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ABSTRACT 
 
Converging evidence suggests that neural populations within human non-primary auditory 
cortex respond selectively to music. These neural populations respond strongly to a wide range 
of music stimuli, and weakly to other natural sounds and to synthetic control stimuli matched to 
music in many acoustic properties, suggesting that they are driven by high-level musical 
features. What are these features? Here we used fMRI to test the extent to which musical 
structure in pitch and time contribute to music-selective neural responses. We used voxel 
decomposition to derive music-selective response components in each of 15 participants 
individually, and then measured the response of these components to synthetic music clips in 
which we selectively disrupted musical structure by scrambling either the note pitches and/or 
onset times. Both types of scrambling produced lower responses compared to when melodic or 
rhythmic structure was intact. This effect was much stronger in the music-selective component 
than in the other response components, even those with substantial spatial overlap with the 
music component. We further found no evidence for any cortical regions sensitive to pitch but 
not time structure, or vice versa. Our results suggest that the processing of melody and rhythm 
are intertwined within auditory cortex. 
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INTRODUCTION 
 
Growing evidence suggests the existence of neural populations in bilateral non-primary auditory 
cortex that respond selectively to music and thus seem likely to figure importantly in musical 
perception and behavior (Leaver and Rauschecker, 2010; Rogalsky et al., 2011; Fedorenko et 
al., 2012; Tierney et al., 2013; LaCroix et al., 2015; Norman-Haignere et al., 2015, 2021). The 
clearest initial evidence for these neural populations came from a component analysis of fMRI 
responses. This analysis revealed a response component located in anterior and posterior 
regions of the superior temporal gyrus (STG) that responded more strongly to music than to 
other real-world sounds (Norman-Haignere et al., 2015). The finding of music selectivity and its 
anatomical distribution has since been replicated in two other participant groups (Boebinger et 
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al., 2021). In addition, the music component’s response is much lower to synthetic control 
stimuli matched to music in many acoustic properties, even though these synthetic stimuli 
produce very similar responses in primary auditory cortex (Norman-Haignere and McDermott, 
2018). These results have recently been further confirmed by intracranial recordings, which 
show individual electrodes with clear selectivity for music (Norman-Haignere et al., 2021). 
However, the musical features that drive this response remain unknown. 
 
Melody and rhythm are often assumed to be distinct organizational dimensions of music, both 
colloquially and within the field of music theory (Jackendoff and Lerdahl, 2006). Consistent with 
this idea, numerous examples exist of neuropsychological patients with focal brain damage who 
show selective deficits in either melody or rhythm perception (Grant-Allen, 1878; Peretz, 1990; 
Peretz and Kolinsky, 1993; Peretz et al., 2002, 1994; Liégeois-Chauvel et al., 1998; Ayotte et 
al., 2000; Piccirilli et al., 2000; Peretz and Coltheart, 2003; Peretz and Hyde, 2003; Di Pietro et 
al., 2004; Hyde and Peretz, 2004). While these findings in “amusia” patients suggest that 
distinct neural mechanisms underlie processing of these two domains, this conclusion is 
complicated by the fact that many of these patients display deficits in other non-musical 
domains (Brust, 1980; Mavlov, 1980; Mazzucchi et al., 1982; Tanaka et al., 1987; Mendez and 
Geehan, 1988; Tramo et al., 1990, 2002; Eustache et al., 1990; Fries and Swihart, 1990; 
Hofman et al., 1993; Peretz et al., 1994; Johkura et al., 1998; Piccirilli et al., 2000; Di Pietro et 
al., 2004; Hattiangadi et al., 2005; Sihvonen et al., 2016), and in some cases their musical 
deficits can be explained in terms of more basic perceptual deficits (Tanaka et al., 1987; Fries 
and Swihart, 1990; Johannes et al., 1998; Johnsrude et al., 2000; Tramo et al., 2002; Wilson et 
al., 2002; Hattiangadi et al., 2005). To definitively establish a neural dissociation between the 
processing of high-level musical structure in pitch versus time, it would be necessary to 
demonstrate a selective deficit in one but not the other domain that is limited to music, and 
which cannot be explained by lower-level perceptual deficits or other cognitive domains. 
Although some cases come close to meeting these criteria (e.g. patient C.N. described in Peretz 
and Kolinsky, 1993; Peretz et al., 1994; Peretz, 1996; Dalla Bella and Peretz, 1999), to our 
knowledge no such fully unambiguous cases have been reported. 
 
Indeed, a large body of behavioral research has shown that processing of melodic and rhythmic 
structure are not fully separable, but rather are integrated to some extent in both perception and 
memory (Jones et al., 1982, 1987; Kidd et al., 1984; Boltz, 1999; Prince et al., 2009; Prince, 
2011; but see e.g. Palmer and Krumhansl, 1987). Consistent with this idea, prior neuroimaging 
studies have found similar brain regions in the temporal lobes to be involved when making 
same-different judgements about either the pitch or duration of random tone sequences 
(Griffiths et al., 1999), as well as when detecting melodic or rhythmic errors in short tonal 
melodies (Krumhansl and Zatorre, 2003a). Similarly, brain regions that respond more to intact 
than scrambled music show sensitivity to both pitch and rhythm scrambling (Fedorenko et al., 
2012). On the other hand, multiple studies have found that different cortical regions are 
sensitive to aspects of spectrotemporal modulation that may be related to melody and rhythm: 
anterior regions show selectivity for lower temporal and higher spectral modulation rates, and 
posterior regions show selectivity for high temporal and low spectral modulation rates 
(Schönwiesner and Zatorre, 2009; Santoro et al., 2014; Norman-Haignere et al., 2015; Hullett et 
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al., 2016; Hamilton et al., 2018). However, modulation tuning is unable to explain non-primary 
cortical responses like those selective for music (Norman-Haignere and McDermott, 2018), and 
thus the relationship between modulation tuning and higher-order melodic and rhythmic 
structure remains unclear. 
 
While a small handful of neuroimaging studies suggest some degree of integrated processing of 
the pitch and temporal structure of music, those studies did not establish whether the brain 
regions involved were truly selective for music. Thus, it is unclear whether the observed effects 
are related specifically to the processing of music, or whether they instead reflect more general 
acoustic features or cognitive processes. One challenge is that true music selectivity is 
generally weak when measured using standard fMRI methods, likely as a consequence of the 
coarse spatial resolution of fMRI and the fact that voxels pool responses from hundreds of 
thousands of neurons that often have different tuning properties. The component analysis from 
our previous study (Norman-Haignere et al., 2015) attempts to overcome these challenges by 
unmixing overlapping response patterns within voxels in order to reveal a response component 
with clear selectivity for music. 
 
In the current study, we examined the extent to which cortical music selectivity reflects 
sensitivity to pitch and temporal structure in music. We measured fMRI responses to synthetic 
MIDI-generated music clips in which either the pitch or temporal structure of the music was 
corrupted. Then, using methods from our previous study (Norman-Haignere et al., 2015), we 
measured the effect of these scrambling manipulations on the music-selective component of 
auditory cortical responses.  
 
 
METHODS 
 
Participants 
 
Fifteen young adults (7 self-identified female, 8 self-identified male, 0 self-identified non-binary; 
mean age = 25.6 years, SD = 4.5 years) participated in the experiment. Of these participants, 
12 had some degree of musical training (mean = 10.1 years of training, SD = 6.7). All 
participants were fluent English speakers and reported normal hearing. The study was approved 
by the Committee on the Use of Humans as Experimental Subjects (COUHES) at MIT, and 
written informed consent was obtained from all participants. Participants were compensated 
with an hourly wage for their time. 
 
Overview of experimental design 
 
For the current study, participants completed multiple scanning sessions, which included a set 
of fMRI “localizer” scans to estimate each participant’s voxel weights for the components from 
our previous study (Norman-Haignere et al., 2015), and the main fMRI experiment in which 
responses were measured to different music conditions. For the component localizer, 
participants were scanned while they listened to a set of 30 natural sounds. Based on the voxel 
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responses to these sounds, we then estimated each participant’s voxel weights that best 
approximated the previously inferred response profiles from the original study (Norman-
Haignere et al., 2015). We then applied these weights to participants’ voxel responses in the 
main experiment, in which they listened to synthetic music clips that had been manipulated by 
scrambling either the note pitches and/or onset times. This process allowed us to examine how 
the response components from our previous study (Norman-Haignere et al., 2015) respond to 
the new stimulus conditions, and thus the extent to which music selectivity reflects pitch vs. 
temporal structure in music.  
 
Component localizer  
 
Overview of voxel decomposition 
Because a single fMRI voxel pools responses from hundreds of thousands of neurons, voxel 
responses may be modeled as the sum of the responses of multiple underlying neuronal 
populations. In our previous work, we found that voxel responses to natural sounds in auditory 
cortex can be approximated by a weighted sum of six canonical response profiles, or 
“components:”  
 

𝒗! ≈ #𝒓"𝑤",!

$

"%&

 

(Eq. 1) 
 
where 𝒗! is the response (a vector) of a single voxel to the sound set,  𝒓" represents the 𝑘th 
component response profile across sounds, which is shared across all voxels, and 𝑤",! 
represents the weight (a scalar) of component 𝑘 in voxel 𝑖. If we concatenate the responses of 
many voxels into a sound x voxel data matrix, 𝐷, this approximation corresponds to matrix 
factorization: 
 

𝐷 ≈ 𝑅𝑊 
(Eq. 2) 

 
where 𝑅 is a sound x component response matrix and 𝑊 is a component by voxel weight 
matrix. The component responses and weights were jointly inferred in our prior studies by 
maximizing the non-Gaussianity of the weights across voxels, akin to standard algorithms for 
independent components analysis (ICA). The voxel decomposition method is described in detail 
in our previous paper (Norman-Haignere et al., 2015) and code is available online 
(https://github.com/snormanhaignere/nonparametric-ica). 
 
Deriving components from scratch requires a large amount of data because both the component 
responses (𝑅) and weights (𝑊) need to be inferred, which requires using statistics computed 
across thousands of voxels (requiring multiple participants). However, if the component 
responses are known (e.g. from a prior study), the voxel weights can be inferred in a single new 
participant using linear regression (separately for each voxel). In addition, once the component 
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voxel weights are known, the component responses to a new set of sounds, measured in the 
participants for whom the weights are known, can also be easily inferred using linear regression 
(separately for each sound). This latter procedure is analogous to identifying a set of voxels that 
respond to a particular ‘localizer’ contrast, and then measuring their response to a new set of 
stimuli.  
 
Stimuli 
To reduce the amount of scan time needed to infer the component weights, we chose a subset 
of 30 sounds from our original 165-sound set that were best able to identify the six components. 
These sounds were selected by greedily discarding sounds so as to minimize the expected 
variance of the inferred component weights. Assuming isotropic voxel noise, the expected 
variance of the weights, inferred by ordinary least-squares (OLS) regression, is proportional to 
(Dale, 1999): 
 

trace((𝑅'𝑅)(&) 
(Eq. 3) 

 
where 𝑅 is the sound x component response matrix. Intuitively, the optimization chooses sounds 
that have high response variance for each component (e.g., lots of music and non-music 
sounds for the music-selective component), and where that response variance is relatively 
uncorrelated across components. Each column/component of 𝑅 was z-scored prior to 
performing our greedy optimization (which amounts to iteratively discarding rows of 𝑅 to 
minimize the equation above). 
 
Stimulus presentation and scanning procedure 
The data for the component localizer came from previous studies on the same participants (n = 
9) and from new participants scanned for this study (n = 6). As a result, there were three 
versions of the component localizer, differing in the minor details of stimulus presentation and 
scanning parameters (see Table 1), but which otherwise were very similar. All three versions 
contained the same set of 30 2-second natural sounds. In all versions, stimuli were presented 
during scanning in a “mini-block design,” in which each 2-second sound was repeated multiple 
times in a row. For versions 1 and 2, stimuli were repeated 3 times in a row, and 5 times for 
version 3. During scanning, stimuli were presented over MR-compatible earphones 
(Sensimetrics S14) at 75 dB SPL. Each stimulus was presented in silence, with a single fMRI 
volume collected between each repetition (i.e. “sparse scanning”; Hall et al., 1999). To 
encourage participants to pay attention to the sounds, either the second or third repetition in 
each “mini-block” was 8dB quieter (presented at 67 dB SPL), and participants were instructed to 
press a button when they heard this quieter sound. Data pre-processing, denoising, and initial 
GLM analyses were the same as in the main experiment (see “fMRI data acquisition and 
analysis” below). 
 
Component weight estimation 
To estimate each participant’s component weights (𝑊), we multiplied each participant’s data 
matrix of voxel responses to the 30 natural sound stimuli (𝐷)*; sound x voxel) by the 
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pseudoinverse of the known component response matrix for those same 30 sounds (𝑅)*; sound 
x component): 
 

𝑊 = (𝑅)*'𝑅)*)(&𝑅)*'𝐷)* 
(Eq. 4) 

 
Multiplying by the pseudoinverse is equivalent to performing ordinary least-squares regression. 
For visualization purposes (e.g. Figures 2B and 3A), component weights were averaged across 
participants in standardized anatomical coordinates (Freesurfer’s FsAverage template), and 
plotted with a color scale that spans the central 95% of the weight distribution for each 
component. 
 
Localizer  Version 1  Version 2  Version 3  

MRI scanner  Trio  Prisma  Trio  

Head coil  32-channel 32-channel 32-channel 

TR  3.59  3.4  3.4  

TA  1.19  1.02  1  

TE  30ms  33ms  30ms  

Flip angle  90  90  90  

Number of slices  45 (whole-brain) 48 (whole-brain) 15 (partial coverage) 

Slice thickness  2.8 mm  3 mm  4 mm  

Slice gap  10%  10%  10%  

Matrix  96 x 96  96 x 96  96 x 96  

Voxel size  2 x 2 x 2.8 mm 2.1 x 2.1 x 3 mm 2.1 x 2.1 x 4 mm 

Simultaneous multi-slice 
acceleration (SMS)  

3  4  none  

Number of stimuli  30  192  165  

Number of stimulus rep. in 
each “mini-block” 

3  3  5  

Number of stimulus blocks per 
run  

30 24 15 

Run duration  6.5 min 5.5 min 5.4 min 

Number of runs  10  48  33  

Number of stimulus repetitions 10  6  3  

Number of participants who 
completed this version 

6 7 2 

 

Table 1. Scan parameters for the three versions of the component localizer scan sessions. 
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Component response estimation 
The goal of the current study was to then use participants’ inferred component weights to 
estimate the component responses to each of the stimulus conditions in the main experiment. 
To do this, we multiplied participants’ data matrix of voxel responses to the experimental stimuli 
(𝐷+,-) by the pseudoinverse of the estimated component weights: 
 

𝑅+,- = 𝐷+,-𝑊'(𝑊𝑊')(& 
(Eq. 5) 

 
Unless otherwise noted in the text, we included all voxels in a large anatomical mask region 
encompassing bilateral superior temporal and posterior parietal cortex (shown as colored 
regions in Figures 2B and 3A, and white outlines in Figures 3A and 5A & C). For analyses 
comparing different cortical regions (e.g. right and left hemispheres), we estimated the 
component response for each cortical region separately, using the voxel responses and 
estimated component weights from the corresponding subset of voxels. 
 
Main experiment 
 
Stimuli 
The stimuli for the main experiment consisted of 10-second clips of intact and scrambled 
versions of synthetic music, as well as several non-music control conditions. Specifically, we 
created versions of each tonal melody in which we manipulated (1) the note pitches that made 
up each melody, (2) the note onset times within the melody, and (3) both the note pitches and 
onset times. So that we could examine the effect of manipulating rhythmic structure in the 
absence of pitch structure, we also included a set of synthetic drum stimuli and scrambled 
versions of each of those stimuli in which we manipulated the note onset times. 
 
To construct these stimuli, we first selected a set of 20 melodies from the stimulus set used in a 
previous study by our group (Fedorenko et al., 2012). These melodies originated from 
polyphonic musical pieces from a variety of genres common in modern Western musical 
traditions, each with complex melodic and rhythmic content, and were rendered in MIDI (musical 
instrument digital interface) format. Each piece contained multiple instrumental tracks, which 
were all converted to a piano timbre for use in the experiment. The keys of the melodies were 
assigned by drawing (without replacement) from a pool of all 12 major and 12 minor keys 
(preserving the mode, i.e. “major” vs. “minor”), and the key of each melody was then changed 
by adding/subtracting a constant (corresponding to the difference in semitones between the 
original and desired keys) to the note pitches. As a result, the 14 major melodies included in the 
stimulus set spanned all 12 major keys (with C# and G# major occurring twice), and the 6 minor 
melodies were all in different keys. 
 
We then created three additional versions of each melody (20 unique melodies x [1 intact + 3 
scrambled versions] = a total of 80 MIDI melodies), in which the musical structure was 
manipulated by scrambling either the pitches and/or timing of the notes (Figure 1). MIDI 
represents music as a matrix of notes, with different columns specifying the onset, duration, 
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pitch, and instrumentation of the notes, which makes it possible to manipulate these features 
independently and to scramble across-note structure without altering acoustic properties of 
individual notes. In all cases, within-chord structure was preserved by performing the scrambling 
operation on clusters of notes with a similar onset time (defined for our purposes as within 0.1 
beats of each other), rather than on individual notes (Figure 1A & B). This is a more 
conservative scrambling procedure than was used in our previous study using related methods 
(Fedorenko et al., 2012). For the pitch-scrambled melodies, each note cluster was shifted either 
up or down by 0-2 semitones (sampled from a discrete, uniform distribution), which disrupted 
both melodic and across-chord harmonic structure (Figure 1C & D). For time-scrambled 
melodies, the inter-onset intervals between note clusters were jittered by adding an amount 
drawn from a uniform distribution spanning ±0.25 beats (the tempi of the MIDI stimuli ranged 
from 72 to 220 bpm, so 0.25 beats corresponded to between 68-208ms depending on the 
stimulus example), but with the constraint that no inter-onset interval could be shorter than 0.1 
beats. To ensure that the total duration of the time-scrambled melody was the same as the 
original version, we divided the vector of jittered inter-onset intervals by its mean and then 
multiplied it by the mean of the original vector of inter-onset intervals. Next, the jittered inter-
onset intervals were randomly reordered, and the note onset times of the scrambled piece were 
derived from these reordered inter-onset intervals (via cumulative summation). This process 
effectively eliminated any isochronous beat or metrical hierarchy (Figure 1E). For the melodies 
that were both pitch- and time-scrambled, they first went through the time-scrambling procedure 
and then the pitch-scrambling procedure. This set of 80 MIDI melodies was supplemented by a 
set of 20 MIDI drum stimuli, chosen to represent a variety of genres, and versions of these 
melodies that were time-scrambled following the procedure described above (Figure 1F), for a 
total of 40 MIDI drum stimuli. Each MIDI file was converted into audio using AppleScript and 
QuickTime Player 7 (Ellis, 2014).  
 
To complement these 120 MIDI music stimuli, we selected 16 additional non-music stimuli to 
serve as controls for assessing selectivity. Specifically, we chose 4 English speech excerpts 
(taken from audiobook recordings and radio broadcasts), 4 foreign speech excerpts (German, 
Hindi, Italian, Russian), 4 animal vocalizations (chimpanzees, cow, sheep, wolf), and 4 
environmental sounds (footsteps, ping-pong ball, power saw, copy machine). All stimuli were 
resampled to 20 kHz, trimmed to be 10 seconds long, windowed with a 25ms half-Hanning-
window ramp, and normalized to have the same RMS. 
 
Because the MIDI scrambling manipulations were intended to be subtle and to preserve some 
surface aspects of musical structure (e.g. consonance/dissonance amongst simultaneous notes 
within a chord), an online experiment (via Amazon’s Mechanical Turk) was used to ensure that 
the manipulation produced detectable changes in musical structure. In this experiment, 
participants listened to the same 120 MIDI stimuli used in the full experiment (n = 46; 16 self-
identified female, 27 self-identified male, 0 self-identified non-binary, and 3 did not answer; 
mean age = 42.9 years, SD = 11.9 years; an additional 7 participants completed the experiment 
but were excluded due to performance of <60% in every condition). Stimuli were presented in 
pairs, with each trial containing an intact and scrambled version of the same MIDI stimulus. 
Participants were instructed that one of the stimuli was “corrupted by having the melody and/or 
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the note timing disrupted,” and were told to choose which of the two melodies had been 
“corrupted.” Stimuli were blocked by condition, so that each participant completed four blocks of 
20 trials each (i.e. intact vs. pitch-scrambled, intact vs. time-scrambled, intact vs. pitch-and-time-
scrambled, and intact vs. time-scrambled drums); participants were told which type of 
“corruption” to listen for in each block. Prior to completing the experiment participants completed 
a headphone check to help ensure they were wearing headphones or earphones (Woods et al., 
2017); we have found that this headphone check is typically sufficient to obtain performance on 
par with that of experiments conducted in the lab under more controlled listening conditions 
(Woods and McDermott, 2018; McPherson et al., 2020; Traer et al., 2021). 
 
Performance was well above chance in all four blocks, indicating that the scrambling 
manipulation was clearly detectable in all conditions (pitch-scrambling: median = 87.5%, 
interquartile range or IQR = 20%; time-scrambling: median = 100%, IQR = 5%; pitch-and-time-
scrambling: median = 100%, IQR = 5%; time-scrambling drums: median = 100%, IQR = 5%; 
one-sample Wilcoxon signed rank tests comparing percent correct to chance performance of 
50%; all p’s < 1e-08, two-tailed). 
 

 
 
Figure 1. Scrambling procedure for MIDI music stimuli. A. Schematic of scrambling procedure. First, notes with the 
same onset (within 0.1 beats) were grouped together, and scrambled as a unit. For pitch-scrambling, each note 
cluster was shifted by up to ±2 semitones. For timing-scrambling, the inter-onset intervals (IOIs) between note 
clusters were jittered by adding an amount drawn from a uniform distribution spanning ±0.25 beats (with the 
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constraint that no IOI could be shorter than 0.1 beats). The jittered IOIs were normalized to ensure the total duration 
of the timing-scrambled melody was the same as the original intact version and were randomly reordered. For the 
melodies that were both pitch- and timing-scrambled, they first went through the timing-scrambling procedure and 
then the pitch-scrambling procedure. B. Intact and scrambled versions of an example MIDI melody stimulus. C. 
Histograms showing the distribution of note pitch classes averaged across the 14 MIDI melodies in major keys, in 
both their intact (top) and pitch-scrambled (bottom) versions. For the purpose of this analysis, all melodies were 
transposed to C major. Pitch class distributions were weighted by note durations, as computed using the “pcdist1” 
function in the MATLAB MIDI Toolbox (Eerola and Toiviainen, 2004). For the intact melodies (top), certain pitch 
classes are more common than others, reflecting the tonal hierarchy typical of major keys in Western music. The 
pitch-scrambling procedure (bottom) disrupts melodic and tonal structure, leveling out the distribution of pitch classes 
to a certain extent. D. Same as C, but for the 6 MIDI melodies in minor keys. E. Histograms showing the auto-
correlation of note onset times in units of beats averaged across all 20 intact (top) MIDI melodies and their timing-
scrambled versions (bottom). Onset times were weighted by note durations, as computed using the “onsetacorr” 
function in the MATLAB MIDI Toolbox (Eerola and Toiviainen, 2004). For the intact melodies (top), peaks can be 
seen on every beat (darker gray bars) that reflect the isochronous beat and metrical structure typical of Western 
music. The timing-scrambling procedure (bottom) disrupts this metrical structure, resulting in no clear peaks in the 
auto-correlation function at multiples of the beat. F. Same as E, but for the 20 MIDI drum stimuli.  
 
 
Stimulus presentation and scanning procedure 
During the scanning session for the main experiment, auditory stimuli were presented over MR-
compatible earphones (Sensimetrics S14) at 80 dB SPL. The 10-second stimuli were presented 
back-to-back with a 500ms inter-stimulus interval. To encourage participants to pay attention to 
the stimuli, each stimulus either ramped up (by 6 dB) or down (by 9 dB) in level over 1 second 
starting at the 5s point, and the participant indicated whether each stimulus got “louder” or 
“quieter” via button press. The increment and decrement values were chosen to approximately 
equate the subjective salience of the level change. Participants’ average performance on this 
task was 97.1% correct (SD = 2%), and performance never fell below 85% correct for any 
participant on any run. 

 
The scanning session for the main experiment consisted of twelve 7.3-minute runs (all 
participants completed 12 runs, except for one participant who only completed 8 runs), with 
each run consisting of thirty-four 10-second stimuli and six 10-second silent periods during 
which no sound was presented. These silent blocks were the same duration as the stimuli, and 
were distributed randomly throughout each run, providing a baseline. The thirty-four stimuli 
presented in each run consisted of five stimuli from of each of the MIDI music conditions 
(“intact,” “pitch-scrambled,” “time-scrambled,” “pitch-and-time-scrambled,” “intact drums,” and 
“time-scrambled drums”), and one stimulus each from the four non-music control conditions 
(“English speech,” “foreign speech,” “animal sounds,” “environmental sounds”). To maximize the 
temporal interval between a given MIDI music stimulus and its scrambled versions, only one 
version of a given MIDI stimulus (i.e. intact, pitch-scrambled, time-scrambled, pitch-and-time-
scrambled) was presented per run for all but three participants (the remaining three participants 
were run on an earlier version of the experiment that was identical except without the constraint 
maximizing the temporal interval between intact and scrambled versions of a given MIDI 
stimulus, and with an extra null block in each run). The full set of 136 stimuli was repeated every 
four runs, meaning that each individual stimulus was presented a total of three times during the 
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course of the 12 experimental runs (twice for the subject who only completed 8 runs). The entire 
scanning session lasted approximately 2 hours. 
 
fMRI data acquisition and analysis 
MRI data were collected at the Athinoula A. Martinos Imaging Center of the McGovern Institute 
for Brain Research at MIT, on a 3T Siemens Trio with a 32-channel head coil. Because the 
sound stimuli were long (10 seconds), we used continuous instead of sparse scanning (TR = 
2.1 sec, TE = 30ms, 90 degree flip angle, 3 discarded initial acquisitions). Each functional 
acquisition consisted of 46 roughly axial slices (oriented parallel to the anterior-posterior 
commissure line) covering the whole brain, with voxel size 2 x 2 x 2.8mm (96 x 96 matrix, 10% 
slice gap). A simultaneous multi-slice (SMS) acceleration factor of 2 was used in order to 
minimize acquisition time. To localize functional activity, a high-resolution anatomical T1-
weighted MPRAGE image was obtained for each participant (1 mm isotropic voxels). 
 
Preprocessing and data analysis were performed using FSL software and custom Matlab 
scripts. Functional volumes were motion-corrected, slice-time-corrected, skull-stripped, linearly 
detrended, and aligned to each participant’s anatomical image (using FLIRT and BBRegister; 
Greve & Fischl, 2009; Jenkinson & Smith, 2001). Motion correction and functional-to-anatomical 
registration was done separately for each run. Each participant’s preprocessed data were then 
resampled to the cortical surface reconstruction computed by FreeSurfer (Dale et al., 1999), 
registered to the FsAverage template brain, and then smoothed on the surface using a 3mm 
FWHM kernel to improve the signal-to-noise ratio (SNR) of the data by removing local, 
uncorrelated noise.  
 
GLM-denoise (Kay et al., 2013) was used to further improve SNR and then estimate the 
response to each of the stimulus conditions using a general linear model (GLM). A separate 
boxcar regressor was used for each of the 10 experimental conditions, which were convolved 
with a hemodynamic response function (HRF) that specifies the shape of the BOLD response. 
GLM-denoise assumes a common HRF that is shared across all conditions and voxels, the 
shape of which is estimated from the data using an iterative linear fitting procedure (for more 
details, see Kay et al., 2013).  
 
To remove large-scale correlated noise across voxels, GLM-denoise also includes noise 
regressors based on principal components analysis (PCA). These PCA-based regressors were 
derived from the time series of a “noise pool” consisting of voxels with <0% of variance 
explained by the task regressors (R2 was measured using leave-one-run-out cross-validation, 
which is negative when the null hypothesis that all beta weights equal 0 outperforms the model 
on left-out data). The optimal number of noise regressors was determined by systematically 
varying the number of principal components included in the model, and estimating the R2 of 
each model using leave-one-run-out cross-validation.  
 
GLM-denoise then performs a final fit of the model, and estimates of beta weight variability are 
obtained by bootstrapping across runs 100 times. The final model estimates are taken as the 
median across bootstrap samples, and these beta weights were converted to units of percent 
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BOLD signal change by dividing by the mean signal intensity in each voxel. For analyses 
involving component responses (see “Music-selective component is sensitive to both pitch and 
temporal structure” section of the Results), GLM-denoise was applied to the data from all runs 
for each participant. For the standard methods (see “Standard functional region-of-interest 
(fROI) analyses also show no dissociation of sensitivity to pitch vs. temporal structure in music” 
section of the Results), each participant’s data was split into four 75%/25% partitions and GLM-
denoise was applied to each partition independently (because the fROI analyses require 
independent subsets of data to select voxels and analyze responses). 
 
The resulting beta weights were downsampled to a 2mm isotropic grid on the Freesurfer-
flattened cortical surface. To accommodate the partial-brain coverage for two of the participants 
(see “version 3” in Table 1), we limited all analyses to voxels within a large anatomical mask 
region encompassing bilateral superior temporal and posterior parietal cortex (shown as colored 
regions in Figures 2B and 3A, and white outlines in Figures 4C & D). All subsequent analyses 
were conducted in this downsampled 2D surface space, and for ease of description we refer to 
the elements as “voxels” throughout the paper. 
 
Anterior and posterior auditory cortex anatomical ROIs 
 
To quantify the effect of scrambling musical structure separately for different subregions of 
auditory cortex, we divided voxels into anterior and posterior anatomical ROIs. We divided 
auditory cortex in half by drawing a straight line on the downsampled 2D cortical, approximately 
halfway along Heschl’s gyrus (HG) and roughly perpendicular to STG (see white dashed line in 
Figure 2B). 
 
Functional region-of-interest analyses 
 
To complement the component methods, we used more standard methods to select the most 
music-selective voxels and examine their response. To define fROIs in each individual 
participant, we partitioned their data into four splits (each consisting of 3 runs, except for one 
participant who only completed 8 total runs and whose splits each consisted of 2 runs). Then, 
leaving out one split each time, we estimated beta weights to each of the stimulus conditions in 
the other 75% of the data using a GLM (Kay et al., 2013), and computed a “music vs. non-
music” contrast between the “intact” MIDI condition and the four non-music conditions. We 
chose this particular contrast because it was unclear how to handle the scrambled MIDI 
conditions, but we note that the results did not change appreciably if a different “music vs. non-
music” contrast (e.g. the 6 MIDI music conditions vs. the 4 non-music conditions) was used. 
Then, for each split of the data separately, we selected the top 10% most significant voxels from 
within the large anatomical mask region described previously (see “fMRI data acquisition and 
analysis” section of Methods) to create a binary activation map. We further required that voxels 
responded to intact MIDI music significantly above baseline, using a lenient threshold of p < 
0.01 (uncorrected). 
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We then derived group-level anatomical constraint parcels within which the most music-
selective voxels would lie for most individual participants. To do this, we applied a method 
similar to that used in many previous studies from our group and others (Fedorenko et al., 2010; 
Julian et al., 2012; Nieto-Castañón and Fedorenko, 2012; Fischer et al., 2016). Specifically, we 
overlaid individual participants’ binary activation maps on top of each other, and then spatially 
smoothed this overlap map with a Gaussian filter (8 mm FWHM) and thresholded it so that the 
map contained only those voxels with at least 10% overlap across participants. This group-level 
parcel contained an average of 496 voxels (averaged across the four splits of data; SD = 29 
voxels) (Figure 4A). Note that the large amount of smoothing and the lenient overlap threshold 
were chosen in order to find an anatomical parcel within which most individual participants’ most 
significant voxels will be located.  
 
Next, we selected each participant’s top 10% most significant voxels (in the music versus 
nonmusic contrast) from within this anatomical group-level parcel, using the same data from that 
individual that was used to derive the group anatomical parcel. This method allows the exact 
voxels selected to vary across participants, but ensures that they are located in the same 
general region of cortex. Finally, we then measured the response of these voxels in 
independent data (the 25% of each participant’s data that was not used to select voxels), and 
measured the sensitivity of these voxels to scrambling in both pitch and time (see “Statistics” 
section for details). 
 
We also ran two fROI analyses to look in a more targeted way for a dissociation between 
sensitivity to pitch and temporal musical structure, using contrasts that would maximally isolate 
the effect of the pitch-scrambling and time-scrambling manipulations. For the sake of brevity, 
throughout this paper we will refer to these as the “melody-sensitive fROI” and the “rhythm-
sensitive fROI,” cognizant that the contrasts may not isolate “melody” and “rhythm” given that 
note timing likely contributes to the perception of melody/harmony, and that pitch structure likely 
influences the perception of rhythm (Jones et al., 1982; Kidd et al., 1984; Schmuckler and Boltz, 
1994; Crowder and Neath, 1995; Prince et al., 2009; Prince, 2011). Because of the conditions 
used in this experiment, there were many pairwise contrasts that could be used for this purpose. 
In this case, we used “time-scrambled vs. pitch-and-time-scrambled” to isolate voxels that were 
maximally sensitive to musical pitch structure, and “intact vs. time-scrambled drums” to isolate 
voxels that were maximally sensitive to temporal structure in music without any potential 
interference from the presence of melodic information. However, we note that similar results 
were observed for a variety of other pairwise contrasts that also attempt to isolate scrambling 
effects in one domain or the other. As before, we also required that voxels responded to intact 
MIDI music significantly above baseline (p < 0.01, uncorrected). The group-level parcels for 
these two contrasts contained of 1017 voxels (averaged across the four splits of data; SD = 36 
voxels) for the pitch-scrambling contrast (Figure 4C, left), and 845 voxels (SD = 36 voxels) for 
the time-scrambling contrast (Figure 4C, right). We then measured these voxels’ response in 
independent data, and determined the extent to which voxels chosen to be maximally sensitive 
to musical structure in one domain (i.e. “pitch” or “timing”) also showed an effect of scrambling 
in the opposite domain. 
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The Dice similarity coefficient (DSC) (Dice, 1945) was used to quantify the extent of overlap 
between the two group parcels, as well as between the voxels selected for the two contrasts 
within individual participants. This metric corresponds to twice the number of overlap voxels 
divided by the total number of voxels, and thus ranges from 0 to 1. It is expressed as: 
 

𝐷𝑆𝐶 = 	
2|𝑋 ∩ 𝑌|
|𝑋| +	 |𝑌|

 

(Eq. 6) 
 
where |𝑋| and |𝑌|	represent the number of voxels selected for each of the two localizer 
contrasts.  
 
Because we found there to be substantial overlap between the voxels selected for these two 
fROIs in individual participants (Dice coefficient = 0.42, SD = 0.11), we ran two additional fROI 
analyses in which we examined only voxels that were selected for one of the contrasts (top 10% 
most significant within the group parcel) but not the other. This was intended to maximize our 
chances of finding voxels that were selectively sensitive to one type of musical structure. This 
left an average of 61 voxels that were significant for “pitch-scrambling” but not “time-scrambling” 
(averaged across the four splits of data and then participants; SD = 14 voxels), and 45 voxels 
that were significant for “time-scrambling” but not “pitch-scrambling” (SD = 11 voxels). As 
before, we measured these voxels’ response in independent data, and determined the extent to 
which voxels chosen to be maximally selective for musical structure in one domain (i.e. “pitch” 
but not “timing”) still showed an effect of scrambling in the opposite domain. 
 
Statistics 
 
For both the component analyses and fROI analyses, in order to quantify the effect of 
scrambling on neural responses, we ran 2 x 2 repeated measures ANOVAs on the four MIDI 
melody conditions with factors “pitch-scrambling” and “time-scrambling”. In all cases, we used 
the Shapiro-Wilk test to verify that the standardized residuals for every combination of factors 
were normally distributed, and the results of this test were non-significant (p > 0.05) unless 
otherwise noted in the text. When the assumption of normality was not met, the significance of 
the F-statistic was evaluated using approximate permutation tests. To do this, we randomized 
the assignment of the data points for each participant across the conditions being tested 10,000 
times, recalculated the F-statistic for each permuted sample, and then compared the observed 
F-statistic to this null distribution to determine significance. Note that there was no need to 
check for violations of sphericity, because sphericity necessarily holds for repeated-measures 
factors with only two levels. For both parametric and non-parametric ANOVAs, effect sizes were 
quantified using partial eta-squared (ηp2). 
 
To compare responses across two conditions, such as intact vs. scrambled drums, two-tailed 
paired t-tests were used when data distributions were normal (evaluated using the Shapiro-Wilk 
test), and effect sizes were calculated using Cohen’s d. When the assumption of normality was 
not met, Wilcoxon signed-rank tests were used and effect sizes were calculated as: 
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𝑟 = 𝑍 √𝑁⁄  

(Eq. 7) 
 
where Z is the z-score output of the Wilcoxon signed rank test, and N is the number of pairs (i.e. 
the number of participants). 
 
For all figures, we used “within-subject” scatter plots and error bars (Loftus and Masson, 1994), 
which remove between-subject variance by subtracting each participant’s mean response 
across conditions. The global mean across participants is then added to this de-meaned data 
before plotting and computing the standard error (SEM). 
 
 
RESULTS 
 
The goal of the current study was to test which properties of music drive music-selective 
responses in human non-primary auditory cortex. To that end, we used voxel decomposition 
techniques to isolate these music-selective responses in a set of 15 participants, and then 
measured the effect of scrambling different types of music structure on the responses.  
 
Because music selectivity is weak when measured using standard voxel-wise fMRI analyses, 
we first utilized techniques from our prior work (Norman-Haignere et al., 2015) to isolate music-
selective responses from other, potentially spatially overlapping brain responses. This method 
entails decomposing voxel responses into a weighted sum of a small number of response 
profiles, each of which plausibly reflects a different neural subpopulation in auditory cortex. In 
our previous study using this method, we found that voxel responses to a wide variety of natural 
sounds could be approximated by a set of six canonical response profiles, or “components.” 
Each component is defined by its response profile across a large set of natural sounds, as well 
as a pattern of weights across voxels, specifying the degree to which that component 
contributes to the response of each voxel. In the original study, four of the six components were 
found to reflect acoustic properties of the sound set (e.g. frequency, spectrotemporal 
modulation) and were concentrated in and around primary auditory cortex (PAC), consistent 
with prior results (Schönwiesner and Zatorre, 2009; Humphries et al., 2010; Da Costa et al., 
2011; Herdener et al., 2013; Santoro et al., 2014; Hullett et al., 2016; Norman-Haignere and 
McDermott, 2018). The two remaining components responded selectively to speech and music 
(Figure 2A), respectively, and were not well accounted for using standard acoustic properties 
alone.  
 
We used our component localizer data to estimate a set of voxel weights (Figure 2B) for each 
participant that best approximated these previously inferred component response profiles. We 
then used these weights to infer the component responses to the stimuli in the main experiment 
(by multiplying the pseudoinverse of the weights with the participant’s voxel responses from the 
main experiment). This process is conceptually analogous to standard functional region-of-
interest (fROI) methods, in which a set of voxels are selected based on their profile of activity 
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across stimulus conditions, and then the response of these voxels is further queried in 
independent data. The difference is that instead of treating each voxel as homogenous, with 
binary assignments to an fROI, we allow each voxel to reflect several component responses 
and use the component weights to determine the voxel’s contribution to each component’s 
response.  
 

The music-selective component response estimated in this way passes several sanity checks. 
As expected, we found that the component responded most strongly to intact music, and 
minimally to the non-music control stimuli (Figure 2C). Further, the response of the music 
component to drum stimuli was significantly higher than the non-music sounds (Z = 3.35, p = 
0.0008, r = 0.87) but significantly lower (Z = 3.35, p = 0.0008, r = 0.87) than the more melodic 
music stimuli, replicating previous findings (Boebinger et al., 2021). 

 

 
 
Figure 2. Music component response to MIDI music and non-music control stimuli. A. Music component response 
profile across all 165 natural sounds from Norman-Haignere et al. (2015) study. Sounds categorized as both 
“instrumental music” and “vocal music” (as determined by raters on Amazon Mechanical Turk) are shaded blue to 
highlight the degree of music selectivity. B. Spatial distribution of music component voxel weights for participants in 
the current study, averaged across participants in standardized anatomical coordinates (FreeSurfer’s FsAverage 
template). Color scale spans the central 95% of the weight distribution. The white dashed line shows the dividing line 
between anterior and posterior ROIs. This line was defined by drawing a straight line on the downsampled 2D cortical 
surface. C. Music component response to the stimulus conditions in the main experiment, averaged across 
participants. Each gray dot corresponds to one participant’s component response to a given condition. Scatter plots 
are within-subject, such that differences between participants are removed by subtracting each participant’s mean 
response across conditions and then adding the global mean across participants. Error bars indicate ±1 within-
subject SEM. D. Same as C, but for the posterior (left) and anterior (right). 
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Music-selective component is sensitive to both pitch and temporal structure  
 
Our main question was whether manipulating musical structure in pitch and time would affect 
the response of the music component. To address this question, we extracted the music 
component response to each of our experimental conditions (Figure 2C) and ran a 2 x 2 
repeated-measures ANOVA on the component response to the four MIDI melody conditions. 
We observed significant main effects of scrambling both note pitches (F(1, 14) = 29.12, p = 
9.43e-05, ηp2 = 0.68) and onset times (F(1, 14) = 14.64, p = 0.002, ηp2 = 0.51), as well as a 
significant interaction, such that the effect of scrambling in one domain was larger if the other 
domain was scrambled as well (F(1, 14) = 28.29, p < 1.08e-04, ηp2 = 0.67). A separate Wilcoxon 
signed-rank test comparing the music component response to synthetic drum stimuli also 
showed a large effect of time-scrambling (Z = 3.41, p = 0.0007, r = 0.88). These results indicate 
that the music-selective component is sensitive to both pitch and temporal structure in music, 
consistent with the idea that these types of information may be jointly processed within auditory 
cortex. 
 
No evidence for lateralization of sensitivity to pitch vs. temporal structure  
 
Motivated by proposals of hemispheric differences related to music (Zatorre et al., 2002; Albouy 
et al., 2020), we repeated this entire analysis using component weights and voxel responses 
from one hemisphere at a time in order to obtain the music component response for voxels in 
each hemisphere separately. We then compared the component responses from each 
hemisphere using a 2 x 2 x 2 repeated-measures ANOVA including “hemisphere” as a factor. 
Contrary to music-related lateralization hypotheses, we found no significant main effect of 
hemisphere (F(1, 14) = 0.55, p = 0.47, ηp2 = 0.04), nor did we observe any significant 
interactions involving the “hemisphere” factor (2-way and 3-way interaction p’s > 0.10). 
 
Weak evidence for greater sensitivity to temporal structure in posterior regions  
 
Another proposed organizational principle of auditory cortex is tuning to spectrotemporal 
modulation rates (Schönwiesner and Zatorre, 2009; Santoro et al., 2014; Norman-Haignere et 
al., 2015; Hullett et al., 2016; Hamilton et al., 2018), such that regions anterior to Heschl’s gyrus 
respond preferentially to sounds with fine spectral modulation energy and a strong sense of 
pitch (Norman-Haignere et al., 2013), and posterior regions respond preferentially to sounds 
with rapid temporal modulation and to sound onsets (Hamilton et al., 2018). As an initial test of 
whether these tuning properties might manifest in differential sensitivity to pitch vs. temporal 
structure in music, we conducted an exploratory analysis in which we divided auditory cortex 
along the middle of Heschl’s gyrus, roughly perpendicular to STG (see white dashed line in 
Figure 2B), and measured the music component response in anterior and posterior auditory 
cortex separately (Figure 2D). A 2 x 2 x 2 repeated-measures ANOVA found no significant main 
effect of region (F(1, 14) = 1.11, p = 0.31, ηp2 = 0.07), nor any significant interactions involving 
the “region” factor (2-way and 3-way interaction p’s > 0.05). However, a separate 2 x 2 
repeated-measures ANOVA focused only on the two drum conditions did find a significant 
interaction, such that the effect of time-scrambling drum stimuli was significantly larger in 
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posterior compared to anterior auditory cortical regions (F(1, 14) = 13.60, p = 0.006, ηp2 = 0.49; 
because data was non-normal, the significance of the F-statistic was determined using a non-
parametric permutation test, see “Statistics” section of Methods for more details). While 
responses to the drum stimuli were higher overall in posterior regions compared to anterior 
regions, this difference was not statistically significant (F(1, 14) = 2.22, p = 0.16, ηp2 = 0.14; 
significance of F-statistic determined using a non-parametric permutation test). Together, these 
mixed results (a significant effect of “region” for the MIDI drum but not MIDI melody stimuli) are 
only partially consistent with the notion that posterior auditory cortical regions might play a more 
central role in representing temporal musical structure than anterior auditory cortical regions, at 
least in the absence of pitch structure.  
 
Sensitivity to musical structure is strongest in the music-selective component  
 
We also examined the sensitivity of the other five auditory cortical response components 
(Figure 3A) to manipulations in musical structure. Of particular note is the response component 
that has previously been shown to be sensitive to pitch (Component 4, Figure 3) (Norman-
Haignere et al., 2015; Boebinger et al., 2021), which responded strongly to the melodic MIDI 
music as well as speech and animal sounds, but only weakly to MIDI drums (which do not have 
a strong fundamental frequency in the range of audible pitch). Despite its strong response to 
music, we did not observe a significant effect of scrambling musical structure in the response of 
this pitch-sensitive component (repeated-measures ANOVA with factors “pitch-scrambling” and 
“time-scrambling” produced no significant main effects or interaction; all p’s > 0.05, see Table 
2). Even though the spatial distribution of the pitch-sensitive and music-selective components 
substantially overlap, their response properties dissociate, highlighting the ability of voxel 
decomposition to isolate neural subpopulations within voxels that show different response 
characteristics.  
 
As in previous studies (Norman-Haignere et al., 2015; Boebinger et al., 2021), the speech-
selective component (Component 5, Figure 3B) responded strongly to both English and foreign 
speech but only weakly to music. The speech-selective component did show a statistically 
significant main effect of pitch-scrambling (F(1,14) = 48.39, p = 6.69e-04, ηp2 = 0.78) and a 
significant pitch-scrambling x time-scrambling interaction (F(1, 14) = 20.07, p = 0.0005, ηp2 = 
0.60). However, a 2 x 2 x 2 repeated-measures ANOVA (with factors “pitch-scrambling,” “time-
scrambling,” and “component”) showed that the effect of scrambling was significantly greater in 
the music-selective component than the speech-selective component (2-way interaction 
between “component” x “pitch-scrambling”: F(1, 14) = 13.56, p = 0.002, ηp2 = 0.49; 3-way 
interaction: F(1, 14) = 13.01, p = 0.003, ηp2 = 0.48). 
 
Other components that reflect standard acoustic properties of sound (Components 1-4, Figure 
3A & B) also showed occasionally significant (though modest) effects of music scrambling (see 
Table 2 for full ANOVA results). One potential explanation is that these scrambling effects are 
driven by low-level acoustic differences between the intact and scrambled stimulus conditions. 
Another potential explanation is that the rotation matrix used in our original study to maximize 
the statistical independence of the components was unable to fully separate them, such that 
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small amounts of the music-selective component were either added (in the case of the speech-
selective component) or subtracted from (in the case of the high-frequency component) the 
other components’ responses. Despite these occasional scrambling effects in other 
components, a series of 3-way repeated-measures ANOVAs comparing each component to the 
music-selective component indicated that the effects of scrambling were greatest for the music-
selective component (see Table 3 for full ANOVA results; all 2-way main effects and 3-way 
interaction were significant: p’s < 0.02). We also note that none of the other 5 components both 
(1) responded to the MIDI music conditions above baseline, and (2) showed a pattern of greater 
response to intact structure as compared to scrambled structure. Together, these results 
suggest that sensitivity to high-level melodic and/or rhythmic structure is specific to music-
selective neural populations. 
 
 

 
 
 
Figure 3. Response of all components to MIDI music and non-music control stimuli. A. Spatial distribution of 
component voxel weights for participants in the current study, inferred using the response components from Norman-
Haignere et al. (2015). Voxel weights are averaged across participants in standardized anatomical coordinates. Color 
scale spans the central 95% of the weight distribution for each component. Music component voxel weights are the 
same as depicted in Figure 2B. B. Component responses to the stimulus conditions in the main experiment, 
averaged across participants. Each gray dot corresponds to one participant’s component response to a given 
condition. Scatter plots are within-subject, such that differences between participants are removed by subtracting 
each participant’s mean response across conditions and then adding the global mean across participants. Error bars 
indicate ±1 within-subject SEM. Music component response is the same as depicted in Figure 2C. 
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Comp. Pitch-scrambling main effect Timing-scrambling main effect Pitch x timing interaction 

 F-value p-value ηp2 F-value p-value ηp2 F-value p-value ηp2 

Low freq. 0.88 0.36 0.06 0.04 0.85 0.003 0.97 0.34 0.06 

High freq. 12.32* 0.003 0.47 33.02*** 5.06e-05 0.70 7.76* 0.015 0.36 

Temp. mod. 21.09*** 5.0e-04‡ 0.60 16.64** 0.002‡ 0.54 1.05 0.33‡ 0.007 

Pitch 1.19 0.29 0.08 1.77 0.20 0.11 4.19 0.06 0.23 

Speech 48.39*** 6.69e-06 0.78 0.23 0.63 0.59 20.07*** 5.19e-04 0.59 
 
Table 2. ANOVA results for all auditory cortical response components. ‡ = Shapiro-Wilk test indicated that the 
standardized residuals for one or more combinations of factors was non-normal (p < 0.05), so the significance of the 
F-statistic was evaluated using a non-parametric permutation test randomizing the assignment of the data points 
across the relevant conditions 10,000 times (see “Statistics” section of Methods). * = Significant at p < 0.05, ** = 
significant at p < 0.01, *** = significant at p < 0.001. 
 
  

Low freq. High freq. Temp. mod. Pitch Speech 

       Pitch-scrambling  
main effect 
  

F-value 15.82** 23.13*** 39.35*** 25.55*** 40.91*** 

p-value 0.001 0.0003 <0.0001‡ 0.0002 1.67e-05 

ηp2 0.53 0.95 0.74 0.65 0.75 

Timing-scrambling 
main effect 

F-value 7.39* 2.75 1.51 18.09*** 12.17** 

p-value 0.017 0.12 0.24‡ 0.0008 0.004 

ηp2 0.35 0.16 0.10 0.56 0.47 

Component  
main effect 

F-value 0.028 31.84*** 13.84** 0.013 359.24*** 

p-value 0.87 6.07e-05 0.001‡ 0.91 2.23e-11 

ηp2 0.002 0.69 0.50 0.0009 0.96 

Pitch x timing 
interaction 

F-value 16.99** 12.96** 22.30*** 21.68*** 37.97** 

p-value 0.001 0.003 0.0004‡ 0.0004 0.002 

ηp2 0.55 0.48 0.61 0.61 0.49 

Pitch x comp. 
interaction 

F-value 34.65*** 29.92*** 7.93* 23.07*** 13.56** 

p-value 3.96e-05 8.25e-05 0.004‡ 0.0003 0.002 

ηp2 0.71 0.68 0.36 0.62 0.49 

Timing x comp. 
interaction 

F-value 26.09*** 23.76** 59.05*** 9.90** 15.75** 

p-value 0.0002 0.0002 <0.0001‡ 0.007 0.001 

ηp2 0.65 0.63 0.81 0.41 0.53 

Pitch x timing x 
comp. interaction 

F-value 20.72*** 30.51*** 16.95** 24.25*** 13.01** 

p-value 0.0005 7.50e-05 <0.0001‡ 0.0002 0.003 

ηp2 0.60 0.69 0.55 0.63 0.48 
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Table 3. Results for 3-way repeated-measures ANOVAs comparing the music component to each of the other 
auditory cortical response components. ‡ = Shapiro-Wilk test indicated that the standardized residuals for one or 
more combinations of factors was non-normal (p < 0.05), so the significance of the F-statistic was evaluated using a 
non-parametric permutation test randomizing the assignment of the data points across the relevant conditions 10,000 
times (see “Statistics” section of Methods). * = Significant at p < 0.05, ** = significant at p < 0.01, *** = significant at p 
< 0.001. 
 
 
Standard functional region-of-interest (fROI) analyses also show no dissociation of 
sensitivity to pitch vs. temporal structure in music 
 
To look in a complementary way for dissociations between the processing of musical structure 
in pitch vs. time, we conducted a standard functional region of interest (fROI) analysis that does 
not rely on response components inferred using voxel decomposition. We first identified the 
voxels that are most selective for music, and then tested the extent to which these voxels were 
sensitive to the pitch-scrambling or time-scrambling manipulations. Specifically, we used an 
intact MIDI music > non-music contrast and selected the most significant voxels in each 
participant individually (Figure 4A), and then quantified the response of those voxels to each of 
the stimulus conditions in held-out data from the same participant (see Methods for additional 
details). 
 
As can be seen in Figure 4B, the response of these maximally music-selective voxels was 
affected by both pitch-scrambling (F(1, 14) = 49.30, p = 6.04e-06, ηp2 = 0.78) and time-
scrambling (F(1, 14) = 13.46, p = 0.0025, ηp2 = 0.49), and showed a significant interaction 
between pitch-scrambling and time-scrambling (F(1, 14) = 49.20, p = 6.11e-06, ηp2 = 0.78). 
While we also observed a significant effect of time-scrambling in the drum stimuli within this 
fROI (Z = 3.41, p = 6.55e-04, r = 0.85), the overall response to drums was no higher than the 
response to the non-music conditions, unlike what we saw in the music-selective component 
(Figure 2C). The weaker music selectivity of this fROI is consistent with our previous finding 
that music selectivity overlaps within voxels with other components that respond to lower-level 
acoustic features (e.g. pitch sensitivity) that are likely to differ between MIDI and drum music 
(Norman-Haignere et al., 2015). This observation underscores the utility of the voxel 
decomposition method in isolating music selectivity. 
 
Next, we conducted more targeted fROI analyses to determine whether voxels selected to be 
sensitive to musical structure in one domain (i.e. pitch or time) were also sensitive to structure in 
the other domain. We used two contrasts to identify voxels that were most sensitive to either the 
“pitch-scrambling” or the “time-scrambling” manipulation (Figure 4C). These two sets of voxels 
overlapped substantially within individual participants (mean Dice coefficient across subjects = 
0.42, SD = 0.11), and at the group level (Dice coefficient = 0.81; Figure 4D; see “Functional 
region-of-interest analyses” section of the Methods for details concerning the creation of group 
parcels). This indicates that the voxels that were most sensitive to pitch structure in music also 
tended to be sensitive to its temporal structure, which is consistent with the idea that these two 
types of information are jointly analyzed in auditory cortex. As a stronger test for dissociation, 
we omitted these overlap voxels, selecting only voxels within individual participants that were 
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part of one fROI (e.g. significantly melody-sensitive) but not the other (e.g. not significantly 
rhythm-sensitive), and then ran a 2 x 2 repeated-measures ANOVA on the response of each 
resulting set of voxels separately (Figure 4E). If these sets of voxels were to have different 
patterns of selectivity, we would expect the same effect to be present in independent data. 
However, in both cases, we found that the voxels that were selected to be sensitive to one type 
of structure also showed a significant effect of scrambling in the other domain (all main effects 
and interactions were significant, p’s < 0.05; see Table 4 for full ANOVA results; results were 
nearly identical for the fROIs including the overlap voxels that were both significantly melody-
sensitive and rhythm-sensitive). 
 
Note that even though these contrasts were intended to isolate specific aspects of musical 
structure, the voxel responses within the resulting fROIs were not music-selective, as evidenced 
by a high response to the English and foreign speech conditions (Figure 4E). The voxels in 
these fROIs plausibly include music-selective neural populations as well as other neural 
populations that respond strongly to speech (e.g. speech-selective neural populations), which 
cannot be unmixed using standard fROI analyses like these. 
 
 

 
 
Figure 4. fROI responses to MIDI music and non-music control stimuli. A. Group anatomical parcel used to constrain 
the “Music-sensitive” fROI. To identify the broader anatomical region within which most participants have voxels 
sensitive to musical structure, we overlapped individual participants’ contrast significance maps (p < 0.01, 
uncorrected) for the “intact-MIDI vs. non-music” contrast, spatially smoothing this overlap with a Gaussian filter (8 mm 
FWHM), and then thresholding the smoothed overlap map to contain only those voxels with at least 10% overlap 
across participants. White line indicates the anatomical region from which voxels were selected (same as colored 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.473232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473232


 23 

regions in Figure 2B and Figure 3A). B. Response of selected voxels to the stimulus conditions in the main 
experiment. For each participant, the 10% most significant voxels for were selected from within the group parcel. The 
response of these voxels was then measured in independent data. fROI responses are averaged across participants, 
with each gray dot corresponding to one participant’s fROI. Scatter plots are within-subject, such that differences 
between participants are removed by subtracting each participant’s mean response across conditions and then 
adding the global mean across participants. Error bars indicate ±1 within-subject SEM. C. Same as A, but for the 
“Melody-sensitive” (left) and “Rhythm-sensitive” (right) fROIs, using contrasts intended to identify voxels sensitive to 
pitch structure (“timing-scrambled vs. pitch-and-timing-scrambled,” left) or temporal structure (“intact vs. scrambled 
drums,” right). D. Overlap of “Melody-sensitive” (purple) and “Rhythm-Sensitive” (green) group parcels. Note that 
substantial overlap was also present in individual participants. E. Same as B, but for the voxels in individual 
participants that were members of one fROI but not the other, e.g. “Melody-sensitive” but not “Rhythm-sensitive” 
(left), and vice versa (right). 
 
 
DISCUSSION 
 
Our results show that the music-selective response component of human auditory cortex is 
sensitive to both the pitch and temporal structure of music, rather than being driven exclusively 
by structure in one domain or the other. Our multiple attempts to explicitly isolate neural 
responses that show sensitivity to structure in one domain consistently showed that these 
regions were sensitive to structure in the other domain as well. These results are consistent with 
the idea that melodic and rhythmic information are processed jointly within auditory cortex. 
 
Relation to prior work 
 
Within the field of music cognition, there is longstanding interest in the degree to which the 
processing of pitch and temporal information is integrated. Corpus studies have confirmed that a 
reliable relationship exists between tonal and metrical hierarchies in music, such that important 
pitches occur on prominent beats (Prince and Schmuckler, 2014), and that listeners are 
sensitive to the joint distribution of pitch and temporal information (Prince et al., 2020). 
Consistent with this idea, some studies have found that listeners treat melody and rhythm as a 
unified dimension in perception and memory, such that changes to one dimension affect 
melodic expectancy and goodness-of-fit judgements in the other dimension (Schmuckler and 
Boltz, 1994; Prince et al., 2009; Prince, 2011), as well as performance on change detection and 
same/different tasks (Jones et al., 1982; Kidd et al., 1984) and even basic judgements of 
duration (Crowder and Neath, 1995). However, other studies have argued for the perceptual 
separability of pitch and temporal information, based on the failure to observe joint effects of 
pitch and rhythm on judgements of melody completion, pleasantness, or similarity (Palmer and 
Krumhansl, 1987; Pitt and Monahan, 1987; Makris and Mullet, 2003), or on performance on 
matching, change detection, or recall tasks (Thompson, 1994; Thompson et al., 2001; 
Schellenberg et al., 2014). One hypothesis that attempts to reconcile these divergent results is 
that pitch and temporal information might be initially processed independently and integrated at 
later processing stages in the auditory hierarchy (Pitt and Monahan, 1987; Peretz and Kolinsky, 
1993; Thompson et al., 2001; Peretz and Coltheart, 2003).  
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The literature on acquired amusia does not fit as naturally with this. Some amusia patients 
present with deficits in high-level music perception that are seemingly confined to either melody 
(Grant-Allen, 1878; Peretz, 1990, 1996; Peretz and Kolinsky, 1993; Peretz et al., 1994; 
Liégeois-Chauvel et al., 1998; Ayotte et al., 2000; Piccirilli et al., 2000; Peretz and Hyde, 2003; 
Hyde and Peretz, 2004) or rhythm (Mavlov, 1980; Fries and Swihart, 1990; Peretz, 1990; Wilson 
et al., 2002; Di Pietro et al., 2004; Phillips-Silver et al., 2011). But the heterogeneity of patients 
with brain damage complicates the interpretation of these results, as does the diversity of 
experimental tasks used to characterize musical deficits and rule out alternative explanations 
(see Supplemental Tables 1 and 2 in Stewart, 2006 for example cases and test batteries). For 
example, in some cases seemingly melody-specific deficits might actually reflect more basic 
deficits in discriminating pitch differences or direction of pitch change for pairs of tones (Tanaka 
et al., 1987; Johannes et al., 1998; Johnsrude et al., 2000; Tramo et al., 2002; Wilson et al., 
2002; Hattiangadi et al., 2005), as has been found to be the case in congenital amusia (Liu et 
al., 2010; Peretz et al., 2015). In other cases, it isn’t clear that impairments are confined to the 
perception of music, with some patients also having difficulty interpreting speech prosody or 
recognizing and discriminating voices (Peretz, 1993; Peretz and Kolinsky, 1993; Peretz et al., 
1994; Patel et al., 1998), or presenting with aphasia or more general cognitive impairments 
(Brust, 1980; Mavlov, 1980; Mazzucchi et al., 1982; Tanaka et al., 1987; Mendez and Geehan, 
1988; Tramo et al., 1990, 2002; Eustache et al., 1990; Fries and Swihart, 1990; Hofman et al., 
1993; Peretz et al., 1994; Johkura et al., 1998; Piccirilli et al., 2000; Di Pietro et al., 2004; 
Hattiangadi et al., 2005; Sihvonen et al., 2016). On the other hand, the amusia literature does 
provide some support for a dissociation between neural representations of lower-level pitch and 
timing information versus more abstract representations of musical structure, because some 
patients with acquired amusia have preserved lower-level auditory perceptual abilities, e.g. a 
preserved ability to discriminate the pitches of pairs or short sequences of tones but impaired 
processing of tonality (Zatorre, 1985; Peretz, 1993; Peretz et al., 1994; Warrier and Zatorre, 
2004) and vice versa (Tramo et al., 1990), or intact discrimination of rhythmic sequences but 
impaired processing of meter (Liégeois-Chauvel et al., 1998) or vice versa (Di Pietro et al., 
2004). Taken together, evidence from neuropsychological patients suggests at least some 
degree of separation between the representations of pitch and temporal structure in music, but 
the mapping between specific brain regions and the perceptual consequences of brain damage 
remain underspecified. 
 
Our results are consistent with other neuroimaging studies in normal listeners that have found 
largely overlapping regions of auditory cortex to be responsive to pitch and temporal structure in 
music (Griffiths et al., 1999; Krumhansl and Zatorre, 2003b, 2003a; Alluri et al., 2012; 
Fedorenko et al., 2012). Most aligned with the current study is that of Fedorenko et al. (2012), 
which functionally identified brain regions sensitive to musical structure and found a similar 
magnitude of response in those regions to pitch-scrambled and time-scrambled music. But while 
the ROIs in that study did indeed respond significantly more strongly to intact than scrambled 
music and showed no sensitivity to linguistic structure (Fedorenko et al., 2012), that study did 
not test whether those responses were selective for music above other types of sounds. In the 
current study, we show similar effects in a component of cortical responses that has been 
shown to be selective for high-level musical features (Norman-Haignere et al., 2015; Norman-
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Haignere and McDermott, 2018; Boebinger et al., 2021). It is also worth noting that the 
scrambling manipulation from Fedorenko et al. (2012) was relatively coarse compared to the 
method used in the current study. In Fedorenko et al. (2012), the pitches of individual notes 
were randomized, which disrupted the consonance of simultaneous notes and completely 
randomized the melodic contour. The technique used in the current experiment scrambled 
clusters of notes with the same onset as a single unit, and preserved the global shape of the 
melodic contour by jittering pitches by up to 2 semitones rather than completely randomizing 
them. This method enabled us to show that a truly music-selective response component is 
sensitive to relatively subtle violations of musical structure, while nearby (and sometimes 
spatially overlapping) response components do not show this sensitivity. 
 
On the other hand, other prior findings about the functional organization of human auditory 
cortex supported a prediction that we might observe a dissociation between sensitivity to pitch 
and temporal structure in different subregions of auditory cortex. For example, much of auditory 
cortex is tuned to particular spectrotemporal modulation rates, with regions anterior to Heschl’s 
gyrus preferring fine spectral modulations and slow temporal modulations, and vice versa for 
regions posterior to Heschl’s gyrus (Schönwiesner and Zatorre, 2009; Santoro et al., 2014; 
Norman-Haignere et al., 2015; Hullett et al., 2016; Hamilton et al., 2018). Because fine spectral 
modulations are characteristic of harmonic sounds with a strong sense of pitch, and fast 
temporal and broad frequency modulations are present in sound onsets, it might seem intuitive 
to map these selectivities onto high-level musical structure (Patel and Iversen, 2014). 
Specifically, these findings might suggest that anterior regions would be more sensitive to 
melodic structure and posterior regions would be more sensitive to rhythmic structure. We found 
some evidence supporting this hypothesis. While we did not observe a significant difference 
between anterior and posterior regions in their sensitivity to the pitch and temporal structure in 
melodic music, we did observe a stronger effect of scrambling drum stimuli in posterior auditory 
cortex. Thus, posterior regions like planum temporale, which preferentially respond to the rapid 
temporal modulation and broadband frequency content inherent in sound onsets, might also be 
sensitive to the temporal patterning of onset events (“rhythm”) or to the presence of an 
isochronous beat (“meter”).  
 
Further, some prior studies have proposed an asymmetry between the two hemispheres arising 
from differences in spectrotemporal resolution, which some argue might have implications for 
musical processing such that the right hemisphere is specialized for pitch-based aspects of 
music and the left hemisphere for rhythmic information (Zatorre and Belin, 2001; Albouy et al., 
2020). However, we find no evidence for lateralization of music-selective responses in either the 
current study or in our previous work (Norman-Haignere et al., 2015, 2021; Boebinger et al., 
2021), nor have we found lateralization of pitch-selective responses (Norman-Haignere et al., 
2013, 2015).  
 
What is music selectivity, then? 
 
In this experiment, we found that the music-selective component inferred using voxel 
decomposition was sensitive to both pitch and temporal structure in synthetic MIDI music. This 
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finding is consistent with the results of a previous experiment in which we found this component 
to respond strongly to drum rhythms with minimal melodic content in addition to real-world 
music with a strong sense of melody (Boebinger et al., 2021). Further, the sensitivity of the 
music component to the scrambling manipulations used in the current study suggest that it 
represents relatively abstract properties of melody and rhythm. This conclusion is consistent 
with previous experiments that have shown that the music component is driven by a set of 
features that are relatively specific to music, given that it responds strongly to a wide range of 
music, including unfamiliar musical genres from non-Western cultures (Boebinger et al., 2021) 
and weakly to virtually all other natural sounds (Norman-Haignere et al., 2015, 2021; Boebinger 
et al., 2021), and that the response of the music component does not simply represent the audio 
or modulation frequencies that are prevalent in music (Norman-Haignere and McDermott, 
2018). 
 
While results of the current study add to our understanding of cortical music selectivity, they do 
not fully specify what aspect of music is driving responses. In addition to the constraints 
mentioned previously, the relevant features must unfold over relatively short timescales, given 
that the stimuli used to characterize music selectivity in the component localizer and in previous 
studies from our group were only 2 seconds long (Norman-Haignere et al., 2015; Boebinger et 
al., 2021). Possible candidate features include stable and sustained pitch organized into 
discrete note-like elements or synchronous groups of notes that partly form the basis of 
harmony. Indeed, these features would largely be preserved in the scrambled conditions from 
this experiment, which would explain why the scrambling manipulation had only a modest effect 
on the response of the music component. However, the scrambling effects we observed indicate 
that the music component is at least somewhat sensitive to how note-like elements are 
combined, suggesting that it might reflect aspects of musical structure like melodic contour, 
pitch intervals, or temporally regular beats. Music-selective neural populations in auditory cortex 
might thus be responsible for extracting temporally local features that are assembled elsewhere 
into more abstract representations of music, including key, meter, groove, event structure, etc. 
(Janata et al., 2002; Brett and Grahn, 2007; Lee et al., 2011; Fedorenko et al., 2012; Matthews 
et al., 2020; Williams et al., 2021). It is also plausible that responses might be further modulated 
by top-down inputs from brain regions like frontal cortex, perhaps reflecting the important role of 
expectation when it comes to music perception (Koelsch et al., 2018). 
 
Limitations  
 
The failure to find a dissociation between responses to the pitch and temporal structure of music 
could simply reflect the limitations of fMRI. Using fMRI we seem to be able to infer only six 
reliable response components across all of auditory cortex before overfitting to noise in the data, 
whereas more recent work using methods with higher spatial and temporal resolution has been 
able to infer a larger number of reliable response components that reflect finer-grained patterns 
of selectivity across sounds. For example, a recent study using ECoG was able to infer a 
component selective for song that was distinct from response components reflecting selectivity 
for music and speech more generally (Norman-Haignere et al., 2021). High temporal resolution 
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might in fact be required to observe dissociations between processing of pitch and temporal 
structure in music, as suggested by another recent ECoG study that found differences in the 
temporal dynamics of expectations associated with note pitches vs. onset-times (Di Liberto et 
al., 2020), which would not be detectable with fMRI. This potential importance of temporal 
dynamics is further underscored by the finding that, in animals, neurons in primary auditory 
cortex have been shown to change their spike timing, but not overall firing rate, in response to 
rhythmic compared to random sound sequences (Asokan et al., 2021). Thus, it remains possible 
that there are indeed distinct representations of pitch and temporal musical structure within 
auditory cortex, but that these are not resolvable with fMRI, either using standard voxel-wise 
analyses or component methods. Future work with intracranial electrodes in human 
neurosurgery patients could answer this question. 
 
The lack of dissociation between sensitivity to pitch and temporal structure that we observed in 
this experiment could also be a consequence of details of our experimental design. Several 
behavioral studies have shown that the degree to which melodic and rhythmic information are 
integrated in perception and memory depends on factors like attention and task demands 
(Monahan and Carterette, 1985; Thompson, 1994; Prince, 2011). For example, it has been 
proposed that tasks that require listeners to make judgements about local pitch and/or temporal 
features lead to independent representations of melody and rhythm, whereas integration is 
observed when listeners attend to stimulus features on a longer time-scale (Jones and Boltz, 
1989; Bigand et al., 1999; Tillmann and Lebrun-Guillaud, 2006). Thus, while we didn’t observe 
any dissociation in this experiment, in which participants listened relatively passively while 
performing an (intentionally simple) intensity discrimination task, it is conceivable that the use of 
a task that encourages different modes of listening might reveal independent neural 
representations of pitch and temporal structures.  
 
It is also possible that the scrambling manipulations we employed in this experiment were too 
subtle to resolve differential sensitivity to one type of musical structure over another. While we 
did verify that listeners were readily able to detect both pitch- and time-scrambling in our 
stimulus set (see the behavioral experiments described in the “Main Experiment: Stimuli” 
section of the Methods), the scrambled stimuli are still clearly identifiable as “music.” Further, 
previous studies have shown that only a minimal amount of information is needed for listeners 
to be able to fully instantiate complex tonal (Dowling, 1978; Cuddy and Badertscher, 1987; 
Oram et al., 1995; Smith and Schmuckler, 2004) and metrical structure (Povel and Okkerman, 
1981; Palmer and Krumhansl, 1990; Brochard et al., 2003; Desain and Honing, 2003). Listeners 
might therefore be able to draw on their vast amount of experience with Western tonal music in 
order to form expectations for what the scrambled stimuli “should” sound like. This perceptual 
“unscrambling” might have reduced the effects that we observed. 
 
Conclusions 
We found that the music-selective component of fMRI responses in auditory cortex was 
sensitive to both pitch structure and temporal structure of music, suggesting that the processing 
of these two structural dimensions is intertwined. However, much remains to be learned about 
cortical music selectivity. Future studies could employ the same methods used here to test 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.473232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473232


 28 

specific hypotheses about the importance of particular music features (e.g. tonality), or the 
timescale of musical structure required to drive responses. Answering these questions will bring 
us closer to a scientific understanding of the quintessentially human capacity for music. 
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