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Abstract 

Understanding speech becomes a demanding task when the environment is noisy. Comprehension of 
speech in noise can be substantially improved by looking at the speaker’s face, and this audiovisual 
benefit is even more pronounced in people with hearing impairment. Recent advances in AI have 
allowed to synthesize photorealistic talking faces from a speech recording and a still image of a 
person's face in an end-to-end manner. However, it has remained unknown whether such facial 
animations improve speech-in-noise comprehension. Here we consider facial animations produced by 
a recently introduced generative adversarial network (GAN), and show that humans cannot 
distinguish between the synthesized and the natural videos. Importantly, we then show that the end-
to-end synthesized videos significantly aid humans in understanding speech in noise, although the 
natural facial motions yield a yet higher audiovisual benefit. We further find that an audiovisual 
speech recognizer benefits from the synthesized facial animations as well. Our results suggest that 
synthesizing facial motions from speech can be used to aid speech comprehension in difficult 
listening environments. 

1 Introduction 

Real-world listening environments are often noisy: many people talk simultaneously in a busy pub or 
restaurant, background music plays frequently, and traffic noise is omnipresent in cities. Seeing a 
speaker's face makes it considerably easier to understand them (Sumby and Pollack 1954, Ross et al. 
2007), and this is particularly true for people with hearing impairments (Puschmann et al. 2019) or 
who are listening in background noise. This phenomenon, termed inverse effectiveness, is 
characterized by a more pronounced audiovisual comprehension gain in challenging hearing 
conditions (Crosse et al. 2016, Stevenson and James 2009, Meredith and Stein 1986). 

This audiovisual (AV) gain is linked to the temporal and categorical cues carried by the movement of 
the head, lips, teeth, and tongue of the speaker (Chandrasekaran et al. 2009, O’Sullivan et al. 2017, 
Munhall et al. 2004) and likely emerges from multi-stage, hierarchical predictive coupling and 
feedback between the visual and the auditory cortices (Peelle and Sommers 2015, Hickok and 
Poeppel 2007, Kayser et al. 2012, Schroeder et al. 2008, Kayser et al. 2007, O’Sullivan et al. 2021, 
Crosse et al. 2016). 
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However, the visual component of audiovisual speech is often not available, such as when talking on 
the phone or to someone wearing a mask, when listening to the radio or when watching video content 
where the audio narrates non-speech video content. A system that automatically synthesizes talking 
faces from speech and presents them to a listener could potentially aid comprehension both for 
normal hearing people and those living with hearing loss in such situations. 

Early efforts to synthesize talking faces from speech were based on pre-recorded kinematic and 
parametrized models (Kuratate et al. 1998, Cohen and Massaro 1990). These early models yielded 
animations capable of augmenting speech comprehension in background noise (Munhall et al. 2004, 
Le Goff et al. 1997, Massaro and Cohen 1990) but required the previous or simultaneous recording of 
a human speaker wearing facial markers or electromyographic electrodes (Bailly et al. 2003). 

Later works proposed a modular framework for pre-trained text-to-AV-speech synthesizers 
(MASSY) which included both animated and photorealistic face generation sub-modules (Fagel and 
Sendlmeier 2003, Fagel 2004). Talking heads synthesized with such models increased 
comprehension performance as much as their natural counterparts in consonant-recognition 
paradigms but word and sentence identification was about twice as high for the natural videos (Aller 
and Meister 2016, Lidestam and Beskow 2006). 

Synface, a project dedicated to synthesizing talking faces for enhancing speech comprehension, also 
utilized phonetic analysis of speech and showed that stimuli generated in such a way can improve 
speech comprehension in people with hearing impairments as well as in healthy volunteers listening 
in background noise (Agelfors et al 2006, Beskow et al 2002). 

Recent advances in speech-driven animation methods have made it possible to produce photorealistic 
talking heads with synchronized lip movements using only a still image and an audio clip. State-of-
the-art solutions are trained in an end-to-end manner using self-supervision and do not require 
intermediate linguistic features such as phonemes, or visual features such as facial landmarks and 
visemes. Most are based on generative adversarial networks (GANs) and can produce high quality 
visual signals that can even reflect the speaker’s emotion (Chung et al. 2017, Chen et al. 2019, 
Vougioukas et al. 2020). 

Employing such facial animations to improve speech-in-noise comprehension would represent a 
significant step forward in the development of audiovisual hearing aids. However, it has not yet been 
investigated whether such end-to-end synthetic facial animations can aid a listener to better 
understand speech in noisy backgrounds. In this study we set out to investigate this issue. 

2 Material and Methods 

To investigate the impact of different types of AV speech on speech-in-noise comprehension in 
humans, we first synthesized realistic facial animations from speech. We then assessed how these 
facial animations benefitted humans in understanding speech in noise, compared to no visual signal 
and to the actual video of a speaker. We finally compared the human level of AV speech 
comprehension to that of an AV automatic speech recognizer. 

2.1 Audiovisual material 

We employed sentences from the GRID corpus, which consists of 33 speakers each uttering 1,000 
three-second-long sentences (Cooke et al. 2006). The videos in the GRID corpus are recorded at 25 
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frames per second, and the speech signals are sampled at 50 kHz. Four speakers, of which two were 
female, were selected for their lack of a strong accent (speakers 12, 19, 24 and 29). 

Sentences of the GRID corpus are semantically unpredictable but meaningful commands composed 
of six words taken from a limited dictionary (Table 1). As intended for this corpus, participants were 
only scored on the color, letter, and digit in each sentence (i.e., the keywords marked with an asterisk 
in Table 1), with the remaining words acting as contextual cues. 

Table 1: Structure of GRID corpus sentences. The keywords on which participants were scored are 
indicated by an asterisk (*). 

Command Color* Preposition Letter* Digit* Adverb 
Bin blue at a-z 

except 
w 

0-9 again 
Lay green by now 

Place red in soon 
Set white with please 

2.1.1 Audio 
The audio files of the chosen speakers were down-sampled to 48 kHz using FFMPEG to match the 
sampling frequency of the available speech-shaped noise (SSN) files. The latter, also known as 
speech-weighted noise, was generated from the spectral properties of multiple concatenated clean 
speech files from different speech corpora and audiobooks by randomizing the phase of all spectral 
components before extracting the real part of the inverse Fourier transform. 

The root mean square amplitudes of both the voiced part of the GRID sentence and the SSN were 
then measured. The two signals were scaled and combined such that the signal-to-noise ratio (SNR) 
was −8.82dB. This value was found during pilot testing to reduce comprehension of normal-hearing 
participants to 50%. 

2.1.2 Synthesized Video 

 

We used the GAN1 model proposed by Vougioukas et al. (2020) to generate talking head videos from 
single still images and speech signals at 25 frames per second (Figure 1). The GAN is trained using 
multiple discriminators to enforce different aspects of realism on the generated videos, including a 
synchronization discriminator for audiovisual synchrony. The offset between the audio and the visual 

 
1 Pretrained model available at “https://github.com/DinoMan/speech-driven-animation” 

Figure 1: Schematic of the generation of the facial animation. A GAN synthesizes a video of a 
talking face from a still image of the speaker and a speech signal. N.B.: we include such images for 
illustration purposes only: the real/generated GRID images were shown to participants in the study. 
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component in the synthesized videos is below 1 frame (below 40 ms, Table 6, Vougioukas et al. 
2020). This method is also capable of generating videos that exhibit spontaneous facial expressions 
such as blinks, which contribute to the realism of the sequences. 

The LipNet pretrained automated lipreading model, which obtains a word error rate (WER) of 
21.76% on the natural images, achieves a WER performance of 23.1% when evaluated on synthetic 
videos from unseen subjects of the GRID dataset, indicating that the produced movements 
correspond to the correct words (Vougioukas et al. 2020, Assael et al. 2016). 

2.1.3 Natural Video 
For direct comparability with the synthesized videos, the natural videos presented to the volunteers 
were formatted in the same way as the natural videos used to train the GAN. The faces in the high-
resolution GRID videos were aligned to the canonical face, cropped, and downscaled to a resolution 
of 96×128 pixels using FFMPEG. The points at the edges of the eyes and tip of the nose were used 
for the alignment of the face. The process used to obtain videos focused on the face is outlined in 
Figure 2. 

 

2.2 Turing Realism Test 

The realism of the synthesized videos was assessed through an online Turing test. Users were shown 
24 randomly selected videos from the GRID, TIMIT (Garofolo et al. 1993) and CREMA (Cao et al. 
2014) datasets, half of which were synthesized, and were asked to label them as real or fake in a two-
alternative forced choice (2AFC) procedure. The experiment was performed by 50 students and staff 
members from Imperial College London before the Turing test was made available online2. The 
results from the first 750 respondents were reported in Vougioukas et al. (2020) and we present 

 
2 The Turing test was made available online at “https://forms.gle/vjFzS4QDU9UzFjDJ9” 

Figure 2: Video preprocessing pipeline used to obtain cropped videos of the speaker’s face. N.B.: 
we include such images for illustration purposes only: the real/generated GRID images were shown 
to participants in the study. 
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updated results from 1,217 participants. Figure 3 shows a side-by-side comparison between a fake 
and generated video. 

An unstructured assessment of the videos' realism was also performed on the 18 participants of the 
speech-comprehension experiment (see below). Following the speech comprehension task, the 
subjects were asked to comment on anything interesting or strange they had noticed in the videos 
during the experiment. Their verbal responses were recorded anonymously. 

2.3 Assessment of speech-in-noise comprehension 

2.3.1 Participants 
Eighteen native English speakers, eleven of them female, with self-reported normal hearing and 
normal or corrected-to-normal vision participated in the experiment. The participants were between 
18 and 36 years of age, with a mean age of 23 years. All participants were right-handed and had no 
history of mental health problems, severe head injury or neurological disorders. Before starting the 
experiment, participants gave informed consent. The experimental protocol was approved by the 
Imperial College Research Ethics Committee. 

2.3.2 Stimuli presentation 
We considered three types of AV stimuli. All three types had speech in a constant level of 
background noise, that is, with the same SNR. The type of the video, however, varied between the 
three types of AV signals. During one type of stimulation, subjects heard noisy speech while the 
monitor remained blank (“audio-only”). In another type, we presented subjects with noisy speech 
together with the synthesized facial animations ("synthetic AV"). Finally, subjects were also 
presented with the speech signals while watching the genuine corresponding videos of the talking 
faces ("natural AV"). 

The experiment consisted of six rounds of three blocks, where each block corresponded to one of the 
AV conditions. Six sentences were presented in each block. The order in which the three conditions 
were presented was randomized within rounds and across rounds. Each sentence was chosen 

Figure 3: An example of frames from a generated video (top row) shown alongside the 
corresponding real video (bottom row). NB: we include such images for illustration purposes only: 
the real/generated GRID images were shown to participants in the study. 
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randomly from a pool of all 1,000 sentences from each of the four speakers, and the order of speakers 
was randomized. 

Each subject therefore listened to 36 sentences for each of the three AV types. The participants took a 
brief rest for one minute after every round. 

2.3.3 Data and analysis 
Between each sentence, the participants were asked to select the keywords they had heard, from a list 
on the screen. The list allowed participants to select all possible GRID sentence combinations while 
non-keyword terms were pre-selected and displayed for them in each trial. The selection of the 
keywords by the participants on the monitor allowed to compute their comprehension score 
automatically. 

The data was therefore collected and analyzed in a double-blind fashion: neither the experimenter nor 
the participant knew which type of video or what specific sentence was presented. Importantly, the 
participants were not informed of the synthesized nature of part of the videos. 

The scoring was expressed as the percentage of keywords correctly identified in each trial. The 
scores for each type of AV signal were extracted by averaging across trials and rounds for each 
participant. The responses for each keyword were also recorded, paired with the corresponding 
presented keyword. 

2.3.4 Hardware and software 
The experiment took place in a an acoustically and electrically insulated room (IAC Acoustics, UK). 
A computer running Windows 10 placed outside the room controlled the audiovisual presentation and 
data acquisition. The audio component of the stimulus was delivered diotically at a level of 70 dB(A) 
SPL using ER-3C insert earphones (Etymotic, USA) through a high-performance sound card (Xonar 
Essence STX, Asus, USA). The sound level was calibrated with a Type 4157 ear simulator 
(Brüel&Kjær, DK). The videos were delivered through a fast 144 Hz, 24-inch monitor (24GM79G, 
LG, South Korea) set at a refresh rate of 119.88 Hz. The monitor was mounted at a distance of one 
meter from the participant. The videos were played in full screen such that the dimensions of the 
talking heads appeared life-sized. 

To ensure that the audio and video components of the stimuli were presented in synchrony, the 
audiovisual latency of the presentation system was characterized. A photodiode (Photo Sensor, 
BrainProducts, Germany) attached to the display and an acoustic adaptor (StimTrak, BrainProducts, 
Germany) attached to the audio cable that was connected to the ear phones were employed to record 
the output of a prototypical audiovisual stimulus. The latency difference between the two stimuli 
modalities was found to be below 8 ms.  

2.4 Audiovisual automated speech recognition 

The same 36 sentences that were randomly selected and presented to each participant for each 
condition were also analyzed with an audiovisual speech recognizer (AVSR). We fine-tuned the pre-
trained model from Ma et al. (2021) for ten epochs on the 29 GRID speakers which were not used in 
the behavioral study. The AVSR employed ResNets to extract features directly from the mouth 
region coupled with a hybrid connectionist temporal classification (CTC) objective/attention 
architecture. The output of the model was then analyzed in the same way as the human data. 
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3 Results 

To assess the realism of our facial animations, we first investigated whether humans could 
discriminate between the synthesized videos and the natural ones. In a large online Turing test on 
1,217 subjects, we found that the median of the correct responses was exactly at the chance level of 
50% (Figure 4), as was the result on a more controlled Turing test performed on 50 subjects. 
Moreover, the 18 participants of the speech-in-noise comprehension experiment were not told of the 
nature of half of the videos, and none reported finding anything unusual regarding the videos in a 
questionnaire completed following the experiment. To the average human observer, the synthesized 
videos were thus indistinguishable from the natural ones. 

We then proceeded to assess the potential benefits of the synthesized talking faces on speech-in-noise 
comprehension. We found that both the synthesized and the natural videos significantly improved 
comprehension in our participants when compared to the audio signal alone (Figure 5). 

The comprehension for the audio-only type was 50.8% ± 7% (mean and standard error of the mean). 
The synthesized and natural videos improved speech comprehension to 61.8% ± 7% and 71.2% ± 6% 
respectively. The relative improvement between the audio-only and synthetic AV signals was about 
22% (p = 2.3×10−5, w=1, two-sided Wilcoxon signed-rank test for dependent data with Benjamini–

Figure 4: Histogram of the percentage of correct responses in the Turing test on discriminating 
between the synthetic and the natural videos. The median was exactly at the chance level of 50%. 

 

Figure 5: Speech comprehension in noise without a visual signal, with the synthesized facial 
animations, as well as with the natural AV signals. Error bars represent the standard error of the 
mean, and the dark grey points show the average score per subject. 
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Hochberg FDR correction). The relative improvement of the natural AV signals as compared to the 
audio signal alone was about twice as large, about 40% (p = 2.3×10−5, w=0). The relative difference 
between the synthetic AV signals and the natural ones was statistically significant as well, at 15% (p 
= 7.6×10−5, w=5). 

We further analyzed the differences between the AV gain in speech comprehension provided by the 
synthetic and the natural AV signals. In particular, we computed confusion matrices between the 
different key words of the sentences that the volunteers were asked to understand. The confusion 
matrices were normalized such that, for each particular keyword, the probability to select any other 
keyword was one. We then subtracted answer-response pair frequency of the confusion matrix of the 
synthesized AV signals from that of the natural AV signals (Figure 6A). As indicated by the presence 
of mostly positive differences on the leading diagonal of the resulting matrix, the natural videos 
outperformed the synthesized videos in terms of providing categorically unequivocable cues. The 
differences in the remaining sectors of the matrix shed some light into the reason the natural videos 
performed better. For example, matrix elements highlighted by the green rectangle in Figure 6A 
demonstrate that the synthesized videos encouraged participants to mistakenly select the letter ‘a’ 
when presented with the keywords ‘o’ and ‘n’. Similarly, the yellow arrows highlight that 
participants were more likely to mistake the letter ‘t’ for the letter ‘g’ and the digit ‘two’ for the digit 
‘seven’ when presented with synthesized videos relatively to the natural videos. 

We also subtracted the answer-response pair frequency of the confusion matrix of the synthetic AV 
signals from that obtained from audio-only signals (Figure 6B). The mostly negative differences on 
the leading diagonal of the resulting matrix show that the synthetic videos improved the subjects’ 

Figure 6: Confusion matrices showing the difference in frequency of presented keyword and 
participant response pairs between A) the natural audiovisual condition and the synthesized 
audiovisual condition and B) the audio-only condition and the synthesized audiovisual condition, in 
humans. The color keywords are represented by their first letter in uppercase, those corresponding 
to a letter are shown in lowercase, and the number keywords by their digit. The magnitude of 
statistically significant pairs is highlighted in color (bootstrapped permutation test, alpha=0.05, 
FDR corrected). A blue color indicates that subjects were significantly more likely to select a 
particular keyword when being presented with the synthesized visual signal as opposed to A) the 
natural video and B) no video. 
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ability to discriminate between keywords compared to the audio-only condition. The green arrow in 
Figure 6B highlights one exception: the synthetic videos encouraged participants to mistakenly select 
the keyword ‘a’ when presented with ‘o’, congruently with the results shown in panel A. The yellow 
annotations indicates that the confusion of the keywords ‘t’ and ‘two’ also persists. 

Nonetheless, the synthesized videos were found to disambiguate the keyword ‘b’, notable for being 
hard to distinguish from other consonants pronounced in combination with the phoneme /iː/ such as 
the keywords ‘g’ and ‘d’. 

We then determined whether an AVSR could benefit from the synthetic facial animations as well. 
We found that the scores of the AVSR improved by about 13% for the synthetic AV material as 
compared to the audio-only signals (Figure 7). However, this improvement was significantly lower 
than the corresponding improvement of 22% in human speech-in-noise comprehension (p = 0.007, 
t=3.04, two-sided single-value t-test). Also, the natural AV signals improved the scores of the AVSR 
by 40% when compared to the audio signal alone, which was comparable to our result on the gain in 
human speech comprehension. 

We also analyzed the confusion matrices for the AVSR data (Figure 8), which were calculated in the 
same way as those for the human behavioral data. The natural videos outperformed the synthetic 
videos across most keywords, in particular allowing the AVSR to disambiguate ‘t’ from ‘g’, a finding 
that mirrored those made for human listeners. The letter ‘t’ is also more frequently mislabeled when 
the AVSR has access to the synthetic videos than when no visual signal is available (yellow 
annotations in Figure 8A and B). The green rectangles visible in panels A and B of Figure 8 highlight 
that the synthetic visual representation for the keywords ‘n’, ‘m’ and ‘o’ were a source of confusion 
for the AVSR, much like for humans. 

Nonetheless, the black annotations in Figure 8 highlight that the synthetic videos had a significantly 
lower chance to induce the AVSR to label a ‘b’ as a ‘p’ than their natural counterparts, and that they 
significantly decreased the chance that the AVSR labelled ‘i’ as ‘y’ when compared to the audio-only 
condition. 

Figure 7: The scores of an AVSR were improved by the synthetic videos, although the gain was less 
than that experienced by humans. The natural AV signals led to a higher gain, similar to that of our 
human volunteers. 
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4 Discussion 

To the best of our knowledge, our results provide the first demonstration that end-to-end synthetic 
facial animations can improve speech-in-noise comprehension in humans. Our finding therefore 
suggest that facial animations generated from deep neural networks can be employed to aid with 
communication in noisy environments. A next step towards such a practical application will be to 
investigate the benefit of the facial animations in people with hearing impairment, such as patients 
with mild-to-moderate sensorineural hearing loss as well as patients with cochlear implants. 

However, our results also showed that the speech-in-noise comprehension is yet higher when 
listeners see the natural videos. This result contrasts with our other finding that humans cannot 
distinguish between the real and the synthesized videos, neither when explicitly instructed to do so in 
an online Turing test nor as a spontaneous judgement while carefully and procedurally attending to 
the videos in a speech-in-noise task using short sentences. We note, however, that the standardized 
nature of the sentences in the GRID corpus might have hindered the differentiation between the 
natural and synthetic videos. On the other hand, the Turing test also employed audiovisual material 
from the TIMIT and CREMA datasets that offer more realistic speech content, such that the 
standardized nature of the GRID corpus alone cannot explain the observed lack of differentiation in 
the Turing test. It therefore appears that the synthetic videos lack certain aspects of the speech 
information, although the lack of this information is not obvious to human observers. 

One clue as to why that may be lies in the choice of discriminators employed in the synthesizer GAN 
architecture: the GAN was optimized for realism and audiovisual synchrony rather than for speech 

Figure 8: Confusion matrices showing the difference in frequency of presented keyword and 
participant response pairs between A) the natural audiovisual condition and the synthesized 
audiovisual condition and B) the audio-only condition and the synthesized audiovisual condition, in 
the AVSR predictions. The color keywords are represented by their first letter in uppercase, those 
corresponding to a letter are shown in lowercase, and the number keywords by their digit. The 
magnitude of statistically significant pairs is highlighted in color (bootstrapped permutation test, 
alpha=0.05, FDR corrected). In particular, a blue element indicates that the AVSR was significantly 
more likely to yield the corresponding prediction as a result of having access to a synthesized visual 
signal as opposed to A) a natural video and B) no video. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.18.471222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.18.471222
http://creativecommons.org/licenses/by/4.0/


  Animations Improve Speech Comprehension 

 
11 

comprehension. Certain keywords pronounced in combination with alveolar and bilabial nasal 
consonants such as ‘n’ and ‘m’ or others pronounced in combination with (palato)alveolar affricates 
and plosives such as ‘g’, ‘t’ and ‘two’ were poorly disambiguated by the synthetic videos. This 
finding suggests that the GAN may have avoided the issue of synthesizing labial and coronal visemes 
featuring complex interactions of tongue, teeth, and lip movements to some extent, for the sake of 
realism and at the expense of comprehension. Still, the result that these videos disambiguated 
consonants pronounced in combination with the phoneme /iː/ (letter keywords ‘b’ and ‘p’) and 
vowels pronounced in combination with the diphthong /aɪ/ (letter keywords ‘i’ and ‘y’) signifies that 
their effectiveness at improving speech comprehension cannot be due to temporal cues alone but 
must include categorical cues. 

From a different perspective, the synthesized audiovisual signals may aid speech comprehension in 
two ways. First, access to the visual signal may improve the availability of information to human 
listeners, allowing the brain to perform internal denoising through multimodal integration. This may 
be aided by the fact that the visual signals were synthesized from clean speech signals without 
background noise. Second, the synthesizer may be increasing the signal-to-noise ratio externally by 
adding information regarding the dynamics of visual speech. Such information would be learned by 
the GAN during training and can be beneficial in speech-in-noise tasks. The latter conclusion is 
supported by the results presented by Hegde et al. (2021), who recently showed that hallucinating a 
visual stream by generating it from the audio input can aid to reduce background noise and increase 
speech intelligibility. Importantly, they also showed that humans scores on subjective scales such as 
quality and intelligibility were higher for speech denoised in such a way. Moreover, our finding that 
an AVSR performs better when it has access to a synthetic facial motion than when it relies on the 
speech signal alone also suggests that our synthesized facial animations contain useful speech 
information. We caution, however, that there exist many unknowns regarding the interaction of the 
AVSR and the GAN-generated stimuli, limiting the further interpretation of the ASVR's performance 
on these stimuli. 

As a limitation of our experiment, we did not investigate the effects of different temporal lags 
between the auditory and the visual signals. In a realistic audiovisual hearing aid scenario, the 
synthetic video signal would be delayed with respect to the audio, due to the sampling and processing 
time required. Because the auditory signal is often slightly delayed with respect to the visual signal, 
this inverse temporal latency could influence the AV benefit. Moreover, we did not investigate the 
effects of different levels and types of background noise on the ability of the synthesizer to accurately 
reproduce visual speech. In addition, the highly standardized sentences of the GRID corpus, in which 
the different keywords occurred at the same timing, meant that dynamic prediction was not required 
for their comprehension. Our study could therefore not assess the influence of the synthetic facial 
animations on this important aspect of natural speech-in-noise comprehension. 

Therefore, a natural progression of this work will be to perform on-line experiments with noise-
hardened versions of the synthesizer, such as that proposed by Eskimez et al. (2020). Further studies 
will also look at improving the synthesizer model through the implementation of targeted loss 
models, informed by the findings of the confusion matrix analysis presented here. 

Taken together, our results suggest that training a GAN-based model in a self-supervised manner and 
without the use of phonetic annotations is an effective method to capture the lip dynamics relevant to 
human audiovisual speech perception in noise. This research paves the way for further understanding 
of the way speech is processed by humans and for applications in devices such as audiovisual hearing 
aids. 
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