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Abstract 

As an adapting population traverses the fitness landscape, its local neighborhood (i.e., the collection 

of fitness effects of single-step mutations) can change shape because of interactions with mutations 

acquired during evolution. These changes to the distribution of fitness effects can affect both the 

rate of adaptation and the accumulation of deleterious mutations. However, while numerous 

models of fitness landscapes have been proposed in the literature, empirical data on how this 

distribution changes during evolution remains limited. In this study, we directly measure how the 

fitness landscape neighborhood changes during laboratory adaptation. Using a barcode-based 

mutagenesis system, we measure the fitness effects of 91 specific gene disruption mutations in 

genetic backgrounds spanning 8,000-10,000 generations of evolution in two constant environments. 

We find that the mean of the distribution of fitness effects decreases in one environment, indicating 

a reduction in mutational robustness, but does not change in the other. We show that these 

distribution-level patterns result from biases in variable patterns of epistasis at the level of 

individual mutations, including fitness-correlated and idiosyncratic epistasis.  
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Introduction 

Evolutionary adaptation relies on recombination and spontaneous mutagenesis to constantly 

introduce variation into populations, upon which natural selection can act. The fate of a single 

mutation - and its impacts on the dynamics of adaptation - depends on how it affects organismal 

fitness, which we know depends in complex ways on the rest of the genetic background (reviewed 

in de Visser et al., 2011; Domingo et al., 2019; Lehner, 2011). Understanding this genotype-

dependence, or epistasis, involves analyzing key features of the fitness landscape, the high-

dimensional map between genotype and fitness (Wright, 1932). 

To investigate these questions, numerous studies have surveyed epistatic interactions among a 

variety of different types of mutations. These studies have found that beneficial mutations isolated 

from laboratory evolution experiments tend to exhibit negative epistasis. That is, they are less 

beneficial in combination than would be expected from the combination of their effects in isolation 

(Karkare et al., 2021; MacLean et al., 2010; Ono et al., 2017; Rokyta et al., 2011; Schenk et al., 2013; 

Schoustra et al., 2016; Zee and Velicer, 2017). However, some examples of positive epistasis among 

beneficial mutations have also been observed (Chou et al., 2009; Fumasoni and Murray, 2020; Hsieh 

et al., 2020; Khan et al., 2011; Levin-Reisman et al., 2019). Surveys of interactions between 

deleterious mutations have produced numerous examples of both positive and negative epistasis 

(Costanzo et al., 2016; Elena and Lenski, 1997; Hall and MacLean, 2011; Jasnos and Korona, 2007; 

Lalić and Elena, 2012; Sanjuán et al., 2004; Van Leuven et al., 2021). 

While this earlier work has identified a wide range of epistatic interactions among specific 

combinations of mutations, several recent studies of epistasis in laboratory microbial systems have 

found that general patterns of fitness-correlated epistasis often emerge. These fitness-correlated 

patterns typically favor less-fit genotypes: for both beneficial and deleterious mutations, we usually 

find that the fitness effect of a mutation is negatively (rather than positively) correlated with the 

fitness of the genetic background on which it occurs (Chou et al., 2011; Johnson et al., 2019; Khan et 

al., 2011; Kryazhimskiy et al., 2014). These patterns have been termed diminishing returns and 

increasing costs for beneficial and deleterious mutations respectively. These trends are particularly 

intriguing to those interested in modeling the dynamics of adaptation for two reasons. The first is 

the analytical promise of a simple, linear relationship between a set of difficult-to-model 

parameters (the fitness effects of mutations) and a single, centrally-important variable, fitness. The 

second is the potential for these patterns of epistasis to explain declining adaptability, a commonly 

observed phenomenon in laboratory evolution experiments in which the rate of fitness increase 
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slows as evolution proceeds (reviewed in Couce and Tenaillon, 2015, see Wünsche et al., 2017 for 

an analysis of the link between diminishing returns and declining adaptability). 

The initial studies that identified patterns of fitness-mediated epistasis did so in the context of a 

relatively small number of beneficial mutations, finding that these mutations became 

systematically less beneficial in more-fit genetic backgrounds. More recent work has shown that as 

populations evolve, the average fitness effect of a spontaneous beneficial mutation decreases 

(Aggeli et al., 2021; Wünsche et al., 2017). Much less work has been done to characterize how the 

effects of deleterious mutations interact with the beneficial mutations that fix during evolution 

(Remold and Lenski, 2004). We recently showed that the fitness effects of larger panels of ~100 to 

~1000 random insertion mutations (both beneficial and deleterious) tend to be systematically less 

beneficial or more deleterious in more-fit backgrounds (Johnson et al., 2019). However, the genetic 

backgrounds in that study were derived from a cross between two diverged yeast strains. It remains 

unclear whether similar patterns would hold across genetic backgrounds that are the result of long-

term laboratory evolution, because the mutations that drive evolutionary adaptation are selected 

along the line of descent, which in principle could bias their epistatic interactions.  

Here, we directly address this question by measuring the fitness effects of a panel of insertion 

mutations during the course of a long-term laboratory evolution experiment in budding yeast. 

Specifically, we isolated random clones from 6 timepoints spanning 8,000 to 10,000 generations of 

adaptation to each of two constant laboratory environments from the ongoing evolution 

experiment we have recently described (Johnson et al., 2021). While the yeast strains used in our 

prior experiment differed at tens of thousands of segregating loci, the strains in this experiment 

differ by only tens or hundreds of mutations that fixed during evolution. By looking at the effects 

of insertion mutations in these strains, we are measuring a panel of hidden phenotypes that may 

change predictably or stochastically during evolution. The widespread presence of epistasis 

observed in biological systems suggests that these hidden phenotypes may be important to long-

term evolutionary outcomes as the fitness effects of mutations effectively open and close doors to 

unique pathways for evolution (Johnson et al., 2021; Karkare et al., 2021; Kvitek and Sherlock, 2011). 

Our approach complements several recent studies that have analyzed changes in mutational 

robustness during evolution by conducting mutagenesis followed by phenotypic measurements. 

For example, Novella et al. (2013) found that evolved vesicular stomatitis virus strains gained 

robustness, measured as resistance to mutagenesis, after laboratory adaptation. In contrast, 

Butković et al. (2020) found that a strain of turnip mosaic potyvirus evolved in Arabidopsis thaliana 

lost robustness over time, measured as the change in the ability of the virus to retain its level of 

plant infectivity after mutagenesis. Our barcode-based mutagenesis system makes it possible to 
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dissect these overall changes in robustness, by measuring how they emerge as a result of changes 

in the effects of individual mutations. 

In this study, we aim to leverage this mutation-level data to better understand the structure of 

epistasis in evolving populations. First, we analyze the overall distribution of fitness effects to 

measure how mutational robustness changes during adaptation in each environment. Next, we ask 

whether the distribution-level changes we observe can be explained by patterns of fitness-

correlated epistasis among individual mutations. Finally, we examine how the effects of these 

mutations change in each of the evolving populations, asking whether epistasis is more often driven 

by predictable adaptations common across populations or by specific mutations fixed in a single 

population.  

Results 

Changes in the distribution of fitness effects during evolution 

We isolated two clones from each of six timepoints from six haploid populations evolved in rich 

media at a permissive temperature (YPD 30°C) and from six haploid populations evolved in a 

defined media environment at a high temperature (SC 37°C), a total of 144 clones. We measured the 

fitness of each of these clones in the environment to which they adapted, finding that fitness 

increases steadily through time in both the YPD 30°C and SC 37°C environments, and displays a 

general pattern of declining adaptability (Figure 1A).  

We next created a library containing each of 91 insertion mutations in each of our 144 clones. We 

measured the fitness effect of each mutation in each clone using barcode-based competition assays 

as described in Johnson et al., 2019. While there are likely minor genetic differences between the 

two clones isolated from each population-timepoint that reflect intra-population diversity, we 

generally observed strong correlations between their fitness effect measurements (Figure 1 – figure 

supplements 1-3), so we averaged across the two clones to obtain one measure of the fitness effect 

of each mutation at each population-timepoint. 

We find that the distribution of the fitness effects (DFE) of our 91 insertion mutations changes over 

the course of the evolution experiment. In the YPD 30°C environment, the mean of the DFE 

decreases over time as fitness increases during evolution (Figure 1B), consistent with a general 

pattern of both diminishing returns and increasing costs. The negative relationship between 

generations evolved and the mean of the DFE is significant in the entire set of population-timepoints 

(P = 2.0´10-6) and in four of our six individual populations (P < 0.05). In contrast, although the DFE 
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does shift in individual populations evolved in our SC 37°C environment, we do not see any 

consistent patterns (Figure 1B).  

In both environments, we find that the changes in the mean of the DFE are modest compared to 

our previous experiment (Johnson et al., 2019). The reasons for this are unclear, but may reflect the 

fact that fitness differences between the clones we study here are caused by a smaller number of 

mutations. We note that because of the modest differences in the DFE between clones, the noise in 

our measurements contributes significantly to the variation. One potentially biased source of this 

noise is missing measurements: not all mutations have fitness effects measured in each population-

timepoint, due to differences in transformation efficiency or, most commonly, mutations that had 

too few read counts in the first two timepoints. As in Johnson et al., 2019, missing measurements 

are more common in more-fit strains (clones from later timepoints) in YPD 30°C, suggesting that the 

negative correlation between generations evolved and the mean of the DFE would be stronger with 

complete data (Figure 1 – figure supplement 5). 

Figure 1: The DFE mean declines in one 

of two environments during evolution 

(A) Changes in fitness during the 

evolution experiment, measured as the 

average fitness of two clones isolated 

from six timepoints in each population. In 

each graph, zero is the fitness of a 

fluorescent reference used in that 

environment. Error bars represent the 

standard deviation of the two replicates 

(points without error bars have errors 

smaller than the point size). (B) The mean 

fitness effect of the insertion mutations 

measured in the clones isolated from each 

timepoint. Asterisks in the legend 

represent a significant correlation (P < 

0.05) between generation and DFE mean 

in that population alone. In both (A) and 

(B), the six populations are indicated by 

color. 
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Epistasis at the level of individual mutations 

We next turn to the components of these distribution-level patterns: epistatic patterns for 

individual mutations. To look at these patterns, we focus on mutations that have fitness 

measurements in at least 20 population-timepoints in each environment (77 mutations in YPD 30°C, 

74 in SC 37°C, 70 in both). We start by looking for patterns of fitness-correlated epistasis. We classify 

each mutation in each environment as correlated negatively or positively with background fitness 

if the correlation is significant at the P<0.05 level and the absolute value of the slope is greater than 

0.05, and classify them as not significantly correlated if they do not meet these criteria. For both 

environments, we find numerous examples of both negative and positive correlations, 

corresponding to increasing costs or decreasing costs respectively for deleterious mutations (and 

to diminishing returns or increasing returns respectively for beneficial mutations).  

In Figure 2, we show examples illustrating how the fitness effect of specific mutations vary across 

clones isolated from each environment, plotted as a function of the fitness of each clone in that 

environment (i.e. the background fitness). We find numerous examples of mutations which exhibit 

negative, positive, and non-significant correlations with background fitness in both environments 

(panels along the diagonal). We also find examples where a specific mutation exhibits a non-

significant correlation in one environment and either a positive or negative correlation in the other 

(off-diagonal panels). Overall, consistent with our previous results, we observe more negative than 

positive correlations. As we would expect from the DFE-level results, this imbalance is more 

pronounced in the YPD 30°C environment: 33/77 mutations have fitness effects that decline 

significantly as background fitness increases in YPC 30°C, but only 17/74 in SC 37°C. We also find 

that only 9/77 mutations display the opposite pattern (fitness effects increase significantly as 

background fitness increases) in YPD 30°C, while 13/74 display this pattern in SC 37°C.   
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Figure 2. Patterns of fitness-correlated epistasis. Each panel shows an example of a specific mutation with 
a particular combination of relationships (negative, positive, or non-significant correlation between fitness 
effect of the mutation, s, and background fitness) in the two environments; numbers indicate the total number 
of mutations displaying each pair of relationships. Graphs depict fitness effect (y-axis) as a function of 
background fitness (x-axis). Axes are colored to identify the environment: in each panel the blue axes on the 
left is data from YPD 30°C and the black axes on the right is data from SC 37°C. Points are colored by population, 
as in Figure 1. Each set of example plots is labeled by where the mutation is in the genome (i.e. which gene it 
disrupts).  
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Modeling the determinants of fitness effects 

By definition, the fitness-correlated patterns we observe are the result of interactions between our 

insertion mutations and mutations that fix during the evolution experiment. If these interactions 

are all strictly “fitness-mediated,” the fitness effects of mutations will be fully explained by a 

background fitness effect. Alternately, fitness-correlated epistasis could arise based on the average 

effect of a number of idiosyncratic effects that are biased to produce a negative correlation with 

fitness. To understand the relative contribution of these determinants of epistasis, we compare 3 

linear models used to explain the fitness effects of a single mutation in each of our two 

environments: 

1. The fitness model (XM): the fitness effect of the mutation is a linear function of 

background fitness. 

2. The idiosyncratic model (IM): the fitness effect of the mutation can change in any 

population at any timepoint when an interacting mutation fixes in that population (see 

below for our constraints on fitting these parameters). 

3. The full model (FM): the fitness effect of the mutation is affected by both a linear effect of 

background fitness and the idiosyncratic interactions of fixed mutations, as in the 

idiosyncratic model. 

We fit each model by ordinary least squares. We define the fitness effect of each mutation in the 

ancestral strain as the mean fitness effect measured among clones from the first timepoint, and fix 

the intercept of each of our models accordingly. For the IM and FM models, we add idiosyncratic 

parameters iteratively, choosing the parameter that improves the Bayesian Information Criteria 

(BIC) the most at each step. We do not allow parameters that fit a single point (e.g., a parameter for 

an effect at the final timepoint), and we only allow one parameter per population. We stop this 

iterative process of adding parameters if the BIC improves by less than 2 during a step (or when 

there is one parameter per population). 

Figure 3A shows how well each model explains the fitness effect data for each mutation in each 

environment. We find that the fitness model often explains a large amount of variance, in 

agreement with our earlier analysis, but the idiosyncratic model and the full model usually offer 

more explanatory power. This indicates that epistasis is not strictly fitness-mediated; we commonly 

observe what appear to be stepwise changes in the fitness effect of a mutation unique to one 

population (Figure 3B), despite very similar patterns of fitness increase among populations (Figure 

1A). 
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Figure 3. Determinants of fitness effects. (A) For each environment, we plot the standard deviation of the 
fitness effect across all population-timepoints and the square root of the variance explained by each of our 
three models. Mutations shown in red or black are insertions in or near the corresponding gene, respectively; 
stars indicate the mutations shown in panels B and C. Only mutations with fitness-effect measurements in at 
least 20 population-timepoints are shown. The insets show the distribution of all coefficients in the 
idiosyncratic model (IM) and full model (FM), pooled across all mutations.  (B) Examples of idiosyncratic model 
fits. Model predictions are shown by dashed lines, and lines with contributions from indicator variables 
associated with a particular population are the same color as the points from that population (colors are the 
same as in Figure 1). (C) Examples of full model fits.  
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Positive and negative coefficients in the idiosyncratic model represent positive and negative 

epistasis between mutations that fix during evolution and our insertion mutations. The distribution 

of these coefficients in YPD 30°C is biased towards negative epistasis, while both positive and 

negative epistasis are common in our idiosyncratic model in SC 37°C (Figure 3A insets). Many of the 

positive epistatic terms in our idiosyncratic model in SC 37°C are the result of parallel reduction in 

the fitness costs of some deleterious mutations in the first 2,000 generations of evolution (e.g., see 

the mutation in SSK1 in Figure 3B and others in Figure 3 – figure supplements 4-5). In the full model, 

these parallel changes are often well explained by a background fitness parameter, and the 

remaining epistatic effects are more likely to be negative (Figure 3A, bottom inset). 

The differences we observe in epistatic patterns could be caused by interactions between the 

environment and epistasis (“GxGxE” effects), differences in the adaptive targets in each 

environment, or a combination of the two. To tease apart these possibilities, we measured the 

fitness effects of mutations in clones evolved in YPD 30°C in the SC 37°C environment. We assayed 

the background fitness of each of these clones in SC 37°C and found that populations evolved in YPD 

30°C sometimes experience large fitness declines in the SC 37°C environment (Figure 4C). We also 

observe widespread epistasis in this alternate environment, but do not observe any overall trends 

in the mean of the DFE in SC 37°C over the course of evolution in YPD 30°C. Instead, the variance in 

our data is dominated by one particularly low fitness clone in which several insertion mutations 

were strongly beneficial (Figure 4C). 

When we apply the same set of models to this dataset, we again find that both background fitness 

and idiosyncratic effects can explain how many mutations’ fitness effects vary, with the latter again 

outperforming the former (Figure 4A). Notably, we observe many more positive epistatic 

coefficients than in YPD 30°C, though we also observe a heavy tail of strongly negative coefficients. 

These patterns of idiosyncratic epistasis are not due to outsized contributions from a few 

populations; the distributions of IM coefficients for YPD 30°C populations are different in the two 

assay environments across populations (Figure 3 – figure supplement 2). Overall, these results 

support the hypothesis that GxGxE effects underlie the differences we observe between 

environments (see also Hall et al. 2019), though they do not rule out the possibility that differences 

in adaptive targets between environments may also contribute.  
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Figure 4. Patterns of epistasis in a non-evolution environment. (A) Same as Figure 3A, but for clones from 

YPD 30°C assayed in SC 37°C. We plot the standard deviation of the fitness effect across all population-

timepoints and the square root of the variance explained by each of our three models. Mutations shown in red 

or black are insertions in or near the corresponding gene, respectively; stars indicate the mutations shown in 

panel B. Only mutations with fitness-effect measurements in at least 20 population-timepoints are shown. The 

inset shows the distribution of all coefficients in the idiosyncratic model (IM) and full model (FM), pooled 

across all mutations. (B) Example IM model fit, as in Figure 3B. The model predictions are shown by bold 

dashed lines, and lines with contributions from indicator variables associated with a particular population are 

the same color as the points from that population (colors are the same as in Figure 1 and panel C). (C) The 

fitness and DFE mean over time in YPD 30°C populations assayed in SC 37°C. The asterisk indicates a significant 

correlation (P<0.05). Error bars represent the standard deviation of the fitnesses measured for the two clones, 

but note that we were only able to measure the fitness of one clone at several population-timepoints due to 

low fitnesses relative to our reference; the corresponding points here have no error bars. 
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Discussion 

Shifting distributions of fitness effects 

By using our barcode-based mutagenesis system to assay the fitness effects of 91 specific gene 

disruption mutations across numerous genetic backgrounds spanning 8,000-10,000 generations of 

laboratory evolution, we have described how overall mutational robustness (defined in terms of 

the average effect of this type of insertion mutation) changes during evolution. We then dissected 

these overall effects in terms of the ways in which fitness effects of individual mutations change 

during evolution. We find that populations adapting to our YPD 30°C environment become less 

robust to deleterious mutations over time. This shift in the mean of the DFE in YPD 30°C is not 

caused by strictly fitness-mediated shifts in the fitness effects of mutations, but is instead the result 

of a bias towards negative idiosyncratic epistatic effects (Figure 3). In contrast, in clones isolated 

from populations evolved in SC 37°C, epistatic interactions are more evenly divided between 

negative and positive effects in our idiosyncratic model, though we did observe a bias towards 

negative idiosyncratic epistatic effects in a model that included a background fitness term. 

The fact that populations evolved in YPD 30°C lost robustness as they increased in fitness over time 

is broadly consistent with our earlier work showing that the DFE becomes more strongly 

deleterious in more-fit genetic backgrounds (Johnson et al., 2019). However, the loss of robustness 

we observe here was not as strong as in this previous work (see Figure 1 – figure supplement 6 for 

a comparison to the effect size in Johnson et al., 2019), and we did not observe any predictable 

change in the DFE mean in SC 37°C. One potential explanation for the weaker patterns we observe 

at the DFE level in this experiment is that there are simply less mutations involved compared to the 

genetic backgrounds from our earlier work: the genotypes in our previous experiment were 

derived from a cross between two yeast strains that differed at tens of thousands of loci, so the pool 

of mutations was both larger and more balanced (each mutation present in ~50% of clones) than in 

this study. If the overall patterns of fitness-correlated epistasis arise due to the collective effect of 

numerous idiosyncratic interactions, rather than a genuine fitness-mediated effect, we would 

therefore expect weaker trends here (Lyons et al., 2020; Reddy and Desai, 2021). 

Our results also illustrate a form of hidden evolutionary unpredictability, despite the fact that our 

populations increased in fitness over time along a predictable trajectory (Johnson et al., 2021). As 

these populations adapted, they accumulated mutations that carry with them epistatic interactions 

with potential future mutations across the rest of the genome. The patterns of epistasis we observe 

demonstrate that the predictability of these second-order effects vary widely: some potential future 
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mutations show strong fitness-correlated effects in every population, while others are affected by 

a small number of idiosyncratic interactions with mutations that fix during evolution. These 

unpredictable patterns of epistasis could lead to fundamentally unpredictable evolutionary 

outcomes, with changes in the fitness effects of mutations dynamically closing off or opening up 

evolutionary pathways during adaptation. 

Patterns of epistasis among individual mutations 

Most of the insertion mutations we analyze in this experiment are deleterious across most or all 

genetic backgrounds. We find that these deleterious mutations tend to become more strongly 

deleterious over time in populations evolved in the YPD 30°C environment. This pattern results 

from an overabundance of negative epistatic interactions, which could involve either the beneficial 

mutations that drive fixation events or the neutral or weakly deleterious mutations that hitchhike 

to fixation during selective sweeps (McDonald et al., 2016). The strong predictive power of 

background fitness for the fitness effects of some mutations suggests that interactions with 

beneficial mutations are driving these patterns of epistasis, but idiosyncratic effects that deviate 

from these relationships hint at a role for interactions with hitchhiker mutations as well (Figure 3). 

Systematic backcrossing and mutagenesis experiments would be required to disentangle these 

patterns, but we suspect both types of interactions contribute to the epistasis we observe. 

Among the relatively small number of beneficial insertion mutations we analyze, we find that the 

beneficial effects tend to decline over time, and almost universally shift to neutral or deleterious 

effects later in the experiment (Figure 3 – figure supplement 1). These results provide additional 

examples of diminishing-returns epistasis among beneficial mutations, which can at least partially 

explain the pattern of declining adaptability often observed in microbial evolution experiments 

(Chou et al., 2011; Khan et al., 2011; Kryazhimskiy et al., 2014; Wünsche et al., 2017). One of these 

mutations has a clear functional story behind it: the beneficial effect of an insertion mutation in 

ADE5,7 is the result of breaking the adenine synthesis pathway upstream of a toxic intermediate, 

so when populations in SC 37°C fix other loss-of-function mutations in this pathway between the 

first two sampled timepoints in the evolution experiment, this mutation becomes neutral (we do 

not see this effect in YPD 30°C because most populations have fixed a mutation in the adenine 

pathway by the first sampled timepoint (Johnson et al., 2021)). 

The picture that emerges from our data is one in which idiosyncratic epistatic effects are largely 

unpredictable but have biases that often lead to correlations with background fitness. In both our 

own work and other studies of microbial evolution, these biases are more often towards negative 

epistasis: beneficial mutations tend to have negative epistatic interactions with both deleterious 
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(Johnson et al., 2019, this study) and beneficial mutations (Chou et al., 2011; Hall et al., 2019; Karkare 

et al., 2021; Khan et al., 2011; Kryazhimskiy et al., 2014; Ono et al., 2017; Pearson et al., 2012; Perfeito 

et al., 2014; Rokyta et al., 2011; Wünsche et al., 2017). 

What causes these biases in epistasis? At the broadest level, we can distinguish two sources of bias: 

the structure of biological systems and the set of mutations that fix during evolution. Both 

theoretical and experimental work have shown that genes within functional modules tend to have 

similar interaction profiles with other genes (Costanzo et al., 2016; Segrè et al., 2005). Given this 

kind of “monochromatic” epistasis, all that is necessary for fitness-correlated epistasis to appear 

during evolution is for beneficial mutations to be clustered in a few modules. The strength and 

direction of fitness-correlated epistasis will then depend on the particular modules targeted by 

selection and how those modules interact with the rest of the cell. For example, the targets of 

adaptation in SC 37°C may be more related to heat stress than general components of growth (e.g. 

mutations in LCB3, which have been shown to reduce killing in certain heat stress conditions, are 

enriched in populations in SC 37°C (Ferguson-Yankey et al., 2002; Johnson et al., 2021)). If the 

strongly deleterious effects of some of our insertion mutations are exacerbated by heat stress, but 

a beneficial mutation reduces heat stress, we can expect a positive interaction between the two 

mutations. In contrast, we hypothesize that the deleterious effects of some insertion mutations 

become more pronounced when growth rate is increased by mutations in YPD 30°C (Johnson et al., 

2019). In order to understand or predict these differences in epistasis specific to the evolution 

environment, we will need to better understand the functional structure of biological systems. 

Higher-order epistasis and the evolution of robustness 

Each mutation that fixes during evolution has an immediate first-order effect on fitness, but also 
carries with it a second-order set of pairwise interactions whose strength and direction is 
determined by the structure of functional relationships between genes and biological modules. 
Through higher-order interactions, a mutation can also change the structure of these functional 
relationships, altering the complexity, redundancy, robustness, and evolvability of biological 
systems (reviewed in de Visser et al., 2003, Masel and Siegal, 2009, Masel and Trotter, 2010, and 
Payne and Wagner, 2019). Our work here suggests that mutational robustness tends to decrease 
during evolution in some environments, but our data is essentially limited to second-order 
interactions. We expect these effects to dominate during rapid adaptation, but over longer 
evolutionary timescales, robustness may be more dependent on changes in the higher-order 
structure of biological systems. 
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Ideas and speculation 

We find that in one evolution environment, a bias towards negative epistasis leads to a shift in 

the DFE towards more deleterious mutations over time, while in another evolution 

environment no such shift occurs. Clearly, the details matter, and it is difficult to draw general 

conclusions. In this section, we speculate on how work in metabolic control theory (MCT) may 

help explain the functional underpinnings of our results and fitness-correlated epistasis more 

generally. 

MCT describes how mutations in idealized metabolic pathways change the control coefficients 

of other mutations (Szathmáry, 1993). In a strictly serial pathway, a mutation reducing the 

activity of one enzyme will decrease the control other enzymes have over flux through the 

pathway, but a mutation increasing the activity of one of the enzymes will increase the control 

of others. If two enzymes act instead in parallel, these patterns are reversed: a mutation that 

increases activity of one will decrease the control of the other on flux, and vice versa. 

If flux through the pathway is correlated with fitness, these patterns of interactions predict 

epistasis between mutations in different enzymes in the pathway. For example, if flux is 

negatively correlated with fitness in a strictly serial pathway, beneficial mutations will be those 

that reduce flux, so they will reduce the control of other enzymes in the pathway, such that 

these beneficial mutations exhibit negative epistasis. This is the case for beneficial loss-of-

function mutations in the broken adenine-synthesis pathway present in the ancestors of our 

evolution experiment (Johnson et al., 2021): one beneficial loss-of-function mutation in this 

pathway (e.g. in ADE4) lowers the control coefficients of the rest of the enzymes in that 

pathway, such that loss-of-function mutations in these enzymes become less beneficial (e.g. 

our insertion mutation in ADE5,7 in this experiment, Figure 3 – figure supplement 1). 

MCT is a mathematical framework for describing these interactions, but the general qualitative 

principles can be applied beyond enzymes in metabolic pathways to understand patterns of 

fitness-correlated epistasis (MacLean, 2010). One hypothesis for the functional underpinnings 

of increasing-costs epistasis can be framed in this way. First, we assert that the large-scale 

components of growth in the yeast cell functionally act in serial. While these components of 

growth (e.g. cell wall production, ribosome production, and DNA replication) do not belong to 

an actual serial pathway, they clearly do not act in parallel: these components generally cannot 

“fill in” for each other. That is, they are non-redundant. We therefore propose that an increase 
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in the function of one of these components (in terms of growth rate) will increase the control 

coefficients of the rest of the components. Similarly, a decrease in the function of one 

component will decrease the control coefficients of the rest. We can intuitively understand this 

based on the idea of limitation: if DNA replication slows to a halt, growth rate will become less 

sensitive to changes in the speed of cell wall production. In contrast, if a population in which 

growth is limited by DNA replication fixes a mutation that improves DNA replication, we 

expect the control coefficient of cell wall production to increase, meaning deleterious 

mutations that slow cell well production will become more deleterious. We believe this effect 

can explain much of the increasing-costs epistasis we have observed. 

Consider the following metaphor for this effect. You work for a car manufacturer, and your 

factory’s goal is to produce cars as quickly as possible. You work with a small team that builds 

the wheels. Your team is excellent, but the engine team is much slower. Because the engine 

team is limiting production, you don’t feel under pressure from the boss at all – honestly, you 

could skip work one week and the company would hardly suffer (read: your control coefficient 

is low, deleterious mutations have small effects). One day the engine team purchases a new 

robot and dramatically speeds up their process. Suddenly cars are waiting for wheels, and the 

pressure on your team increases dramatically – you can no longer slack off (read: your control 

coefficient is high, deleterious mutations have larger effects, costs have increased). 

In our discussion, we speculated that we see increasing costs more frequently in YPD 30°C 

because adaptation in that environment is more focused on improving core components of 

growth, compared to adaptation in SC 37°C where selection for improvement in heat tolerance 

or survival may be more common. The phenotype of survival does not fit as neatly into our car 

manufacturing metaphor: we have no strong hypotheses for how control coefficients should 

change as populations increase heat tolerance, or for how large-scale phenotypes such as 

growth and survival integrate in terms of competitive fitness. However, we speculate that in 

SC 37°C, adaptive mutations are less likely to be affecting the core components of growth, and 

therefore cause increasing costs less often than mutations selected in YPD 30°C. To move closer 

to predictive models of epistasis, we will need to better understand the functional relationships 

between these large-scale cellular phenotypes. 

We ended our discussion by noting that changes in robustness over longer evolutionary 

timescales may depend not on the type of changes we observe in our evolution experiment, 

but on changes to the higher-order structure of biological systems. Within our metaphor, this 
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is the difference between changes to each team’s effectiveness and changes to the overall 

assembly line system. Defining what constitutes a change to the structure of the system itself 

is a difficult problem, analogous to defining “novelty” in evolution (Murray, 2020), but most 

would agree that there are fundamental differences in the complexity and redundancy of the 

genetic systems of viruses and humans, for example. 

Both experimental and theoretical work have suggested that higher genome complexity and 

redundancy is associated with more negative epistasis between deleterious mutations (Macía 

et al., 2012; Sanjuán and Elena, 2006; Sanjuán and Nebot, 2008; though see Agrawal and 

Whitlock, 2010). Negative epistasis between deleterious mutations implies that deleterious 

mutations increase the control coefficients of other mutations and that beneficial mutations 

will decrease control coefficients. Therefore, in organisms with higher functional redundancy, 

we expect to observe more positive interactions between beneficial and deleterious mutations 

and less increasing-costs epistasis. In other words, the second-order loss of robustness we 

observe during adaptation should be stronger in organisms that are already less robust. While 

there may be more unseen biases in the types of interactions beneficial mutations participate 

in, present data suggests that increasing-costs epistasis may be specific to organisms or 

environments where the functional redundancy of genes or biological modules is low. 

Epistasis between beneficial mutations 

An apparent contradiction emerges from our explanation for increasing-costs epistasis: if 

adaptation increases the control coefficients of core components of growth, why do we not see more 

positive epistasis between beneficial mutations in evolution experiments? Why do we instead 

usually see negative, diminishing-returns epistasis and declining adaptability? We propose that this 

discrepancy arises due to differences in the availability and form of beneficial and deleterious 

mutations. Based on previous work, we expect beneficial mutations in laboratory evolution 

experiments to be primarily loss-of-function mutations (Murray, 2020). In contrast to deleterious 

mutations, which can be spread across the genome, these types of beneficial mutations will rarely 

exist in well-adapted core components of growth, and will instead be clustered in a few adaptive 

targets. Within these targets, we believe loss-of-function beneficial mutations are often functionally 

redundant, meaning that they tend to decrease each other’s control coefficients for fitness. 

Beneficial mutations can be redundant by inactivating the same deleterious pathway (e.g., ADE 

pathway mutations discussed above), solving the same general problem (e.g., mutations shortening 

lag in Karkare et al., 2021), or changing a phenotype with a nonlinear fitness function (Chiu et al., 

2012; Chou et al., 2014; Keren et al., 2016; Lunzer et al., 2005; Otwinowski et al., 2018). 
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Nonmonotonic fitness functions can arise from phenotypes with both potential benefits and costs 

(Dekel and Alon, 2005), such that negative interactions between beneficial mutations and the 

benefit can lead to fitness-correlated epistasis that crosses neutrality, exhibiting diminishing 

returns, increasing costs, and sign epistasis (Figure 3 – figure supplement 1). 

This explanation provides a prediction: we will be more likely to see synergistic epistasis during 

evolution experiments when we observe beneficial gain-of-function mutations. Chou et al., 2009 

provides a particularly strong example of a beneficial gain-of-function (promoter capture) 

mutation that is more beneficial in more-fit genetic backgrounds. In the long-term Escherichia coli 

evolution experiment, potentiating mutations acquired during adaptation in one population 

interacted positively with a beneficial gain-of-function mutation (also a promoter capture), 

enabling aerobic citrate utilization (Blount et al., 2012). Studies of evolutionary repair also provide 

examples of synergistic interactions between apparently non-redundant beneficial mutations 

(Fumasoni and Murray, 2020; Hsieh et al., 2020). These counter examples underscore the fact that 

diminishing returns epistasis is not a rule; it is a pattern that is overrepresented in evolution 

experiments due to biases for beneficial mutations to be loss-of-function mutations and to be 

clustered in a few adaptive targets. These biases may be weaker later in evolution experiments 

when mutations are spread more evenly across cellular modules, such that a period of declining 

adaptability caused by diminishing returns epistasis early in an experiment gives way to a period 

of relatively constant fitness gains (Good and Desai, 2015). 

A final note on terminology for epistasis 

Very few papers discuss epistasis between beneficial and deleterious mutations – most theoretical 

and experimental work has focused on epistasis between two beneficial mutations or two 

deleterious mutations. With these same-signed pairs of mutations, the terms negative and positive 

epistasis are consistent. Two beneficial mutations that interact negatively imply two deleterious 

reversions that also interact negatively. However, when we consider one of these beneficial 

mutations and the deleterious reversion of the other, they interact positively. We provide this note 

to clarify that increasing costs epistasis, in which deleterious mutations exhibit negative epistasis 

with beneficial mutations, should not be associated with previous results demonstrating negative 

epistasis – instead we should expect it in systems where more positive epistasis is observed. While 

epistasis is already a concept overladen with terminology, we submit that in some cases it may be 

more useful to classify interactions between mutations or cellular components as being 

functionally redundant or non-redundant in terms of fitness.  
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Materials and Methods 

Strains 

All strains used for this study were isolated from the evolution experiment described in Johnson et 

al., 2021. We isolated 2 clones from each of our focal populations at each sequencing timepoint. For 

this experiment, we used clones from 12 MATa populations, 6 from the YPD 30°C environment and 

6 from the SC 37°C environment. We decided to include population P1B04, which exhibits a cell-

clumping phenotype in preliminary imaging data, and to exclude population P1B03, which 

diploidized during evolution, and populations P3C04, P3F05, P3D05, and P3E02, which lost G-418 

resistance during evolution (not being able to select on G-418 during transformation could allow 

the HygMX cassette to replace the KanMX cassette, leading to leakage during the selection step). 

Otherwise we chose populations randomly. The ancestor of these populations is MJM361 (MATa, 

YCR043C:KanMX, STE5pr-URA3, ade2-1, his3Δ::3xHA, leu2Δ::3xHA, trp1-1, can1::STE2pr-HIS3 

STE3pr-LEU2, HML::NATMX, rad5-535). 

Barcoded Tn7 libraries 

We used a previously created set of Tn7-based plasmid libraries to introduce the same set of ~100 

mutations into each of our strains (Johnson et al., 2019). These plasmids contain a section of the 

yeast genome corresponding to one of these ~100 locations, interrupted by a Tn7 insertion 

containing a random DNA barcode and a HygMX cassette. Each barcode uniquely identifies the 

mutation and the plasmid library via a mapping established in earlier work (Johnson et al., 2019). 

Transformation 

Our yeast transformation protocol is a scaled-up version of that used in Johnson et al. 2019, based 

on the method described in (Gietz and Schiestl, 2007). We grew strains from freezer stocks 

overnight, diluted 750 ul into 15 mL YPD + Ampicillin (100 g/mL), grew for 4 hours, pelleted the 

cells, and resuspended in 900 uL transformation mix and 100 uL plasmid DNA cut with NotI-HF 

(corresponds to 2 ug of plasmid; cut at 37°C for 3 hours, then heat inactivated at 65°C for 10 min). 

We then heat shocked this mixture at 42°C for 1 hour, recovered in 3 mL YPD + Ampicillin for 2 

hours, plated 25 ul on antibiotic selection plates to check efficiency, and then combined the rest 

with 40 mL YPD supplemented with antibiotics. For both agar and liquid selective media we 

included Hygromycin (300 μg/ml), clonNat (20 μg/ml), and G-418 (200 μg/ml). We made frozen 

glycerol stocks of each transformation after ~48 hours of growth. All growth was conducted at 30°C, 
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either in a test tube on a roller drum (recovery), or in a baffled flask on an orbital shaker (all other 

steps). 

We transformed 2 clones from 12 populations at 6 timepoints for a total of 144 transformations. We 

organized these transformations into three “VTn assays,” each associated with 48 transformations 

using our 48 unique barcoded libraries. 

Fitness Assays 

Again, we followed the protocols established in Johnson et al., 2019 for our fitness assays. We 

assayed our transformed libraries of clones from the YPD 30°C environment in both their evolution 

environment (YPD 30°C) and the SC 37°C environment, and clones from the SC 37°C environment 

in their evolution environment (SC 37°C). We first arrayed our transformation glycerol stocks into 

2 96-well plates corresponding to the 2 evolution environments, and then inoculated 8 ul from each 

well of these plates into 4 (for SC  37°C assays) or 8 (for YPD 30°C assays) flat-bottom polypropylene 

96-well plates containing 126 ul of media, supplemented with the same antibiotics as during the 

initial selection. To ensure efficacy of the antibiotics in the SC 37°C environment, we used media 

with MSG instead of ammonium sulfate (1.71 g/L YNB without amino acids or ammonium sulfate, 

2 g/L SC, 1 g/L MSG). After this period of growth, we used YPD and SC supplemented with ampicillin 

(100 μg/ml) and tetracycline (25 μg/ml), matching the conditions of the evolution experiment. After 

40 hours of growth in these plates, we started daily transfers. 

At each daily transfer, we diluted YPD 30°C cultures 1/210 and SC 37°C cultures 1/28. During these 

transfers, we combine and mix cultures from each well corresponding to the same 

clone/transformation to increase population size and reduce bottleneck noise. In the first (T0) 

transfer, we combined cultures from the 8 plates that were initially inoculated from the freezer 

stock and diluted them into 20 96-well plates. In all subsequent transfers (T1-4), we combined 

cultures from all 20 plates and diluted them into 20 new plates. Specifically, for YPD 30°C, we diluted 

3 μl from each well of 20 plates into 60 ul YPD (60 μl total, 1/2 dilution), mixed, then diluted 16 μl 

into 112 ul YPD (1/23 dilution), mixed, and distributed 2 μl into 126 μl YPD in 20 plates (1/26 dilution). 

For SC 37°C, we diluted 3 μl from each well of 20 plates into 60 ul SC (60 μl total, 1/2 dilution), mixed, 

then diluted 60 μl into 60 ul SC (1/2 dilution), mixed, and distributed 2 μl into 126 μl SC in 20 plates 

(1/26 dilution). 
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Barcode sequencing 

Our fitness assays in YPD 30°C were originally performed alongside assays in SC 37°C that were 

later abandoned due to an issue with expired reagents (and repeated with appropriate reagents in 

our second round of assays). During these assays, we combined equal volumes of culture at the end 

of each transfer from every well corresponding to each of the three VTn assays in each 

environment. We can pool the cultures corresponding to each VTn assay because we know which 

barcodes correspond to which plasmid library/clone, so we can divide our barcode count data 

appropriately during sequencing analysis. We performed DNA extractions from two 1.5 ml pellets 

for each assay-timepoint from our YPD 30°C fitness assays and from four 1.5 ml pellets from our SC 

37°C fitness assays using Protocol I from the Yeastar Genomic DNA Kit (Zymo Research), as 

described previously (Johnson et al., 2019). We then amplified barcodes using a two-step PCR 

protocol. We performed 4 first round PCRs with 19 µl gDNA, 25 l 2X Kapa Hotstart Hifi MM, 3 µl 10 

M TnRS1 primer, and 3 µl 10 M TnFX primer, and ran the PCR protocol: 1) 95°C 3:00, 2) 98°C 0:20, 3) 

60°C 0:30, 4) 72°C 0:30, GO TO step 2 3 times, 5) 72°C 1:00. We purified these PCRs with PCRClean DX 

Magnetic Beads (Aline), using a 0.85X ratio. We then set up two second round PCRs per sample by 

combining 25 µl purified PCR µ1 product, 1.5 µl ddH2O, 10 µl Kapa Hifi Buffer, 1 µl KAPA HiFi 

HotStart DNA Polymerase, 5 µl 5 M N7XX primer (Nextera), and 5 µl 5 M S5XX primer (Nextera), 

and ran the PCR protocol: 1) 95°C 3:00, 2) 98°C 0:20, 3) 61°C 0:30, 4) 72°C 0:30, GO TO step 2 19 times, 

5) 72°C 2:00. We purified the resulting libraries with Aline beads, using a 0.7X ratio, then repeated 

the purification with a 0.65X ratio, and finally sequenced our pooled libraries on a NextSeq 550 

(Illumina). 

From reads to barcode counts 

We process our sequencing data as described previously (Johnson et al., 2019). We first filter reads 

based on inline indices and quality scores, use regular expressions to extract barcode sequences, 

and combine barcode counts across timepoints for each VTn assay. Next, we use a single-bp-

deletion-neighborhood method to correct errors in raw barcodes, assigning them to the set of 

known barcodes from each of our plasmid libraries. By associating barcodes with plasmid libraries, 

we associate them both with a fitness assay for a particular clone and with a particular insertion 

mutation, and we divide our barcode count data accordingly. 
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Estimating fitness effects from barcode counts 

Again, we follow Johnson et al., 2019, with minor differences. First, we convert barcode counts to 

log-frequencies at each timepoint. After this preliminary step, we noticed a large number of log-

frequency spikes, restricted largely to one timepoint in one of our VTn assays in SC 37C. These spikes 

in frequency very likely represent low-level sequencing library contamination from another 

timepoint due to primer cross-contamination. In Figure 1 – figure supplement 6, we show that this 

is confined to this single timepoint and demonstrate how we can use a simple heuristic (excluding 

lineages whose log-frequency at timepoint 2 is 0.5 greater than both timepoint 1 and timepoint 3) 

to remove the barcoded lineages affected by this sequencing library contamination. This step 

excludes, on average, less than 1% of the reads from timepoint 2 in these assays. Next, we calculate 

fitness effects for each barcode, as described in Johnson et al., 2019. After excluding timepoints with 

less than 5,000 total barcode counts, we measure the log-frequency slope for each barcode at each 

consecutive pair of timepoints, excluding timepoints in which the barcode has less than 10 counts. 

We scale each of these log-frequency slopes by the median log-frequency slope of barcodes 

associated with five neutral reference mutations, and then average these scaled values to get one 

fitness measurement for each barcode. As in Johnson et al., 2019, we observe a small fraction of 

outlier barcodes, which follow starkly different log-frequency trajectories than the other barcodes 

associated with the same insertion mutation, presumably due either to pre-existing mutations in 

the transformed culture or transformation artifacts (including two mutations being transformed 

together). We use a log-likelihood ratio test to identify barcodes whose read counts are inconsistent 

with barcodes near the median fitness measured for one insertion mutation. Based on iterative 

exclusion and exploration of frequency trajectories for this experiment, we chose a heuristic cutoff 

of 40 for the log-likelihood ratio required to exclude barcodes (for a detailed description of this 

method see Johnson et al., 2019). Finally, to decrease noise from low-frequency barcode lineages 

while retaining the independent measurements unique barcodes provide, we randomly combine 

counts from individual barcodes into a maximum of 5 combined barcodes (“cBCs”) per insertion 

mutation. Next, we repeat the fitness measurement process described above to get final fitness 

measurements for each cBC. 

When we compare the average fitness effect measurement for each insertion mutation between 

the two clones isolated from each population at each timepoint, we see strong agreement (Figure 1 

– figure supplements 1-3). Given these strong correlations, we compute fitness effects for each 

population-timepoint using measurements from cBCs from both clones, treating them as we treated 

biological replicates in Johnson et al., 2019. We compute the fitness effect (s) and the standard error 

of s for each mutation as described in Johnson et al., 2019. 
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Measuring changes in the DFE and accounting for missing 

measurements 

For each population-timepoint, we calculated the mean of the fitness effects of all mutations with 

at least 3 cBCs across the two clones, excluding population-timepoints with less than 20 mutations 

with fitness effect measurements. To account for missing fitness effect measurements, we first 

examined the number of deleterious mutations (defined as having a mean fitness effect < -0.05 

across all strains in a given condition) that were not measured in each population-timepoint. We 

next examined the DFE mean of sets of mutations shared across the set of population-timepoints 

we had assayed successfully in each condition. Finally, we created “filled-in” DFEs for each 

population timepoint in which missing measurements were replaced with the mean fitness effect 

measured across all strains in a given condition. The results of these analyses are plotted in Figure 

1 – figure supplement 5. 

Modeling the determinants of epistasis 

Because our modeling approach can be strongly influenced by outliers, we only consider fitness 

effect measurements for mutations with at least 5 cBCs across the two clones for these analyses. We 

describe our basic modeling approach in the main text. To fix the intercepts of our models correctly, 

we first transform the fitness effect of each mutation by subtracting the mean fitness effect 

measured across all populations at the first timepoint of the evolution experiment. We similarly 

transform our background fitness variable by subtracting the average fitness measurement across 

all populations at the first timepoint. Then we fix the intercept at (0, 0). Note that our plots showing 

these model fits use the natural scales for fitness and fitness effects, not these transformed scales. 

All model fitting was performed using the python package statsmodels (Seabold and Perktold, 2010). 

Measuring background fitness 

We measured the background fitness of clones with fluorescence-based competitive fitness assays 

in duplicate for each clone in each environment, using the reference strains strain 2490A-GFP1 and 

11470A-GFP1 for the YPD 30°C and SC 37°C clones, respectively. We used the 2490A-GFP1 reference 

when we assayed the YPD-30°C-evolved clones in SC 37°C because come of these clones have very 

low fitness and 2490A-GFP1 has a lower fitness than 11470A-GFP1. We used the fitness difference 

measured between these two references in Johnson et al., 2021 to standardize the fitness 

measurements YPD-30°C-evolved clones in SC 37°C so that all fitness measurements in SC 37°C are 

on the same scale. Fitness assays were performed and data was analyzed as described in Johnson 
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et al., 2021. Briefly, we maintained mixed cultures of our clones and fluorescent references for 3 

daily growth cycles, as described above, and measured the frequency of fluorescent cells at each 

transfer using flow cytometry. We then calculated the fitness of each clone as the slope of the 

natural log of the ratio between the frequencies of the non-reference and reference cell populations 

over time. 
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Figure supplements 

 

Figure 1 – figure supplement 1. Fitness effect measurement correlations in YPD 30°C. Only mutations with 

at least three barcodes with fitness effect measurements in each clone are included. Values are graphically 

pinned to the -0.2 and 0.15 if they fall outside that range.  
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Figure 1 – figure supplement 2. Fitness effect measurement correlations in SC 37°C. Only mutations with 

at least three barcodes with fitness effect measurements in each clone are included. Values are graphically 

pinned to the -0.2 and 0.15 if they fall outside that range.  
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Figure 1 – figure supplement 3. Fitness effect measurement correlations in clones evolved in YPD 30°C, 

assayed in SC 37°C. Only mutations with at least three barcodes with fitness effect measurements in each 

clone are included. Values are graphically pinned to the -0.2 and 0.15 if they fall outside that range. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473185
http://creativecommons.org/licenses/by/4.0/


 

 

 

Figure 1 – figure supplement 4. Additional DFE statistics. (A) The combined DFE of all populations at the 

first and last timepoint in each environment. (B) The standard deviation of the DFE over time in each 

population. (C) The skew of the DFE over time in each population.  
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Figure 1 – figure supplement 5. Accounting for missing fitness effect measurements. Relationships 

between generations evolved and background fitness and various DFE measurements in each environment. 

The first row shows the DFE mean. The second row shows the number of deleterious mutations (based on their 

average fitness effect across strains) that had their fitness effects successfully measured in each population-

timepoint. The third row shows the mean of a DFE of mutations in which every mutation is measured in every 

population timepoint with usable data (68 mutations in all 36 population-timepoints successfully assayed in 

YPD 30°C, 45 mutations in 33 populations timepoints successfully assayed in SC 37°C). The fourth row shows 

the mean of a DFE in which missing fitness effect measurements are filled in with their average fitness effect 

across strains. These methods for accounting for missing fitness measurements strengthen our conclusion that 

the mean of the DFE declines during evolution in YPD 30°C. 
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Figure 1 – figure supplement 6. Comparison of our DFE mean vs. background fitness data with the data 

from Johnson et al. (2019). Each graph shows the relationship between the mean of the DFE and strain 

background. All graphs have the same aspect ratio.  
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Figure 1 – figure supplement 7. Excluding barcodes that experience sequencing cross contamination. 

(A) Heatmap showing the percentage of barcodes that failed our heuristic test for sequencing cross 

contamination at each timepoint in each assay in our SC 37°C experiment. Based on this data, we excluded 

barcodes that failed this test at timepoint 2 in the V2Tn_2 assay. Frequency trajectories of reference mutation 

barcodes are plotted in (B), with excluded barcodes shown in red. This procedure excluded 0.4% of reads at 

timepoint 2 on average. See methods for more details. 
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Figure 2 – figure supplement 1. Comparison of patterns of fitness-correlated epistasis between YPD 30°C 

and a previous study. Each panel shows an example of a specific mutation with a particular combination of 

relationships (negative, positive, or non-significant correlation between fitness effect of the mutation, s, and 

background fitness) in the two environments; numbers indicate the total number of mutations displaying each 

pair of relationships. Graphs depict fitness effect (y-axis) as a function of background fitness (x-axis). The axes 

are colored to identify the environment: in each square the blue axes on the left is data from YPD 30°C and the 

black axes on the right is data from Johnson et al. (2019), in which each point represents a segregant from a 

yeast cross. Points are colored by populations, as in Figure 1. Each set of example plots is labeled by where the 

mutation is in the genome (what gene it disrupts). 
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Figure 2 – figure supplement 2. Comparison of patterns of fitness-correlated epistasis between SC 37°C 

and a previous study. Each panel shows an example of a specific mutation with a particular combination of 

relationships (negative, positive, or non-significant correlation between fitness effect of the mutation, s, and 

background fitness) in the two environments; numbers indicate the total number of mutations displaying each 

pair of relationships. Graphs depict fitness effect (y-axis) as a function of background fitness (x-axis). The axes 

are colored to identify the environment: in each square the red axes on the left is data from SC 37°C and the 

black axes on the right is data from Johnson et al. (2019), in which each point represents a segregant from a 

yeast cross. Points are colored by populations, as in Figure 1. Each set of example plots is labeled by where the 

mutation is in the genome (what gene it disrupts). 
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Figure 2 – figure supplement 3. Comparison of patterns of fitness-correlated epistasis YPD 30°C and SC 

37°C, in both cases using the set of clones isolated from evolution in YPD 30°C. Each panel shows an 

example of a specific mutation with a particular combination of relationships (negative, positive, or non-

significant correlation between fitness effect of the mutation, s, and background fitness) in the two 

environments; numbers indicate the total number of mutations displaying each pair of relationships. Graphs 

depict fitness effect (y-axis) as a function of background fitness (x-axis). The axes are colored to identify the 

environment: in each square the blue axes on the left is data from YPD 30°C and the black axes on the right is 

data from the same clones isolated from evolution in YPD°C, but assayed in the SC 37°C environment. Points 

are colored by populations, as in Figure 1. Each set of example plots is labeled by where the mutation is in the 

genome (what gene it disrupts). 
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Figure 2 – figure supplement 4. Comparison of patterns of fitness-correlated epistasis in the SC 37°C 

environment for clones isolated from evolution in either YPD 30°C or SC 37°C. Each panel shows an 

example of a specific mutation with a particular combination of relationships (negative, positive, or non-

significant correlation between fitness effect of the mutation, s, and background fitness) in the two 

environments; numbers indicate the total number of mutations displaying each pair of relationships. Graphs 

depict fitness effect (y-axis) as a function of background fitness (x-axis). The axes are colored to identify the 

environment: in each square the red axes on the left is data from clones isolated from evolution in SC 37°C and 

the black axes on the right is data from clones isolated from evolution in YPD°C, both assayed in the SC 37°C 

environment. Points are colored by populations, as in Figure 1. Each set of example plots is labeled by where 

the mutation is in the genome (what gene it disrupts). 
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Figure 3 – figure supplement 1. Epistasis in mutations that are beneficial on average at the first 

timepoint in at least one environment. Each row represents an insertion mutation, labeled with the gene it 

disrupts or a gene nearby its insertion site if it is intergenic. Each column represents a condition from our 

experiment or data from Johnson et al. (2019) (right). Each plot shows the fitness effects of mutations over time 

in each population, with idiosyncratic model fits shown, as in Figure 3. The plots in the right column show the 

fitness effect of each mutation as a function of background fitness. Each of the mutations displayed here has a 

beneficial fitness effect on average in at least one environment that becomes neutral or deleterious in that 

environment during evolution. 
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Figure 3 – figure supplement 2. Idiosyncratic model coefficients, broken down by population and 

timepoint in each condition.  
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Figure 3 – figure supplement 3. Determinants of fitness effects under the idiosyncratic model. Each row 

represents one mutation, labeled at right with by the gene it disrupts or the nearest start of a gene if it is 

intergenic. Each column represents a condition. The left three columns show the fitness effects of mutations 

over the course of evolution, with points colored by population. The right column shows the relationship 

between fitness and the fitness effect of the mutation in the segregants from a yeast cross (data from Johnson 

et al. (2019)). Model predictions are shown by dashed lines, and lines with contributions from indicator 

variables associated with a particular population are the same color as the points from that population.  
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Figure 3 – figure supplement 4. Determinants of fitness effects under the full model. Each row represents 

one mutation, labeled at right with by the gene it disrupts or the nearest start of a gene if it is intergenic. Each 

column represents a condition. The left three columns show the fitness effects of mutations as a function of 

fitness, with points colored by population. The right column shows the relationship between fitness and the 

fitness effect of the mutation in the segregants from a yeast cross (data from Johnson et al. (2019)). Model 

predictions are shown by dashed lines, and lines with contributions from indicator variables associated with 

a particular population are the same color as the points from that population. 
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