
 1 

Title 1 

A framework for research into continental ancestry groups of the UK Biobank 2 

Authors 3 

Andrei-Emil Constantinescu1,2,3, Ruth E. Mitchell1,2, Jie Zheng1,2, Caroline J. Bull1,2,3, 4 

Nicholas J. Timpson1,2, Borko Amulic4, Emma E. Vincent1,2,3, David A. Hughes1,2* 5 

 6 

1 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom. 7 

2 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United 8 

Kingdom.  9 

3 School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom.  10 

4 School of Cellular and Molecular Medicine, University of Bristol, Bristol, United 11 

Kingdom.  12 

 13 

*Corresponding author: Dr. David A. Hughes (d.a.hughes@bristol.ac.uk) 14 

 15 

Keywords 16 

Ancestry, UK Biobank, Population structure 17 

 18 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472589doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472589
http://creativecommons.org/licenses/by/4.0/


 2 

Declarations 19 

Ethics approval and consent to participate 20 

UK Biobank received ethical approval from the NHS National Research Ethics Service North 21 

West (11/NW/0382; 16/NW/0274) and was conducted in accordance with the Declaration of 22 

Helsinki. All participants provided written informed consent before enrolment in the study. 23 

 24 

Consent for publication 25 

All authors consented to the publication of this work. 26 

 27 

Availability of data and material 28 

Genetic data from UK Biobank were made available as part of project code 15825. Analytical 29 

code is available on GitHub at https://github.com/andrewcon/popgen-biobank. 30 

 31 

Competing interests 32 

None to declare. 33 

 34 

Funding 35 

AC acknowledges funding from a Medical Research Council PhD studentship 36 

(MR/N013794/1). NJT and REM acknowledge funding from the Medical Research Council 37 

(MC_UU_00011/1). NJT is the PI of the Avon Longitudinal Study of Parents and Children 38 

(Medical Research Council & Wellcome Trust 217065/Z/19/Z) and is supported by the 39 

University of Bristol NIHR Biomedical Research Centre (BRC-1215-2001). EEV, CJB, NJT 40 

and DH acknowledge funding from the Wellcome Trust (202802/Z/16/Z). EEV, CJB and 41 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472589doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472589
http://creativecommons.org/licenses/by/4.0/


 3 

NJT also acknowledge funding by the CRUK Integrative Cancer Epidemiology Programme 42 

(C18281/A29019). EEV and CJB are supported by Diabetes UK (17/0005587) and the World 43 

Cancer Research Fund (WCRF UK), as part of the World Cancer Research Fund 44 

International grant program (IIG_2019_2009). JZ is supported by the Academy of Medical 45 

Sciences (AMS) Springboard Award, the Wellcome Trust, the Government Department of 46 

Business, Energy and Industrial Strategy (BEIS), the British Heart Foundation and Diabetes 47 

UK (SBF006\1117). JZ is funded by the Vice-Chancellor Fellowship from the University of 48 

Bristol and is supported by Shanghai Thousand Talents Program. BA acknowledges funding 49 

from the Medical Research Council (MR/R02149x/1). The funders of the study had no role in 50 

the study design, data collection, data analysis, data interpretation or writing of the report. 51 

 52 

Authors' contributions 53 

AC, DH, and REM conceived the idea for the paper. AC and DH conducted the analysis. All 54 

authors contributed to the interpretation of the findings. AC and DH wrote the manuscript. 55 

All authors critically revised the paper for intellectual content and approved the final version 56 

of the manuscript. 57 

 58 

Acknowledgements 59 

We are grateful to the UK Biobank study and its participants. This research has been 60 

conducted using the UK Biobank resource under Application 15825. 61 

 62 

Authors' information (optional) 63 

MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom. 64 

AC, REM, JZ, CJB, NJT, EEV and DH 65 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472589doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472589
http://creativecommons.org/licenses/by/4.0/


 4 

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United 66 

Kingdom.  67 

AC, REM, JZ, CJB, NJT, EEV and DH 68 

School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom.  69 

AC, CJB and EEV 70 

School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom. 71 

BA 72 

 73 

Abstract 74 

Background 75 

The UK Biobank is a large prospective cohort, based in the United Kingdom, that has deep 76 

phenotypic and genomic data on roughly a half a million individuals. Included in this 77 

resource are data on approximately 78,000 individuals with “non-white British ancestry”. 78 

Whilst most epidemiology studies have focused predominantly on populations of European 79 

ancestry, there is an opportunity to contribute to the study of health and disease for a broader 80 

segment of the population by making use of the UK Biobank’s “non-white British ancestry” 81 

samples. Here we present an empirical description of the continental ancestry and population 82 

structure among the individuals in this UK Biobank subset. 83 

Results 84 

Reference populations from the 1000 Genomes Project for Africa, Europe, East Asia, and 85 

South Asia were used to estimate ancestry for each individual. Those with at least 80% 86 

ancestry in one of these four continental ancestry groups were taken forward (N=62,484). 87 

Principal component and K-means clustering analyses were used to identify and characterize 88 

population structure within each ancestry group. Of the approximately 78,000 individuals in 89 

the UK Biobank that are of “non-white British” ancestry, 50,685, 6,653, 2,782, and 2,364 90 
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individuals were associated to the European, African, South Asian, and East Asian 91 

continental ancestry groups, respectively. Each continental ancestry group exhibits prominent 92 

population structure that is consistent with self-reported country of birth data and geography. 93 

Conclusions 94 

Methods outlined here provide an avenue to leverage UK Biobank’s deeply phenotyped data 95 

allowing researchers to maximise its potential in the study of health and disease in 96 

individuals of non-white British ancestry.  97 

 98 

Introduction 99 

As the research community strives to understand the genetic architecture of disease 100 

[1], it has increasingly realized the necessity of inclusion and diversity – of ethnically, 101 

ancestrally, environmentally, and geographically diverse populations [2–5]. Not simply to 102 

enhance knowledge about health and disease, but to insure health equity. Epidemiological 103 

studies, including genome-wide associations studies (GWAS), have been overwhelmingly 104 

conducted in European populations [2]. However, funding efforts and studies including the 105 

Human Heredity and Health in Africa (H3Africa) Initiative [6], the Population Architecture 106 

using Genomics and Epidemiology (PAGE) Consortium [7], Trans-Omics for Precision 107 

Medicine Consortium [8], Hispanic Community Health Study / Study of Latinos (SOL) [9], 108 

and the All of Us Research Program [10] are making concerted efforts to include and increase 109 

the number of under-represented populations in genomic epidemiology studies. 110 

 111 

The UK Biobank project (UKBB) has phenotypic and genomic data from a 112 

prospective cohort of approximately 500,000 individuals from across the United Kingdom 113 

[11,12]. It has become an outstanding resource for studies of health and disease, and genetic 114 

diversity within the United Kingdom. Whilst it is made up of around 430,000 “white British 115 
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ancestry” individuals, as defined by UKBB, it also contains a wealth of diversity from other 116 

self-described ethnicities (~78,000). This is a resource that should be utilized to help expand 117 

inclusion and diversity in epidemiological studies. 118 

 119 

The Pan-UK Biobank, or the Pan-ancestry genetic analysis of the UKBB, has 120 

leveraged the diversity present in UKBB and is freely providing GWAS summary statistics 121 

for over seven thousand phenotypes in six continental ancestry groups 122 

(https://pan.ukbb.broadinstitute.org). The genetic “ancestry” groups identified by Pan-UK 123 

Biobank and within our study refer to groups of individuals with a shared genetic ancestry 124 

and demographic history. Studies and public resources like Pan-UK Biobank are vital to the 125 

goal of increasing under-represented populations and the larger goal of describing and 126 

understanding the genetic architecture of phenotypic traits and disease. However, the limited 127 

information on intra-population structure and non-specific use of covariates in Pan-UK 128 

Biobank GWAS models may influence association effect estimates. A description of the 129 

continental diversity and population structure present in the UKBB will aid future study 130 

design, methodological choice(s) and ultimately improve our understanding of how genotype 131 

influences phenotype. 132 

 133 

Here, we describe an approach to define continental ancestry groups and provide a 134 

description of the structure and population differentiation within them. We define "ancestry” 135 

here as genetic ancestry or the complex inheritance of one’s genetic material, but in practice 136 

we will be using methodologies that use genetic similarity to identify groups of individuals 137 

with high (genetic) affinity or likeness [13]. The aim is to identify relatively homogenous 138 

groups of individuals that approach populations consistent with a Hardy-Weinberg model and 139 

are resultantly more appropriate for many of the assumptions built into many of the methods 140 
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used in genomic epidemiology studies [14,15]. We leverage public data from the 1000 141 

Genomes Project (1KG) [16] to provide reference populations from four, therein described, 142 

superpopulations or (sub)-continental ancestry groups (CAGs) – namely, Africa (AFR), 143 

Europe (EUR), South Asia (SAS), and East Asia (EAS). We note that we will refer to the 144 

groupings or clusters of individuals derived by this work, not as populations, but as groups or 145 

clusters of individuals. Further, the groups and clusters identified here are used as discrete 146 

units, but ancestry does not have decisive boundaries and is a continuum [17–20]. The use of 147 

discrete units is an analytical simplification. Finally, the overarching purpose of our study is 148 

to provide a description of the population structure present in the UKBB as an aid to future 149 

research investigating the health of individuals from diverse ancestries.  150 

 151 

Results 152 

Estimations of continental ancestry 153 

Each of the 78,296 UKBB “non-white British” were included in a supervised 154 

ADMITXTURE analysis to estimate a proportion of ancestry to each of African (AFR), 155 

European (EUR), South Asian (SAS), and East Asian (EAS) continental ancestry groups 156 

(Figure 1). The proportion of continental ancestry is further illustrated, for each individual, 157 

within the context of UKBB population structure on principal components (PC) one and two 158 

as provided by the UKBB (Figure 2). AFR ancestry (Figure 2A) runs largely parallel with 159 

PC1, the major axis of variation. EUR ancestry runs at a roughly 135-degree angle (Figure 160 

2B) along PC1 and PC2, while SAS (Figure 2C) and EAS (Figure 2D) ancestry run, largely, 161 

along PC2. Of the approximately 78,000 UKBB samples included in the ADMIXTURE 162 

analysis 50,685, 6,653, 2,782, and 2,364 individuals had 80% or more of their ancestry 163 

attributed to the EUR, AFR, SAS, and EAS continental super-populations, respectively. 164 

These individuals were carried forward into further analyses of population structure within 165 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472589doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472589
http://creativecommons.org/licenses/by/4.0/


 8 

these continental ancestry groups (CAGs). The 80% threshold was chosen to allow some 166 

error in the broader continental classification whilst also placing a limit on the complex 167 

structure and admixture evaluated in these subsets. A total of 15,812 “non-white British” 168 

UKBB study participants were not included in any of the four CAGs, given the methods and 169 

cut-offs used here. 170 

 171 

Population structure within continental regions. 172 

To evaluate the level of population structure among the UKBB CAGs, we first re-173 

estimated principal components for each, while also projecting individuals from 1KG 174 

populations from each super-population respectively, onto the newly derived PCs (Figure 3, 175 

Supplementary Table 1). For each there is considerable overlap between UKBB individuals 176 

and 1KG populations, providing some context for the diversity that is present within the 177 

UKBB. In the AFR continental ancestry group principal component one distinguishes West 178 

African from East African 1KG populations, while PC3 distinguishes among populations of 179 

West Africa (Figure 3A). In the EUR continental ancestry group, the PCs and 1KG 180 

populations illustrate a strong North-South axis along PC2, with a similar but less distinctive 181 

trend on PC1 (Figure 3B). In the SAS continental ancestry group, there is a South-North 182 

trend along PC1, but no remarkable pattern can be attributed to the PCs (Figure 3C). The 183 

1KG sample populations in the EAS ancestry group appear to indicate a North-South axis 184 

along PC1, and a West to East axis along PC2 (Figure 3D). 185 

 186 

K-means clustering of PCs 187 

Given that many population genetics and epidemiological analyses, such as genome-188 

wide association studies, depend on limited population structure, a common desire is to have 189 

a relatively homogeneous population sample for these analyses. As such, we used an 190 
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unsupervised algorithm to identify groups of individuals that approach Hardy-Weinberg 191 

population assumptions. To do so we performed a K-means analysis on the top PCs (see 192 

Methods, Supplementary Figure 1), from each CAG, to identify ‘K’ subclusters or groups 193 

within each. An optimum number of K-clusters was determined by a silhouette analysis (see 194 

Methods, Supplementary Figure 2). For each CAG, using only the UKBB participants, we 195 

identified seven, two, four, and three K-clusters of individuals for AFR, EUR, SAS, and 196 

EAS, respectively (Supplementary Figure 3). However, for the EUR CAG we choose the 197 

second-best K-cluster (K=6) for the remaining analyses to improve our ability to investigate 198 

the utility of this analytical method to discriminate population structure (Figure 4). 199 

 200 

Country of birth 201 

To evaluate the informativeness of these K-clusters we mapped each individuals’ 202 

country of birth and United Nations (UN) geographic regions onto the PCs (Figure 5 and 203 

Supplementary Figure 4-5). These figures further illustrate the diversity and structure 204 

present in the sample. Each CAG presents an observable degree of population structure, and 205 

region of birth (ROB) data illustrates non-specific associations between CAGs and ROB 206 

(Figure 5). For example, a large number of individuals have an East African ROB but are 207 

estimated to have more than 80% of their ancestry from South Asia (Figure 5 C and G).  208 

Nevertheless, ROB data illustrates structure across principal components for each CAG. Yet 209 

to ascertain if there is a correlation among the K-clusters identified above and the self-210 

reported place of birth we performed a correspondence analysis for each CAG. The analyses 211 

indicate a correlation between K-means clusters and the UN regions for each continent: AFR 212 

(Dim1 53.29%, Dim2 41.88%), EUR (Dim1 58.25%, Dim2 28.67%), SAS (Dim1 80.00%, 213 

Dim2 18.2%), EAS (Dim1 92.11%, Dim2 7.89%) (Figure 6A). When UN regions for a 214 

smaller geographical region were substituted, namely country of birth (COB; Supplementary 215 
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Figures 6-9), an attenuated but correlated structure remained: AFR (Dim1 28.32%, Dim2 216 

25.02%), EUR (Dim1 40.43%, Dim2 31.89%), SAS (Dim1 61.60%, Dim2 25.31%), EAS 217 

(Dim1 50.49%, Dim2 49.51%) (Figure 6B, Supplementary Figure 10). 218 

 219 

Population differentiation 220 

An evaluation of the degree of population differentiation within each CAG was 221 

performed by estimating Fst, or the fixation index between each pair of K-cluster groups and 222 

1KG populations. All single-nucleotide polymorphisms (SNPs) that were included in each 223 

CAG’s principal component analysis were used here. An average, minimum, and maximum 224 

estimate was used to summarize the distribution of estimates between pairs (Figure 7). 225 

Relative to the population differentiation observed in the 1KG sample populations we 226 

observed, on average, a small degree a population differentiation among AFR and EUR K-227 

means clusters, and larger average estimates among SAS and EAS groups. Among the UKBB 228 

samples average Fst estimates indicate that the EAS CAG has the largest amount of 229 

population differentiation with an average Fst of 0.0133. This is followed by SAS with an 230 

average estimate of 0.0092, EUR with 0.0037, and finally AFR with the smallest average 231 

estimate of 0.003. However, we note that these estimates were derived from SNPs with a 232 

European ascertainment bias and as such they may not coincide with analyses using an 233 

unbiased set of genetic variants. 234 

 235 

Discussion 236 

Here we present an analytical pipeline to identify individual participants of the UKBB 237 

study with diverse and under-represented ancestries to be used in genomic epidemiology 238 

studies. Whilst cohort studies centred in diverse geographic locations are essential for 239 

elucidating the effect of environment and genotype on disease, the diversity present in deeply 240 
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phenotyped studies such as the UKBB should be utilized where possible. This study presents 241 

a description of some of the diversity present in the UKBB. Further, the methods presented 242 

here provide an approach to identify subsets of individuals to help broaden, inform, and 243 

improve the relevance of genetic epidemiological studies and their findings for those of, in 244 

this specific instance, a non-white British ancestry (Figure 8). 245 

Throughout the paper, when we speak of ancestry, we are referring to “genetic 246 

ancestry”, or individuals who share a demographic history [13,21,22]. They would, at the 247 

population level, share a history of mutation, genetic drift, recombination, migration, natural 248 

selection, environment, and culture (niche construction). As a product, they would have 249 

different genetic variants, allele frequencies, and patterns of linkage disequilibrium across 250 

their genomes [23–25].  251 

The need to perform analyses, like association studies, separately in unique ancestral 252 

populations is largely born from the need to avoid correlations between phenotype and 253 

genetic ancestry, or differences in allele frequencies among populations [13,26]. For 254 

example, if a disease (or environmentally influenced trait) is more frequent in ancestral 255 

population ‘A’ than it is in ‘B’ and your association analysis pools these ancestral 256 

populations together you may erroneously identify any allele that is more frequent in 257 

population ‘A’ as a genetic variant associated with the disease. To avoid these confounding 258 

issues, analyses are commonly limited to relatively homogenous populations.  259 

In genome-wide association studies, the aim is to derive accurate unbiased effect 260 

estimates for a genetic variant on a trait. However, the task becomes increasingly 261 

challenging, as variation in genetic ancestry comes with different allele frequencies, genetic 262 

backgrounds and environments [27]. Methods such as the inclusion of relatedness matrixes 263 

and principal components [28–31] are used to account for cryptic relatedness and undetected, 264 

fine-scale population stratification. In addition, they are also used to account for correlations 265 
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between phenotype and genetic ancestry [32,33]. However, are the inclusion of relatedness 266 

matrixes or principal components enough to control the structure present in the CAGs 267 

presented here? Or would smaller (K-means clusters) more homogenous populations be 268 

better suited to epidemiological analyses, like GWAS? 269 

The problems introduced by population stratification persist even in populations like 270 

the “white British” subset of the UKBB, where individual genetic variants and polygenic 271 

scores for individual traits can retain correlations with geography, even after correcting for 272 

population structure [34,35]. Moreover, when sampling populations across Europe – where 273 

genetic ancestry does mirror geography [36,37] – and meta-analysing independently run 274 

GWASs [38], effect estimates appear to retain a bias introduced by population structure 275 

[39,40]. These fine scale issues exemplify some of the reasons for performing separate 276 

epidemiological analysis, like GWAS, for populations with deeper population 277 

differentiations, i.e. unique ancestries, demographic histories, and environments. 278 

The complications of population stratification and opportunities for improving health 279 

outcomes for more people, even at the continental level, are precisely why a description of 280 

the structure within each continental ancestry group was provided here. Namely, the structure 281 

present within a CAG, as identified here, may also be too great to be properly accounted for 282 

with common methodologies and may thus need to be resolved into smaller more 283 

homogenous groups. At the very least, careful consideration is warranted when interpreting 284 

results where CAGs are used - because structure matters [41]. The unsupervised clustering 285 

performed within each CAG is not a perfect solution for identifying true “populations” – an 286 

exercise that may in fact be an impractical goal – but it is a method to identify groups of 287 

individuals with a more similar, homogeneous ancestry. Other techniques like uniform 288 

manifold approximation and projection [42] or more explicit leveraging of self-described 289 

ethnicity could help improve the identification of homogenous groups. Self-described 290 
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ethnicity is not a synonym for genetic ancestry though, as it is a sociocultural construct. It 291 

would however help inform cultural, social, and other environmental influences – important 292 

aspects of a “population” - on phenotypes and disease [22]. 293 

In summary, we assigned individuals to continental ancestry groups (Figure 1 and 2); 294 

illustrated the structure present among individuals within each CAG (Figure 3), identified 295 

unsupervised clusters or groups of individuals within each (Figure 4) and demonstrated that 296 

those clusters have an affinity to regions and countries of birth – i.e. the K-means clusters are 297 

consistent with geographic structure and isolation by distance models [43,44] (Figure 5). 298 

Notably, each CAG presents extensive structure, inconsistent with a randomly mating 299 

population, but rather with the sampling of unique, geographically distant populations. In 300 

particular, East Asian, South Asian, and African CAGs have isolated, or discontinuous 301 

groups of individuals in the UKBB sample, exemplified in the K-means clustering analysis 302 

(Figure 4) [19,20]. For example, groups K1 and K3 in the EAS CAG (Figure 4D) epitomizes 303 

this discontinuous structure as they correspond to individuals born on the islands of 304 

Philippines and Japan, respectively (Figure 5, Supplementary Figure 8). 305 

The methods employed here do have several limitations: First, a single 1KG 306 

population was used to represent each of four continental ancestry groups evaluated – Africa, 307 

Europe, South Asia, and East Asia. One population is a poor proxy for all of the variation 308 

present in any one (sub)-continent. However, as the 1KG project does not have optimal 309 

population coverage, including more or all the 1KG populations of a CAG would still poorly 310 

represent all the variation present in a (sub)-continent and would complicate the assignment 311 

of individuals to a single ancestry group.  Second, our analysis was limited to four (sub-312 

)continental ancestry groups, to the exclusion of the Americas (AMR, a 1KG 313 

superpopulation). Populations from the Americas often have a large and varying amount of 314 

recent admixture from various European and African populations [25,45–49]. As such, 315 
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including an AMR population in the ADMIXTURE analysis, as a reference population, could 316 

confound the genetic ancestries being estimated. However, whilst we limit this study to a 317 

few, broad, well characterized ancestry groups the approach presented her can be generalised 318 

to other, specific ancestries. 319 

Third, the UKBB Axiom array used to genotype all UKBB participants was designed 320 

to optimize imputation of a European population while also including genetic variants 321 

previously associated with disease and other phenotypic traits derived from studies primarily 322 

conducted in European populations [11,12]. As a product, the genomic data used here will 323 

have an ascertainment bias [50] that would influence imputation accuracy (although no 324 

imputation data was used here), allele frequency distributions, estimates of linkage 325 

disequilibrium and diversity and divergence within and among populations. Each of these 326 

may influence estimations of population differentiation, principal component estimates and 327 

the inferences made from them [51,52]. Specific study designs [53,54] have been made to 328 

remove ascertainment bias in genotype arrays so that unbiased inferences could be made for a 329 

wider range of genetic ancestries, but this was not available here. 330 

Fourth, the principal components illustrated and used in the unsupervised K-means 331 

clustering analyses were derived from the UKBB participants only and resultantly represents 332 

the diversity (point three) and genetic ancestry found in that data set. The inclusion or use of 333 

other public data sets with more numerous sample populations, that better represent regional, 334 

or continental diversity will provide alternative patterns of structure. Fifth, we are limited by 335 

the reference population used in the analyses. Whilst the 1KG data set shall remain an 336 

essential reference panel for broad analyses like those conducted here, researchers with 337 

specific continental or geographically specific research questions could strengthen and refine 338 

the observations made here by including other geographically specific data sets. Finally, the 339 

unsupervised K-means clustering analysis is dependent upon the number of PCs included in 340 
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it. Here the number of PCs chosen did have an element of subjectivity (Supplementary Figure 341 

1). Whilst analytical methods are available to select a number of informative PCs [55], we 342 

did not implement such methods here. Given that the K-means algorithm weights each PC 343 

equally, we sought to limit the PCs included to only those with the largest proportions of 344 

variance explained and not necessarily all that are analytically estimated to be informative. 345 

 346 

Conclusions 347 

The approach presented here demonstrates a method to leverage the deeply 348 

phenotyped and widely used UKBB data set to help improve the inclusion and equity of 349 

epidemiological studies for under-represented populations. Careful considerations must be 350 

given to the diversity present within continental ancestry groups. However, given the 351 

thousands of individuals present in the genetic ancestry groups identified here, the UKBB 352 

data set shall prove insightful for studies of health and disease in populations beyond the 353 

British Isles. While the methods presented here do not describe a perfect solution to identify 354 

populations, we hope that they provide an avenue to leverage the diverse data available in 355 

UKBB and a methodological platform to improve and build upon. 356 

 357 

Methods 358 

Description of working environment 359 

All analyses were performed in a Linux environment supported by the University of 360 

Bristol’s Advanced Computing Research Centre (ACRC) using the following publicly 361 

available software packages: Plink v1.9 and v2.0 [56,57], ADMIXTURE v1.3.0 [58,59], and 362 

EIGENSOFT v8.0.0 [29,30]. In addition, bespoke scripts, analyses, and figures were run and 363 
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generated in the R environment using version 3.6.2 on the ACRC computer clusters and 364 

version 4.0.2 (Taking Off Again) on local computers [60]. 365 

 366 

UK Biobank data 367 

This research has been conducted using the UKBB Resource under Application 368 

Number 15825, from which directly genotyped SNP data (N=784,256 SNPs) were made 369 

available. It includes data for a total of 78,296 individuals identified by UKBB as “non-white 370 

British” participants – our analyses were restricted to this subset. In addition to genotypic 371 

data, we also acquired several variables of interest (self-described ancestry, country of birth) 372 

data for this subset of individuals. 365 exclusions were made when filtering those with sex 373 

chromosome mismatch and/or aneuploidy, and outliers with high genetic heterozygosity and 374 

missing rates [61]. 375 

 376 

1000 Genomes data 377 

Genetic data (v5a.20130502) from phase three of the 1KG, which includes data from 378 

5 continental, or 1KG described super-populations [Europe (EUR), East Asia (EAS), South 379 

Asia (SAS), Africa (AFR), and the Americas (AMR)], were used to provide reference 380 

populations for admixture analyses and population structure inferences ([62] 381 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). Our analyses did not include populations from 382 

the AMR superpopulation. This is to maintain a simplified analysis that avoided the 383 

complicating factors of the potentially recent admixture events that occurred in the Americas. 384 

Included in our analyses are five populations from 1KG super-population label: (AFR), also 385 

known as the continental Africa ancestry group (1) Yoruba in Ibadan, Nigeria (YRI); (2) 386 

Luhya in Webuye, Kenya (LWK); (3) Gambian in Western Division, The Gambia - 387 

Mandinka (GWD); (4) Mende in Sierra Leone (MSL) and (5) Esan in Nigeria (ESN). Five 388 
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populations from the super-population label EUR or the continental Europe ancestry group: 389 

(1) Utah residents with Northern and Western European ancestry (CEU); (2) Toscani in Italia 390 

(TSI); (3) British in England and Scotland (GBR); (4) Finnish in Finland (FIN) and (5) 391 

Iberian populations in Spain (IBS). Five populations from the super-population label SAS or 392 

the continental South Asian ancestry group: (1) Gujarati Indian in Houston, Texas (GIH); (2) 393 

Punjabi in Lahore, Pakistan (PJL); (3) Bengali in Bangladesh (BEB); (4) Sri Lankan Tamil in 394 

the UK (STU) and (5) Indian Telugu in the UK (ITU). Finally, five populations from the 395 

super-population label EAS or the continental East Asian ancestry group: (1) Han Chinese in 396 

Beijing, China (CHB); (2) Japanese in Tokyo, Japan (JPT); (3) Han Chinese South (CHS); 397 

(4) Chinese Dai in Xishuangbanna, China (CDX) and (5) Kinh in Ho Chi Minh City, 398 

Vietnam (KHV). 399 

 400 

Merging UK Biobank and 1000 Genomes 401 

The directly genotyped data from UKBB was used to identify SNPs with the same 402 

SNP identifier (RefSNP ID) present in the 1KG data set. A total of 718,711 SNPs were 403 

identified with the same ID and extracted from both data sets using PLINK v2.0. The two 404 

datasets were then merged using the -bmerge function in PLINK v2.0. After removing 405 

problematic SNPs (e.g. multi-allelic, duplicate) in the merge step, a total of 718,487 SNPs 406 

remained. 407 

 408 

Linkage disequilibrium pruning 409 

Prior to ancestry estimation the merged dataset was reduced to a set of independent 410 

SNPs based on linkage disequilibrium (LD) estimates using the PLINK v2.0 function and 411 

parameters “--indep-pairwise 50 10 0.025”, indicating an r2 threshold of 0.025, a window size 412 

of 50 kilobases and a window step size of 10 kilobases. In addition, 24 previously identified 413 
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genomic regions with extensive linkage disequilibrium were also excluded [63,64]. LD 414 

estimates in this analysis were limited to unrelated individuals from the 1KG YRI population 415 

sample. A total of 30,320 SNPs remained following LD pruning.  416 

 417 

Estimating African, European, South Asian, and East Asian ancestry 418 

Four 1KG populations were included as reference populations in a supervised 419 

Admixture (v1.3.0) analysis. They were (1) British in England and Scotland (GBR), of the 420 

European ancestry (EUR) superpopulation, (2) Yoruba in Ibadan, Nigeria (YRI), of the 421 

African ancestry (AFR) superpopulation, (3) Indian Telugu in the UK (ITU), of the South 422 

Asian ancestry (SAS) superpopulation, and (4) Han Chinese South (CHS), of the East Asian 423 

ancestry (EAS) superpopulation. These singular population samples were chosen to broadly 424 

represent each of their four respective continental (superpopulation) ancestry groups, with an 425 

average population differentiation (Fst, or fixation index) value of 0.1055 amongst them, as 426 

estimated by ADMIXTURE. The supervised ADMIXTURE analysis provides, for each 427 

UKBB sample, a proportion of ancestry for each of the four reference populations. Those 428 

individuals with at least 80% of their ancestry attributed to one continental ancestry group, or 429 

1KG defined superpopulation, were carried forward into further analyses.  430 

 431 

Derivation of continental principal components 432 

Unrelated individuals in each CAG, including both 1KG and UKBB samples with 433 

>=80% ancestry to that CAG were identified (using all 718,487 SNPs in the overlapping data 434 

set, and the plink (v1.9) function --rel-cutoff and a minor allele frequency (MAF) filter of 435 

0.05 (--maf 0.05)). Then for each CAG and using all (1KG + UKBB) unrelated individuals 436 

assigned to the CAG, a list of approximately 40 thousand LD independent SNPs were 437 

identified (using the plink (v2.0) function --indep-pairwise 50 10 0.025 (--indep-pairwise 50 438 
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10 0.02 for AFR and --indep-pairwise 50 10 0.05 for SAS) along with a MAF filter of 0.01, 439 

and the exclusion of the 24 previously identified genomic regions with extensive linkage 440 

disequilibrium [63,64]). New plink files including only the LD independent SNPs identified 441 

in step two were subsequently generated. smartrel from the EIGENSOFT 442 

(https://github.com/DReichLab/EIG) package was used to generate a new list of related 443 

individual pairs, along with our script “greedy_unrelated_selection.R” to identify a list of 444 

related individuals to exclude from principal component derivation [29,30]. An exception this 445 

step was made for the European CAG as its sample-size was prohibitively large to run 446 

smartrel, instead the list of unrelated individuals generated from step one was used. Finally, 447 

smartpca of the EIGENSOFT package was used to estimate principal components (PC), using 448 

only unrelated UKBB samples. Related and 1KG samples were subsequently projected upon 449 

these PCs by smartpca. Sample outliers were excluded from the PC analysis by smartpca with 450 

the following parameters: using 10 PCs to identify outliers (numoutlierevec), at six standard 451 

deviations from the mean (outliersigmathresh), and with 5 outlier removal iterations 452 

(numoutlieriter). Supplementary Table 1 provides numbers for each of these steps, for each 453 

CAG. The EUR CAG was treated uniquely due to its larger sample-size. Smartpca was run 454 

twice as described above, once with “fastmode=NO” and then with “fastmode=YES”. The 455 

former provided estimates of the eigenvalues but not the eigenvectors, while the latter 456 

provided eigenvectors but not eigenvalues. 457 

 458 

K-means clustering of principal components  459 

For each CAG, we estimated the variance explained by each principal component 460 

(PC) by dividing the eigenvalue of each PC by the sum of all eigenvalues. To identify the 461 

number of top PCs we generated a scree plot, using the variance explained estimates, and 462 

identified the elbow or valley in each plot (Supplementary Figure 1, Supplementary Table 463 
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2). The top PCs, and the top PCs only, were then used in an unsupervised K-means clustering 464 

analysis (k set from 2 to 20; using the function “kmeans()” from the R stats package) to 465 

identify clusters of UKBB individuals that maximize between cluster sums of squares and 466 

minimize within cluster sums of squares. An optimum number of clusters (k) was identified 467 

by silhouette analysis using the function “pamk()” from the fpc R package (Supplementary 468 

Figure 2) [65]. These analyses are implemented in our function “DetermineK()” found in this 469 

study’s GitHub repository. 470 

 471 

Correspondence analysis 472 

Each UKBB study participants’ country of birth information was placed into United 473 

Nations defined geographic regions (Supplementary Table 3). To determine if the K-means 474 

population clusters have any relationship with an individual’s country of birth or country of 475 

birth UN-region we performed correspondence analyses (CAs) using the function “ca()” from 476 

the R package “ca”, for each continental ancestry group [36]. In addition, a chi-square test 477 

was performed on the contingency table used in the correspondence analysis. Any UN-region 478 

or country of birth with fewer than 10 observations was excluded. Individuals for which 479 

country of birth information was not available were also excluded. 480 

 481 

Population differentiation among K-means population clusters  482 

For each CAG, we took the best K-means population clusters, as defined by the 483 

silhouette analysis, and re-ran smartpca. However, on this run we had smartpca provide for us 484 

only an estimation of the average fixation index (Fst) for each pair of populations in the data 485 

set, including 1KG populations and UKBB K-means clusters. This was done with the 486 

inclusion of the paramaters “fstonly” and “phylipoutname” [55], the latter of which provides 487 

a distance matrix of mean Fst values between populations. Estimations of Fst, which range 488 
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from 0 to 1, provide a measure of population differentiation among populations. In brief, 489 

these describe the proportion of total variation at a SNP that is explained by variation 490 

between populations. For any SNP a value of 0 would indicate that minimal variation is 491 

attributable to variation between populations. A value of 1 would indicate a fixed difference 492 

i.e., the two populations are both invariable but for alternative alleles. 493 

List of abbreviations 494 

1KG = 1000 Genomes Project 495 

ACRC = Advanced Computing Research Centre 496 

AFR = African 497 

AMR = Americas 498 

BEB = Bengali in Bangladesh 499 

CA = correspondence analysis 500 

CAG = continental ancestry group 501 

CDX = Chinese Dai in Xishuangbanna, China 502 

CEU = Utah residents with Northern and Western European ancestry 503 

CHB = Han Chinese in Beijing, China 504 

CHS = Han Chinese South 505 

COB = country of birth 506 

EAS = East Asian 507 

ESN = Esan in Nigeria 508 

EUR = European 509 

FIN = Finnish in Finland 510 

Fst = fixation index 511 

GBR = British in England and Scotland 512 

GIH = Gujarati Indian in Houston, Texas 513 
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GWAS = Genome-wide association study 514 

GWD = Gambian in Western Division, The Gambia - Mandinka 515 

IBS = Iberian populations in Spain 516 

ITU = Indian Telugu in the UK 517 

JPT = Japanese in Tokyo, Japan 518 

KHV = Kinh in Ho Chi Minh City, Vietnam 519 

LD = linkage disequilibrium 520 

LWK = Luhya in Webuye, Kenya 521 

MAF = minor allele frequency 522 

MSL = Mende in Sierra Leone 523 

PC = principal component 524 

PJL = Punjabi in Lahore, Pakistan 525 

ROB = region of birth 526 

SAS = South Asian 527 

SNP = single-nucleotide polymorphism 528 

STU = Sri Lankan Tamil in the UK 529 

TSI = Toscani in Italia 530 

UKBB = UK Biobank 531 

UN = United Nations 532 

YRI = Yoruba in Ibadan, Nigeria 533 

 534 
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 723 

 724 

Figure Legends 725 

 726 

Figure 1 Ancestry estimates for the UKBB non-white British subset: Estimates of 727 

ancestry proportions for each UKBB participant previously labeled as non-white British 728 

individuals by UKBB. Ancestry was derived from a supervised ADMIXTURE analysis using 729 

four 1000 Genomes reference populations - Yoruba in Ibadan, Nigeria for (AFR) Africa, 730 

British in England, and Scotland for (EUR) Europe, Indian Telugu in the UK for (SAS) South 731 

Asia, and Han Chinese South for (EAS) East Asia. 732 

 733 

Figure 2 Ancestry proportions on UKBB PCs: Continental (A) African, (B) European, (C) 734 

South Asian, and (D) East Asian ancestry proportions placed on principal components one 735 

and two, as supplied by the UK Biobank. 736 

 737 
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Figure 3 UKBB continental PCs with 1000 Genomes populations: Principal components 738 

one through four for each CAG. UKBB samples are colored in gray, while the 1KG sub-739 

populations for each CAG are plotted in other colors, as indicated by each legend. The 740 

proportion of variation explained by each PC is indicated on each axis. 741 

 742 

Figure 4 UKBB continental PCs with K-means clusters: Principal components one 743 

through four for each CAG with each individual colored by its assigned K-means population 744 

cluster, as indicated by each legend. The proportion of variation explained by each PC is 745 

indicated on each axis. 746 

 747 

Figure 5 Principal components for CAG with geographic regions of birth: Principal 748 

components one and two for each CAG, with (A-D) individuals colored by their region of 749 

birth (A-D), and with (E-H) the PC center also colored by region of birth. PC centers were 750 

estimated as the average PC1 and PC2 values for all individuals of that ROB. Regions of 751 

birth are denoted in the figure legend, and the proportion of variation explained by each PC is 752 

indicated on each axis. 753 

 754 

Figure 6 Correspondence analysis: Correspondence plots between (A) K-means population 755 

clusters (colored circles) and regions of birth (grey squares), and (B) K-means population 756 

clusters (colored circles) and country of birth (grey squares) (B). The x and y axes are the 757 

first and second dimension of each correspondence analysis, respectively, with the proportion 758 

of variance explained indicated in the parentheses of each axis. 759 

 760 

Figure 7 Fst estimates: The minimum, mean and maximum fixation index values for each 761 

CAG in the 1KG project and the UK Biobank dataset. Fst values in the 1KG project are 762 
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between the sub-populations of each super-population, while UK Biobank estimates are 763 

derived between K-means population cluster of each CAG. 764 

 765 

Figure 8 Graph outlining the possible effects of geographic structure in population 766 

genetics: Suppose one might want to use Mendelian randomization to study the relationship 767 

between neutrophil count and severe malaria caused by P. Falciparum – a disease largely 768 

absent in European environments. Using summary statistics from a neutrophil count GWAS 769 

derived from individuals with European ancestry (Box 1A) may affect estimates due to 770 

geographic structure (Ancestry + Demography + Environment). This can be overcome by 771 

running a GWAS in people of African ancestry (Box 1B). 772 

 773 

Supplementary Figure 1 Continental ancestry PCA Scree plots: Legend: Scree plots 774 

illustrating the proportion of variation explained by each of the top 20 PCs, in each UKBB 775 

continental ancestry principal component analyses. The Scree plots were used to identify the 776 

number of top PCs to carry forward into the K-means clustering analysis. The continental 777 

ancestry supergroups are Africa (AFR), Europe (EUR), South Asia (SAS), and East Asia 778 

(EAS). The number of PCs selected as top PCs are AFR = 4, SAS = 5, EAS = 4, EUR = 5. 779 

The horizontal line in each plot denotes where 10% variance explained is in each plot to aid 780 

in inter-CAG comparisons. 781 

 782 

Supplementary Figure 2 K-means k selection with silhouette analysis: Selection of an 783 

optimum number of k clusters in the K-means analysis of the top PCs, by silhouette analysis. 784 

A silhouette plot for each UKBB continental supergroup (AFR) African, (EUR) European, 785 

(SAS) South Asian, and (EAS) East Asian is provided. The x-axis indicates the number of k 786 

clusters evaluated, and the y-axis provides an estimate of the average silhouette width 787 
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(ASW). ASW is an estimation of cluster quality, or intra- and inter- cluster distances derived 788 

from a partitioning around medoids (PAM). The optimum number of k clusters in each 789 

UKBB continental supergroup were identified as AFR = 7, EUR = 2, SAS = 4, and EAS = 3. 790 

 791 

Supplementary Figure 3 UKBB continental ancestry group PCs with K-means clusters: 792 

UK Biobank continental ancestry group PCs with K-means population clusters color coded: 793 

AFR (A), EUR (B), SAS (C), EAS (D). 794 

 795 

Supplementary Figure 4 Population structure by UN defined geographic region: UK 796 

Biobank continental ancestry group PCs colored by the region of birth color coded: AFR (A-797 

C), EUR (D-F), SAS (G-I), EAS (J-L). 798 

 799 

Supplementary Figure 5 Population structure centers, as defined by UN geographic 800 

region: UK Biobank continental ancestry group PCs 1-4 with region of birth centers 801 

(averaged across all individuals from each ROB) colour coded: AFR (A-C), EUR (D-F), SAS 802 

(G-I), EAS (J-L). 803 

 804 

Supplementary Figure 6 Population structure by country of birth in AFR by region: UK 805 

Biobank continental ancestry group PCs 1-4 for the AFR CAG divided by UN regions of 806 

birth: Eastern (A), Central (B), Western (C), Northern/Southern (D). Samples are color coded 807 

by their country of birth. 808 

 809 

Supplementary Figure 7 Population structure by country of birth in EUR by region: 810 

UK Biobank continental ancestry group PCs 1-4 for the EUR CAG divided by UN regions of 811 
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birth: Northern (A), Eastern (B), Southern (C), Western (D). Samples are color coded by their 812 

country of birth. 813 

 814 

Supplementary Figure 8 Population structure by country of birth in SAS and EAS: UK 815 

Biobank continental ancestry group PCs 1-4 for the SAS and EAS CAGs divided by UN 816 

regions of birth: Southern Asia (A), East Asia and South-eastern Asia (B). Samples are color 817 

coded by their country of birth. 818 

 819 

Supplementary Figure 9 Population structure centers by country of birth: UK Biobank 820 

continental ancestry group centers colored by the country of birth: AFR (A-C), EUR (D-F), 821 

SAS (G-I), EAS (J-L). 822 

 823 

Supplementary Figure 10 Population structure centers by country of birth: UK Biobank 824 

continental ancestry group centers in the correspondence analysis, colored by K-means 825 

population clusters, overlapping with country of birth data in grey: AFR (A-C), EUR (D-F), 826 

SAS (G-I), EAS (J-L). 827 

Figure 1 Ancestry estimates for the UKBB non-white British subset 828 

 829 
 830 
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Figure 2: Ancestry proportions on UKBB PCs 831 

 832 
 833 
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Figure 3: UKBB continental PCs with 1000 Genomes populations 834 

 835 
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Figure 4: UKBB continental PCs with K-means clusters 836 

 837 
 838 
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Figure 5: Principal components for CAG with geographic regions of birth. 839 

 840 
 841 
 842 

Figure 6: Correspondence analysis 843 

 844 
 845 

A 

B 
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Figure 7: Fst estimates 846 

 847 
 848 
 849 

Figure 8: Graph outlining the possible effects of geographic structure in 850 
population genetics 851 
 852 

 853 
 854 
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