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ABSTRACT

Mean-field theory of spiking neuronal networks has led to numerous advances in our analytical
and intuitive understanding of the dynamics of neuronal network models during the past decades.
But, the elaborate nature of many of the developed methods, as well as the difficulty of imple-
menting them, may limit the wider neuroscientific community from taking maximal advantage of
these tools. In order to make them more accessible, we implemented an extensible, easy-to-use
open-source Python toolbox that collects a variety of mean-field methods for the widely used
leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its
current state allows for estimating properties of large neuronal networks, such as firing rates,
power spectra, and dynamical stability in mean-field and linear response approximation, without
running simulations on high performance systems. In this article we describe how the toolbox is
implemented, show how it is used to calculate neuronal network properties, and discuss different
use-cases, such as extraction of network mechanisms, parameter space exploration, or hybrid
modeling approaches. Although the initial version of the toolbox focuses on methods that are
close to our own past and present research, its structure is designed to be open and extensible. It
aims to provide a platform for collecting analytical methods for neuronal network model analysis
and we discuss how interested scientists can share their own methods via this platform.

Keywords: mean-field theory, (spiking) neuronal network, integrate-and-fire neuron, open-source software, parameter space

exploration, (hybrid) modeling, Python, computational neuroscience, scientific computing

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472584doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472584
http://creativecommons.org/licenses/by/4.0/


Layer et al.

1 INTRODUCTION
Biological neuronal networks are composed of large numbers of recurrently connected neurons, with a
single cortical neuron typically receiving synaptic inputs from thousands of other neurons (Braitenberg
and Schüz, 1998; DeFelipe et al., 2002). Although the inputs of distinct neurons can be integrated in a
complex fashion, average properties of entire populations of neurons often do not depend strongly on
the contributions of individual neurons. Based on this observation, it is possible to develop analytically
tractable theories of population properties, in which the effects of individual neurons are averaged out and
the complex, recurrent input to individual neurons is replaced by a simplification, known as self-consistent
effective input (Gerstner et al., 2014). In classical physics terms (e.g., Goldenfeld, 1992), this effective
input is called mean-field, because it is the self-consistent mean of a field, which here is just another name
for the input the neuron is receiving. The term self-consistent refers to the fact that the population of
neurons that receives the effective input, is the same that contributes to this very input in a recurrent fashion:
the population’s output determines its input and vice-versa. The stationary statistics of the effective input
therefore can only be found in a self-consistent manner: the input to a neuron must be set exactly such that
the caused output precisely leads to the respective input.

These mean-field theories have been developed for many different kinds of synapse, neuron, and network
models. They have been successfully applied to study average population firing rates (van Vreeswijk and
Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998; Amit and Brunel, 1997b), and the various
activity states a network of spiking neurons can exhibit, depending on the network parameters (Amit
and Brunel, 1997a; Brunel, 2000; Ostojic, 2014), as well as the effects that different kinds of synapses
have on firing rates (Fourcaud and Brunel, 2002; Lindner, 2004; Schuecker et al., 2015; Schwalger et al.,
2015; Mattia et al., 2019). They have been used to investigate how neuronal networks respond to external
inputs (Lindner and Schimansky-Geier, 2001; Lindner and Longtin, 2005), and they explain why neuronal
networks can track external input on much faster time scales than a single neuron could (van Vreeswijk and
Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998). They allow studying pair-wise correlations of
neuronal activity (Sejnowski, 1976; Ginzburg and Sompolinsky, 1994; Lindner et al., 2005; Trousdale et al.,
2012) and were able to reveal why pairs of neurons in random networks, despite receiving a high proportion
of common input, can show low output correlations (Hertz, 2010; Renart et al., 2010; Tetzlaff et al., 2012;
Helias et al., 2014), which for example has important implication for information processing. They describe
pair-wise correlations in network with spatial organization (Rosenbaum and Doiron, 2014; Rosenbaum
et al., 2017; Dahmen et al., 2021) and can be generalized to correlations of higher orders (Buice and Chow,
2013). Mean-field theories were utilized to show that neuronal networks can exhibit chaotic dynamics
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998),
in which two slightly different initial states can lead to totally different network responses, which has been
linked to the network’s memory capacity (Toyoizumi and Abbott, 2011; Schuecker et al., 2018). Most of
the results mentioned above have been derived for networks of either rate, binary, or spiking neurons of a
linear integrate-and-fire type. But various other models have been investigated with similar tools as well;
for example, just to mention a few, Hawkes processes, non-linear integrate-and-fire neurons (Brunel and
Latham, 2003; Fourcaud-Trocmé et al., 2003; Richardson, 2007, 2008; Grabska-Barwinska and Latham,
2014; Montbrió et al., 2015), or Kuramoto-type models (Stiller and Radons, 1998; van Meegen and Lindner,
2018). Additionally, there is an ongoing effort showing that many of the results derived for distinct models
are indeed equivalent and that those models can be mapped to each other under certain circumstances
(Grytskyy et al., 2013; Ostojic and Brunel, 2011; Senk et al., 2020).
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Other theories for describing mean population rates in networks with spatially organized con-
nectivity, based on taking a continuum limit, have been developed. These more phenomenolog-
ical theories, known as neural field theories, have deepened our understanding of spatially and
temporally structured activity patterns emerging in cortical networks. Starting with the seminal
work by Wilson and Cowan (1972, 1973) investigating global activity patterns and Amari (1975,
1977) investigating stable localized neuronal activity. They were successfully applied to explain
hallucination patterns (Ermentrout and Cowan, 1979; Bressloff et al., 2001), as well as EEG and MEG
rhythms (Nunez, 1974; Jirsa and Haken, 1996, 1997). The neural field approach has been used to model
working memory (Laing et al., 2002; Laing and Troy, 2003), motion perception (Giese, 2012), cognition
(Schöner, 2008), and more; for extensive reviews of the literature, we refer the reader to Coombes (2005),
Bressloff (2012), and Coombes et al. (2014).

Apparently, analytical theories have contributed to our understanding of neuronal networks and they
provide a plethora of powerful and efficient methods for network model analysis. However, following the
details behind those theories often requires some mathematical background. Furthermore, the analytical
methods developed in those works only are of immediate use to other researchers if there is a numerical
implementation that is flexible enough to be applicable to different network models, according to that
researchers’ questions. Such an implementation is often far from straightforward and at times requires
investing substantial time and effort. Commonly, such tools are implemented as the need arises, and their
reuse is often not organized systematically. Also reuse is often restricted to within a single lab. This way,
not only are effort and costs spent by the neuroscientific community duplicated over and over again, but
also are many scientists deterred from taking maximal advantage of those methods; simply because they
do not have the capacities to do so, although such tools might open new avenues for investigating their
research questions.

In order to make analytical tools for neuronal network model analysis accessible to a wider part of the
neuroscientific community, and to create a platform for collecting well-tested and validated implementations
of such tools, we have developed the Python toolbox NNMT (Layer et al., 2021), short for Neuronal
Network Mean-field Toolbox. NNMT has been designed to fit the diversity of mean-field theories, and
the key features we are aiming for are modularity, extensibility, and a simple usability. Furthermore, it
features an extensive test suite to ensure the validity of the implementations as well as a comprehensive
user documentation. The current version of NNMT mainly comprises tools for investigating networks of
leaky integrate-and-fire neurons as well as some methods for studying neural field models. The toolbox is
open-source and publicly available on GitHub1.

There exist different approaches for neuronal network model analysis that do not use direct simulations of
the subthreshold dynamics of individual neurons. Cain et al. (2016), for example, analyze the Potjans and
Diesmann cortical microcircuit model (Potjans and Diesmann, 2014) employing the simulation platform
DiPDE2. DiPDE is based on the population density approach and yields an efficient numerical method for
analyzing the statistical evolution of voltage distributions of large homogeneous populations of neurons.
Schwalger et al. (2017) start from a stochastic microscopic neuron model and derive mesoscopic population
equations, which reproduce the statistical and qualitative behavior of the homogeneous neuronal sub-
populations. But to the best of our knowledge, there currently is no toolbox pursuing efforts to collect
numerical implementations of various analytical mean-field tools for neuronal network model analysis.

1 https://github.com/INM-6/nnmt
2 http://alleninstitute.github.io/dipde
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Figure 1. The Neuronal Network Mean-field Toolbox (NNMT) is a platform for collecting network
analysis tools. (A) Individual tool functions can be used directly by explicitly passing arguments (basic
workflow, blue) or via a convenience layer with a model class and wrapper functions facilitating the
handling of parameters and results (model workflow, orange). (B) Structure of the repository. In addition
to the tool collection (red frame, containing the tools() and the _tools()), pre-defined model classes,
and utility functions in the NNMT Python package, the repository also comprises documentation, usage
examples, and a test suite.� �

1 # basic workflow
2 result = nnmt.<submodule>.<_tool>(∗args, ∗∗kwargs)
3
4 # model workflow
5 my_model = nnmt.models.<model>(<network_params>, <analysis_params>)
6 result = nnmt.<submodule>.<tool>(my_model)� �

Listing 1: The two modes of using NNMT: In the basic workflow (top), quantities are calculated by
passing all required arguments directly to the underscored tool functions available in the submodules
of NNMT. In the model workflow (bottom), a model class is instantiated with parameter sets and the
model instance is passed to the non-underscored tool functions which automatically extract the relevant
parameters.

In the following, we present the design considerations that led to the structure and implementation of
NNMT as well as a representative set of use cases. Section 2 first introduces its architecture. Section 3
then explains its usage by reproducing previously published network model analyses from Sanzeni et al.
(2020), Bos et al. (2016), Schuecker et al. (2015), and Senk et al. (2020). Section 4 discusses the role of
community-wide accessible toolboxes for scientific software development in general and indicates current
limitations and prospective advancements of NNMT.

2 WORKFLOWS AND ARCHITECTURE
What are the requirements a package for collecting analytical methods for neuronal network model analysis
needs to fulfill? To begin with, it must be adaptable and modular enough to accommodate many and
diverse analytical methods while avoiding code repetition and a complex interdependency of package
components. It must enable the application of the collected algorithms to various network models in a
simple and transparent manner. It needs to make the tools easy to use for new users, while also providing
experts with direct access to all parameters and options. Finally, the methods need to be thoroughly tested
and well documented.
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These are the main considerations that guided the development of NNMT. Figure 1A illustrates that the
toolbox can be used in to two different workflows depending on the preferences and goals of the user. In
the basic workflow the individual method implementations called tools are directly accessed, whereas the
model workflow provides additional functionality for the handling of parameters and results.

2.1 Basic Workflow
The core of NNMT is a collection of low-level functions that take specific parameters (or pre-computed

results) as input arguments and return analytical results of network properties. In Figure 1A, we refer
to such basic functions as _tools(), beginning with an underscore. We term this lightweight approach
of directly using these functions the basic workflow. The top part of Listing 1 demonstrates this usage;
for example, the quantity to be computed could be the mean firing rate of a neuronal population and
the arguments could be parameters which define neuron model and external drive. While the basic
workflow gives full flexibility and direct access to every parameter of the calculation, it remains the user’s
responsibility to insert the arguments correctly, e.g., in the right units.

2.2 Model Workflow
The model workflow adds a convenience layer on top of the basic workflow (Figure 1A). A model in

this context is an object that stores a larger set of parameters and can be passed directly to a tool(),
the non-underscored wrapper of the respective _tool(). The tool() automatically extracts the relevant
parameters from the model, passes them as arguments to the corresponding core function _tool(), returns
the results, and stores them in the model. The bottom part of Listing 1 shows how a model is initialized
with parameters and then passed to a tool() function.

Models are implemented as Python classes and can be found in the submodule nnmt.models. We
provide the class nnmt.models.Network as a parent class and a few example child classes which inherit
the generic methods and properties but are tailored to specific network models; custom models can be
added straightforwardly. The parameters distinguish network parameters, which define neuron models
and network connectivity, and analysis parameters; an example for an analysis parameter is a frequency
range over which a function is evaluated. Upon model instantiation, parameter sets defining values and
corresponding units are passed as Python dictionaries or yaml files. The model constructor takes care of
reading in these parameters, deriving dependent parameters, and converting all units to SI units for internal
computations. Consequently, the parameters passed as arguments and the functions for deriving dependent
parameters of a specific child class need to be aligned. This design encourages a clear separation between a
concise set of base parameters and functionality that transforms these parameters to the generic (vectorized)
format that the tools work with. To illustrate this, consider the weight matrix of a network of excitatory and
inhibitory neuron populations in which all excitatory connections have the same weight and all inhibitory
ones another weight. As argument one could pass just a tuple of these two different weight values and the
corresponding model class would take care of constructing the full weight matrix.

When a tool() is called, the function will check whether all required parameters are available in the
passed model object. If not, an error is raised, pointing the user towards the missing parameters. If the
property to be computed is based on the computation of another property that has yet to be calculated, the
tool() will also raise an error, informing the user of which other properties must be calculated first. This
way, the user is guided towards the desired result. When all required parameters and results are available,
the tool() extracts the required arguments, calls the respective _tool(), caches the result and its units
into the network model’s result dictionaries, and returns the result. If the user attempts to compute the same
property twice, using identical parameters, the tool() will retrieve the already computed result from the
cache and return that value. Results can be exported to an HDF5 file and also loaded.
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Using the model workflow instead of the basic workflow comes with the initial overhead of choosing a
suitable combination of parameters and a model class, but has the advantages of a higher level of automation
with built-in mechanisms for checking correctness of input (e.g., regarding units), reduced redundancy, and
the options to store and load results. Both modes of using the toolbox can also be combined.

2.3 Structure of the Toolbox
The structure of the NNMT repository is depicted in Figure 1B. The Python package nnmt is sub-

divided into submodules containing the model classes (nnmt.models), helper routines (at present
nnmt.input_output and nnmt.utils), and the tools. The tools are organized in a modular, extensi-
ble fashion with a streamlined hierarchy. To give an example, a large part of the currently implemented
tools apply to networks of leaky integrate-and-fire (LIF) neurons and they are located in the submodule
nnmt.lif. The mean-field theory for networks of LIF neurons distinguishes between neurons with instan-
taneous synapses, also called delta synapses, and those with exponentially decaying post-synaptic currents.
Similarly, the submodule for LIF neurons is split further into the two submodules nnmt.lif.delta and
nnmt.lif.exp. NNMT also collects different implementations for computing the same quantity using
different approximations or numerics, allowing for a comparison of different approaches.

Apart from the core package, NNMT comes with an extensive online documentation3, including a
quickstart tutorial, all examples presented in this paper, a complete documentation of all tools, as well as a
guide for contributors.

Furthermore, we provide an extensive test suite that validates the tools by checking them against
previously published results and alternative implementations where possible. This ensures that future
improvements of the numerics do not break the tools.

3 HOW TO USE THE TOOLBOX
In this section, we demonstrate the practical use of NNMT by replicating a variety of previously published
results. The examples presented have been chosen to cover a broad range of common use cases and network
models. We include analyses of both stationary and dynamic network features, as mean-field theory is
typically divided into two parts: stationary theory, which describes time-independent network properties of
systems in a stationary state, and dynamical theory, which describes time-dependent network properties.
Additionally, we show how to use the toolbox to map a spiking to a simpler rate model, as well as how to
perform a linear stability analysis.

3.1 Installation and Setup
The toolbox can be either installed using pip� �

1 pip install nnmt� �
or by installing it directly from the repository, which is described in detail in the online documentation.
After the installation, the module can be imported:� �

1 import nnmt� �
3 https://nnmt.readthedocs.io/
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Figure 2. Response nonlinearities in EI-networks. (A) Network diagram with nodes and edges according
to the graphical notation proposed by Senk et al. (2021). (B–F) Firing rate of excitatory (blue) and
inhibitory (red) population for varying external input rate νX . Specific choices for synaptic weights (J ,
Jext) and in-degrees (K, Kext) lead to five types of nonlinearities: (B) saturation-driven nonlinearity,
(C) saturation-driven multi-solution, (D) response-onset supersaturation, (E) mean-driven multi-solution,
and (F) noise-driven multi-solution. See Figure 8 in (Sanzeni et al., 2020) for parameters.

3.2 Stationary Quantities
3.2.1 Response Nonlinearities

Networks of excitatory and inhibitory neurons (Figure 2A) are widely used in computational neuroscience
(Gerstner et al., 2014), e.g., to show analytically that a balanced state featuring asynchronous, irregular
activity emerges dynamically in a broad region of the parameter space (Brunel, 2000). How do these
networks respond to external input? Sanzeni et al. (2020) uncover five different types of nonlinearities
in the network response depending on the network parameters. Here, we show how to use the toolbox to
reproduce their result (Figure 2B–F).

The network consists of two populations of identical LIF neurons with instantaneous (delta) synapses.
The synaptic weights and mean in-degrees of recurrent and external connections are population-specific:

J =

(
JEE −JEI
JIE −JII

)
, Jext =

(
JEX
JIX

)
, K =

(
KEE KEI

KIE KII

)
, andKext =

(
KEX

KIX

)
. (1)

All weights are positive, implying an excitatory external input. Approximating the input to a neuron as
Gaussian white noise ξ(t) with mean 〈ξ(t)〉 = µ and noise intensity 〈ξ(t)ξ(t′)〉 = τmσ

2δ(t− t′), its firing
rate is given by (Siegert, 1951; Amit and Brunel, 1997b)

φ(µ, σ) =

(
τr + τm

√
π

∫ Ṽth(µ,σ)

Ṽ0(µ,σ)
es

2

(1 + erf(s))ds

)−1
, (2)
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where τm denotes the membrane time constant, τr the refractory period, and the rescaled reset- and
threshold-voltages are

Ṽ0(µ, σ) =
V0 − µ
σ

, Ṽth(µ, σ) =
Vth − µ

σ
. (3)

The first term in Eq. (2) is the refractory period and the second term is the mean first-passage
time of the membrane voltage from reset to threshold. The mean and the noise intensity of the
input to a neuron in a population A, which control the mean first-passage time through Eq. (3),
are determined by (Amit and Brunel, 1997b)

µA = τm(JAEKAEνE − JAIKAIνI + JAXKAXνX) , (4)

σ2A = τm(J2
AEKAEνE + J2

AIKAIνI + J2
AXKAXνX) , (5)

respectively, where each term reflects the contribution of one population, with the corresponding firing
rates of the excitatory νE, inhibitory νI, and external population νX. Note that the excitatory and inhibitory
inputs counteract each other in µA, Eq. (4), while their contributions add up in σA, Eq. (5). Both µA and
σA depend on the firing rate of the neurons νA, which is in turn given by Eq. (2). Thus, one arrives at the
self-consistency problem

νA = φ(µA, σA) , (6)

which is coupled across the populations due to Eq. (4) and Eq. (5).

Our toolbox provides two algorithms to solve Eq. (6): 1) Integrating the auxiliary ordinary differential
equation (ODE) ν̇A = −νA + φ(µA, σA) with initial values νA(0) = νA,0 until it reaches a fixed point
ν̇A = 0, where Eq. (6) holds by construction. 2) Minimizing the quadratic deviation

∑
A [νA − φ(µA, σA)]2,

using least squares (LSTSQ) starting from an initial guess νA,0. The ODE method is robust to changes
in the initial values and hence a good first choice. However, it cannot find self-consistent solutions that
correspond to an unstable fixed point of the auxiliary ODE. To this end, the LSTSQ method can be used. Its
drawback is that it needs a good initial guess, because otherwise the found minimum might be a local one
where the quadratic deviation does not vanish and which does not correspond to a self-consistent solution.
A prerequisite for both methods is a numerical solution of the integral in Eq. (2); this is discussed in the
Appendix, Section 5.1.

The solutions of the self-consistency problem Eq. (6) for varying νX and fixed J , Jext, K, and Kext

reveal the five types of response nonlinearities (Figure 2). Different response nonlinearities arise through
specific choices of synaptic weights, J and Jext, and in-degrees,K andKext, which suggests that already
a simple EI-network possesses a rich capacity for nonlinear computations. Whenever possible, we use
the ODE method and resort to the LSTSQ method only if the self-consistent solution corresponds to an
unstable fixed point of the auxiliary ODE. Combining both methods, we can reproduce the first columns
of Figure 8 in Sanzeni et al. (2020), where all five types of nonlinearities are presented. Curiously, some
of the solutions corresponding to an unstable fixed point are nonetheless found in network simulations
according to other panels of Figure 8 in Sanzeni et al. (2020) which we do not reproduce here.

In Listing 2, we show a minimal example to produce the data shown in Figure 2B. After importing
the function that solves the self-consistency Eq. (6), we collect the neuron and network parameters in a
dictionary. Then, we loop through different values for the external rate νX and determine the network
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� �
1 import numpy as np
2 from nnmt.lif.delta import _firing_rates
3
4 params = dict(
5 # membrane and refractory time constants (in s)
6 tau_m=20.∗1e-3, tau_r=2.∗1e-3,
7 # relative reset and threshold potentials (in V)
8 V_0_rel=10.∗1e-3, V_th_rel=20.∗1e-3,
9 # recurrent and external weights (in V)

10 J=np.array([[0.2, -1.6], [0.2, -1.4]])∗1e-3,
11 J_ext=np.array([0.2, 0.2])∗1e-3,
12 # recurrent and external in-degrees
13 K=np.array([[400, 100], [400, 100]]),
14 K_ext=np.array([1600, 800]))
15
16 # determine self-consistent rates (in 1/s)
17 nu_ext = np.linspace(1, 100, 50) # external rates (in 1/s)
18 nu_E, nu_I = np.zeros_like(nu_ext), np.zeros_like(nu_ext)
19 for i, nu_X in enumerate(nu_ext):
20 nu_E[i], nu_I[i] = _firing_rates(nu_ext=nu_X, nu_0=(0, 0),
21 fixpoint_method='ODE', ∗∗params)� �

Listing 2: Example script to produce the data shown in Figure 2B using the ODE method (initial value
νA,0 = 0 for population A ∈ {E, I}).

rates using the ODE method, which is sufficient in this example. In Listing 2 and to produce Figure 2, we
use the basic workflow because only one isolated tool of NNMT (nnmt.lif.delta._firing_rates()) is
employed, which requires only a few parameters defining the simple EI-network.

3.2.2 Firing Rates of Microcircuit Model
Here we show how to use the model workflow to calculate the firing rates of the cortical microcircuit

model by Potjans and Diesmann (2014). The circuit is a simplified point neuron network model with
biologically plausible parameters which has been recently used in a number of other works, for example to
study network properties, to assess the performance of different simulators, and to extend it to large-scale
models (e.g., Wagatsuma et al., 2011; Bos et al., 2016; Hagen et al., 2016; Schmidt et al., 2018; van Albada
et al., 2018; Knight and Nowotny, 2018; Golosio et al., 2021; Dasbach et al., 2021). The model consists
of eight populations of LIF neurons, corresponding to the excitatory and inhibitory populations of four
cortical layers: 2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I (see Figure 3A). It defines the number of neurons in
each population, the number of connections between the populations, the single neuron properties, and the
external input. Simulations show that the model yields realistic firing rates for the different populations
(Potjans and Diesmann, 2014).

In contrast to the EI-network model investigated in Section 3.2.1, the neurons in the microcircuit model
have exponentially shaped post-synaptic currents. Fourcaud and Brunel (2002) developed a method for
calculating the firing rate for this synapse type. They have shown that, if the synaptic time constant τs
is much smaller than the membrane time constant τm, the firing rate for LIF neurons with exponential
synapses can be calculated using Eq. (2) with shifted integration boundaries

Ṽcn,0(µ, σ) = Ṽ0(µ, σ) +
α

2

√
τs
τm

, Ṽcn,th(µ, σ) = Ṽth(µ, σ) +
α

2

√
τs
τm

, (7)
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Figure 3. Cortical microcircuit model by Potjans and Diesmann (2014). (A) Network diagram (only the
strongest connections are shown as in Figure 1 of the original publication). Same notation as in Figure 2A.
(B) Simulation and mean-field estimate for average population firing rates using the parameters from Bos
et al. (2016).

with the rescaled reset- and threshold-voltages from Eq. (3) and α =
√

2 |ζ(1/2)|, where ζ(x) denotes the
Riemann zeta function; the subscript cn stands for “colored noise”.

The microcircuit has been implemented as an NNMT model (nnmt.models.Microcircuit). We here
use the parameters of the circuit as published in Bos et al. (2016) which is slightly differently parameterized
than the original model (see Appendix, Table 1). The model parameter values and units are defined using a
yaml file, which uses a dictionary style syntax with key:value pairs:� �

1 # membrane time constant
2 tau_m:
3 val: 10.0
4 unit: ms
5
6 # neuron numbers
7 N:
8 - 20683
9 - 5834

10 - 21915� �
10
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Once the parameters are defined, a microcircuit model is instantiated by passing the respective parameter
file to the model constructor; the units are automatically converted to SI units. Then the firing rates are
computed. For comparison, we finally load the simulated rates from Bos et al. (2016):� �

1 # create the network model using a network parameter yaml file
2 microcircuit = nnmt.models.Microcircuit('network_params_microcircuit.yaml')
3 # calculate firing rates
4 firing_rates = nnmt.lif.exp.firing_rates(microcircuit)
5 # load simulated results
6 simulated_firing_rates = \
7 nnmt.input_output.load_h5('Bos2016_rates.h5')['rates']� �

The simulated rates have been obtained by a numerical network simulation in which the neuron populations
are connected according to the model’s original connectivity rule: random, fixed total number with
multapses (autapses prohibited), see Senk et al. (2021). For simplicity, the theoretical predictions assume a
connectivity with a fixed in-degree for each neuron. Dasbach et al. (2021) show that simulated spike activity
data of networks with these two different connectivity rules are characterized by differently shaped rate
distributions (“reference” in their Figures 3d and 4d). In addition, the weights in the simulation are normally
distributed while the theory replaces each distribution by its mean; this corresponds to the case Nbins = 1
in Dasbach et al. (2021). Nevertheless, our mean-field theoretical estimate of the average population firing
rates is in good agreement with the simulated rates (Figure 3B).

3.3 Dynamical Quantities
3.3.1 Transfer Function

One of the most important dynamical properties of a neuronal network is how it reacts to external input. A
systematic way to study the network response is to apply an oscillatory external input with fixed frequency
ω, phase, and amplitude and observe the emerging frequency, phase, and amplitude of the output. If the
amplitude of the external input is small compared to the stationary input, the network responds in a linear
fashion: it only modifies phase and amplitude, while the output frequency equals the input frequency. This
relationship is captured by the input-output transfer function N (ω) (Brunel et al., 2001; Brunel and Hakim,
1999; Lindner and Schimansky-Geier, 2001) which describes the frequency-dependent modulation of the
output firing rate

ν(t) = ν +N (ω) δµ eiωt ,

where δµ is the amplitude of the modulation to the input in units of Volt. The transfer function N (ω)
is a complex function: Its absolute value describes the relative modulation of the firing rate. Its phase
describes the phase shift that occurs between input and output. Since response properties are dominated by
the modulation to the mean input, we here disregard a modulation of the noise intensity and denote the
transfer function for a network of LIF neurons with instantaneous synapses as

N (ω) =

√
2ν

σ

1

1 + iωτm

Φ′ω|
√
2Ṽth√
2Ṽ0

Φω|
√
2Ṽth√
2Ṽ0

, (8)

with the rescaled reset- and threshold-voltages Ṽ0 and Ṽ th as defined in Eq. (3) and

Φω(x) = e
x2

4 U
(
iωτm − 1

2 , x
)

using the parabolic cylinder functions U
(
iωτm − 1

2 , x
)

as defined in
(Abramowitz and Stegun, 1974, Section 19.3) and (Olver et al., 2021, Section 12.2). Φ′ω and Φ′′ω denote
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the first and second derivative by x, respectively. The transfer function given in Schuecker et al. (2015,
Eq. 29) relates to our expression in Eq. (8) as follows: Our N (ω) δµ is equal to their nG (ω) ν implying
that our δµ corresponds to their εµ; we assume their nH (ω) = 0. Besides, we swap the voltage boundaries
both in numerator and denominator which cancels out.

For a neuronal network of LIF neurons with exponentially shaped post-synaptic currents, Schuecker et al.
(2014, 2015) show that an analytical approximation of the colored-noise transfer function can be obtained
by a shift of integration boundaries akin to Eq. (7):

Ncn (ω) =

√
2ν

σ

1

1 + iωτm

Φ′ω|
√
2Ṽcn,th√
2Ṽcn,0

Φω|
√
2Ṽcn,th√
2Ṽcn,0

. (9)

To take into account that, in neuronal networks, the current in Ampere is perturbed by the synaptic input,
we include an additional low-pass filtering with the synaptic time constant into the definition:

Ncn,s (ω) = Ncn (ω)
1

1 + iωτs
. (10)

If the synaptic time constant is much smaller than the membrane time constant (τs � τm), an equivalent
expression for the transfer function is obtained by a Taylor expansion around the original boundaries (cf.
Schuecker et al. 2015, Eq. 30). The toolbox implements both variants and offers choosing between them by
setting the argument method of nnmt.lif.exp.transfer_function to either shift or taylor.

Here, we demonstrate how to calculate the analytical “shift version” of the transfer function for different
means and noise intensities of the input current (see Figure 4) and thereby reproduce Figure 4 in Schuecker
et al. (2015).

The crucial parts for producing Figure 4 using NNMT are shown in Listing 3 for one exam-
ple combination of mean and noise intensity of the input current. Instead of using the model
workflow with nnmt.lif.exp.transfer_function, we here employ the basic workflow, using
nnmt.lif.exp._transfer_function_shift directly. This allows changing the mean input and its noise
intensity independently of a network model’s structure, but requires two additional steps: First, the nec-
essary parameters are loaded from a yaml file, converted to SI units and then stripped off the units using
the utility function nnmt.utils._convert_to_si_and_strip_units. Second, the analysis frequencies
are defined manually. In this example we choose logarithmically spaced frequencies, as we want to plot
the results on a log-scale. Finally, the complex-valued transfer function is calculated and then split into its
absolute value and phase. Figure 4 shows that the transfer function acts as a low-pass filter that suppresses
the amplitude of high frequency activity, introduces a phase lag, and can lead to resonance phenomena for
certain configurations of mean input current and noise intensity.

The replication of the results from Schuecker et al. (2015) outlined here is also used in the integration tests
of toolbox. Note that the implemented analytical form of the transfer function by Schuecker et al. (2015)
is an approximation and deviations from a simulated ground truth are expected for higher frequencies
(ω/2π ? 100 Hz at the given parameters).
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� �
1 # load parameters in custom units
2 params = nnmt.input_output.load_val_unit_dict_from_yaml(
3 'Schuecker2015_parameters.yaml')
4
5 # convert parameters to SI units
6 nnmt.utils._convert_to_si_and_strip_units(params)
7
8 # define the analysis frequencies
9 frequencies = np.logspace(

10 params['f_start_exponent'],
11 params['f_end_exponent'],
12 params['n_freqs'])
13 # add the zero frequency
14 frequencies = np.insert(frequencies, 0, 0.0)
15 omegas = 2 ∗ np.pi ∗ frequencies
16
17 # extract necessary parameters from params dictionary
18 mean_input = params['mean_input']
19 ... # here we leave out similar statements
20
21 # calculate the transfer function using parameters in SI units
22 transfer_function = nnmt.lif.exp._transfer_function_shift(
23 mu, sigma,
24 tau_m, tau_s, tau_r,
25 V_th_rel, V_0_rel,
26 omegas,
27 synaptic_filter=False)
28
29 # calculate properties plotted in Schuecker et al. (2015)
30 absolute_value = np.abs(transfer_function)
31 phase = np.angle(transfer_function) / 2 / np.pi ∗ 360� �

Listing 3: Example script for computing a transfer function shown in Figure 4 using the method of
shifted integration boundaries.

3.3.2 Power Spectrum
Another dynamical property that is studied frequently is the power spectrum, which describes how the

power of a signal is distributed across its different frequency components. This property for example
reveals oscillations of the population activity. The power can be read off the diagonal entries of the cross-
correlations between population activities in the Fourier domain. The cross-correlations are determined by
the network architecture, the stationary firing rates, and the network’s transfer function. The mean-field
approximation of the power spectrum is obtained by studying the linear response of the network activity to
the fluctuations caused by its spiking activity (Bos et al., 2016). The resulting analytical expression for the
power spectra at a given angular frequency ω is

C(ω) =
(
1−M̃d(ω)

)−1
diag (ν � n)

(
1−M̃d(−ω)

)−T
, (11)

with � denoting the elementwise (Hadamard) division, the effective connectivity matrix M̃d(ω) =
τmJK

[
Ncn,s(ω)T �D(ω)

]
, where� denotes the elementwise (Hadamard) product, the mean population

firing rates ν, and the numbers of neurons in each population n. This effective connectivity combines the
static, anatomical connectivity JK, represented by synaptic weight matrix J and in-degree matrixK, and
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Figure 4. Colored-noise transfer function Ncn of LIF model in different regimes. (A) Absolute value and
(B) phase of the “shift” version of the transfer function as a function of the log-scaled frequency. Neuron
parameters are set to V th = 20 mV, V0 = 15 mv, τm = 20 ms, and τs = 0.5 ms. For given noise intensities
of input current, σ = 4 mV (solid line) and σ = 1.5 mV (dashed line), the mean input µ is chosen such
that firing rates ν = 10 Hz (black) and ν = 30 Hz (gray) are obtained.

dynamical quantities, represented by the transfer functionsNcn,s (ω) (Eq. (10)) and the delay distributions
D(ω), both in Fourier domain.

The modular structure in combination with the model workflow of this toolbox permits a step-by-step
calculation of the power spectra, as shown in Listing 4. The inherent structure of the theory is emphasized
in these steps: After instantiating the network model class with given network parameters, the working
point can be calculated, which includes calculating the population firing rates and the input statistics. This
is necessary for determining the transfer functions. The calculation of the delay distribution matrix is
then required for calculating the effective connectivity and to finally get an estimate of the power spectra.
Figure 5 reproduces Figure 1E in Bos et al. (2016) and shows the spectra for each population of the
adjusted version (see Table 1) of the microcircuit model.

The numerical predictions obtained from the toolbox coincide with simulated data taken from the original
publication (Bos et al., 2016) and reveal dominant oscillations of the population activities in the low-γ
range around 64 Hz. Furthermore, faster oscillations with peak power around 300 Hz are predicted with
higher magnitudes in the inhibitory populations 4I, 5I, and 6I.

3.3.3 Sensitivity Measure
The power spectra shown in the previous section exhibit prominent peaks at certain frequencies, which

indicate oscillatory activity. Naturally, this begs the question: which mechanism causes these oscillations?
Bos et al. (2016) expose the crucial role that the microcircuit’s connectivity plays in shaping the power
spectra of this network model. They have developed a method called sensitivity measure to directly relate
the influence of the anatomical connections, especially the in-degree matrix, on the power spectra.

The power spectrum of the i-th population Cii(ω) receives a contribution from each eigenvalue λj of
the effective connectivity matrix, Cii(ω) ∝ 1/ (1− λj(ω))2. Such a contribution consequently diverges
as the complex-valued λj approaches 1 + 0i in the complex plane, which is referred to as the point of
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� �
1 # create network model microcircuit
2 microcircuit = nnmt.models.Microcircuit(
3 network_params='Bos2016_network_params.yaml',
4 analysis_params='Bos2016_analysis_params.yaml')
5
6 # calculate working point for exponentially shaped post-synaptic currents
7 nnmt.lif.exp.working_point(microcircuit, method='taylor')
8 # calculate the transfer function
9 nnmt.lif.exp.transfer_function(microcircuit, method='taylor')

10 # calculate the delay distribution matrix
11 nnmt.network_properties.delay_dist_matrix(microcircuit)
12 # calculate the effective connectivity matrix
13 nnmt.lif.exp.effective_connectivity(microcircuit)
14 # calculate the power spectra
15 power_spectra = nnmt.lif.exp.power_spectra(microcircuit).� �

Listing 4: Example script to produce the data shown in Figure 5.
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Figure 5. Power spectra of the population spiking activity in the adapted cortical microcircuit from Bos
et al. (2016). The spiking activity of each population in a 10 s simulation of the model is binned with 1 ms
resolution and the power spectrum of the resulting histogram is calculated by a fast Fourier transform
(FFT; light gray curves). In addition, the simulation is split into 500 ms windows, the power spectrum
calculated for each window and averaged across windows (gray curves). Black curves correspond to
analytical prediction obtained with NNMT as described in Listing 4.

instability. This relation can be derived by replacing the effective connectivity matrix M̃d(ω) in Eq. (11)
by its eigendecomposition. The sensitivity measure leverages this relationship and evaluates how a change
in the in-degree matrix affects the eigenvalues of the effective connectivity and thus indirectly the power
spectrum. Bos et al. (2016) introduce a small perturbation αkl of the in-degree matrix, which allows
writing the effective connectivity matrix as M̂ij(ω) =

(
1 + αklδkiδlj

)
M̃ ij(ω), where we dropped the
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delay subscript d. The sensitivity measure Zj,kl(ω) describes how the j-th eigenvalue of the effective
connectivity matrix varies when the kl-th element of the in-degree matrix is changed

Zj,kl(ω) =
∂λj(ω)

∂αkl

∣∣∣∣
αkl=0

=
vj,kM̃kluj,l

vT
j · uj

, (12)

where vT
j and uj are the left and right eigenvectors of M̃ corresponding to eigenvalue λj(ω).

The complex sensitivity measure can be understood in terms of two components: Zamp
j is the projection

of the matrix Zj onto the direction in the complex plane defined by 1 − λj(ω); it describes how, when
the in-degree matrix is perturbed, the complex-valued λj(ω) moves towards or away from the instability
1 + 0i, and consequently how the amplitude of the power spectrum at frequency ω increases or decreases.
Zfreq
j is the projection onto the perpendicular direction and thus describes how the peak frequency of the

power spectrum changes with the perturbation of the in-degree matrix.

The toolbox makes this intricate measure accessible by supplying two tools: After computing the required
working point, transfer function, and delay distribution, the tool nnmt.lif.exp.sensitivity_measure
computes the sensitivity measure at a given frequency for one specific eigenvalue. By default, this is the
eigenvalue which is closest to the instability 1 + 0i. To perform the computation, we just need to add one
line to Listing 4:� �

1 sensitivity_dict = nnmt.lif.exp.sensitivity_measure(microcircuit, frequency)� �
The result is returned in form of a dictionary that contains the sensitivity measure and its projections. The
tool nnmt.lif.exp.sensitivity_measure_per_eigenmode wraps that basic function and calculates the
sensitivity measure for all eigenvalues at the frequency for which each eigenvalue is closest to instability.

According to the original publication (Bos et al., 2016), the peak around 300 Hz has contributions from
four different eigenvalues of the effective connectivity matrix. Figure 6 shows the projections of the
sensitivity measure at the frequency for which the corresponding eigenvalues are closest to the instability,
as in Figure 4 of Bos et al. (2016). The sensitivity measure returns one value for each connection between
populations in the network model. For Zamp

j a negative value indicates that increasing the in-degrees of
a specific connection causes the amplitude of the power spectrum at the evaluated frequency to drop. If
the value is positive, the amplitude is predicted to grow as the in-degrees increase. Similarly, for positive
Zfreq
j the frequency of the peak in the power spectrum shifts towards higher values as in-degrees increase,

and vice versa. The main finding in this analysis is that the high-γ peak seems to be affected by inhibitory
self-connections of each population.

To decrease the high-γ peak in the power spectrum, one could therefore increase the 4I to 4I connections
(cp. panel (A) in Figure 6)� �

1 K_new = microcircuit.network_params['K'].copy()
2 K_new[3,3] = 1000.0 # originally 953
3 microcircuit_new = microcircuit.change_parameters({'K': K_new})� �

and calculate the power spectrum as in Listing 4 again to validate the change.
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Figure 6. Sensitivity measure of four eigenmodes of the effective connectivity relevant for high-γ os-
cillations. The sensitivity measure for each mode is evaluated at the frequency where the corresponding
eigenvalue is closest to the point of instability 1 + 0i in complex plane. Zamp

j (ω) visualizes the influence

of a perturbation of a connection on the peak amplitude of the power spectrum. Zfreq
j (ω) shows the impact

on the peak frequency. Non-existent connections are masked white.

3.4 Fitting Spiking to Rate Model and Predicting Pattern Formation
If the neurons of a network are spatially organized and connected according to a distance-dependent

profile, the spiking activity may exhibit pattern formation in space and time, including wave-like phenomena.
Senk et al. (2020) set out to scrutinize the non-trivial relationship between the parameters of such a
network model and the emerging activity patterns. The model they use is a two-population network of
excitatory E and inhibitory I spiking neurons, illustrated in Figure 7. All neurons are of type LIF with
exponentially shaped post-synaptic currents. The neuron populations are recurrently connected to each
other and themselves and they receive additional external excitatory Eext and inhibitory Iext Poisson spike
input of adjustable rate as shown in Figure 7A. The spatial arrangement of neurons on a ring is illustrated
in Figure 7B and the boxcar-shaped connectivity profiles in Figure 7C.

In the following, we consider a mean-field approximation of the spiking model with spatial averaging,
that is a time and space continuous approximation of the discrete model as derived in Senk et al. (2020,
E. Linearization of spiking network model). We demonstrate three methods used in the original study:
First, Section 3.4.1 explains how a model can be brought to a defined state characterized by its working
point. The working point is given by the mean µ and noise intensity σ of the input to a neuron, which are
both quantities derived from network parameters and require the calculation of the firing rates. With the
spiking model in that defined state, Section 3.4.2 then maps its transfer function to the one of a rate model.
Section 3.4.3 finally shows that this working-point dependent rate model allows for an analytical linear
stability analysis of the network accounting for its spatial structure. This analysis can reveal transitions to
spatial and temporal oscillatory states which, when mapped back to the parameters of the spiking model,
may manifest in distinct patterns of simulated spiking activity.
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Figure 7. Illustrations of spiking network model by Senk et al. (2020). (A) Excitatory and inhibitory
neuronal populations randomly connected with fixed in-degree and multapses allowed (autapses prohibited).
External excitatory and inhibitory Poisson drive to all neurons. Same notation as in Figure 2A. (B) One
inhibitory and three excitatory neurons per grid position on a one-dimensional domain with periodic
boundary conditions (ring network). (C) Normalized, boxcar-shaped connection probability with wider
excitation than inhibition. For model details and parameters, see Tables II–IV of Senk et al. (2020); the
specific values given in the caption of their Figure 6 are used throughout here.

3.4.1 Setting the working point by changing network parameters
With network and analysis parameters predefined in yaml files, we set up a network model using the

example model class Basic:� �
1 space_model = nnmt.model.Basic(
2 network_params='Senk2020_network_params.yaml',
3 analysis_params='Senk2020_analysis_params.yaml')� �

Upon initialization the given parameters are automatically converted into the format used by NNMT’s tools.
For instance, relative spike reset and threshold potentials are derived from the absolute values, connection
strengths in units of volt are computed from the post-synaptic current amplitudes in ampere, and all values
are scaled to SI units.

We aim to bring the network to a defined state by fixing the working point but also want to explore if the
procedure of fitting the transfer function still works for different network states. For a parameter space
exploration, we use a method to change parameters provided by the model class and scan through a number
of different working points of the network. To obtain the required input for a target working point, we
adjust the external excitatory and inhibitory firing rates accordingly; NNMT uses a vectorized version of
the equations given in Senk et al. (2020, Appendix F) to calculate the external rates needed:� �

1 mu = 10. ∗ 1e-3; sigma = 10. ∗ 1e-3 # relative to spike threshold (in V)
2 nu_ext = nnmt.lif.exp.external_rates_for_fixed_input(
3 network, mu_set=mu, sigma_set=sigma)
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Figure 8. Network parameters and mean-field results from scanning through different working points.
Working point (µ, σ) combines mean input µ and noise intensity of input σ. (A) External excitatory νext, E
and inhibitory νext, I Poisson rates required to set (µ, σ) and resulting firing rates ν. (B) Transfer function
Ncn,s of spiking model and fitted rate-model approximation with low-pass filter for selected (µ, σ) (top:
amplitude, bottom: phase). (C) Fit results (time constants τ and excitatory weights wE) and fit errors η. The
inhibitory weights are wI = −gwE with g = 5. Star marker in panels (A) and (C) denotes target working
point (10, 10) mV. Similar displays as in Senk et al. (2020, Figure 5).

4 space_model = space_model.change_parameters(
5 changed_network_params={'nu_ext': nu_ext})� �

The resulting external rates for different choices of (µ, σ) are color-coded in the first two plots of Figure 8A.
The third plot shows the corresponding firing rates of the neurons, which are stored in the results of the
model instance when computing the working point explicitly:� �

1 nnmt.lif.exp.working_point(network)� �
3.4.2 Parameter mapping by fitting the transfer function

We map the parameters of the spiking model to a corresponding rate model by, first, computing the
transfer function Ncn,s given in Eq. (10) of the spiking model, and second, performing a least-squares
fit to the simpler transfer function of the rate model, for details see Senk et al. (2020, F Comparison of
neural-field and spiking models). The dynamics of the rate model can be written as a convolution equation
with the temporal kernel Θ (t) ·w/τ ·exp (−t/τ) using the Heaviside function Θ; τ is the time constant and
w the unitless weight. Hence, the transfer function is just the one of a low-pass filter, NLP = w/ (1 + λτ),
where λ is the frequency in Laplace domain. The tool to fit the transfer function requires that the actual
transfer function has been computed beforehand and returns the fit for the same frequencies together with
τ , w, and the combined fit error η:
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Figure 9. Linear stability analysis of spatially structured network model. (A) Analytically exact solution
for real (top) and imaginary (bottom) part of eigenvalue λ versus wavenumber k using rate model derived
by fit of spiking model at working point (µ, σ) = (10, 10) mV. Color-coded branches of Lambert W
function; maximum real eigenvalue (star marker) on principal branch (b = 0). (B) Linear interpolation
between rate (α = 0) and spiking model (α = 1) by numerical integration of Senk et al. (2020, Eq. 30)
(solid line) and by numerically solving the characteristic equation in Senk et al. (2020, Eq. 29) (circular
markers). Star markers at same data points as in panel (A). Similar displays as in Senk et al. (2020, Figure
6).

� �
1 nnmt.lif.exp.transfer_function(space_model)
2 nnmt.lif.exp.fit_transfer_function(space_model)� �

Figure 8B illustrates the amplitude and phase of the transfer function and its fit for a few (µ, σ) combina-
tions. The plots of Figure 8C show the fitted time constants, the fitted excitatory weight, and the combined
fit error. The inhibitory weight is proportional to the excitatory one in the same way as the post-synaptic
current amplitudes.
3.4.3 Linear stability analysis of spatially structured model with delay

The rate model with fitted parameters combined with the spatial connectivity profile is considered a neural
field model, which lends itself to analytical linear stability analysis, as described in detail in Senk et al.
(2020, A. Linear stability analysis of a neural-field model). In brief, this analysis seeks for pattern-forming
instabilities or, in other words, for transitions from homogeneous steady states to oscillatory states as a
function of a bifurcation parameter, here the delay d. The complex-valued, temporal eigenvalue λ of the
linearized time-delay system is an indicator for the system’s overall stability and can serve as a predictor
for temporal oscillations, whereas the spatial oscillations are characterized by the real-valued wave number
k. Solutions that relate λ and k with the model parameters are given by a characteristic equation, which in
our case reads (Senk et al., 2020, Eq. 7):

λb(k) = −1

τ
+

1

d
Wb

(
c (k)

d

τ
e
d
τ

)
, (13)
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with the time constant of the rate model τ , the multi-valued Lambert Wb function on branch b (Corless
et al., 1996), and the effective connectivity profile c (k), which combines the weights w and the Fourier
transforms of the boxcar-shaped spatial connectivity profiles. NNMT provides an implementation to solve
this characteristic equation in its linear_stability module using the spatial module for the profile:� �

1 connectivity = W_rate ∗ nnmt.spatial._spatial_profile_boxcar(
2 k_wavenumber, space_model.network_params['width'])
3 eigenvalue = nnmt.linear_stability._solve_characteristic_equation_lambertw(
4 branch_nr, tau_rate, space_model.network_params['delay'], connectivity)� �

Figure 9A shows that the computed eigenvalues come for the given network parameters in complex
conjugate pairs. Temporal oscillations are expected to occur if the real part of the eigenvalue on the
largest branch becomes positive; the oscillation frequency can then be read off the imaginary part of that
eigenvalue. In this example, the largest eigenvalue λ∗ on the principle branch (b = 0) has a real part that is
just above zero. The respective wave number k∗ is positive, which indicates spatial oscillations as well. The
oscillations in both time and space predicted for the rate model imply that the activity of the corresponding
spiking model might exhibit wave trains, i.e., temporally and spatially periodic patterns. The predicted
propagation speed of the wave trains is given by the phase velocity Im [λ∗] /k∗.

To determine whether the results obtained with the rate model are transferable to the spiking model,
Figure 9B interpolates the analytical solutions of the rate model (α = 0) to solutions of the spiking model
(α = 1), which can only be computed numerically; for details see Senk et al. (2020, F.2 Linear interpolation
between the transfer functions). Since the eigenvalues estimated this way show only little differences
between rate and spiking model, we conclude that predictions from the rate model should hold also for the
spiking model in the parameter regime tested. Following the argument of Senk et al. (2020), the predicted
pattern formation could next be tested in a numerical simulation of the discrete spiking network model (for
such results with the parameters used here, see their Figure 10(c) for d = 1.5 ms).

4 DISCUSSION
Mean-field theory grants important insights into the dynamics of neuronal networks. However, the lack of
a publicly available numerical implementation for most methods entails a significant initial investment of
time and effort prior to any scientific investigations, thereby slowing down progress.

This paper describes the open-source toolbox NNMT that provides access to various neuronal network
model analyses based on mean-field theory. As use cases, we reproduce known results from the literature:
The non-linear relation between the firing rates and the external input of an E-I-network (Sanzeni et al.,
2020). The firing rates of a cortical microcircuit model, its response to oscillatory input, its power spectrum,
and the identification of the connections that predominantly contribute to the model’s high frequency
oscillations (Bos et al., 2016; Schuecker et al., 2015). Finally, pattern formation in a spiking network,
analyzed by mapping it to a rate model and conducting a linear stability analysis (Senk et al., 2020).

Here, we start with a general discussion on the benefits and drawbacks of collecting methods in a common
toolbox. We expand on further use cases for NNMT and also point out the inherent limitations of analytical
methods for neuronal network analysis. We conclude with suggestions on how NNMT might overcome
some of these limitations and how the toolbox may grow and develop in the future.
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4.1 Using a Toolbox vs. Writing Your Own Code
Why is there not yet a toolbox like this (of which we are aware of)? And consequently, is there actually

a need for a toolbox like this? Here, we would like to share our thoughts on these questions (see also
Riquelme and Gjorgjieva, 2021).

Without a toolbox, everybody who wants to use an analytical method for network model analysis, needs
to implement them on their own. This has an advantage: a detailed understanding of the theory behind the
method and the implementation itself. Accordingly, a scientist following this path will know exactly how
to apply the method and, most importantly, when the method cannot be applied and conversely when it
will lead to misleading or wrong results. Providing those tools in a ready-to-use fashion comes with the
danger of enticing users into applying those tools without understanding their limitations. And this might
lead them to draw false conclusions based on the results they get from using the toolbox. This can only
be avoided by making the users aware of the limitations a method comes with and providing sufficient
information in an easy-to-find and comprehensible form. Therefore, in NNMT, we try to address this issue
by raising warnings whenever the valid parameter regimes are left and referring the user to the package’s
documentation, where we try our best to make all the necessary information available. Of course, the best
protection against running into those problems in the first place is reading the documentation before using
the tools.

However, implementing everything on your own also has disadvantages: It takes time and therefore
money, which possibly is invested into the same tool over and over again by different groups around the
world; which also can be seen as a waste of resources. Often, implementing and debugging analytical tools
is not straightforward and can be a matter of several weeks. This naturally implicates a certain complexity
barrier, beyond which such tools, which might be dependent on other tools, cannot develop, as the effort of
implementing them becomes too large. In a similar vein, which kind of questions researchers pursue is
limited by and therefore depends on the tools they have at hand. The availability of sophisticated neural
network simulators for example has lead to the development of conceptually new and more complex neural
network models, precisely because their users did not have to bother about implementation details any
longer and could instead focus on actual research questions. We hope that collecting useful implementations
of analytical tools for network model analysis will have a similar effect on the development of new tools
and that it might lead to new, creative ways of applying them.

Finally, having an open-source toolbox, everybody can contribute to, has the compelling advantage of
leveraging the knowledge of a large part of the scientific community. Such a toolbox can serve as a platform
for collecting standard implementations of methods, which have been tested thoroughly and have been
validated by many users. Of course, if a toolbox does not have the functionality a user might need, it needs
some extra effort to first learn how the toolbox works and to find out where necessary changes need to be
made. But instead of coding everything from scratch, it might only be a few lines that need to be modified.
And most importantly, in the end not only the own lab but the whole community may benefit from this
extra effort.

4.2 Use Cases
In Section 3, we present concrete examples of how to apply some of the tools available. Here, we discuss

further, more general use cases for NNMT: parameter space exploration and fast prototyping, developing
an intuitive understanding of network models, extracting network mechanisms, investigating hypotheses
using limited computational resources, and hybrid approaches.
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Analytical methods have the advantage of being fast, and typically they only require a limited amount of
computational resources. All tools currently implemented in NNMT can be run on a notebook without any
problems. And the computational costs for calculating analytical estimates of dynamical network properties
like firing rates, as opposed to the costs of running simulations of a network model, are independent of
the number of neurons the network is composed of. This becomes especially relevant if one wants to do
parameter space explorations, for which many simulations have to be performed. To speed up prototyping,
a modeler can first perform a parameter scan using analytical tools from NNMT to get an estimate of the
right parameter regimes and subsequently run simulations on this restricted set of parameters to arrive at
the final model parameters.

But additionally to speeding up undirected parameter space explorations, analytical methods might guide
parameter space explorations in another way: namely, by giving some intuitive understanding of the relation
between network model parameters and network dynamics. The prime example implemented in NNMT is
the sensitivity measure presented in Section 3.3.3, which provides a “frequency-dependent connectivity
map that reveals connections crucial for the peak amplitude and frequency of the observed oscillations
[of a network model] and identifies the minimal circuit generating a given frequency” (Bos et al., 2016).
This illustrates a case in which a mean-field method can inform the modeler about the origin of a model’s
dynamics, and it identifies which model parameters need to be adjusted to modify that dynamics.

Similarly, a modeler might be interested in extracting network mechanisms, answering the question,
which features of a network cause some dynamics to happen. We have included a method for mapping
the parameters of a spiking network model to a rate network model, which is presented in Section 3.4.
Using this method, one can check whether the dynamical properties under investigation are still present in
a simulation of a simpler rate network. Consequently, one can conclude whether spiking dynamics is a
crucial component for the occurrence of the respective dynamical property, or whether it is sufficient to
study the simpler model. This way, NNMT can help identifying the essential components that lead to some
dynamical features.

Another way to take advantage of analytical tools, is to investigate hypotheses directly, employing
those methods. In Section 3.2.1 the toolbox is used to show non-trivial effects regarding the firing rates.
Users could first perform a similar analysis for their research question, using the computationally cheap
mean-field methods, thereby deepening their understanding of the problem, and then apply for compute
time on a high performance cluster afterwards to check those predictions in simulations. Thus, NNMT can
serve as an additional instrument for investigating research questions, especially for researchers who do
not have free access to a high performance computer. Of course, the limitations explained in Section 4.3
always have to be taken into account to avoid misleading conclusions.

Finally, NNMT can be used for hybrid approaches, where one quantity is extracted from simulations or
experiments, and the toolbox is then used to calculate another quantity that might not be directly accessible
otherwise. Getting access to possibly abstract, but informative measures opens up the possibility to conduct
new kinds of experiments and simulations, which investigate the behavior of such measures under possibly
complex interventions that could not be done using analytical tools alone.

4.3 Limitations
NNMT has two major limitations: restrictions of valid parameter regimes due to necessary approximations

in the analytics, and the restriction to network, neuron, and synapse models, as well as observables, for
which a mean-field theory exists.
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Analytical methods can provide good estimates of properties of a network model. But it is important
to state that those methods almost always depend on some kinds of approximations, which can only be
justified if the network under consideration fulfills certain assumptions. If those assumptions are not met,
at least approximately, one cannot assure that the corresponding analytical methods give valid results. For
example, NNMT calculates the firing rates for leaky integrate-and-fire neurons with exponential synapses
using the results from Fourcaud and Brunel (2002). This requires the neuronal populations to be large
enough, it requires them to receive a high enough number of uncorrelated inputs, such that the central limit
theorem can be applied, and the solution depends on the assumption that the synaptic time constant is small
compared to the membrane time constant. Fortunately, those assumptions are known and some of them can
be checked for. However, there are assumptions that cannot be tested, as they would necessitate a theory
going beyond the mean-field approximation, such as the network state being sufficiently uncorrelated. If a
tool from NNMT is applied outside of its valid parameter ranges, NNMT will raise a warning, informing
the user about the issue, whenever this is possible.

To better understand the sources of inaccuracies in NNMT, it is helpful to consider a comparison to
direct simulations of network models. Simulations only suffer from inaccuracies due to the numerical
implementation, which can be improved upon by using enhanced numerical schemes or simply choosing
smaller integration steps. Numerical inaccuracies occur in NNMT as well, and they can be remedied in a
similar fashion. We address this problem with an extensive test suite based on previously published results.
But often, the assumptions discussed in the previous paragraph cannot be met perfectly. For example some
analytical estimates might only be exact if the number of neurons in the network is infinite. Obviously this
cannot be achieved in a realistic network. Therefore, the approximations applied in analytical methods
can introduce a second source of inaccuracy, which originates from neglecting higher order contributions.
This kind of inaccuracy cannot be resolved by improving some hyperparameters, as it depends directly
on the choice of network parameters. This explains the discrepancy between networks model simulations
and analytical results. Nevertheless, analytical methods will lead to reliable estimates if applied within the
valid parameter regimes (for example see Figure 3B).

Finally, mean-field methods will always be restricted to network, neuron, and synapse models for
which the relation between model parameters and activity statistics can be derived. If the model under
consideration does not allow deriving such a relation, resorting to a similar model, as done in Section 3.2.2,
may be a viable solution. But if a model becomes too complex, it is usually impossible to derive any
analytical results. In such cases, one might prefer simulations (Einevoll et al., 2019). However, analytical
methods come with advantages that no other approach can offer, as we have shown in Section 4.2. In the
following section we explain how interested colleagues can support the community in fully utilizing these
advantages.

4.4 How to Contribute and Outlook
As discussed in Section 2, NNMT has been designed for modularity, flexibility, and extensibility. The

aim is to provide a platform which can fit many different mean-field methods. NNMT is an open-source
toolbox, and we would like to encourage scientists to contribute by improving existing methods and sharing
their own methods and implementations via the toolbox. This can be done via the standard pull request
workflow on GitHub. If you are interested and would like to know more about the procedure, we refer you
to the “Contributors guide” of the official documentation of NNMT4.

4 https://nnmt.readthedocs.io/
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A toolbox like NNMT always is an ongoing project, and there are various aspects that can be improved.
Here we shortly discuss three of them: parallelization, extension of valid parameter regimes, and different
neuron types and network architectures.

NNMT in its current state is partly vectorized but it currently does not include parallelized methods, e.g.,
using multiprocessing or MPI for Python (mpi4py). Vectorization relies on NumPy (Harris et al., 2020)
and SciPy (Virtanen et al., 2020) which are thread-parallel for specific backends, e.g., IntelMKL. With the
tools available in the toolbox at the moment, run-time only becomes an issue in extensive parameter scans,
for instance, when the transfer function needs to be calculated for a large range of frequencies. To further
reduce the runtime, the code could be made fully vectorized. Alternatively, parallelization of many tools in
NNMT is straightforward, as many of them include for loops over the different populations of a network
model and for loops over the different analysis frequencies.

As discussed in Section 4.3, many mean-field methods only give valid results for certain parameter
ranges. But often, there exist different approximations for the same quantity, valid in complementary
parameter regimes. A concrete example is the currently implemented version of the transfer function for
leaky integrate-and-fire neurons, based on the work of Schuecker et al. (2015), which gives a good estimate
for small synaptic time constants compared to the membrane time constant τs/τm � 1. A complementary
estimate for long synaptic time constants τm/τs � 1, which could be implemented, has been developed by
Moreno-Bote and Parga (2006). Similarly, the current implementation of the firing rates of leaky integrate-
and-fire neurons is based on the work of Fourcaud and Brunel (2002), and only valid for τs/τm � 1. But
van Vreeswijk and Farkhooi (2019) have developed a method accurate for all combinations of synaptic and
membrane time constants. Adding such complementary and improved tools will enhance the applicability
of the toolbox.

Finally, due to the research focus at our lab, NNMT presently mainly contains tools for LIF neurons.
But the structure of NNMT allows for adding methods for different neuron types, like binary (Ginzburg
and Sompolinsky, 1994) or conductance-based neurons (Izhikevich, 2007; Richardson, 2007). In a similar
manner, most methods focus on networks with random connectivity, but we already added some tools for
networks with spatially organized connectivity. We hope that in the future many scientists will contribute to
this collection of analytical methods for neuronal network model analysis, such that at some point, we will
have tools from all parts of mean-field theory of neuronal networks, made accessible in a usable format to
all neuroscientists.
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5 APPENDIX
5.1 Siegert Implementation

Here, we describe how we solve the integral in Eq. (2) numerically in a fully vectorized manner. The
difficulty in Eq. (2), φ(µ, σ) = 1/[τr + τm

√
πI(Ṽ0, Ṽth)] where Ṽ0 = Ṽ0(µ, σ) and Ṽth = Ṽth(µ, σ) are

determined by either Eq. (3) or Eq. (7), is posed by the integral

I(Ṽ0, Ṽth) =

∫ Ṽth

Ṽ0

es
2

(1 + erf(s))ds . (14)

This integral is problematic due to the multiplication of es
2

and 1 + erf(s) in the integrand which leads to
overflow and loss of significance.

To address this, we split the integral into different domains depending on the sign of the integration
variable. Furthermore, we use the scaled complementary error function

erf(s) = 1− e−s
2

erfcx(s) (15)

to extract the leading exponential contribution. Importantly, erfcx(s) decreases monotonically from
erfcx(0) = 1 with power law asymptotics erfcx(s) ∼ 1/(

√
πs), hence it does not contain any exponential

contribution. For positive s, the exponential contribution in the prefactor of erfcx(s) cancels the es
2

factor
in the integrand. For negative s, the integrand simplifies even further to es

2
(1 + erf(−s)) = erfcx(s) using

erf(−s) = −erf(s). In addition to erfcx(s), we employ the Dawson function

D(s) = e−s
2
∫ s

0
er

2

dr (16)

to solve some of the integrals analytically. The Dawson function has a power law tail, D(s) ∼ 1/(2s);
hence, it also does not carry an exponential contribution. Both erfcx(s) and the Dawson function are fully
vectorized in SciPy (Virtanen et al., 2020).

Any remaining integrals are solved using Gauss–Legendre quadrature (Press et al., 2007). By construction,
Gauss–Legendre quadrature of order k solves integrals of polynomials up to degree k on the interval [−1, 1]
exactly. Thus, it gives very good results if the integrand is well approximated by a polynomial of degree k.
The quadrature rule itself is∫ b

a
f(s)ds ≈ b− a

2

k∑
i=1

wif

(
b− a

2
ui +

b+ a

2

)
, (17)

where the ui are the roots of the Legendre polynomial of order k and the wi are appropriate weights such
that a polynomial of degree k is integrated exactly. We use a fixed order quadrature for which Eq. (17) is
straightforward to vectorize to multiple a and b. We determine the order of the quadrature iteratively by
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comparison with an adaptive quadrature rule; usually, a small order k = O(10) already yields very good
results for an erfcx(s) integrand.

Inhibitory Regime
First, we consider the case where lower and upper bound of the integral are positive, 0 < Ṽ0 < Ṽth. This

corresponds to strongly inhibitory mean input. Expressing the integrand in terms of erfcx(s) and using the
Dawson function, we get

I(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth)− 2eṼ

2
0 D(Ṽ0)−

∫ Ṽth

Ṽ0

erfcx(s)ds .

The remaining integral is evaluated using Gauss–Legendre quadrature, Eq. (17). We extract the leading
contribution eṼ

2
th from the denominator in Eq. (2) and arrive at

φ(µ, σ) =
e−Ṽ

2
th

τre
−Ṽ 2

th + τm
√
π

(
2D(Ṽth)− 2e−Ṽ

2
th+Ṽ

2
0 D(Ṽ0)− e−Ṽ

2
th
∫ Ṽth
Ṽ0

erfcx(s)ds

) . (18)

Extracting eṼ
2
th from the denominator reduces the latter to 2τm

√
πD(Ṽth) and exponentially small correction

terms (remember 0 < Ṽ0 < Ṽth because V0 < Vth), thereby preventing overflow.

Excitatory Regime
Second, we consider the case where lower and upper bound of the integral are negative, Ṽ0 < Ṽth < 0.

This corresponds to strongly excitatory mean input. In this regime, we change variables s→ −s to make
the domain of integration positive. Using erf(−s) = −erf(s) as well as erfcx(s), we get

I(Ṽ0, Ṽth) =

∫ |Ṽ0|
|Ṽth|

erfcx(s)ds .

Thus, we evaluate Eq. (2) as

φ(µ, σ) =
1

τr + τm
√
π
∫ |Ṽ0|
|Ṽth|

erfcx(s)ds
. (19)

In particular, there is no exponential contribution involved in this regime.

Intermediate Regime
Last, we consider the remaining case Ṽ0 ≤ 0 ≤ Ṽth. We split the integral at zero and use the previous

steps for the respective parts to get

I(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth) +

∫ |Ṽ0|
Ṽth

erfcx(s)ds .
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Note that the sign of the second integral depends on whether |Ṽ0| > Ṽth (+) or not (−). Again, we extract
the leading contribution eṼ

2
th from the denominator in Eq. (2) and arrive at

φ(µ, σ) =
e−Ṽ

2
th

τre
−Ṽ 2

th + τm
√
π

(
2D(Ṽth) + e−Ṽ

2
th
∫ |Ṽ0|
Ṽth

erfcx(s)ds

) . (20)

As before, extracting eṼ
2
th from the denominator prevents overflow.

Deterministic Limit
The deterministic limit σ → 0 corresponds to |Ṽ0|, |Ṽth| → ∞ for both Eq. (3) and Eq. (7). In the

inhibitory and the intermediate regime, we see immediately that φ(µ, σ → 0) → 0 due to the dominant
contribution e−Ṽ

2
th . In the excitatory regime, we use the asymptotics erfcx(s) ∼ 1/(

√
πs) to get

I(Ṽ0, Ṽth)→
∫ |Ṽ0|
|Ṽth|

1√
πs

ds =
1√
π

ln
|Ṽ0|
|Ṽth|

.

Inserting this into Eq. (2) yields

φ(µ, σ)→


1

τr+τm ln
µ−V0
µ−Vth

if µ > Vth

0 otherwise
, (21)

which is the firing rate of a leaky integrate-and-fire neuron driven by a constant input (Gerstner et al., 2014).
Thus, this implementation also tolerates the deterministic limit of a very small noise intensity σ.

5.2 Microcircuit Parameters

Symbol Value
Potjans and Diesmann (2014)

Value
Bos et al. (2016)

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated Gaussian Delay distribution

de ± δde 1.5± 0.75 ms 1.5± 1.5 ms Mean and standard deviation of
excitatory delay

di ± δdi 0.75± 0.375 ms 0.75± 0.75 ms Mean and standard deviation of
inhibitory delay

Table 1. Parameter adaptions used here are introduced by Bos et al. (2016) compared to original micro-
circuit model. Kij denotes the in-degrees from population j to population i. The delays in the simulated
networks were drawn from a truncated Gaussian distribution with the given mean and standard deviation.
The mean-field approximation of the microcircuit by Potjans and Diesmann (2014) assumes the delay to be
fixed at the mean value, which is specified in the toolbox by setting the parameter delay_dist to none.
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