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Abstract 
Human genetic variants can influence the severity of infection with SARS-COV-2. Several genome-
wide association studies (GWAS) have been conducted to identify human risk loci that may be 
involved with COVID-19 severity. However, candidate genes were investigated in the genomic 
proximity of each locus without considering their functional cellular contexts. Here, we compiled 
regulatory networks of 77 human contexts to interpret these risk loci by revealing their relevant 
contexts and associated transcript factors (TF), regulatory elements (REs), and target genes (TGs). 
21 human contexts were identified to be associated with COVID-19 severity and grouped into two 
categories: immune cells and epithelium cells. We further investigated the risk loci in regulatory 
network of immune cells, epithelium cells and their crosstalk. Two genomic clusters, chemokine 
receptors cluster and OAS cluster showed the strongest association with COVID-19 severity in the 
context specific regulatory networks. 
 
Introduction 
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most 
people infected with the virus will experience mild to moderate respiratory illness and recover 
without requiring special treatment. However, some will become seriously ill and require medical 
attention. Scientists from all over the world have made great efforts to understand the genetic 
mechanism of COVID-19 severity, which may lead to efficient prevention stratagem and effective 
cure. Genome-wide association analysis (GWAS) has been largely used to find human genetic 
variants associated with some phenotypes. Recently, applying GWAS to phenotypes of COVID-19, 
such as infection and severe respiratory symptoms, has helped us identify some risk loci associated 
with COVID-19. For example, the “The Severe COVID-19 GWAS Group” conducted a GWAS 
involving 1,980 patients with severe COVID-19 symptoms and detected SNP rs11385942 at locus 
3p21.31 and rs657152 at locus 9q34.21. Erola P. C. et al. used GWAS to study 2,244 critically ill 
COVID-19 patients from 208 UK intensive care units (ICUs) and found rs10735079 on 12q24.13 
in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), rs2109069 
on 19p13.2 near the gene TYK2, rs2109069 on 19p13.3 within DPP9, and rs2236757 on 21q22.1 in 
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the interferon receptor gene IFNAR22. “The COVID-19 Host Genetics Initiative” conducted several 
GWAS, including “very severe respiratory confirmed covid” and “hospitalized covid”, and also 
found many potential loci3. These identified risk genetic variants allow us to further understand the 
underlying mechanism of COVID-19 severity. 
 
Interpreting these COVID-19 associated genetic variants remains challenging since many studies 
revealed that most genetic variants were located in the non-coding regulatory region with high 
linkage disequilibrium4-6 and in time- and space-specific comtexts7. This implies that our task is to 
elucidate these genetic variants in the proper cellular contexts. Several works have been done to 
uncover the regulatory mechanism of genetic variants. For example, FUMA8 and GREAT9 used the 
routine way to link SNPs to the nearby genes. SMR10 and Sherlock11 utilized the expression 
information from eQTL to find SNP involved regulation. However, these methods either ignored 
the cis-regulation or not fully utilized the regulatory network. Recently, we developed a novel 
method (PECA) to infer regulatory network with paired expression and chromatin accessibility 
data12 and then extended to PECA2 to reconstruct regulatory network for one sample with paired 
expression and chromatin accessibility data13. The reconstructed regulatory networks have been 
successfully applied to reveal critical regulations for time course data14. To make the most use of 
the public available paired expression and chromatin accessibility data, such as ENCODE and 
ROADMAP, we used PECA2 to construct a regulatory network atlas of 77 human contexts, which 
served as a valuable resource for genetic variants interpretation in multi-cellular contexts. 
 
Here, we utilized these 77 regulatory networks to interpret the SNPs of COVID-19 severity. We first 
found the relevant tissues of COVID-19 severity were categorized into two main cell types: immune 
cells and epithelium cells. Then in these two cell type categories, we illustrated the detailed SNP 
associated regulation: SNP located in regulatory elements (REs), their upstream transcription factors 
(TFs), and their downstream target genes (TGs). We found that two gene clusters (chemokine 
receptors and OAS cluster) were important TGs in COVID-19 associated regulatory networks and 
showed different regulation patterns in two cell type categories. Our COVID-19 severity associated 
regulatory network will be promising to serve as a valuable perspective to study COVID-19. 
 
Results 
1. Human genetic variants of COVID-19 severity are enriched in immune and epithelium 

cells 
We first constructed a regulatory network atlas of human contexts. To do this, we collected paired 
expression and chromatin accessibility data of 76 human contexts, which included samples from all 
three germ layers, such as frontal cortex (ectoderm), primary T cells (mesoderm), and upper lobe of 
left lung (endoderm). With each sample’s paired expression and chromatin accessibility data as input, 
we used PECA2 model13 to construct regulatory network for each context (Methods). The basic 
unit of regulatory network was TF-REs-TG triplet and each triplet meant that TF bound on the REs 
and regulated the TG. We also included the regulatory network of cranial neural crest cells15 
(CNCC), a migratory cell population in early human craniofacial development, into this regulatory 
network atlas. We applied these regulatory networks of 77 human contexts for interpretation of 
genetic variants of COVID-19 severity. 
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Figure 1. (A). 21 COVID-19 severity relevant contexts ranked by FE score. Red: immune cells. Blue: 

epithelium cells. (B). COVID-19 SNP associated regulatory of “fetal thymus”, which is an immune cell type. 

(C). COVID-19 SNP associated regulatory of “upper lobe of left lung”, which is an epithelium cell type. 

 
We fetched the 542 SNPs with significant associations with “very severe respiratory confirmed 
COVID” (“A2_ALL” study in “The COVID-19 Host Genetics Initiatives”). To evaluate the 
relevance between SNPs and 77 human contexts, the fold enrichment (FE) score of these 542 SNPs 
in RE sets of 77 human contexts were calculated (Methods). We set the threshold of FE score to be 
3.0 and found that 21 contexts were relevant to SNPs of COVID-19 severity, such as “primary 
monocytes” and “upper lobe of left lung” (Figure 1A). We found these 21 contexts could be 
classified into two categories. The first category was immune cells, including 11 cell types: “primary 
monocytes”, “primary B cells”, “Jurkat”, “GM12878”, “primary natural killer cells”, “CD4 
primary cells”, “fetal thymus”, “primary T cells”, “CD8 primary Cells”, “T47D”, and 
“hematopoietic multipotent progenitor cell”. The second category was marked by epithelium cells 
and consisted of 10 cell types: “vagina”, “omental fat pad”, “gastric”, “upper lobe of left lung”, 
“lower leg skin”, “esophagus squamous epithelium”, “esophagus muscularis mucosa”, “fetal 
spleen”, “subcutaneous adipose tissue”, and “spleen”. 
 
We further extracted sub-network that was associated with SNPs of COVID-19 severity in every 
COVID-19 severity relevant context (Methods). For example, “primary monocytes” was one of the 
immune cell types. And 12 SNPs were located in the 8 REs of regulatory network of “primary 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.17.473140doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473140
http://creativecommons.org/licenses/by-nc-nd/4.0/


monocytes” (Figure 1B). These REs were predicted to regulate 9 TGs, such as CCR1 and FYCO1. 
CCR1 played a key role in T-cell-mediated respiratory inflammation16. These REs were bound by 
immunity associated TFs, such as CEBPB/D17-20, and FLI121. On the other hand,“upper lobe of left 
lung” was a cell type of epithelium cells (Figure 1C) and 8 REs were associated with 14 SNPs of 
COVID-19 severity and regulated 5 TGs, such as CCR1 and OAS1. Polymorphisms of OAS1 have 
been reported to affect susceptibility to a variety of viral diseases22,23. Some TFs bound and 
regulating these REs were linked to lung epithelium, such as CEBPD24 and ETS225. 
 
In summary, we built a regulatory network atlas of 77 human contexts and used these regulatory 
networks to find relevant contexts to genetic variants of COVID-19 severity. Two categories of 
tissues were found to be associated with COVID-19 severity: the first was epithelium cells and may 
be involved with susceptibility to viral diseases; the other category was immune cells and possibly 
linked to severity after being infected with disease. 
 
2. Construction of SNP associated regulatory network of immune and epithelium cells 
To obtain more understanding about these two categories of cell types, we constructed COVID-19 
severity associated regulatory networks in immune cells and epithelium cells respectively. Briefly, 
we pooled the SNPs associated networks of 11 immune cell types into a COVID-19 severity 
associated regulatory network of immune cells. Similarly, we pooled the SNPs associated regulatory 
network of 10 epithelium cell types into a COVID-19 severity associated regulatory network of 
epithelium cells (Methods). 
 
In COVID-19 severity associated sub-regulatory network of immune cells, there were totally 17 
TFs, 25 REs and 15 TGs that were associated with 38 SNPs (Figure 2A). This sub-regulatory 
network was highly associated with immune functions. For example, TCF3/7/12 were important 
upstream TFs in regulatory network of immune cells and played vital roles during T-cell 
development26,27. IRF1/3/4 were critical TFs in the cellular differentiation of hematopoietic cells 
and in the regulation of gene expression in response to pathogen-derived danger signals28. CCR5 
was downstream TGs in this sub-regulatory network and it encoded a protein on the surface of white 
blood cells that is involved in the immune system29. In COVID-19 severity associated regulatory 
network of epithelium cells, there were totally 16 TFs, 24 REs and 10 TGs that were associated with 
42 SNPs (Figure 2B). This SNP associated regulatory network was also involved with the functions 
of epithelium cells. For example, ETS2, which was core TF in regulatory network of epithelium 
cells, could promote epithelial-to-mesenchymal transition in renal fibrosis25. ELF3 was also 
essential for mesenchymal to epithelial transition30. NBEAL2 was a TG in epithelium regulatory 
network and the Nbeal2-deficient mice exhibited impaired development of functional granulation 
tissue due to severely reduced differentiation of myofibroblasts in the model of excisional skin 
wound repair31. These literature evidence showed that the constructed SNP associated regulatory 
networks were promising to reveal COVID-19 severity associated regulations in immune and 
epithelium cells. 
 
We further validated our SNP associated regulatory network with eQTL dataset. Our SNP associated 
regulatory network gave the link between SNPs and genes by SNP’s location in REs. For example, 
SNP “12:113364332:A:G” was located in RE “chr12:113364318-113364636” and
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Figure 2. (A). COVID-19 severity associated regulatory network of immune cells. (B). COVID-19 severity 

associated regulatory network of epithelium cells. 

 
“chr12:113364318-113364636” regulated OAS1, which gave the association between SNP
“12:113364332:A:G” and gene OSA1. In this way, we totally obtained 91 SNP-TG association 
from immune and epithelium regulatory networks. Then we collected significant variants-gene 
association of 49 tissues from GTEx v8. We found that our SNP-TG associations were highly 
reproducible by eQTL variants-gene association. First of all, there were 78 (85.7%) SNP-TG 
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associations could be detected as an eQTL variant-gene association in at least one tissue. On the 
other hand, when we ranked the 49 tissues by their overlapping number of eQTL with our SNP-TG 
association, we found that the top ranked tissues were also immune and epithelium cell types 
(Figure 3). For example, “esophagus mucosa”, which was one of epithelium cell types, ranked first 
by overlapping with SNP-TG association. There were some other tissues that were related to 
epithelium cells, such as “Cells Cultured fibroblasts”, “Skin Not Sun Exposed Suprapubic”, 
“Spleen”, “Skin Sun Exposed Lower leg”, “Lung”. And “Artery Tibial” and “Whole Blood” were 
parts of the blood, which were associated with immune functions. These results showed that our 
SNP-associated regulatory network could be evident by independent eQTL dataset. 

 
Figure 3. Overlapping of SNP-TG inferred from regulatory network with eQTL of 49 tissues in GTEx. 

 
In summary, we have constructed COVID-19 severity associated regulatory network of immune 
cells and epithelium cells. These two regulatory networks were tightly linked to immune and 
epithelium functions and could be validated by eQTL of immune cells and epithelium tissues in 
GTEx. 
 
3. Associating two cell types’ regulatory networks revealed regulatory structure of COVID-

19 severity 
After constructing and validating the regulatory networks of immune and epithelium cells, we next 
compared these two cell types to find conservation and divergence. We first compared the TFs, TGs, 
REs, and SNPs in the regulatory networks of immune and epithelium cells. For TFs, 7 TFs were 
shared by two cell types, such as ETS1 and IRF1. There were 10 immune-specific TFs (such as 
TCF7 and ELF1) and 9 epithelium-specific TFs (such as ETS2 and KLF4). There were also 8 
overlapped TGs (such as CCR1, FYCO1), 7 immune-specific TGs (such as CCR5 and LZTFL1) and 
2 epithelium-specific TGs (MATK and NBEAL2). For SNPs and REs, about half of them in immune 
regulatory network were shared by epithelium regulatory network (Figure 4). 
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Figure 4. Overlapping of SNP, RE, TF, TG between immune regulatory network and epithelium regulatory 

network. 

 
We found that the regulatory network could be clustered into four clusters according their location 
and this clustering was conserved between immune and epithelium cells (Figure 2A, B). The first 
cluster was on chromosome 3. This cluster was involved with regulation of CCR1/2/5/9, CXCR6, 
FYCO1, LIMD1, LZTFL1, SACM1L, XCR1 in immune cells and CCR1/2/5/9, CXCR6, NBEAL2 in 
epithelium cells. The second cluster was located in chromosome 12 and involved with regulation of 
OAS1/2/3 in both immune and epithelium cells. The third cluster was in chromosome 19. In immune 
cells, this cluster was associated with ARRDC5 and in epithelium cells, it was associated with MATK. 
The last cluster was in chromosome 21 and was linked to IFNAR2 in two cell types. These four 
regulatory clusters revealed four loci that may exert genetic influence on infection and severity of 
COVID-19. 
 
In the regulatory network of two cell types, we found two classes of upstream TFs (Figure 2A, B). 
The first class of TFs regulated most of the four regulatory clusters. For example, in regulatory 
network of immune cells, ETS1, TCF3 and GATA3 were involved with at least three regulatory 
clusters. And for the epithelium cells, ETS1, ETS2, and PITX1 were classified into this class. 
Contrary to the broad regulation of the first class, the second class of TFs was only responsible for 
a small part of regulatory network. For example, in immune regulatory network, CEBPD, CEBPB, 
TCF7, FOS, JUNB, JUN, ELF1 were only regulate REs in chromosome 3 regulatory cluster. And 
IRF3, IRF4, and MYC only responsible for regulations in chromosome 12 regulatory cluster. In the 
epithelium regulatory network, CEBPD, JUNB, IRF1, ID1, RORA, MYC, and KLF4 were only 
involved with the regulatory of chromosome 3 regulatory cluster. ID2, IRF3, AHR, STAT2, ELF3 
was solely associated with the chromosome 12 regulatory cluster. 
 
Through the comparison of two cell types’ regulatory networks, we found these two cell types shared 
many TFs, TGs, REs, and SNPs. The regulatory structure (four regulatory clusters based on location 
and two classes of upstream TFs) were conserved in two cell types. Despite the shared regulatory 
structure, there were also many cell-type-specific TFs, TGs, REs, and SNPs. 
 
4. Chromosome 3 and 12 clusters showed distinct regulatory program in immune and 
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epithelium cells 
From the above analysis of regulatory structure, we noticed that there are two relatively denser 
clusters in immune and epithelium regulatory: chromosome 3 and chromosome 12 clusters, 
indicating that they may play an essential role in COVID-19 severity. Then we focused on these two 
regulatory clusters. 

 
Figure 5. (A). SNPs, REs and PCHi-C loop associated with OAS1/2/3. The RE tracks consisted of 11 immune 

cell types and 9 epithelium cell types. PCHi-C loops were from blood samples. The number labels around the 

RE were indicator of RE’s target genes. (B). Expression of OAS1/2/3 in immune and immune cells. (C). 

Correlations between accessibility of REs and expression of OAS1/2/3. 

 
For regulatory cluster in chromosome 12, these regulatory programs were mainly involved with 
OAS cluster (OAS1/2/3) in ten immune cell types and nine epithelium cell types. These OAS cluster 
was important for immune and epithelium functions. For example, OAS1 polymorphisms played 
potential roles in respiratory infection from human bronchial epithelial cells23. The OAS2 protein is 
a well-known innate immune activated antiviral enzyme catalyzing synthesis of 2’-5’-
oligoadenylate for RNase L activation and inhibition of viral propagation32. We found that the REs 
of this cluster in different cell types were mainly distributed around the promoter of OAS3 (Figure 
5A) and there were many COVID-19 severity associated SNPs within these REs, which was 
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consistent among immune and epithelium cell types. To add additional evidence of regulation in 
this area, we collected previously published promoter-capture Hi-C (PCHi-C) data of primary blood 
cell types33. We used the PCHi-C interactions that have CHiCAGO scores ≥ 5 in at least one 
analyzed cell type and found there was a loop between promoter of OAS3 and promoter of OAS2. 
This observation induced a hypothesis that the REs around the promoter of OAS3 were cis-
regulatory elements of OAS2 in immune cells. To validate this hypothesis, we first checked the REs 
regulating the three OAS genes in 10 immune cell types and found that all 15 REs were predicted 
to regulate OAS2, 13 REs were predicted to regulate OAS1 and only 7 REs were predicted to regulate 
OAS3, which revealed that more evidence supported that REs in this locus regulated OAS2. Then 
we check the expression of three OAS genes. We found OAS2’s expression was the highest among 
OAS cluster in immune cell types (Figure 5B). We also computed the averaged correlation between 
the openness score of REs in OAS3’s promoter and expression of three OAS genes among 148 
samples of human (Table S1). We found that the accessibility of these REs was more correlated to 
expression of OAS2 (Figure 5C). In summary, these evidence of PCHi-C loop, regulatory network, 
expression data, and RE-TG correlation indicated that in immune cells, the REs around OAS3’s 
promoter were more likely to regulate OAS2. 
 
For regulatory cluster in chromosome 3, these regulatory programs were mainly involved with 
chemokine receptor (CCR1/2/5/9, CXCR6, and XCR1) in eight immune cell types and eight 
epithelium cell types. In literature, there were many reports that these chemokine receptors were 
important in the function of both immune and epithelium cells16,29. We found five main regulatory 
areas that were associated with SNPs and regulated these chemokine receptors (we name them as 
LOC1-LOC5, Figure 6A). Some of these REs’ regulation was shared by two cell types. For example, 
LOC3 were predicted to regulate CCR1 in both immune and epithelium cells. And there was also a 
PCHi-C loop between LOC3 and CCR1. The other LOCs’ regulatory programs were different. For 
example, LOC1 and LOC2 were immune-specific REs and regulated CCR9 and CXCR6. While REs 
in LOC4 were shared by two cell types, they were predicted to regulate CCR5 in immune cells but 
regulate CCR1 in epithelium cells. LOC4 and CCR5 were also contacted by a PCHi-C loop in blood 
cells. Similar to LOC4, LOC5 regulated CCR2/5 in immune cells but only regulate CCR2 in 
epithelium. The expression of these chemokine receptors supported the regulation above. 
CCR1/2/5/9 and CXCR6 were relatively high expressed in immune cells but only CCR1 and CCR2 
were expressed in epithelium cells (Figure 6B). We also checked the RE-TG correlation and found 
the above regulations were also supported. LOC1 showed the highest correlation with CCR9. LOC2 
were more correlated with CXCR6 and CCR9. LOC3 was most associated with CCR1. LOC4 
showed higher correlation with CCR1 and CCR5. And LOC5 was correlated with CCR5 (Figure 
6C). 
 
Taken together, we found some shared and distinct regulatory programs in immune and epithelium 
by detailed study of two main COVID-19 severity associated regulatory cluster on chromosome 3 
and 12. These conserved and divergent regulations may give biological insights about how virus 
infected human through epithelium cells and how human defensed SARS-Cov-2 with our immune 
system. 
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Figure 6. (A). SNPs, REs and PCHi-C loop associated with chemokine receptors. The RE tracks consisted of 

11 immune cell types and 9 epithelium cell types. PCHi-C loops were from blood samples. The labels around 

REs were indicator of TGs: C1-CCR1, C2-CCR2, C5-CCR5, C6-CXCR6, C9-CCR9, X1-XCR1. (B). 

Expression of chemokine receptors in immune and immune cells. (C). Correlations between accessibility of 

REs and expression of chemokine receptors. 

 
Discussion 
The COVID-19 pandemic has influenced human’s life all over the world for two years. Scientists 
made their efforts to gain more understanding of pathology of COVID-19 and find effective cure. 
GWAS is a powerful tool to discover suspicious loci for interesting traits. By profiling phenotype 
and genotype of COVID-19 infected people, the “COVID-19 host genetics initiative” had conducted 
GWAS analysis with more and more power34. Through these GWAS, many risk loci that may be 
associated with COVID-19 infection and severity were found. Following these discoveries, we used 
regulatory network atlas to interpret these risk loci and sought to gain biological insights of COVID-
19. 
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First, we found that COVID-19 severity associated SNPs were mainly enriched in two types of 
human contexts: immune cells and epithelium cells. We used another GWAS of COVID-19 severity 
with larger cohort (https://www.covid19hg.org/results/r6/) to show that the association with immune 
cells and epithelium cells were quite reproducible (Figure S1). We then constructed the COVID-19 
severity associated regulatory network in the two major contexts. And further analysis revealed 
regulatory structure of COVID-19 associated regulatory networks: the four regulatory clusters and 
two classes of upstream TFs. The regulatory structure showed conservation and divergence between 
two of cell types. Finally, we focused on two important regulatory clusters (OAS cluster and 
chemokine receptor cluster) and revealed the causal genes and differential regulation between two 
cell types. 
 
Several factors hindered the post-GWAS analysis of COVID-19. First of all, one more powerful 
GWAS with larger cohort is in need. In this paper, the GWAS only detected 542 SNPs that 
significantly associated with COVID-19’s symptoms, which is not comparative to normal 
phenotype, such as height or BMI. Some efforts have been made to improve the power of GWAS. 
For example, the most recent GWAS conducted by “COVID-19 host genetics initiative” has 
included more than 8,000 very severe respiratory confirmed cases into analysis. On the other hand, 
a more comprehensive regulatory network atlas is promising for better understanding of COVID-
19 severity. Although our current regulatory network atlas has covered many tissues, it is still far 
from complete. As the symptoms of COVID-19 are involved with many organs, a more 
comprehensive regulatory network atlas, even at cell type level, will interpret more genetic variants 
associated with COVID-19. 
 
 
Methods 
Construction of regulatory network from paired expression and chromatin accessibility data 
We utilized PECA2 to infer genome-wide and context-specific regulatory networks based on gene 
expression and chromatin accessibility data in that context13. Given paired RNA-seq and ATAC-seq 
data for a sample, PECA2 hypothesized that TF regulated the downstream TG by binding at REs. 
The regulatory strength of a transcription factor (TF) on a target gene (TG) was quantified by the 
trans-regulation score, which was calculated by integrating information from multiple regulatory 
elements (REs) that may mediate the activity of the TF to regulate the TG. A prior TF-TG correlation 
across external public data from ENCODE database was included in the trans-regulation score 
definition to distinguish the TFs sharing the same binding motif (i.e., TFs from the same family). 
 
We collected paired expression and chromatin accessibility data of 76 human tissues or cell lines 
(Table S2) and applied PECA2 to these data to obtain regulatory networks of 76 human contexts. 
Furthermore, we recently constructed high-quality regulatory network of cranial neural crest15 and 
we included it into our analysis to form regulatory network atlas of 77 human contexts. 
 
Fold enrichment score of SNPs in given region set 
Given a group of SNPs and a RE set, we defined the fold enrichment (FE) score as follows, 

𝐹𝐸 = %&/(&
%/(	

                                 (2) 
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Where 𝑃+  was the number of SNPs in REs. 𝐿+  was the length of the REs. 𝑃 was the total number 
of SNPs. 𝐿 was the genome length. 
 
We calculated the 𝐹𝐸 score of 542 SNPs of COVID-19 severity in RE sets of 77 human contexts 
and used a criterion of 𝐹𝐸 ≥ 3 to find 21 contexts that associated with COVID-19 severity. 
 
Extraction of SNPs associated regulatory network in given tissue and two categories 
Given a tissue, we check every RE in its regulatory network, if there was at least one SNP that was 
located in this RE, we extracted this RE and its upstream TFs and downstream TGs. We linked the 
SNPs in RE and this RE with edges and the SNPs, REs, TFs, TGs formed a SNP-associated 
regulatory network in a given tissue. 
 
For 11 tissues of immune cells, we union the SNPs, REs, TFs, TGs. We assigned an edge to SNP-
RE if it existed in at least one tissue’s SNP associated regulatory network, assigned an edge to TF-
RE if it existed in at least one tissue’s SNP associated regulatory network, assigned an edge to RE-
TG if it existed in at least one tissue’s SNP associated regulatory network. After the union and edge 
assignment, we constructed a regulatory network of immune cells. The regulatory network of 
epithelium cells was constructed with the same procedure. 
 
Data availability 
The GWAS summary statistics of COVID-19 severity (“A2_ALL” study) was download at 
https://www.covid19hg.org/results/r4/. The constructed regulatory network atlas was freely 
available at https://github.com/AMSSwanglab. The eQTL dataset was download at the GTEx portal 
https://www.gtexportal.org/home/datasets. The collected paired expression and chromatin 
accessibility data was summarized in Table S1 and Table S2. 
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