal.welch, 8s segment length / 0.125Hz resolution).
Individual cycles were computed from jumps in the wrapped
instantaneous phase. To discard noisy cycles, only cycles with
monotonic instantaneous phase and instantaneous amplitude
above the 50th IA percentile were used for further analysis.
Cycles were phase-aligned with N = 48 phase points and

the shape was represented by the mean of the phase-aligned
instantaneous frequency [2].

Next the harmonic conditions were tested. The recording
was split into 20 segments of 50s each. Recall that the first
condition is requires integer frequency ratios and a constant
phase relationship between signals. Therefore, the first condi-
tion was taken to be satisfied if (i) the ratio between mean IF
of HF mode and base was not significantly different from an
integer, tested with a one-sample t-test with the nearest integer
as the null hypothesis, and (ii) the base and HF had a constant
phase relationship indicated by a significant distance cor-
relation between their whole-recording instantaneous phases
tested with the Student’s t-test. The distance correlation was
used because it captures any statistical dependence between
phases, not just a linear relationship (Pearson correlation) or
a monotonic relationship (Spearman correlation). The second
condition (that the joint IF is non-negative) was met if the
amplitude and frequency ratios between HF and base satisfied
the aω ≤ 1 condition outlined above. To classify the harmonic
structure, the value of aω2 was also tested. We used the
amplitude and frequency ratios instead of testing for non-
negative IF directly because details of IF calculation are often
unreliable due to noise and EMD sift issues.

IV. RESULTS

A. Simulations

We first explored harmonics in a simulated FitzHugh-
Nagumo neuron spiking continuously at 25Hz (Fig. 6). The
waveform was highly non-sinusoidal, as has been noted by
other researchers [1]. This meant its instantaneous frequency
trace ranged between 11Hz and 80Hz. Importantly, the IF
always remained positive. Together with harmonic peaks in
the power spectrum at integer multiples of 25Hz, their constant
phase relationship, and an unchanged period, this meant the
waveform indeed qualified as a harmonic structure in our
framework.

In the theoretical section, we explored harmonics where
amplitude falls as an = 1/nγ . To compare our simulated
neuron to this analytically tractable model, we performed a
linear fit of the harmonic peak amplitudes in the log-log plane.
Harmonic amplitude fell as approximately an = k/n2.083
(Pearson r = −0.936, P = 3.69× 10−13. This confirmed our
analytical model was useful as an approximation to a system
simulating the behaviour of neurons. Moreover, the waveform
was a strong harmonic structure (it had no secondary extrema),
just as we would predict with γ > 2.

B. Rat Data

We validated our harmonic framework by applying it to the
known non-sinusoidal hippocampal theta waveform. Masked
EMD extracted four IMFs of interest (Fig. 7). IMF-4 was
identified as the dominant base oscillation as it was closest
in frequency to the Fourier theta peak. We then tested if IMFs
higher in frequency showed a harmonic relationship with this
base by applying the harmonic conditions (Tab. I).

Condition 1 is equivalent to testing for an integer frequency
ratio and a stable phase relationship. IMF-1 and IMF-3 both

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.21.473676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473676
http://creativecommons.org/licenses/by/4.0/


8

Fig. 6. Harmonics in the FitzHugh-Nagumo neuronal spiking model. (A) 200 ms of membrane voltage of the neuron. Model parameters were chosen to
produce continuous 25Hz spiking and the oscillation waveforms are highly non-sinusoidal. (B) Instantaneous frequency of the waveform in (A). Sharp edges
correspond to higher frequencies. (C) Power spectrum of the data. A base at 25Hz with harmonics at each following 25Hz increment are clearly visible. Red
dots signify individual harmonic peaks. Blue line is the linear fit to harmonic amplitudes in the log-log plane. The waveform is a strong harmonic structure
(no secondary extrema) and harmonics fall off roughly as an = 1/n2.08.

Fig. 7. Harmonics in rat local field potential (LFP) data. (A) Power spectral density of the data. A base around 7.5Hz with a harmonic around 15Hz are
clearly visible. (B) Example 1.5s of masked EMD sift results. Base is in IMF-4 and harmonic is in IMF-3 due to limited IMF bandwidth in the presence
of noise. Joint waveform is shown as IMF-(3+4) (C) Phase-aligned IF (mean ± SEM across cycles). Both IMF-3 and IMF-4 are nearly sinusoidal. After
verifying harmonic conditions between IMF-3 and IMF-4 are met, IMFs are added to reconstruct the full non-sinusoidal shape (purple).

showed a frequency ratio to the base not significantly different
from an integer (11 and 2 respectively, P > 0.05). However,
only IMF-3 also showed a significant (P < 0.001) and modest
distance correlation (0.28) between its instantaneous phase and
that of the base, showing presence of phase-phase coupling.
IMF-3 had a very small (0.03), but also significant distance
correlation.

Condition 2 was tested by the aω ≤ 1 relationship where
a was the ratio of mean instantaneous amplitudes and ω
the corresponding ratio for instantaneous frequencies. The
aω products of IMF-2 and IMF-3 with the base signal were

significantly below 1 (P = 1.7 × 10−4 and P = 2.9 × 10−15

respectively, one-sample Bonferroni-corrected t-test).

Taking both conditions into account, we found IMF-3 and
IMF-4 to be robustly harmonically related. Each individual
condition (integer frequency ratio, constant phase relationship,
aω ≤ 1) was inconclusive on its own, showing the importance
of a full definition of a harmonic.

Next we computed the mean of phase-aligned instantaneous
frequency across cycles as a measure of waveform shape
[2]. Both IMF-3 and IMF-4 showed nearly sinusoidal cycles.
Taking their harmonic relationship and the linear nature of the
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TABLE I
RESULTS IN RAT LFP DATA

IMF IF [Hz] IA [mV] DCor ω a
1 81.8 (3.3) 0.16 (0.02) 0.007 10.9 (0.3) 0.27 (0.04)
2 31.7 (1.0) 0.11 (0.01) 0.030 4.2 (0.2) 0.18 (0.04)
3 14.8 (0.55) 0.16 (0.02) 0.284 2.0 (0.1) 0.27 (0.04)
4 7.50 (0.32) 0.61 (0.11) 1 1 1

Table shows the mean (standard deviation across 20 segments) for the
instantaneous frequency, amplitude, distance correlation, and frequency and
amplitude ratios with base (IMF-4). In bold are shown values meeting
harmonic conditions. Only IMF-3 passes all three tests and is a harmonic.

Hilbert transform into account, we added them to produce a
single waveform, IMF-(3+4). This trace captured significantly
more non-sinusoidality and showed the typical hippocampal
theta waveform shape with a faster leading edge.

V. DISCUSSION

Improvements in technology and analysis methods have
shown the importance of non-sinusoidal waveform shape
across species and modalities. Harmonics arising from non-
sinusoidality have a significant impact on our analysis methods
(e.g. on measures of phase-amplitude coupling) and hence
impact our understanding of neural oscillations. Having pre-
cise vocabulary to describe these and test for them is thus
only going to grow in importance. Our work provides much-
needed clarity on what exactly a harmonic is. Our definition is
based on rigorous, easy to understand conditions which match
common intuitions about harmonics. We define two signals to
be in a harmonic relationship if adding the higher frequency
signal to the base does not change its period (equivalent to
usual conditions of integer frequency ratios and a constant
phase relationship) and if the joint oscillation has a well-
defined instantaneous frequency (equivalent to saying there
are no prominent secondary extrema.

Our work complements and contrasts with existing literature
that deals with harmonics in neurophysiological data. As
mentioned in the Introduction, most authors consider signals
at an integer frequency ratio to the base (with a constant phase
relationship) to automatically be a harmonic. The attempts to
remove influence of harmonics from Fourier-based analyses
have included identifying them using bicoherence [36] [8]
and more recently by subtracting harmonic components from
the signal [37]. Both of these are based around the Fourier
spectrum. We propose that apart from this Fourier-transform
understanding of harmonics, our understanding should also be
informed by the shape. If a signal has large secondary extrema,
it is no longer suitable to call it a single waveform.

Given our exploration of the above definition, we propose
to understand harmonic structures as being of two types.
The weak type has a well-defined instantaneous frequency
(IF) for neighbouring harmonics, but harmonics introduce
additional low-amplitude extrema and amplitude modulation
leading to the IF being ill-defined in the limit of infinite
harmonics. The strong type has a structure with a well-defined
IF even for an infinite amount of harmonics and has no
extrema beyond those of the base function. Some authors
have previously suggested IF of the weak type is meaningless,

and have proposed methods to restrict IMF bandwidth to
disallow these [38]. Our distinction explains why this arises
and distinguishes between the two harmonic structure types.
Using an analytically tractable model and linking it to results
about the Riemann Zeta function, we show why how the
distinction arises. Weak harmonic structures are often the
typical examples of harmonics outside Neuroscience (e.g. the
saw-tooth function), so it makes sense to keep them included
in the definition of harmonics whilst noting their difference
to harmonics which do not introduce extrema. Interestingly,
the harmonic identified in our LFP data was consistent with
being of the strong type (γ exponent not significantly different
from 2), as were harmonics in the FitzHugh-Nagumo model
neuron (γ = 2.08). We postulate this is because real-world
non-sinusoidal neural signals are derived from an underlying
smooth variation in electrochemical properties. It is natural
that resulting oscillatory waveforms are also smooth without
new extrema, i.e. they are strongly harmonic. It qualitatively
agrees with other known types of non-sinusoidal waveforms in
the literature as well [1]. It would be interesting to explore the
effect of simulated physiological parameters on the resulting
harmonic structure and waveform shape.

Neural oscillations often come in bursts, i.e. include ampli-
tude modulation (AM) [39]. Thanks to Bedrosian’s Theorem
[17], all of the results in this paper apply to amplitude-
modulated non-sinusoidal waveforms as long as the AM
frequency is slower than that of the base function, making the
spectra non-overlapping. We propose that talking about AM
faster than the base function does not make sense anyway
- the AM would be such that not even a single full cycle
of the original waveform would be present. Thus, our results
and conditions are fully applicable to sensible AM like that
commonly present in neurophysiological data, as well as data
that may change shape over time or across trials. In such non-
stationary cases, our conditions should be applied dynamically
to quasi-stationary or single trial epochs.

Empirical Mode Decomposition may complement and im-
prove existing metrics based on the Fourier or Wavelet trans-
form. This is because in theory, its IMFs can accommodate any
non-sinusoidality. Instead of having to remove or worry about
harmonic coupling, connectivity analyses can be performed
directly on IMFs if all harmonics are present in one IMF. Our
framework allows for a simple decision process for when to
reconstruct highly non-sinusoidal waveform shapes in EMD
analysis, where harmonics might be split across IMFs (Fig.
6). However, our approach relies on averaging across cycles
to account for noise. As such, we sacrifice some of the
single-cycle resolution due to noise. If single-cycle properties
are being investigated, other forms of analysis might be
more appropriate. These include a carefully designed manual
mask, additional pre-processing, or using other EMD-based
tools, e.g. iterated masking EMD [15]). Shape reconstruction
(adding IMFs when appropriate) can also improve cases of
poor sifts. Qualitatively, we have observed masked EMD to
sometimes only partially extract the underlying base from the
non-sinusoidal oscillation, leaving a waveform with negative
instantaneous frequencies. Adding these IMFs reconstructs the
underlying shape and makes EMD more robust to sifting

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.21.473676doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473676
http://creativecommons.org/licenses/by/4.0/


10

details (e.g. mask amplitudes). Work on single-cycle waveform
reconstruction in our group is ongoing.

The behaviour of summed tones and their instantaneous
frequency can be explored by the readers with an interactive
notebook accompanying this paper.

VI. CONCLUSION

Non-sinusoidal waveforms are ubiquitous in neurophysiol-
ogy and our understanding of their clinical and functional
importance is growing. The shape of neural oscillations has
been previously shown to change with behaviour and disease
(e.g. in Parkinson’s disease). Such waveforms are composed
of sinusoidal harmonics present in the Fourier spectrum.
However, a precise definition of when waveforms are to be
considered harmonics is missing in the literature. In this
work, we defined harmonic structures to be those that (i)
have an integer frequency ratios and constant phases between
constituent signals and (ii) have a well-defined (non-negative)
instantaneous frequency. We showed this definition can be
mathematically reformulated as specific conditions on the
frequencies and amplitudes of the signals. We found two
types of harmonic structures based on the presence of sec-
ondary extrema. We validated our framework on a simulated
FitzHugh-Nagumo neuron and using EMD analysis of the hip-
pocampal theta oscillation. In the latter, we showed why both
conditions are important to unambiguously identify harmonics.
Our work has important implications for metrics affected by
non-sinusoidality, such as the phase locking value and other
common measures of functional connectivity. Further work
is needed to apply our framework in novel oscillation types
and to explore the link between harmonic structure types and
underlying generators of oscillations.

APPENDIX

Interactive visualisations of the link between harmonics and
instantaneous frequency are available insert here.

A. Derivation of (5)

From basic notions of the Argand diagram, the phase angle
θ is defined such that θ = arctan(u/v). The derivative of the
inverse tangent is d

dx arctanx = 1/(1+x2). Hence, using the
chain and quotient rules, we obtain the phase derivative as

dθ

dt
=

1

1 + (u/v)2
× uv̇ − vu̇

v2
(27)

=⇒ dθ

dt
=

uv̇ − vu̇

u2 + v2
. (28)

As the instantaneous frequency f = 1
2π θ̇, (5) follows.

B. Derivation of (6)

We start with a general sum of sinusoids u, its Hilbert
transform v, and their derivatives:

u =
∑
n

an cos(ωnt+ ϕn) (29)

v = −
∑
n

anωn sin(ωnt+ ϕn) (30)

u̇ =
∑
n

an sin(ωnt+ ϕn) (31)

v̇ =
∑
n

anωn cos(ωnt+ ϕn). (32)

Putting these into the IF expression (5), combining the sum-
mations, and taking out a common factor of anamωm, we find

2πf(t) =∑
n,m

anamωm[ cos(ωnt+ ϕn) cos(ωmt+ ϕm)

+ sin(ωnt+ ϕn) sin(ωmt+ ϕm)]

(
∑

n an cos(ωnt+ ϕn))
2
+ (

∑
n an sin(ωnt+ ϕn))

2 .

(33)

Applying the standard cosine difference formula in the nu-
merator and omitting the denominator phase for legibility, we
arrive at (6).

The terms in the numerator sum in (6) can be visualised
as terms in an N ×N matrix (again omitting the phase; ‘...’
indicates more elements along both axes):

a21ω1 a1a2ω2 cos∆ω12t a1a3ω3 cos∆ω13t
a2a1ω1 cos∆ω21t a22ω2 a2a3ω3 cos∆ω23t
a3a1ω1 cos∆ω31t a3a2ω2 cos∆ω32t a23ω3

...

 ,

(34)
where ∆ωnm = ωn−ωm and (33) is the sum of all the matrix
elements. Demanding a well-defined joint IF fJ ≥ 0 is thus
equivalent to restricting the trace of (34) to be greater than
the negative of the sum of all off-diagonal elements. It also
makes it easier to see where (19) comes from, see below.

C. Standard harmonic structures
In Fig. 8, we show the shape and instantaneous frequency

of the triangular, saw-tooth, and square wave. Note how in-
stantaneous frequency is well-defined except for delta function
spikes at sharp edges. This means we are dealing with weak
harmonic structures.

D. Derivation of (20)
Equation (19) can be trivially derived using the above matrix

(34) by assuming a1 = 1, an = 1/nγ , and ωn = n. Starting
with (19) and applying the cosine double angle formula
cos 2x = 2 cos2 x− 1, we get
8

3γ
cos2 t+ (

3

2γ
+

5

2γ3γ
) cos t+ (1 +

2

22γ
+

3

32γ
− 4

3γ
) ≥ 0.

(35)
This is true so long the discriminant of the quadratic is
negative, i.e. b2−4ac ≤ 0, where a, b, c are the coefficients in
the quadratic. Thus, the critical exponent is when b2−4ac = 0:

(
3

2γ
+

5

2γ3γ
)2 − 4(

8

3γ
)(1 +

2

22γ
+

3

32γ
− 4

3γ
) = 0. (36)
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Fig. 8. Standard harmonic structures. Top - signal and bottom - instantaneous
frequency (IF) for (A) the triangular wave, (B) the saw-tooth wave, (C) the
square wave (all formed from first 1000 harmonics). We see IF spikes near
sharp edges but is otherwise well-defined.

Expanding and simplifying this equation, we arrive at (20).

E. Exponentially decaying harmonic structures
In the Main Text, we considered harmonic structures where

the amplitude falls off as an = 1/nγ . Here, we study another
analytically tractable case of an = exp(−λn). As in the Main
Text, consider the case with ωn = n and ϕn = 0 and look at
the maximum IF at t = 0. The numerator is

∞∑
n,m

anamωm =
∞∑

n=1

exp(−λn)
∞∑

m=1

m exp(−λn), (37)

and the denominator simply (
∞∑

n=1
an)

2

. All these sums con-

verge using standard geometric series methods provided λ >
0. Specifically,

IF(t = 0) =
eλ

(eλ − 1)
3 . (38)

Harmonic structures with exponentially decaying amplitudes
are thus always strongly harmonic. Interestingly, we found that
in this case adding neighbouring harmonics can sometimes
produce negative IF, which becomes non-negative again as the
number of harmonics is increased. This shows how complex
harmonics structures can be. However, the basic distinction
based on presence of secondary extrema still holds.
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