
Qualifying a human Liver-Chip for predictive toxicology: Performance assessment and 
economic implications 
 
Lorna Ewart1*, Athanasia Apostolou1, Skyler A. Briggs1, Christopher V. Carman1, Jake T. Chaff1, An-
thony R. Heng1, Sushma Jadalannagari1, Jeshina Janardhanan1, Kyung-Jin Jang1, Sannidhi R. Joshipura1, 
Mahika Kadam1, Marianne Kanellias1, Ville J. Kujala1, Gauri Kulkarni1, Christopher Y. Le1, Carolina 
Lucchesi1, Dimitris V. Manatakis1, Kairav K. Maniar1, Meaghan E. Quinn1, Joseph S. Ravan1, Ann Cathe-
rine Rizos1, John F.K. Sauld1, Josiah Sliz1, William Tien-Street1, Dennis Ramos Trinidad1, James Velez1, 
Max Wendell1, Prathap Kumar Mahalingaiah2, Donald E. Ingber3,4,5, Daniel Levner1 

 

1Emulate Inc., 27 Drydock Avenue, Boston, MA, United States 
2Investigative Toxicology and Pathology, Abbvie, North Chicago, IL, United States 
3Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States 
4Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 
MA, United States 
5Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children’s 
Hospital, Boston, MA, United States 
 
*Corresponding author: Lorna Ewart lorna.ewart@emulatebio.com  
____________________________________________________________________________ 
 
 
Abstract  
 
 Human organ-on-a-chip (Organ-Chip) technology has the potential to disrupt preclinical drug dis-
covery and improve success in drug development pipelines as it can recapitulate organ-level pathophysiol-
ogy and clinical responses. The Innovation and Quality (IQ) consortium formed by multiple pharmaceutical 
and biotechnology companies, however, systematic and quantitative evaluation of the predictive value of 
Organ-Chips has not yet been reported. Here, 780 Liver-Chips were analyzed to determine their ability to 
predict drug-induced liver injury (DILI) caused by small molecules identified as benchmarks by the IQ 
consortium. The Liver-Chip met the qualification guidelines across a blinded set of 27 known hepatotoxic 
and non-toxic drugs with a sensitivity of 80% and a specificity of 100%. With this performance, a compu-
tational economic value analysis suggests that the Liver-Chip could generate $3 billion annually for the 
pharmaceutical industry due to increased R&D productivity.
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Introduction 
 
 Despite billion-dollar investments in re-
search and development, the process of approving 
new drugs remains lengthy and costly due to high 
attrition rates1,2,3. Failure is common because the 
models used preclinically—which include compu-
tational, traditional cell culture, and animal mod-
els—have limited predictive validity4. The result-
ing damage to productivity in the pharmaceutical 
industry causes concern across a broad community 
of drug developers, investors, payers, regulators, 
and patients, the last of whom desperately need ac-
cess to medicines with proven efficacy and im-
proved safety profiles. Approximately 75% of the 
cost in research and development is the cost of fail-
ure5—that is, money spent on projects in which the 
candidate drug was deemed efficacious and safe by 
early testing but was later revealed to be ineffective 
or unsafe in human clinical trials. Pharmaceutical 
companies are addressing this challenge by learn-
ing from drugs that failed and devising frameworks 
to unite research and development organizations to 
enhance the probability of clinical success6,7,8,9. 
One of the major goals of this effort is to develop 
preclinical models that could enable a “fail early, 
fail fast” approach, which would result in candidate 
drugs with greater probability of clinical success, 
improved patient safety, lower cost, and a faster 
time to market.   
 
 There are significant practical challenges 
in ascertaining the predictive validity of new pre-
clinical models, as there is a broad diversity of 
chemistries and mechanisms of action or toxicity to 
consider, as well as significant time needed to con-
firm the model’s predictions once tested in the 
clinic.  Consequently, arguments for the adoption 
of these new models are often based on features 
that are presumed to correlate with human re-
sponses to pharmacological interventions—realis-
tic histology, similar genetics, or the use of patient-
derived tissues. But even here there is a common 
problem in much of the academic literature: the im-
portant model features are chosen post-hoc by the 
authors and not prospectively by an independent 
third party that has expertise in the therapeutic 
problem at hand10. 
 
 The Innovation and Quality (IQ) consor-
tium is a collaboration of pharmaceutical and 

biotechnology companies that aim to advance sci-
ence and technology to enhance drug discovery 
programs. To further this goal, the consortium has 
described a series of performance criteria that a 
new preclinical model must meet to become quali-
fied. Within this consortium is an affiliate dedi-
cated to microphysiological systems (MPS), which 
include organ-on-a-chip (Organ-Chip) technology 
that employs microfluidic engineering to recapitu-
late in vivo cell and tissue microenvironments in an 
organ-specific context11,12. This is achieved by rec-
reating tissue-tissue interfaces and providing fine 
control over fluid flow and mechanical forces13,14, 
optionally including supporting interactions with 
immune cells15 and microbiome16, and reproducing 
clinical drug exposure profiles17. Recognizing the 
promise of MPS for drug research and develop-
ment, the IQ MPS affiliate has provided guidelines 
for qualifying new models for specific contexts of 
use to help advance regulatory acceptance and 
broader industrial adoption18; however, to this date, 
there have been no publications describing studies 
that carry out this type of performance validation 
for any specific context of use or that demonstrate 
an MPS capable of meeting these IQ consortium 
performance goals. 
 
 Guided by the IQ MPS affiliate’s roadmap 
on liver MPS19, which states that in vitro models 
for predicting drug-induced liver injury (DILI) that 
meet its guidelines are more likely to exhibit higher 
predictive validity than those that do not, we rigor-
ously assessed commercially available human 
Liver-Chips (from Emulate, Inc.) within the con-
text of use of DILI prediction. In this study, we 
tested 780 Liver-Chips using a blinded set of 27 
different drugs with known hepatotoxic or non-
toxic behavior recommended by the IQ consortium 
(Table 1). We compared the results to the historical 
performance of animal models as well as 3D sphe-
roid cultures of primary human hepatocytes, which 
are preclinical models that are frequently employed 
in this context of use in the pharmaceutical indus-
try20. In addition, we analyzed the Liver-Chip re-
sults from an economic perspective by estimating 
the financial value they could offer through their 
use in preclinical development in supporting tox-
icity-related decisions. We conclude with recom-
mendations on how this type of platform might be 
implemented in pharmaceutical industry screening 
programs. 
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Table 1. Small Molecule Drug Compounds used in the Liver-Chip evaluation. The 27 small molecule drugs are 
listed according to the IQ MPS affiliate classification and their ranking in the Garside DILI severity category, where 
1 corresponds to drugs with severe clinical DILI and 5 to those with no DILI26,42. Structurally related toxic and non-
toxic pairs are indicated too. 
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Results 
 
Liver-Chip satisfies IQ MPS affiliate guide-
lines  
 
 The IQ guidelines for assessment of an in vitro 
liver MPS within the DILI prediction context of 
use requires evidence that the model replicates 
key histological structures and functions of the 
liver; furthermore, the model must be able to dis-
tinguish between seven pairs of small molecule 
toxic drugs and their non-toxic structural analogs. 
If the model passes through these hurdles, it must 
demonstrate its ability to predict the clinical re-
sponses of six additional selected drugs.   
 
The Liver-Chips that we evaluated against these 
standards contain two parallel microfluidic chan-
nels separated by a porous membrane. Following 
the manufacturer’s instructions, primary human 
hepatocytes are cultured between two layers of 
extracellular matrix (ECM) in the upper ‘paren-
chymal’ channel, while primary human liver si-
nusoidal endothelial cells (LSECs), Kupffer cells, 
and stellate cells are placed in the lower ‘vascular’ 
channel in ratios that approximate those observed 
in vivo (Figure 1a). All cells passed quality control 
criteria that included post-thaw viability >90%, 
low passage number (preferably P3 or less), and 
expression of cell-specific markers. Similar re-
sults were obtained using hepatocytes from two 
different human donors, which were procured 
from the same commercial vendor (Supplemen-
tary Table S1). 

 
Live microscopy of the Liver-Chips re-

vealed a continuous monolayer of hepatocytes dis-
playing cuboidal and binucleated morphology in 
the upper ‘parenchymal’ channel of the chips, as 
well as a monolayer of polygonal shaped LSECs in 
the bottom ‘vascular’ channel, on the opposite side 
of the porous membrane (Figure 1b). Confocal flu-
orescence microscopy also confirmed liver-spe-
cific morphological structures as indicated by the 
presence of differentiation markers, including bile 
canaliculi containing a polarized distribution of F-
actin and multidrug resistance-associated protein 2 
(MRP2), hepatocytes rich with mitochondrial 
membrane ATP synthase beta subunit (ATPB), 
PECAM-1 (CD31) expressing LSECs, CD68+ 
Kupffer cells, and desmin-containing stellate cells 

(Figure 1c). In addition, transmission electron mi-
croscopy confirmed the existence of similar cell-
cell relationships and structures to those found in 
human liver, including well developed junction-
lined bile canaliculi and adhesions between Kup-
ffer cells and sinusoidal endothelial cells (Supple-
mentary Figure S1).  
 
 Albumin and urea production are widely 
accepted as functional markers for cultured hepato-
cytes with the goal of reaching production levels 
observed in human liver in vivo (~ 20-105 µg and 
56-159 µg per 106 hepatocytes per day, respec-
tively)19,21. Liver-Chips fabricated with cells from 
two different hepatocyte donors were able to main-
tain physiologically relevant levels of albumin and 
urea synthesis over one week in culture (Figure 
1d). Importantly, in line with the IQ MPS guide-
lines, the coefficient of variation for the mean daily 
production rate of urea was always below 15% in 
both donors; however, it was higher (<45%) for al-
bumin production. These data corroborate the re-
producibility and robustness of the Liver-Chip 
across experiments and highlight variability across 
donors that is not unlike the variability observed in 
humans. In fact, it is important to be able to analyze 
and understand donor-to-donor variability when 
evaluating cell-based platforms for the prediction 
of clinical outcome22 or when a drug moves into 
clinical studies. 
 
 Because hepatocytes maintained in con-
ventional static cultures rapidly reduce transcrip-
tion of relevant liver-specific genes23, the IQ MPS 
guidelines require confirmation that the genes rep-
resenting major Phase I and II metabolizing en-
zymes, as well as uptake and efflux drug transport-
ers, are expressed and that their levels of expres-
sion are stable. When analyzed on days 3 and 5 of 
culture, we detected high levels of expression of 
key genes defined by the IQ MPS guidelines, in-
cluding CYP3A4, CYP2B6, CYP2C9, BSEP, and 
MRP2, confirming that gene transcription re-
mained active within the chip (Figure 1e). Gene ex-
pression levels were not statistically different be-
tween day 3 or 5, apart from CYP2B6, CYP2C9, 
CYP2D6, and BSEP, which were significantly 
higher on day 5 compared to day 3, illustrating no 
significant degradation of activity. Previously, the 
same Liver-Chip has been shown to exhibit Phase 
I and II functional activities that are comparable to 
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freshly isolated human hepatocytes and 3D hepatic 
spheroids21,25 as well as superior activity relative to 
hepatocytes in a 2D sandwich-assay plate configu-
ration21.   
 
 As these data confirmed that the Liver-
Chip meets the major structural characterization 
and basic functionality requirements stipulated by 
the IQ MPS guidelines, we then carried out studies 
to evaluate this human model as a tool for DILI pre-
diction. IQ MPS identified seven small-molecule 
drugs that have been reported to produce DILI in 
clinical studies as well as their structural analogs 
that are inactive or exhibit lower activity and do not 
produce clinical DILI (Table 1). Past work in the 
MPS field has focused on technically accessible 
endpoints that can be easily measured but are un-
fortunately not clinically relevant or translatable 

(e.g., IC50 for reduction in total ATP content)26,27. 
Furthermore, although cytotoxicity measures are 
fundamental in the assessment of a drug’s potential 
for hepatotoxicity in vitro 28,29, gene expression and 
various phenotypic changes can occur at much 
lower concentrations30,31. As the Liver-Chip ena-
bles multiple longitudinal measures of drug effects 
and use of multiple measures may provide further 
sensitivity and add value32, we assessed drug toxic-
ities by quantifying both inhibition of albumin pro-
duction as a general measure of hepatocyte viabil-
ity and increases in release of alanine aminotrans-
ferase (ALT) protein, which is used clinically as a 
measure of liver damage. We also scored hepato-
cyte injury using morphological analysis at 1, 3, 
and 7 days after drug or vehicle exposure, where 
higher injury scores indicate greater damage.

 
 
 

 
Figure 1 Recapitulation of human liver structure and function in the Liver-Chip. a) Schematic of the Liver-
Chip showing primary human hepatocytes (3) that are sandwiched within an extracellular matrix (2) on a porous 
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membrane (4) within the upper parenchymal channel (1), while human liver sinusoidal endothelial cells (7), Kupffer 
cells (6), and stellate cells (5) are cultured on the opposite side of the membrane in the lower vascular channel 
(8). b) Representative phase contrast microscopic images of hepatocytes in the upper channel of Liver-Chip (left) 
and non-parenchymal cells in the lower vascular channel (right); the regular array of circles are the pores in the 
membrane in the right image. c) Representative immunofluorescence microscopic images showing the phalloidin 
stained actin cytoskeleton (green) and ATPB containing mitochondria (magenta) (top left), MRP2-containing bile 
canaliculi (red) (top right), CD31-stained liver sinusoidal endothelial cells (green) and desmin-containing stellate 
cells (magenta) (bottom left), and CD68+ Kupffer cells (green) co-localized with desmin-containing stellate cells 
(magenta). All images also show DAPI-stained nuclei (blue) (bar, 100 µm; inset is shown at 5 times higher magni-
fication). d) Albumin (top) and urea (bottom) levels in the effluent from the upper channels of control Liver-Chips 
created with cells from 2 different donors (light and dark grey bars) on days 1, 3 and 7 measured by ELISA. Data 
are presented as mean + standard deviation (S.D.) with N = 29 to 46 and N = 7 to 12 chips for albumin and urea 
respectively per donor. e) Levels of key liver-specific genes in control Liver-Chips as determined by RNA-seq anal-
ysis on days 3 (light grey) and 5 (dark grey). Data are presented as mean + S.D. with N = 4 chips; statistical signifi-
cance of values between day 3 and 5 was determined using an unpaired t-test; **, p <0.01. 
 

We tested the seven toxic drugs across 
eight concentrations that bracket the human plasma 
Cmax for each drug based on free (non-protein 
bound) drug concentrations, with the highest con-
centrations at 300x Cmax (unless not permitted by 
solubility limits) to represent clinically relevant test 
concentrations for in vitro models33 (Supplemen-
tary Table S2). The known toxic compounds 
showed clear concentration- and time-dependent 
patterns that varied depending on compound. Typ-
ically, when albumin production was inhibited, 
morphological injury scores and ALT levels also 
increased, but we found that a decrease of albumin 
production was the most sensitive marker of 
hepatocyte toxicity in the Liver-Chip, as shown in 
sample paired comparisons of clozapine and 
olanzapine, troglitazone and pioglitazone, and 
trovafloxacin and levofloxacin (Figure 2a). Im-
portantly, all seven of the toxic drugs reduced al-
bumin production or resulted in an increase in ALT 
protein or injury morphology scores at lower mul-
tiples of the free human Cmax compared to each of 
their non-toxic comparators (Table 2).  

Furthermore, immunofluorescence microscopic 
imaging for markers of apoptotic cell death 
(caspase 3/7) and mitochondrial injury measured 
by visualizing reduction of tetramethylrhodamine 
methyl ester (TMRM) accumulation (Figure 2b) 
provided confirmation of toxicity and, in many 
cases, provided some insight into the potential 
mechanism of toxicity. For example, the third-gen-
eration anti-infective trovafloxacin is believed to 
have an inflammatory component to its toxicity, 
potentially mediated by Kupffer cells, but this is 
only seen in animal models if an inflammatory 
stimulant such as lipopolysaccharide (LPS) is co-
administered34. Interestingly, immunofluorescence 
microscopic imaging of the Liver-Chip revealed 
that there was a concentration-dependent increase 
in caspase 3/7 staining following trovafloxacin 
treatment (Figure 2b, bottom); this supports a po-
tential apoptotic component to its toxicity. Interest-
ingly, this was detected in the Liver-Chip without 
an inflammatory stimulant. Of note, Levofloxacin, 
the lesser toxic structural analog, did not cause cel-
lular apoptosis.
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Table 2. Data for the matched pair analysis proposed by IQ MPS guidelines. Data are presented as the low-
est unbound human Cmax multiplier causing a 50% reduction in albumin production, or the lowest concentration 
causing an increase in ALT protein or morphology score.  
 
 
Together, these data support the Liver-Chip’s value 
as a predictor of drug-induced toxicity in the hu-
man liver and demonstrate that this experimental 
system meets the basic IQ MPS criteria for preclin-
ical model functionality. However, in addition to 
the seven matched pairs, the IQ MPS guidelines re-
quire that an effective human MPS DILI model can 
predict liver responses to six additional small-mol-
ecule drugs associated with clinical DILI. We only 
analyzed the effects of five of these drugs (diclo-
fenac, asunaprevir, telithromycin, zileuton, and 

lomitapide) because the reported mechanism of 
toxicity of one of them (pemoline) is immune-me-
diated hypersensitivity35, and this would poten-
tially require a more complex configuration of the 
Liver-Chip containing additional immune cells. 
We also were unable to obtain one of the suggested 
drugs, mipomersen, from any commercial vendor; 
however, we tested lomitapide as an alternate, as 
both produce steatosis by altering triglyceride ex-
port, and lomitapide is known to induce elevated 
ALT levels36.
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Figure 2. Detection of drug concentration-dependent toxicity and liver injury. a) Albumin (left), ALT (middle) 
and morphological injury score (right) for known non-toxic drugs (open circles) and their closely related toxic part-
ner compounds (open circles) measured on day 3. Clozapine and olanzapine are shown at the top, troglitazone and 
pioglitazone below, and trovafloxacin and levofloxacin in the bottom row. b) Immunofluorescence microscopic im-
ages showing concentration-dependent increases in caspase 3/7 staining (green) indicative of apoptosis after treat-
ment with trovafloxacin at 0, 1, 10, and 100 times the unbound human Cmax for 7 days (top). The bottom panel 
shows a concentration-dependent decrease in TMRM staining (yellow) indicative of mitotoxicity in response to 
treatment with sitaxsentan under similar conditions. 
 
Results obtained with these drugs are presented in 
Table 3, with toxicity values indicating the lowest 
concentration at which toxicity was detected. Lo-
mitapide was highly toxic when tested over all in-
cluded concentrations down to 0.1x human plasma 
Cmax, with all Liver-Chips showing signs of toxicity 
following five days of dosing. While telithromycin 
displayed a decrease in albumin along with a con-
comitant increase in ALT and morphological injury 

score, diclofenac and asunaprevir induced concen-
tration and time-dependent changes in albumin and 
injury scores, but no elevation of ALT was seen 
with these drugs. Hepatotoxicity was also con-
firmed with immunofluorescence microscopy, 
which revealed apoptosis-mediated cell death fol-
lowing exposure to diclofenac, asunaprevir, or teli-
thromycin. However, the Liver-Chip was unable to 
detect hepatotoxicity caused by zileuton, a 
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treatment intended for asthma. The exact mecha-
nism of toxicity of zileuton is unknown, but it 
likely involves production of intermediate reactive 
metabolites due to oxidative metabolism by the cy-
tochrome P450 isoenzymes 1A2, 2C9, and 3A437. 

Although zileuton is >93% plasma protein bound38, 
we do not believe this was responsible for the lack 
of toxicological effect, as we were able to detect 
toxicities induced by other highly protein-bound 
drugs in the test set.

 

 
Table 3. Results obtained with the expanded drug list. Data are presented as the lowest unbound human Cmax mul-
tiplier causing a 50% reduction in albumin production, or the lowest concentration causing an increase in ALT re-
lease or morphology score. 
 
 
Improved sensitivity for DILI prediction com-
pared to spheroids and animal models  
 

After fulfilling the major criteria of the IQ 
MPS affiliate guidelines, we considered the Liver-
Chip to be qualified as a suitable tool to predict 
DILI during preclinical drug development. How-
ever, we wanted to also quantify the performance 
of the Liver-Chip in the predictive toxicology con-
text. To do so, we expanded the drug test to include 
eight additional drugs (benoxaprofen, beta-estra-
diol, chlorpheniramine, labetalol, simvastatin, 
stavudine, tacrine, and ximelagatran) that were 
found to induce liver toxicity clinically, despite 
having gone through standard preclinical toxicol-
ogy packages involving animal models prior to 
first-in-human administration. Importantly, the 
toxicities of these eight drugs have been shown to 
be poorly predicted by hepatic spheroids26,27. 

 
We proceeded to quantify any observed 

toxicity across the combined and blinded 27-drug 
set (Table 1) as a margin of safety (MOS)-like fig-
ure by taking the ratio of the minimum toxic con-
centration observed to the clinical Cmax. We ob-
tained the minimum toxic concentration by taking 
the lowest concentration identified by each of the 

primary endpoints—i.e., IC50 values for the de-
crease in albumin production, the lowest concen-
tration at which we observed an increase in ALT 
protein, and the lowest concentration at which we 
observed injury via morphology scoring (Table 4). 
Minimum toxic concentrations generally corre-
sponded to day 7 values, although day 3 values 
were occasionally lower. We then compared the 
MOS-like figures against a threshold value of 50 to 
categorize each compound as toxic or non-toxic, as 
previously reported for 3D hepatic spheroids, 
which used a similar threshold26. Analyzed in this 
manner, we found that, in addition to the drugs as-
sessed as part of the IQ MPS-related analysis, the 
Liver-Chip correctly determined labetalol and be-
noxaprofen to be hepatotoxic, a response that was 
consistent across both donors and was indicated 
primarily by a reduction in albumin production. 
However, we found that simvastatin and ximela-
gatran were only toxic in one of the two donors, 
again showing the importance of including multi-
ple donors during the risk assessment process. 
Overall, the Liver-Chip correctly predicted toxicity 
in 12 out of 15 toxic drugs that were tested using 
two donors, yielding a sensitivity of 80% on this 
drug set. This was almost double the sensitivity of 
3D hepatic spheroids for the same drug set (42%) 
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based on previously published data26,39,40, a preclin-
ical model that is currently widely used in pharma 
and was only able to correctly identify eight out of 
the 19 toxic drugs in the set (Table 5a). Im-
portantly, the Liver-Chip also did not falsely mark 
any drugs as toxic (specificity of 100%), whereas 
the 3D hepatic spheroids did (only 67% specific-
ity)26; such false positives can significantly limit 
the usefulness of a predictive screening technology 
because of the profound consequences of errone-
ously failing safe and effective compounds. Inter-
estingly, the three drugs not detected by Liver-
Chip—levofloxacin, stavudine, and tacrine—were 
not detected as toxic drugs in spheroids either, 

suggesting that the Liver-Chip may subsume the 
sensitivity of spheroids and that their toxicities 
could involve other cells or tissues not present in 
these models. It is important to note that each of the 
toxic drugs tested was historically evaluated using 
animal models, and in each case the considerations 
and thresholds were deemed relevant for that drug 
to have an acceptable therapeutic window and thus 
progress into clinical trials. The ability of the 
Liver-Chip to flag 80% of these drugs for their 
DILI risk at their clinical concentrations represents 
a significant improvement in model sensitivity that 
could drive better decision making in preclinical 
development.

 

 
Table 4. Calculation of Margin of Safety (MOS)-Like Figures. The analysis was carried out as described previ-
ously26.  
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We examined each of the toxic drugs that 
were missed by the Liver-Chips to identify oppor-
tunities for future improvement. Using the thresh-
old of 50 for determining toxicity, which we chose 
to compare our results to those from a past hepatic 
spheroid study, led to stavudine being classified a 
false negative. In fact, Liver-Chips do capture 
stavudine’s toxicity at a higher threshold without 
introducing false positives, as described below. Ta-
crine is a reversible acetylcholinesterase inhibitor 
that undergoes glutathione conjugation by the 
phase II metabolizing enzyme glutathione S-trans-
ferase in liver. Polymorphisms in this enzyme can 
impact the amount of oxidative DNA damage, and 
the M1 and T1 genetic polymorphisms are associ-
ated with greater hepatotoxicity41. It is not known 
if either of the two hepatocyte donors used in this 
investigation have these polymorphisms, but the 
Liver-Chip was able to detect increased caspase 3/7 
staining—indicative of apoptosis at the highest 
tested concentrations—although these changes 
were not associated with any release of ALT or de-
cline in albumin. Levofloxacin, a fluoroquinolone 
antibiotic, was proposed by the IQ MPS affiliate as 
a lesser hepatotoxin compared to its structural ana-
log trovafloxacin, but it is classified as a high clin-
ical DILI concern in Garside’s DILI severity cate-
gory labeling42. Indeed, there are documented re-
ports of hepatotoxicity with levofloxacin, but these 
occurred in individuals aged 65 years and above43, 
and a post-market surveillance report documented 
the incidence of DILI to be less than one in a mil-
lion people44. It is therefore reasonable to assume 
that the negative findings in both the Liver-Chip 
and spheroids may correctly represent clinical out-
come.   
 
Accuracy improved by accounting for drug-
protein binding 
 

When calculating the MOS-like values in 
the preceding section, we followed the published 
methods used for evaluating 3D hepatic 

spheroids26, but these do not consider protein bind-
ing. Because the fundamental principles of drug ac-
tion dictate that free (unbound) drug concentrations 
drive drug effects, we explored an alternative meth-
odology for calculating the MOS-like values by ac-
counting for protein binding using a previously re-
ported approach31. Accordingly, we reanalyzed the 
findings for the 27 drugs in our study by accounting 
for protein binding. We compared the free fraction 
of drug concentration dosed in the Liver-Chip em-
ploying a medium containing 2% fetal bovine se-
rum to the free fraction of the plasma Cmax. By re-
analyzing the Liver-Chip results using this ap-
proach and setting the threshold value to 375 
(which we selected to maximize sensitivity while 
avoiding false positives), we obtained improved 
chip performance: a true positive rate (sensitivity) 
of 77% and 73% in donors one and two, respec-
tively, and a true negative rate (specificity) of 
100% in both donors (Table 5b). Importantly, the 
sensitivity increased to 87% when including the 18 
drugs tested in both donors, and this enabled detec-
tion of stavudine’s toxicity. Applying the same 
analysis to spheroids and similarly selecting a 
threshold to maximize sensitivity while maintain-
ing 100% specificity yielded a sensitivity of only 
47%. Remarkably, the Spearman correlation be-
tween the two-donor Liver-Chip assay and the Gar-
side DILI severity scale yielded a value of 0.78 
when using the protein binding-corrected analysis, 
whereas it was only 0.43 when using the lower 
threshold. Thus, the protein-binding-corrected ap-
proach not only produces higher sensitivity but also 
rank-orders the relative toxicity of drugs in a man-
ner that corresponds better with the DILI severity 
observed in the clinic. This observation supports 
the validity of this analysis approach and its supe-
riority over the uncorrected version. In short, these 
results provide further confidence that the Liver-
Chip is a highly predictive DILI model and is su-
perior in this capacity to other currently used ap-
proaches.
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Table 5.  Sensitivity and Specificity Determination (a) Predictive performance for chips and spheroids as deter-
mined by published analysis 26, which does not account for protein binding, and setting the threshold on the MOS-
like values at 50 for both chips and spheroids (a value above 50 would indicate a drug as negative for toxicity) and 
(b) Predictive performance as determined by considering free (unbound) drug concentrations and setting the thresh-
old on the MOS-like values at 375 for chips and at 2250 for spheroids.  The 95% confidence intervals are shown for 
the sensitivity values. 
 
 
The economic value of more predictive toxicity 
models in preclinical decision making  
 
 In addition to increasing patient safety, 
better prediction of drug toxicities can significantly 
improve the economics of drug development by 
driving a reduction in clinical trial attrition and pro-
moting an increase in research and development 
productivity. To estimate the potential economic 
impact of the Liver-Chip considering its enhanced 
predictive validity, we sought external advice on fi-
nancial analysis from Dr. Jack Scannell, who pro-
vided an economic value model of drug develop-
ment as driven by decision quality during preclini-
cal development (personal communication).  We 
then parameterized the model using the results of 
the present study to compute the potential eco-
nomic impact of the Liver-Chip. The financial 
model operates by tracking the costs of a simulated 
portfolio of clinical assets as it progresses through 
clinical trials. It follows Scannell & Bosley’s4 ap-
proach to replace conventional pipeline attrition 
parameters5 with parameters that capture decision 
performance, true positive rates, false positive 
rates, and candidate quality. Using this method, and 
in contrast to conventional attrition-based pipeline 
models, we capture the consequences of earlier de-
cisions in the development pipeline. The portfolio 
in the model starts as a representative mix of 
safe/unsafe and efficacious/non-efficacious drugs  
 
that are progressively filtered through each test 
phase, with the decision parameters set to recapitu-
late published attrition rates. Improvements in the 
predictive validity of preclinical safety testing are 
captured through their effects on the simulated 
portfolio entering the calculation: better preclinical 

safety testing leads to proportionally fewer unsafe 
drugs in the mix. 
 
 To estimate the economic impact of incor-
porating the Liver-Chip into preclinical research, 
we observed that DILI currently accounts for 13% 
of clinical trial failures that are due to safety con-
cerns46. The present study revealed that the Liver-
Chip, when used with two donors and analyzed 
with consideration for protein binding, provides 
sensitivity of 87% when applied to compounds that 
evaded traditional safety workflows. Combining 
these figures suggests that using the human Liver-
Chip to test for DILI risk could lead to 10.4% fewer 
toxic drugs entering clinical trials. Remarkably, the 
model predicts that utilizing the Liver-Chip across 
all small-molecule drug development programs for 
this single context of use could generate the indus-
try $3 billion annually due to increased research 
and development (R&D) productivity. If similar 
sensitivity is assumed for Organ-Chips that address 
four additional causes of safety failures—cardio-
vascular, neurological, immunological, and gastro-
intestinal toxicities, which together with DILI ac-
count for 80% of trial failures due to safety con-
cerns—the model estimates that Organ-Chip tech-
nology could generate the industry over $24 billion 
annually if equally predictive as the Liver-Chip. 
These figures present a compelling economic in-
centive for the adoption of Organ-Chip technology 
alongside considerations of patient safety and the 
ethical concerns of animal testing. 
 
Discussion  
 
 Organ-Chip technology has tremendous 
potential to revolutionize drug discovery and de-
velopment47, and many major pharmaceutical 
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companies have already invested in the technology, 
but routine utilization is limited48. This may be due 
to several factors, but the overriding fact is either 
that there has not been an end-to-end investigation 
showing that Organ-Chips replicate human biolog-
ical responses in a robust and repeatable manner, 
that its performance exceeds that of existing pre-
clinical models, or that there is a way to implement 
the technology into routine drug screening projects. 
This investigation directly addressed these three 
concerns. Furthermore, the broader stakeholder 
group—especially budget holders—need assur-
ance that there will be a return on investment and 
that such technologies will help reverse the phar-
maceutical industry’s widely documented produc-
tivity crisis.   
 

To counteract the R&D productivity cri-
sis49, the pharmaceutical industry is seeking physi-
ologically relevant models that can be incorporated 
into the early-stage drug discovery programs in 
which the cost of attrition is lower and, ultimately, 
the quality of drug candidates progressing into the 
clinic will be higher50,51. Organ-on-a-chip technol-
ogy utilizes microengineering to develop physio-
logically complex but human-relevant models; 
therefore, this technology should be implemented 
into programs to achieve this goal. To date, there 
has been no systematic evaluation of the validity of 
Organ-Chips or any other MPS for DILI prediction 
against criteria designed by a third party of experts. 
To our knowledge, no MPS has been evaluated 
against 27 small-molecule drugs in a single study 
involving two different human donors and hun-
dreds of experiments, making this study the largest 
reported evaluation of Organ-Chip performance. 
The Liver-Chip has demonstrated that it can cor-
rectly distinguish toxic drugs from their non-toxic 
structural analogs, and, across a blinded set of 27 
small molecules, has a true positive rate of 87%, a 
specificity of 100%, and a Spearman correlation of 
0.78 against the Garside DILI severity scale when 
two donors are used, and data are corrected for 

protein binding. Importantly, these data were inde-
pendently verified by two external toxicologists. 
Said differently, the Liver-Chip detected nearly 
seven out of every eight drugs that proved hepa-
toxic in clinical use despite having been deemed to 
have an appropriate therapeutic window by animal 
models; the Liver-Chip similarly detected two out 
of four such drugs that were additionally missed by 
3D hepatic spheroids. Hence, we believe that these 
findings advocate the routine use of the human 
Liver-Chip in drug discovery programs to enhance 
the probability of clinical success while improving 
patient safety. This would be achieved by more-ac-
curately categorizing risk associated with a candi-
date drug to provide valuable data to support a 
‘weight-of-evidence’ argument both for entry into 
the clinic as well as for starting dose in phase I. 
Such added evidence could potentially remove any 
safety factor applied because of a liver finding in 
an animal model52,53. In turn, this would reduce 
overall cost and time in the preclinical develop-
ment process.  

 
 A unique feature of this work is the demon-
stration of the throughput capability of Organ-Chip 
technology using automated culture instruments, as 
a total of 780 chips were created and analyzed. In 
terms of establishing effective workflows, scien-
tists were placed into three teams: the first team 
prepared the drug solutions and supplied them in a 
blinded manner to the second team. The second 
team seeded, maintained, and dosed the Liver-
Chips while carrying out various morphological, 
biochemical, and genetic analyses at the end of the 
experiment. The third team collected the effluents 
and performed real-time analyses of albumin and 
ALT as well as terminal immunofluorescence im-
aging using an automated confocal microscope 
(Opera Phenix; Perkin Elmer). In this manner, we 
were able to analyze and report the hepatotoxic ef-
fects of 27 drugs in 780 Liver-Chips that used cells 
from two human donors in a period of 16 weeks.
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Figure 3. Impact of adding the Liver-Chip to the lead optimization phase of a small molecule drug pro-
ject Drug projects that do not utilize the Liver-Chip currently proceed from traditional in vitro models into in 
vivo dose range finding studies prior to the GLP safety study required for regulatory submission to seek approval to 
initiate clinical trial.  This approach results in only a 10% success rate. With the inclusion of Liver-Chip prior to 
the in vivo dose range finding study, toxic small molecules are more likely to be identified and can be terminated 
before animal studies begin.  In turn this increases the likelihood of a drug candidate being successful in the clinic. 
The higher success rate translates into a 40% increase in R&D productivity. 
 

Based on this experience, we believe that 
the Liver-Chip could be employed in the drug de-
velopment pipeline during the lead optimization 
phase where projects have identified three-to-five 
chemical compounds that have the potential to be-
come the candidate drug (Figure 3). If data emerge 
showing that a chemical compound produces a 
toxic signal in the Liver-Chip, this will indicate to 
toxicologists that there is a high (~80%) probability 
that the compound would similarly cause toxicity 
in humans. This, in turn, would enable scientists to 
deprioritize these compounds from early in vivo 
toxicology studies (such as the maximum tolerated 
dose/dose range finding study) and, consequently, 
reduce animal usage and advance the “fail early, 
fail fast” strategy. Importantly, the absence of false 
positives strengthens the argument that the Liver-
Chips should also be adopted within the early dis-
covery phase, as stopping drug candidates that are 
falsely determined to be toxic by less-robust pre-
clinical models could result in good therapeutics 
never reaching patients. 

 
 Despite these positive findings, it should 
be acknowledged that the current chip material 
(PDMS) used in the Liver-Chip may be problem-
atic for a subset of small molecules that are prone 

to non-specific binding. Although this study 
demonstrates that the material binding issue does 
not in practice significantly reduce the predictive 
value of the Liver-Chip DILI model, work is cur-
rently underway to develop chips using materials 
that have a lower binding potential. It should also 
be recognized that many pharmaceutical compa-
nies have diversified portfolios, with small mole-
cules forming approximately 50% of the therapeu-
tic modalities being developed. Consequently, fur-
ther investigation of the Liver-Chip performance 
against large molecules and biologic therapies 
should be carried out. Integration of resident and 
circulating immune cells should add even greater 
predictive capability.  
 
 Finally, predictive models that demon-
strate concordance with clinical outcomes should 
provide scientists and corporate leadership with 
greater confidence in decision-making at major in-
vestment milestones. Impressively, our economic 
analysis revealed $3 billion in improved R&D 
productivity that could be generated by replacing 
or supplementing existing preclinical in vitro mod-
els with human Liver-Chips for this single context 
of use (DILI prediction). Moreover, an additional 
productivity value of $24 billion could be gained if 
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a similar approach is used to develop predictive 
models for the other most common toxicities that 
result in drug attrition. Taken together, these results 
suggest that Organ-Chip technology has great po-
tential to benefit drug development, improve pa-
tient safety, and enhance pharmaceutical industry 
productivity and capital efficiency.  This work also 
provides a starting point for other groups that hope 
to validate their MPS models for integration into 
commercial drug pipelines. 
 
Methods 
Cell Culture  
 
            Cryopreserved primary human hepatocytes, 
purchased from Gibco (Thermo Fisher Scientific), 
and cryopreserved primary human liver sinusoidal 
endothelial cells (LSECs), purchased from Cell 
Systems, were cultured according to their respec-
tive vendor/Emulate protocols. The LSECs were 
expanded at a 1:1 ratio in 10-15 T-75 flasks (Corn-
ing) that were pre-treated with 5mL of Attachment 
Factor (Cell Systems). Complete LSEC medium 
includes Cell Systems medium with final concen-
trations of 1% Pen/Strep (Sigma), 2% Culture-
Boost (Cell Systems), and 10% Fetal Bovine Se-
rum (FBS) (Sigma). Media was refreshed daily un-
til cells were ready for use. Cryopreserved human 
Kupffer cells (Samsara Sciences) and human Stel-
late cells (IXCells) were thawed according to their 
respective vendor/Emulate protocols on the day of 
seeding. See Supplementary Table S1 for further 
information.  
   
Liver Chip Microfabrication and Zoë® Culture 
Module  
 
            Each chip is made from flexible polydime-
thylsiloxane (PDMS), a transparent viscoelastic 
polymer material. The chip compartmental cham-
bers consist of two parallel microchannels that are 
separated by a porous membrane containing pores 
of 7µm diameter spaced 40µm apart.  
 
            On Day -6, chips were functionalized using 
Emulate proprietary reagents, ER-1 (Emulate rea-
gent: 10461) and ER-2 (Emulate reagent: 10462), 
mixed at a concentration of 1 mg/mL prior to ap-
plication to the microfluidic channels of the chip. 
The platform is then irradiated with high power UV 
light (peak wavelength: 365nm, intensity: 100 

µJ/cm2) for 20min using a UV oven (CL-1000 Ul-
traviolet Crosslinker AnalytiK-Jena: 95-0228-01). 
Chips were then coated with 100 µg/mL Collagen 
I (Corning) and 25 µg/mL Fibronectin (Ther-
moFisher) for both channels. The top channel was 
seeded with primary human hepatocytes on Day -5 
at a density of 3.5 x 106 cells/mL. Complete 
hepatocyte seeding medium contains Williams’ 
Medium E (Sigma) with final concentrations of 1% 
Pen/Strep (Sigma), 1% L-GlutaMAX (Gibco), 1% 
Insulin-Transferring-Selenium (Gibco), 0.05 
mg/mL Ascorbic Acid (Sigma), 1µM dexame-
thasone (Sigma), and 5% FBS (Sigma). After four 
hours of attachment, the chips were washed by 
gravitational force. Gravity wash consisted of gen-
tly pipetting 200µL fresh medium at the top inlet, 
allowing it to flow through, washing out any un-
bound cells from the surface, and inserting a pipette 
tip on the outlet of the channel.  
 
            On Day -4, a hepatocyte Matrigel overlay 
procedure was executed with the purpose of pro-
moting a three-dimensional matrix for the hepato-
cytes to grow in an ECM sandwich culture. The 
hepatocyte overlay and maintenance medium con-
tain Williams’ Medium E (Sigma) with final con-
centrations of 1% Pen/Strep (Sigma), 1% L-Gluta-
MAX (Gibco), 1% Insulin-Transferrin-Selenium 
(Gibco), 50 µg/mL Ascorbic Acid (Sigma), and 
100nM Dexamethasone (Sigma). On Day -3, the 
bottom channel was seeded with LSECs, Stel-
late cells and Kupffer cells, further known as non-
parenchymal cells (NPCs). NPC seeding medium 
contains Williams’ Medium E (Sigma) with final 
concentrations of 1% Pen/Strep (Sigma), 1% L-
GlutaMAX (Gibco), 1% Insulin-Transferrin-Sele-
nium (Gibco), 50 µg/mL Ascorbic Acid (Sigma), 
and 10% FBS (Sigma). LSECs were detached from 
flasks using Trypsin (Sigma) and collected accord-
ingly. These cells were seeded in a mixture volume 
ratio of 1:1:1 with LSECs at a density range of 9-
12 x 106 cells/mL, Stellates at a density of 0.3 x 
106 cells/mL, and Kupffer at 6 x 106 cells/mL fol-
lowed by a gravity wash four hours post-seeding.  
 
            On Day -2, chips were visually inspected 
under the ECHO microscope (Discover Echo, Inc.) 
for cellular maturation and attachment, healthy 
morphology, and a tight monolayer. The chips that 
passed visual inspection had both channels washed 
with their respective media, leaving a droplet on 
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top. NPC maintenance media was composed of the 
same components prior, with a reduction of FBS to 
2%. To minimize bubbles within the system, one 
liter of complete, warmed top and bottom media 
was added to Steriflip-connected tubes (Millipore) 
in the biosafety cabinet. All media was then de-
gassed using a -70 kPa vacuum (Welch) and stored 
in the incubator until use. Pods were primed twice 
with 3mL of degassed media in both inlets, and 
200µL in both outlets. Chips were then connected 
to pods via liquid-to-liquid connection. Chips and 
pods were placed in the Zoë® for their first regulate 
cycle, which minimizes bubbles within the fluidic 
system by increasing the pressure for two hours. 
After this, normal flow resumed at 30µL/h. On Day 
-1, Zoës® were set to regulate once more.  
   
Experimental Setup  
 
            The 780-chip experiment was carried out in 
four consecutive cycles (herein referred to as Cy-
cles 1 through 4) to test a selection of 27 drugs at 
varying concentrations relative to the average ther-
apeutic human Cmax obtained from literature (Sup-
plementary Table S2). Each cycle tested 6-8 con-
centrations in duplicate for each of 10-13 drugs. To 
determine which sampling strategy was optimal for 
this test plan (16 doses x 1 replicate, 8x2, 5x3, or 
4x4), we generated 3 different “dose-response” 
synthetic datasets, each distorted by different noise 
levels (low, medium, or high). For each of these 
datasets, we performed curve-fitting analysis and 
calculated the Root Mean Square Error between the 
“true” and estimated IC50 parameter. The analysis 
results showed that, for all noise levels, the 16x1 
was the optimal selection and marginally outper-
formed the 8x2. However, to ensure at least two 
replicates per concentration, the 8x2 strategy was 
selected. Some drugs were also repeated across cy-
cles (on different donors or at different concentra-
tions) to ensure experimental robustness. For each 
cycle, chips were dosed with drug over 8 days (re-
ferred to as Day 0 through Day 7). Drug prepara-
tion, dosing, and analysis teams were divided, cre-
ating a double-blind study such that those adminis-
tering the drugs or performing analyses did not 
know the name or concentrations of the drugs 
tested.  
 
Drug Preparation  
 

            The drug dosing concentrations were deter-
mined from the unbound human Cmax of each drug. 
First, the expected fraction of drug unbound in me-
dia with 2% FBS was extrapolated from plasma 
binding data for each drug. Dosing concentrations 
were then back calculated such that the unbound 
fraction in media would reflect relevant multiples 
of unbound human Cmax (Supplementary Table 
S2). For each cycle, concentrations ranged from 0.1 
to 1000 times Cmax.  
 
            Stock solutions were prepared at 1000 times 
the final dosing concentration. Drugs in powder 
form were either weighed out with 1mg precision 
or dissolved directly in vendor-provided vials. 
Sterile DMSO (Sigma) was added to dissolve the 
drug. The solution was triturated before transfer-
ring to an amber vial (Qorpak), which was vortexed 
(Fisher Scientific) on high for 60 seconds to ensure 
complete dissolution. A serial dilution was then 
performed in DMSO to prepare each subsequent 
1000X concentration. These stock solutions were 
then aliquoted in 1.5mL tubes (Eppendorf) and 
stored at -20˚C until dosing day, allowing a maxi-
mum of one freeze-thaw cycle prior to dosing.  
 
            All media was made the day prior to chip 
dosing and stored overnight at 37˚C. On the day of 
chip dosing, one stock aliquot per drug concentra-
tion was thawed in a 37˚C bead bath. The stocks 
were then vortexed and inspected to ensure absence 
of drug particulate. Dosing solutions were prepared 
by diluting drug stock 1:1000 in top or bottom me-
dia to achieve 0.1% DMSO concentration. The 
dosing solutions were then vortexed and stored at 
37˚C until dosing.  
 
            On the first dosing day (Day 0), all chips 
were imaged using the ECHO microscope. 500µL 
of effluent was collected from all four reservoirs of 
the pod and placed in a labelled 96-well plate. After 
collection, all the remaining media was carefully 
aspirated before dosing with 3.8mL of correspond-
ing dosing solution. Dosing occurred on study days 
0, 2, and 4 for chips flowing at 30 µL/h, and on 
days 0, 1, 2, 3, 4, 5, and 6 for chips flowing at 150 
µL/h. Effluent collection occurred on days 1, 3, and 
7.   
 
Compound Distribution Kit  
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            Prior to the study, each drug was classified 
based on its partition coefficient (logP), polar 
surface area, and molecular weight to determine the 
risk of absorption into the PDMS during channel 
perfusion. Drug absorption and distribution, which 
determines the concentration at which cells are 
truly exposed, was factored into the study design 
by assigning drugs classified as higher risk to Cycle 
2 of the study. Prior to Cycle 2, a compound 
distribution kit (CDK) experiment (EP129 v1.0) 
was completed to examine the levels at which these 
specific drugs would be absorbed into the PDMS 
system. Dosing solutions at the highest 
concentration for each drug of interest were 
prepared and perfused through both channels 
(absent ECM or cells), with inlet and outlet 
reservoir samples taken at days 1 and 7.  
 
            The samples were shipped to Charles River 
Laboratories (CRL, Worcester, MA) for liquid-
chromatography-mass-spectrometry (LC/MS) 
analysis, wherein the ratios of inlet drug concentra-
tion to outlet effluent concentration were calcu-
lated. Buspirone, chlorpheniramine, nefazodone, 
and simvastatin were identified as being highly ab-
sorbed into PDMS. These four drugs were perfused 
at 150µL/h in Cycle 2, pursuant to the Emulate-val-
idated solution to reduce absorption.  
   
LC/MS Sample Collection  
 
            LC/MS analysis was also performed on in-
let and outlet effluent samples from each chip at 
0.3x, 3x, 30x, and 300x concentrations. 100µL of 
effluent was collected and plated in a 96-well plate, 
which was stored at -80˚C until shipped directly 
over dry ice via courier. In Cycle 2, the plates un-
derwent one additional freeze/thaw cycle (thawed 
for 5 hours at 4˚C) for logistical purposes. On dos-
ing days, dosing solution was also collected for 
LC/MS analysis to determine true dosing concen-
tration and quantify variability in the dosing proto-
col.  
   
LC/MS Analysis  
 
            Upon arrival at Charles River Laboratories, 
plates were stored at -80˚C until analysis. Samples 
were processed via protein precipitation (PPT) ex-
traction method. Briefly, stock solutions were pre-
pared at 10mM in DMSO (with the exception of 

diclofenac and asunaprevir prepared at 1mM). 
10µL stock solution (blank matrix for con-
trol) was combined with 60µL internal stand-
ard (acetonitrile for control blanks) before vortex-
ing and centrifuging. All samples were combined 
with 50µL MilliQ Water before analysis. Liquid 
chromatography analysis used Waters HSS T3 col-
umn (2.5µM; 50x2.1mm) at 55˚C. Mass spectrom-
etry analysis used electrospray ionization method 
to develop positive ions at 550˚C, with <0.1% car-
ryover.  

  
Biochemical Assays  
 
            Top channel outlet effluents were analyzed 
to quantify albumin and alanine transaminase 
(ALT) levels on days 1, 3, and 7, using sandwich 
ELISA kits (Abcam, Albumin ab179887, ALT 
ab234578), according to vendor-provided proto-
cols. Frozen (-80˚C) effluent samples were thawed 
overnight at 4˚C prior to assay. The Hamilton Van-
tage liquid handling platform was used to manage 
effluent dilutions (1:500 for albumin, neat for 
ALT), preparation of standard curves, and addition 
of antibody cocktail. Absorbance at 450nm was 
measured using the SynergyNeo Microplate 
Reader (BioTek).  
 
            As part of Cycle 3, top channel outlet sam-
ples were analyzed to quantify urea levels with a 
urea assay kit (Sigma-Aldrich, MAK006) accord-
ing to vendor-provided protocol. Frozen (-80˚C) 
effluent samples were thawed overnight at 4˚C 
prior to assay. Samples of vehicle chips from days 
1, 3, and 7 were analyzed, as well as levofloxacin, 
trovafloxacin, pioglitazone, and troglitazone on 
day 3. All samples were diluted 1:5 in assay buffer 
and mixed with the kit’s Reaction Mix. Absorbance 
at 570nm was measured using the same automated 
plate reader.  
   
Morphology Analysis  
 
            At least four to six brightfield images were 
acquired per chip for morphology analysis. Bright-
field images were acquired on the ECHO micro-
scope using these settings: 170% zoomed phase 
contrast, 50% LED, 38% brightness, 41% contrast, 
50% color balance, color on, and 10X objective. 
Brightfield images were acquired across three 
fields of view on days 1, 3, and 7 for each cycle. 
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Cytotoxicity classification was performed while 
acquiring images for both NPCs and hepatocytes. 
Images were then scored zero to four by blinded 
individuals (n=2) based on severity of agglomera-
tion of cell debris for both channels.  
 
            At the end of the experiment, cells in the 
Liver-Chip were fixed using 4% paraformaldehyde 
(PFA) solution (Electron Microscopy Sciences). 
Chips were detached from pods and washed once 
with PBS. The PFA solution was pipetted into both 
channels and incubated for 20 minutes at room 
temperature. Afterwards, chips were washed with 
PBS and stored at 4˚C until staining.  
   
Fixed Staining  
 
            Following fixation, chips corresponding to 
low, medium, and high concentrations from each 
group were cut in half with a razor blade perpen-
dicular to the co-culture channels. One half was 
used in the following staining protocol, while the 
other half was stored for future staining. All stains 
and washes utilized the bubble method, in which a 
small amount of air is flowed through the channel 
prior to bulk wash media to prevent a liquid-liquid 
dilution of the staining solution. The top channel 
was perfused with 100µL of NucBlue (Ther-
moFisher, R37605) (100 drops in 50mL of PBS) to 
visualize cell nuclei. Following 15 minutes of in-
cubation at room temperature, each channel was 
washed with 200µL of PBS (alternating channels, 
2x for top and 3x for bottom). Chips were then im-
aged using the Opera Phenix Plus.  
 
            Following DAPI staining and imaging, 
chips were stained with a multi-compound resistant 
protein 2 (MRP2) antibody in order to visualize the 
bile canalicular structures characteristic of healthy 
Liver-Chips. First, chips were permeabilized in 
0.125% Triton-X and 2% Normal Donkey Serum 
(NDS) diluted in PBS (100µL of solution per chan-
nel) and incubated at room temperature for 10 
minutes. Then, each channel was washed with 
200µL of PBS (alternating channels, 2x for top and 
3x for bottom). Chips were then blocked in 2% Bo-
vine Serum Albumin (BSA) and 10% NDS in PBS 
(100µL of solution per channel) and incubated at 
room temperature for 1 hour. Next, primary anti-
body Mouse anti-MRP2 (Abcam, ab3373) was pre-
pared 1:100 in the original blocking buffer, diluted 

1:4 in PBS. 100µL of solution was added to each 
channel, and chips were stored overnight at 4˚C. 
The following day, each channel was washed with 
200µL of PBS (alternating channels, 2x for top and 
3x for bottom). Secondary antibody Donkey anti-
Mouse 647 (Abcam, ab150107) was prepared 
1:500 in original blocking buffer, diluted 1:4 in 
PBS. 100µL of solution was added to each channel 
and chips incubated at room temperature, protected 
from light, for two hours. Then each channel was 
washed with 200µL of PBS (alternating channels, 
2x for top and 3x for bottom). Chips were imaged 
immediately or stored at 4˚C until ready for imag-
ing on the Opera Phenix Plus.  
   
Live Staining  
 
            Chip replicates designated for live cell im-
aging were washed with PBS utilizing the bubble 
method. Chips were then cut in half perpendicular 
to the co-culture channels. The top chip halves 
were stained with NucBlue (ThermoFisher, R37-
605) to visualize cell nuclei and Cell Event Green 
(ThermoFisher, C10423) to visualize activated 
caspase-3/7 for apoptosis. This staining panel was 
prepared in serum-free media (CSC), with Nu-
cBlue at 2 drops per mL and Cell Event Green at a 
1:500 ratio and perfused through both channels. 
The bottom chips halves were stained with Nu-
cBlue (Thermo) to visualize nuclei and Tetra-
methylrhodamine, methyl ester (TMRM) (Ther-
moFisher, I34361) to visualize active mitochon-
dria. This staining panel was prepared in PBS with 
5% FBS, with NucBlue at 2 drops per mL and 
TMRM at a 1:1000 ratio in original blocking 
buffer, diluted 1:4 in PBS. Chips were incubated in 
the dark at 37˚C for 30 minutes, and then each 
channel was washed with 200µL of PBS (alternat-
ing channels, 2x for top and 3x for bottom). The 
chips were kept at 37˚C, protected from light, until 
ready for imaging with the Opera Phenix Plus.  
   
Image Acquisition  
 
            Fluorescent confocal image acquisition was 
performed using the Opera Phenix Plus High-Con-
tent Screening System and Harmony 4.9 Imaging 
and Analysis Software (PerkinElmer). Before ac-
quisition, the Phenix internal environment was set 
to 37˚C and 5% CO2. Chips designated for imaging 
were removed from their plates, wiped on the 
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bottom surface to remove moisture, and placed into 
the Phenix 12-chip imaging adapter. Whole chips 
were placed directly into each slot, while top and 
bottom half chips were matched and combined in 
one chip slot. Chips were aligned flush with the 
adapter and one another. Any bubbles identified 
from visual inspection were washed out with PBS. 
Once ready, the stained chips were covered with 
transparent plate film to seal channel ports and 
loaded into the Phenix. For live imaging, the DAPI 
(Time: 200ms, Power: 100%), Alexa 488 (Time: 
100ms, Power: 100%), and TRITC (Time: 100ms, 
Power: 100%) lasers were used. For fixed imaging, 
the DAPI (Time: 200ms, Power: 100%), TRITC 
(Time: 100ms, Power: 100%), and Alexa 647 
(Time: 300ms, Power: 80%) lasers were used. Z-
stacks were generated with 3.6µm between slices 
for 28-32 planes, so that the epithelium was located 
around the center of the stack. Six fields of view 
(FOVs) per chip were acquired, with a 5% overlap 
between adjacent FOVs to generate a global over-
lay view.  
   
Image Analysis  
 
            Raw images from fixed and live imaging 
were exported In TIFF format from the Harmony 
software. Using scripts written for FIJI (ImageJ), 
TIFFs across 3 color channels and multiple z-
stacks were compiled into composite images for 
each field of view in each chip. The epithelial sig-
nal was identified and isolated from the endothelial 
and membrane signals, and the composite TIFFs 
were split accordingly. The ideal threshold inten-
sity for each channel in the epithelial “substack” 
was identified to maximize signal, and the TIFFs 
were exported as JPEGs for further analysis.  
   
Gene Expression Analysis  
 
            RNA was extracted from chips using TRI 
Reagent (Sigma-Aldrich) according to the manu-
facturer’s guidelines. The collected samples were 
submitted to GENEWIZ (South Plainfield, NJ) for 
next-generation sequencing. After quality control 
and RNA-seq library preparation, the samples were 
sequenced with the Illumina HiSeq 4000 at 
2x150bp using sequencing depth of ~50M paired-
end reads/sample. Using Trimmomatic v0.36, the 
sequence reads were trimmed to filter out all poor-
quality nucleotides and possible adapter sequences. 

The remaining trimmed reads were mapped to the 
Homo sapiens reference genome GRCh38 us-
ing the STAR aligner v2.5.2b. Next, using the gen-
erated BAM files for each sample, the unique gene 
hit counts were calculated from the Subread pack-
age v1.5.2. It is worth noting that only unique reads 
within the exon region were counted. Finally, the 
generated hit-counts were used to perform DGE 
analysis using the “DESeq2” R package54. The 
thresholds for all the DGE analyses were: 
|log2(Fold Change)| ≥ 1 and adjusted p-value ≤ 1.  
 
Statistical Analysis 
 
 All statistical analyses were conducted in 
R70 (version 4.1.2), and figures were produced us-
ing the R package ggplot271 (version 3.3.5). The 
dose-response analysis (Figure 2a) was carried out 
using the popular drc R package developed by Ritz 
et al.72 using the generalized log-logistic dose re-
sponse model. The error bars in Figures 1d, 1e and 
2a correspond to the standard errors of the mean. 
The circles in Figure 1e correspond to the samples 
used to calculate the corresponding statistics. In 
Figures 1e and 2a the number of samples used were 
n=4 and n=2 respectively. Finally, the analysis of 
significance in Figures 1d and 1e was performed 
using unpaired and paired t-test respectively (P-
value < 0.05). 
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