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Abstract 
tRNA fragments (tRFs) are small RNAs comparable to the size and function of miRNAs. 

tRFs are generally Dicer independent, are found associated with Ago, and can repress 
expression of genes post-transcriptionally. Given that this expands the repertoire of small RNAs 
capable of post-transcriptional gene expression, it is important to predict tRF targets with 
confidence. Some attempts have been made to predict tRF targets, but are limited in the scope 
of tRF classes used in prediction or limited in feature selection. We hypothesized that 
established miRNA target prediction features applied to tRFs through a random forest machine 
learning algorithm will immensely improve tRF target prediction. Using this approach, we show 
significant improvements in tRF target prediction for all classes of tRFs and validate our 
predictions in two independent cell lines. Finally, Gene Ontology analysis suggests that among 
the tRFs conserved between mice and humans, the predicted targets are enriched significantly 
in neuronal function, and we show this specifically for tRF-3009a. These improvements to tRF 
target prediction further our understanding of tRF function broadly across species and provide 
avenues for testing novel roles for tRFs in biology. We have created a publicly available website 
for the targets of tRFs predicted by tRForest. 
 
 
Introduction 

tRNA fragments (tRFs) are a novel class of small RNAs derived from precursor tRNAs or 
mature tRNAs (1). tRFs account for nearly 25% of the small RNAs found in the cell and are the 
second most abundant class of RNAs within the small RNAome. They have been found to play 
a myriad of roles in normal biology and disease. For example, tRFs have been found to play a 
role in ribosome biogenesis, respiratory syncytial virus pathogenesis, and breast cancer 
progression (2-6). More recently, tRFs have been found to augment symbiosis between 
nitrogen-fixing bacteria and plant hosts via entry of bacterial tRFs into host Ago1 (7).  

Following the observation that many tRFs fall within the same size range as microRNAs 
(miRNAs), we have shown that tRFs can behave as bona fide miRNA (8). Until recently, tRF 
target prediction tools were limited to tools trained on miRNA. This may provide predicted 
targets that may not be as accurate as algorithms trained on tRFs. Accurate identification of tRF 
targets will improve our understanding of the role of tRFs in biology and disease. Recognizing 
this need, tRF specific target prediction tools have become available recently (9-11).  Despite 
the increase in the number of tools over the past couple of years, these tools are lacking in one 
way or another. For example, tRFtar and tRFTars do not predict targets for tRF-1s, although 
tRF-1s have been found to affect gene expression in some contexts (12). tRFtarget builds a 
target algorithm based on RNA intermolecular interactions, but excludes several features that 
may be important for tRF target prediction, such as target site conservation and AU content 
(10).  

Here we present tRForest, a tRF target prediction algorithm built using the random forest 
machine learning algorithm. This algorithm predicts targets for all tRFs, including tRF-1s and 
includes a broad range of features to fully capture tRF-mRNA interaction. Furthermore, unlike 
other available algorithms, its performance does not rely entirely on just a few features; instead, 
it uses all available features in ensemble. Finally, since we have employed a machine learning 
based approach, our predictions can be readily extended to novel tRFs in the future. We used 
Crosslinking, Ligation, and Sequencing of Hybrids (CLASH) data generated by crosslinking 
AGO1 with interacting small RNAs and their targets in HEK293 cells as our training and testing 
dataset (1,13). We rigorously validate the accuracy of tRForest on data from two human cell 
lines and show that tRForest matches or outperforms currently available tRF and miRNA target 
prediction tools. We also generated Gene Ontologies (GO) for each tRF’s predicted targets to 
aid researchers in generating hypotheses about the biological role of each tRF. Existing tRF 
target prediction tools, tRFtarget and tRFTar have GO analysis capabilities, but are limited in 
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their target prediction features and approach. In addition, our pipeline for producing GO analysis 
plots is more streamlined, and provides users with publication-ready visualization of the results. 
tRF predicted targets and GO terms are available to the research community at 
https://trforest.com/.   
 
Materials & Methods 
Data and algorithm source  
 CLASH data with tRFs and their corresponding gene targets were obtained from Kumar 
et al., which identified all of the tRF-mRNA chimeric reads available in CLASH data from Helwak 
et al. (1, 13). The tRF sequences and IDs were obtained from tRFdb 
(http://genome.bioch.virginia.edu/trfdb/) (1). Human gene and transcript sequences, as well as 
Ensembl and Refseq IDs, were retrieved from Ensembl Biomart (version GRCh37.p13, 
http://grch37.ensembl.org/biomart/) (14). TargetScan targets were retrieved from 
TargetScanHuman 7.2 (http://www.targetscan.org/vert_72/) (15). miRDB targets were retrieved 
from miRDB (http://mirdb.org/) (16). tRFTar predicted targets were obtained from tRFTar 
(http://www.rnanut.net/tRFTar/) (11). tRFTarget predicted targets were obtained from tRFTarget 
(http://trftarget.net/) (10). tRFTars predicted targets were obtained from tRFTars 
(http://trftars.cmuzhenninglab.org:3838/tar/) (9). The random forest classifier used in tRForest 
was from scikit-learn in Python (https://scikit-learn.org/) (17). RNA-seq data for target validation 
was obtained from GEO, specifically series GSE99769 (8), series GSE189510, series 
GSE93717 (18), and series GSE180331. 
 
RNA-seq library preparation and analysis of RNA-seq data 

U87 cells were cultured in MEM supplemented with 1% non-essential amino acids, 1 
mM sodium pyruvate, 0.15% sodium bicarbonate and 10% FBS. For RNA mimic transfection, 
synthetic single-stranded tRF-3009a (5’phos-rArCrCrCrCrArCrUrCrCrUrGrGrUrArCrCrA-3’OH) 
and non-targeting GL2 control (5’phos-rCrGrUrArCrGrCrGrGrArArUrArCrUrUrCrGrArUrU-3’OH) 
were transfected at 50 nM final concentration with Lipofectamine 2000 for 48 hours before RNA 
extraction by ZYMO directzol RNA miniprep kit with DNase I treatment. For mRNA-seq library 
preparation, 250 or 500 ng total RNA was poly-A selected by NEBNext Poly(A) mRNA Magnetic 
Isolation Module (NEB #E7490). Library preparation was performed using NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina (NEB #7760) according to the manufacturer's 
protocol. The resulting libraries were quality checked for concentration and size distribution 
before pooling for sequencing on Illumina HiSeq by Novogene. 

FastQC was used to perform a quality check on the raw RNA-seq data files 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Kallisto was then used to quantify 
the abundances of transcripts using the prebuilt ENSEMBL index available in the kallisto 
manual (19). DESeq2 was then utilized in R to perform differential expression analysis with an 
expression cutoff of 10 normalized counts (20). Finally, BioMart was used to convert Ensembl 
transcript IDs to gene names (14). 

 
miRNA and tRF prediction algorithms 
 TargetScan and miRDB were used to find the predicted gene targets for a given tRF or 
miRNA, such as tRF-3009a or miR-941, with the following search parameters: for TargetScan 
and miRDB, the default parameters were used, with 7mer-m8 seed pairing for TargetScan and 
the full tRF sequence for miRDB. For each algorithm, predicted targets were separated from 
non-targets. The log2 fold changes of targets and non-targets were used to generate cumulative 
distribution function (CDF) plots. This was done for available tRF prediction algorithms as well, 
such as tRFTar, tRFTarget, tRFTars, and tRForest, with the following search parameters: for 
tRFTar, 3’ UTR target element type with no restrictions on the expression levels of the tRF or 
co-expression of tRF-gene pairs; for tRFTarget, 3’ UTR binding region and default free energy 
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(≤ -10 kcal/mol) and maximum complementary length (≥ 8 nts); for tRFTars, the SVM-GA model 
with high confidence; for tRForest, targets with a prediction score of ≥ 0.8. Only 3’ UTR targets 
were compared because tRForest is only trained on and predicts targets in the 3’ UTR.  
 
Generation of negative sites 
 The CLASH data only provided positive ground-truth data to train the random forest with; 
we classified the targets found in the CLASH data as ground-truth because they were 
experimentally validated. In order for the training to be most effective, realistic negative sites 
had to be generated corresponding to each positive site. This was done similarly to TarPmiR 
(21). For each positive ground-truth tRF-mRNA duplex in the CLASH data, a set of candidate 
negative sites was first generated by running a sliding window of the same length as the binding 
region on the 3’ UTR of the mRNA upstream and downstream of the binding region. Then, the 
CG dinucleotide frequency in the binding region was identified; if the dinucleotide frequency was 
the same as the corresponding positive binding site, the frequency of the G nucleotide was then 
identified. If the frequency of the G nucleotide was also similar between the candidate negative 
site and corresponding positive site, it passed the first filter. After filtering the original list with the 
CG dinucleotide and G nucleotide frequencies, the binding energy between the tRF and each of 
the remaining candidate negative sites was calculated, and the candidate site with the lowest 
energy was selected as the negative corresponding site. These filters were used when 
generating the negative site to allow the negative site to be sufficiently similar to the positive 
site, so that the random forest would distinguish them using the calculated features, and not 
exclusively binding energy or because of the frequency of individual nucleotides (22). 
 
Feature calculation 

Thirteen features were calculated for each tRF-mRNA ground-truth duplex in the CLASH 
dataset. These included: (i) binding energy; (ii) seed match; (iii) AU content; (iv) number of 
paired positions; (v) binding region length; (vi) the length of the longest consecutive pairing; (vii) 
the position of the longest consecutive pairing; (viii) the number of 3’ end pairs; (ix) seed-3’ end 
pair difference; (x) binding region conservation with phyloP scores; (xi) flanking region 
conservation with phyloP scores; (xii) binding region conservation with phastCons scores; and 
(xiii) flanking region conservation with phastCons scores. These features were selected due to 
their experimental importance as exemplified by TargetScan, as well as their successful use in 
TarPmiR, a random forests-based target prediction algorithm for microRNA (19). In addition, we 
previously established that tRFs can downregulate mRNA targets in a miRNA-like mechanism, 
using seed sequences (23). Therefore, we used modified miRNA seed binding rules as a 
feature in tRForest. The only modification was that we allowed binding at the first nucleotide of 
the tRF. The detailed definitions and information on the calculation of each of these features is 
described in supplementary file 1.  

 
Random forest training and testing 
 Scikit-learn’s RandomForestClassifier() function was used to train and get testing 
metrics for tRForest (17). tRForest was trained in two ways to obtain metrics of its performance: 
10-fold cross validation (in which the training data was split into 10 equal blocks of data, with 9 
blocks of data being used for training and 1 block for testing, iterating until each block had been 
used as a testing set) and with a classic 67:33 train-test split. From this, the following 
performance metrics were obtained: accuracy, positive predictive value (PPV), sensitivity, F1 
scores, and a receiver operating characteristic (ROC) curve with the area under the curve 
(AUC). Hyperparameter tuning was performed for algorithm optimization. We tested several 
values for the number of trees in the random forest, the number of features to consider when 
looking for the best split, the maximum depth of the tree, the minimum number of samples 
required to split an internal node, the minimum number of samples required to be at a leaf node, 
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and whether bootstrapping was conducted. However, after varying the hyperparameters, a 
majority of them were kept at their default setting, barring two. The number of trees in the 
random forest was doubled to 200 trees, and bootstrapping was disabled.  
 
Algorithm robustness 
 Several tests were performed to test the robustness of the trained algorithm. First, the 
Pearson correlations between the features were examined for the feature profiles of tRF-3009a, 
as the random forests algorithm is most effective when its features have very low internal 
correlation (24). Pearson correlations were chosen because the correlation value represents the 
linear relationship between continuous variables. After this, the algorithm was tested with 
various subsets of features in order to determine whether the choice to classify a gene as a 
target for a particular tRF hinged on just one highly important feature or a small subset of 
important features, or whether it was using an ensemble of all of the features. This was done by 
removing each feature, one at a time, and then by removing the 7 most important and least 
important features, where the importance of the features was ranked through recursive feature 
elimination (RFE() function from Scikit-learn).  

Finally, an accuracy-efficiency analysis was performed, in which the effect of dropping 
the most time-intensive features on the performance of the algorithm was determined, in order 
to create the most efficient algorithm possible. This was done by ranking the features in order of 
time required to calculate them, removing these features one at a time from the most time-
intensive to least time-intensive, and then determining the performance metrics of the algorithm. 
Based on this analysis, secondary structure accessibility, phastCons stem conservation score, 
and phastCons flanking regions conservation score were removed (phyloP conservation scores 
were kept), resulting in a total of 11 features in the final iteration of tRForest. 
 
Algorithm validation 
 To validate the algorithm, tRForest was tested on two independent RNA-sequencing 
datasets following experimental perturbation of the abundance of the tRFs. This was done by 
creating the feature profile for the perturbed tRF, and then determining the predicted targets. 
After this, the genes from the RNA sequencing dataset were separated into targets and non-
targets, and CDF plots were generated comparing the log2 fold change of targets compared to 
non-targets to determine whether the targets were repressed when the tRF was increased. 
These CDF plots were compared to those generated from the predicted targets of tRFTar, 
tRFTarget, and tRFTars, three existing tRF prediction algorithms, as well as miRDB and 
TargetScan, two existing miRNA prediction algorithms. Effect sizes (X-axis displacement 
between the two CDF plots: Log2 fold change of targets at 0.5 fraction of genes – Log2 fold 
change of non-targets at 0.5 fraction of genes) and the two-sided p-values from a Kolmogorov-
Smirnov (KS) test were also calculated.  
 
tRF gene target database 
 After the algorithm had been validated, tRForest was used to predict gene targets for 
each of the tRFs in tRFdb across seven species, excluding the tRFs from R. sphaeroides 
because it is the only species in the database that does not undergo eukaryotic Ago-mediated 
repression (1, 25). This was done by first generating a list of all transcripts in each genome 
(human: version GRCh37.p13/hg19; mouse: mm9; D. melanogaster: dm3; C. elegans: ce6; S. 
pombe: schiPomb1; Xenopus: xenTro3; zebrafish: Zv9). For each tRF, two passes were first 
conducted: a seed match pass and a binding energy pass. In miRNA, the first nucleotide is 
generally unavailable for binding due to the architecture of the Argonaute protein; however, we 
considered the first position of the tRF to determine whether it was a factor in target prediction 
(26). Thus, for the first pass, a list of transcripts with 7mer-m1 seed matches (canonical pairing 
in nucleotides 1-7 of the tRF) to the tRF was generated. For the second pass, the binding 
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energy of a tRF to each transcript was calculated, and a list of transcripts with a more stable 
binding energy than 60% of the binding energy from a perfect tRF-mRNA duplex was 
generated. For the transcripts in the intersection of the two passes, the remaining 9 features 
were calculated and the feature profiles for the tRF-mRNA duplexes were passed to tRForest, 
which determined the final predicted targets. For S. pombe, the fission yeast species, 
conservation scores were not calculated. RNAhybrid was also used to create interaction 
illustrations of the tRF-mRNA duplexes (27). These targets were placed in a database, which 
can be queried through different criteria including tRF type, tRF ID, gene name, and transcript 
ID at https://trforest.com. The tool returns the Ensembl transcript ID, gene name, binding 
energy, binding location on the 3’ UTR, and an interaction illustration for each target, along with 
an option to return the chromosomal coordinates of the 3’ UTR of each target.  
 
Gene ontology analysis 

Gene ontology analysis was implemented using the clusterProfiler package 
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html (28). First, the list of 
tRForest predicted genes was converted to Entrez IDs using BioMart (14). Then, the gene list 
was processed for each of the three different ontology types (Biological Process, Molecular 
Function, and Cellular Component) using the enrichGO() function, which yielded pathways 
ranked based on number of genes relating to the pathway and the adjusted p-value. These 
enrichment outputs were then used to create two different plots for each ontology type. First, a 
dotplot was created using the dotplot() function, which showed the ten pathways with the 
highest gene ratios and displayed data for the gene ratio, gene count, and adjusted p-value. 
Secondly, a network plot was created using the cnetplot() function, which showed the 
connections between various genes and the highest-ranking pathways. These two plots for 
each ontology type were then combined into a final figure containing six plots for each tRF and 
each species. For some tRFs, though, one or more ontologies would not have enough genes to 
generate an output, in which case there would be fewer plots for that tRF. 

For two species (Xenopus tropicalis and Schizosaccharomyces pombe), the annotations 
were not already part of the organism database (OrgDb) built in as part of clusterProfiler, so 
extra steps were taken to build the databases. For X. tropicalis, species annotations were 
available within the AnnotationHub resource 
https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html, so those annotations 
were downloaded within R and used as an OrgDb. For S. pombe, annotations were created 
using the makeOrgPackageFromNCBI() function in the AnnotationForge package 
https://bioconductor.org/packages/release/bioc/html/AnnotationForge.html, which downloaded 
annotations directly from NCBI and stored them locally in order to build an OrgDb. From here, 
these two OrgDbs were used just as the built-in ones were when performing the GO analysis. 

 
Code with documentation 
 The code for tRForest is available at https://github.com/tRForest-team/tRForest.git.  
 
 
Results 
tRForest metrics & algorithm robustness 

Figure 1 shows a visual representation of the structure of a random forest and how it is 
used for classification of small RNA targets and non-targets. Figure 2 shows a comprehensive 
workflow describing the development of the tRForest algorithm. We obtained ground-truth 
targets from an AGO1 cross-linking, ligation, and sequencing of hybrids (CLASH) dataset (1) 
and used them to train tRForest using the calculated features described in Methods. After 
several optimization steps described below, the final algorithm was obtained. 
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To decide on our final optimized algorithm, we first determined the sensitivity and 
positive predictive value (PPV) of tRForest. Sensitivity (calculated as true positive / (true positive 
+ false negative)) is the ability to detect positive targets and PPV (calculated as true positives / 
(true positives + false positives) is the ability to detect true positive targets among all predicted 
positive targets. Together, these metrics show the algorithm is both sensitive and specific. The 
algorithm performs best with 7mer-m1 or 8mer seed matching (Table 1; see Figure 3 for seed 
matching schematic). It is possible that 7mer-m1 matching outperforms other 7mer seed 
matching criteria because tRFs, unlike miRNAs, can actually pair with mRNA in the first 
position. However, it may also be due to the fact that adenine is the first nucleotide in 
approximately 50% of tRFs, making the seed match identical to the 7mer-A1 criteria in 50% of 
cases (supplemental figure 1). In tRForest, 7mer-m1 seed matching was used because it 
provided a larger number of high-confidence targets than 8mer seed matches. Sensitivity and 
PPV were 0.9616 and 0.9620 respectively when 7mer-m1 seed matches were used and when 
considering all features (Table 2).  

Random forest algorithms work optimally when there is little correlation between 
features. Therefore, we determined the correlation between each feature in tRForest using tRF-
3009a as an example (Figure 4). The magnitude of the correlation was close to zero for a 
majority of the pairs. There were two groups of pairs with high correlation. The first group 
consisted of pairs in which information about one feature was used in the calculation of the 
other feature. For example, there was a strong correlation (r = 0.590) between the presence of a 
seed in the binding region and the difference in the number of paired positions between the 
seed region and 3’ region of the tRF. In addition, there was a strong correlation (r = 0.677) 
between the number of paired positions and the length of the longest consecutive sequence of 
pairs in the binding region. The features in both of these pairs were kept in the algorithm 
because although there was a moderate correlation, they provided distinct pieces of information 
about the tRF-mRNA duplex. The second group of correlated pairs consisted of two sets of 
conservation scores of the binding region and the flanking region, phastCons scores and phyloP 
scores. These scores differ in that phastCons scores give the probability that a nucleotide 
belongs to a conserved element, while phyloP scores give the logarithm of the p-value under a 
null hypothesis of neutral evolution. From this analysis, we decided to remove the phastCons 
scores and keep the phyloP scores, because phyloP scores provide information on both slower-
than-neutral and faster-than-neutral evolution. 

In order to reduce the time to run tRForest, we performed an accuracy-efficiency 
analysis in which the accuracy of the algorithm was measured as time-intensive features were 
removed (Figure 5). The ranking of the features according to time to calculate is in Table 2. We 
found that the accuracy remained above 95% after the two most time-intensive features, the 
phastCon conservation scores (seed and flanking), were removed. Thus, both the correlation 
and accuracy-efficiency analyses support the removal of the phastCons scores, allowing 
tRForest to have low-to-moderate correlation between features, maintain an accuracy above 
95%, and achieve PPV and sensitivity values of 0.96.   

To ensure robustness of the algorithm, we first removed individual features from the 
training set. Even when half of the most important or least important features are removed, the 
algorithm performs effectively (PPV = ~0.944, sensitivity = ~0.944), indicating that no feature or 
set of features is much more important than any other features (Table 2). Since these features 
and feature subsets were able to sufficiently train the algorithm, additional features did not need 
to be added. Furthermore, many of these features are easily calculated, increasing the 
efficiency of the algorithm. To ensure the algorithm was not merely classifying all targets as 
positive targets and to ensure the negative sites were properly generated, the labels on the 
positive and negative sites were randomly shuffled. When the algorithm was trained this way, 
the PPV and sensitivity dropped to ~0.5, indicating the algorithm was simply guessing (Table 2). 
Therefore, tRForest performs significantly better than random guessing. 
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 Finally, a receiver operating characteristic (ROC) curve was also generated from the 10-
fold cross validation training of the optimized tRForest (after the phastCons conservation 
features were removed). The ROC curve for tRForest is very close to an ideal classifier and has 
an area under the curve (AUC) of 0.99, in which the ideal value is 1 (Figure 6). 
 
Independent validation & comparison to existing miRNA and tRF algorithms 
 Next, we wanted to determine how well tRForest performs on new data derived from tRF 
overexpression. We used two independent datasets with two separate experimental conditions 
in two different cell lines. First, we analyzed data in which tRNA-LeuTAA was overexpressed in 
HEK293T cells, which led to increased tRF-3009a expression (8). We observed that tRF-3009a 
targets predicted by tRForest were significantly repressed compared to non-targets by 
cumulative distribution function (CDF) plot (Figure 7; KS test p value = 3.65E-04). The next 
dataset we analyzed was from overexpression of a tRF-3009a mimic in U87 cells. Again, we 
observed that tRF-3009a targets predicted by tRForest were significantly repressed compared 
to non-targets by CDF plot (Figure 8; KS test p value = 2.64E-05).   

CDF plots for targets predicted by other miRNA and tRF algorithms are in supplemental 
figures 2 and 3. For each cell type, the predicted targets from miRDB, targetScan, tRFTar, 
tRFTarget, tRFTars, and tRForest were compared to non-targets. We established an effect size 
statistic to compare the difference between targets and non-targets for the different algorithms 
(see methods). A negative effect size indicates target repression. Table 3 shows effect sizes 
and p-values from each validation experiment. tRForest outperforms miRNA target prediction 
algorithms overwhelmingly with much larger effect sizes and by showing significance with p < 
0.01. tRForest also outperforms tRFTarget and tRFTars with respect to effect size by nearly a 
factor of two in the HEK293T cell experiment, and by a factor of two to four in the U87 cell 
experiment with p < 0.001. tRForest matches the performance of tRFTar with similar effect 
sizes, but presents a greater number of targets with much greater significance (p < 0.001). The 
range of effect sizes and number of predicted targets from tRForest are comparable to miRDB 
and targetScan evaluated on miRNA mimic overexpression data, indicating that with the 
appropriate target prediction tool, tRFs are just as functional as miRNAs, at least in the case of 
tRF-3009a. Overall, tRForest either closely matches or greatly outperforms all existing tRF 
target prediction algorithms along with several miRNA target prediction algorithms, and matches 
the performance of established miRNA algorithms on miRNA overexpression datasets. 
 
Gene ontology analysis 
 Following target prediction and validation, gene ontology analysis was performed for 
each tRF in order to provide an overview of pathways potentially affected by a given tRF. 
Strikingly, we identified neural and axonogenesis related GO terms in the tRF targets as top 
pathways enriched across human, mouse, zebrafish, and drosophila (Figure 9A). To determine 
if these or other GO terms are conserved across these species, we first identified conserved 
tRF sequences across these species. The highest number of conserved tRFs were found 
between human and mouse, with 54 tRFs conserved at the sequence level (Figure 9B). Human, 
mouse, and drosophila have 3 conserved tRFs, and human, mouse, and C. elegans have only 
one conserved tRF (Figure 9B). Since humans and mice had the highest number of conserved 
tRFs, we sought to determine which GO terms are conserved for the conserved tRFs in these 
species. We identified 409 conserved GO terms between mice and humans (Figure 9C). Of 
particular interest, the top conserved GO terms between mice and humans involve brain related 
processes, indicating that tRFs may have a conserved role in regulating genes in the nervous 
system. Figure 9E shows an example output for the human tRF-3009a Biological Process 
ontology. This includes both the dotplot and the gene concept network plot as generated by 
clusterProfiler (28).  
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 tRForest users have the option to view and download the extended version of this plot 
with all three ontologies for any tRF and any species when possible. The dotplot allows users to 
quickly get a feel for the most probable pathways as well as the types of pathways affected for 
that tRF; for example, for human tRF-3009a it is evident from Figure 9 that the tRF may largely 
affect pathways related to neurons and their development. The plot contains information 
regarding gene ratio as the x-axis, adjusted p-value as dot color, and gene count as dot size, so 
the user can easily see the most relevant pathways as well as the underlying data, including 
statistical significance. The gene-concept network plot gives a more in-depth view of the 
connections between genes and pathways, which shows users not only how many genes 
influence a certain pathway, but also the level of connection and gene overlap between various 
pathways, which is not information given by the dotplot. Both of these plots give users an 
intuitive overview of their particular tRF, which can be very useful in looking beyond the genetic 
targeting capabilities of tRForest to how they can be applied. This also saves users the step of 
needing to perform GO themselves to see if a tRF is likely related to a certain biological 
process, molecular function, or cellular component.  
 
Database overview 

Figure 2 provides a comprehensive workflow for the construction of the database. The 
database for tRForest contains predicted targets for seven species: human, mouse, D. 
melanogaster, C. elegans, S. pombe, X. tropicalis, and zebrafish. Notably, R. sphaeroides, 
which was included in tRFdb, is not included in tRForest because gene repression in this 
bacteria species is not Ago-mediated, as it is in the other species. In total, 628 tRFs with 
262,880 target transcripts are included in the database. A more detailed breakdown by species 
is available on the Statistics page of the website. Predicted targets can be retrieved by filtering 
by tRF type or tRF ID as assigned in tRFdb; in addition, the database can be queried by gene 
name or Ensembl transcript ID to find tRFs that are involved in its repression. The output 
provided contains the tRF-ID, Ensembl transcript ID, gene name, binding energy of the tRF-
gene duplex, binding location of the tRF on the 3’ UTR of the gene, an interaction illustration of 
the duplex, and is ordered by the prediction probability score given by tRForest which is also 
shown. The database also allows the user to download the 3’ UTR chromosomal coordinates of 
the predicted targets, as well as the output as a CSV file or Excel spreadsheet; GO analysis can 
also be viewed or downloaded. Further information about the tool, as well as statistics on the 
tool, a manual on usage, and a page to provide feedback can be found on the database’s 
webpage (https://trforest.com).  

 
Discussion 
 tRFs are becoming increasingly relevant in the study of biology and disease due to their 
involvement in regulating gene expression by pathways similar to miRNAs. However, there are 
few tools available that are specifically designed for tRF target prediction, and even fewer that 
utilize a machine learning-based approach. This study presents a comprehensive, rigorously 
designed and validated tRF target prediction tool in a convenient online database that includes 
tRFs across seven different species and includes tRF-1s, which other tRF algorithms neglect.  
 tRF targets were predicted using existing research on features involved in miRNA target 
prediction using random forests applied to tRF data. At the time of this study, there are several 
tRF targeting algorithms available, including tRFTar, tRFTarget, and tRFTars. However, only 
tRFTars uses a machine-learning approach, and tRForest is the first to use random forests in its 
algorithm. A significant advantage of using random forests is that they avoid overfitting, a 
common limitation of machine learning algorithms in which they become tailored specifically to 
the dataset they were trained on and thus become less predictive in independent datasets (24). 
This is evident by the greater effect size for tRForest predicted targets compared to tRFTars 
predicted targets in the independent validation datasets. In addition, it is the only tRF target 
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prediction algorithm to generate corresponding negative sites for positive sites to better 
distinguish true targets, and the only one to return tRF-1 targets. Unlike several of the other 
algorithms, it also uses evolutionary conservation as a feature and provides a streamlined 
approach to accessing gene ontology information. In addition, it provides high-quality 
visualization of the enriched pathway information from the targets. As a result of this unique 
approach, tRForest matches or outperforms other existing tRF and miRNA target prediction 
tools for tRF target prediction.  

tRForest has several limitations associated with data availability and efficiency. Feature 
calculation is currently rather time-consuming, so tRF targets are currently only available for 
existing tRFs found in tRFdb in species with Ago-mediated repression. In addition, there is a 
lack of available RNA-sequencing data with tRF overexpression to further validate the results. 
We attempted to address this limitation by testing tRForest on publicly available data, as well as 
data generated in our lab. The main limitation for the GO plot analysis is the fact that it requires 
a certain number of genes to generate plots (usually > 5), and for many tRFs this was not 
achieved with tRForest predictions. It was less of an issue for more popular model organisms, 
but S. pombe, for example, lacks many plots. This reduces convenience to users but is overall 
not a significant issue for the tool as a whole. 

Improvements to the algorithm could be made by increasing the availability of CLASH 
and RNA-sequencing data. In addition, its efficiency can be increased by fixing the bottleneck in 
feature calculation which would allow the addition of a custom option to the tool, in which the 
user can input a unique tRF sequence and receive its targets.  
 This study presents a novel random forests-based machine learning model to predict 
tRF transcript targets in seven species. Furthermore, it provides a gene ontology analysis with 
these targets to determine enriched pathways. tRForest allows researchers to determine tRF 
targets and generate hypotheses about the biological functions of tRFs. The tool is available 
publicly at https://trforest.com.  
 
DATA AVAILABILITY 
Sequencing data is available via GEO accession GSE189510.  
 
FUNDING 
This work was supported by the National Cancer Institute Cancer Center Support Grant 
[5P30CA044579]; the National Institutes of Health [AR067712 to A.D.]; the National Institutes of 
Health National Cancer Institute F30 Grant [1F30CA254134 to B.W.]; the College Science 
Scholars Summer Stipend, the Ingrassia Family Research Grant, and the Harrison 
Undergraduate Research Award (to R.P.). 
 
COMPETING INTEREST DECLARATION 
The authors declare no competing interests. 
 
ACKNOWLEDGEMENTS  
U87 cell was a kind gift from Roger Abounader (University of Virginia). We would like to thank 
University of Virginia Research Computing Core for computational. Icons in Figure 9A are from 
bioicons.com (patient icon by Marcel Tisch https://twitter.com/MarcelTisch is licensed under 
CC0; mouse-small icon by Servier https://smart.servier.com/ is licensed under CC-BY 3.0 
Unported; Xenopus_laevis icon by DBCLS https://togotv.dbcls.jp/en/pics.html is licensed under 
CC-BY 4.0 Unported; drosophila-redeyes icon by Servier https://smart.servier.com/ is licensed 
under CC-BY 3.0 Unported). 
 
 
AUTHOR CONTRIBUTIONS 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472430
http://creativecommons.org/licenses/by/4.0/


10 

Conceptualization, B.W., R.P., F.H., and A.D.; Methodology, Investigation, Data Curation and 
Visualization, R.P., B.W., L.M., and Z.S.; Writing – Original Draft, R.P., B.W., L.M., Z.S., and 
A.D.; Writing – Review & Editing, B.W., Z.S., A.D.; Funding Acquisition, A.D., R.P., and B.W.; 
Supervision, A.D., F.H., and P.K. 
 
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472430
http://creativecommons.org/licenses/by/4.0/


11 

REFERENCES 

1. Kumar,P., Anaya,J., Mudunuri,S.B. and Dutta,A. (2014) Meta-analysis of tRNA derived 
RNA fragments reveals that they are evolutionarily conserved and associate with AGO 
proteins to recognize specific RNA targets. BMC Biol, 12, 78. 

2. Honda,S., Loher,P., Shigematsu,M., Palazzo,J.P., Suzuki,R., Imoto,I., Rigoutsos,I. and 
Kirino,Y. (2015) Sex hormone-dependent tRNA halves enhance cell proliferation in 
breast and prostate cancers. Proc Natl Acad Sci USA, 112, E3816–E3825. 

3. Telonis,A.G. and Rigoutsos,I. (2018) Race Disparities in the Contribution of miRNA 
Isoforms and tRNA-Derived Fragments to Triple-Negative Breast Cancer. Cancer Res, 
78, 1140–1154. 

4. Kim,H.K., Fuchs,G., Wang,S., Wei,W., Zhang,Y., Park,H., Roy-Chaudhuri,B., Li,P., 
Xu,J., Chu,K., et al. (2017) A transfer-RNA-derived small RNA regulates ribosome 
biogenesis. Nature, 552, 57–62. 

5. Deng,J., Ptashkin,R.N., Chen,Y., Cheng,Z., Liu,G., Phan,T., Deng,X., Zhou,J., Lee,I., 
Lee,Y.S., et al. (2015) Respiratory Syncytial Virus Utilizes a tRNA Fragment to Suppress 
Antiviral Responses Through a Novel Targeting Mechanism. Molecular Therapy, 23, 
1622–1629. 

6. Goodarzi,H., Liu,X., Nguyen,H.C.B., Zhang,S., Fish,L. and Tavazoie,S.F. (2015) 
Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 
Displacement. Cell, 161, 790–802. 

7. Ren,B., Wang,X., Duan,J. and Ma,J. (2019) Rhizobial tRNA-derived small RNAs are 
signal molecules regulating plant nodulation. Science, 365, 919–922. 

8. Kuscu,C., Kumar,P., Kiran,M., Su,Z., Malik,A. and Dutta,A. (2018) tRNA fragments 
(tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-
independent manner. RNA, 24, 1093–1105. 

9. Xiao,Q., Gao,P., Huang,X., Chen,X., Chen,Q., Lv,X., Fu,Y., Song,Y. and Wang,Z. (2021) 
tRFTars: predicting the targets of tRNA-derived fragments. J Transl Med, 19, 88. 

10. Li,N., Shan,N., Lu,L. and Wang,Z. (2021) tRFtarget: a database for transfer RNA-derived 
fragment targets. Nucleic Acids Research, 49, D254–D260. 

11. Zhou,Y., Peng,H., Cui,Q. and Zhou,Y. (2021) tRFTar: Prediction of tRF-target gene 
interactions via systemic re-analysis of Argonaute CLIP-seq datasets. Methods, 187, 
57–67. 

12. Haussecker,D., Huang,Y., Lau,A., Parameswaran,P., Fire,A.Z. and Kay,M.A. (2010) 
Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 16, 
673–695. 

13. Helwak,A., Kudla,G., Dudnakova,T. and Tollervey,D. (2013) Mapping the Human miRNA 
Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell, 153, 654–665. 

14. Zerbino,D.R., Achuthan,P., Akanni,W., Amode,M.R., Barrell,D., Bhai,J., Billis,K., 
Cummins,C., Gall,A., Girón,C.G., et al. (2018) Ensembl 2018. Nucleic Acids Research, 
46, D754–D761. 

15. Agarwal,V., Bell,G.W., Nam,J.-W. and Bartel,D.P. (2015) Predicting effective microRNA 
target sites in mammalian mRNAs. eLife, 4, e05005. 

16. Chen,Y. and Wang,X. (2020) miRDB: an online database for prediction of functional 
microRNA targets. Nucleic Acids Research, 48, D127–D131. 

17. Pedregosa,F., Varoquaux,G., Gramfort,A., Michel,V., Thirion,B., Grisel,O., Blondel,M., 
Prettenhofer,P., Weiss,R., Dubourg,V. et al. (2011) Scikit-learn: Machine Learning in 
Python. Journal of Machine Learning Research, 12, 2825–2830. 

18. Hu,H., Liu,J.-M., Hu,Z., Jiang,X., Yang,X., Li,J., Zhang,Y., Yu,H. and Khaitovich,P. 
(2018) Recently Evolved Tumor Suppressor Transcript TP73-AS1 Functions as Sponge 
of Human-Specific miR-941. Molecular Biology and Evolution, 35, 1063–1077. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472430
http://creativecommons.org/licenses/by/4.0/


12 

19. Bray,N.L., Pimentel,H., Melsted,P. and Pachter,L. (2016) Near-optimal probabilistic 
RNA-seq quantification. Nat Biotechnol, 34, 525–527. 

20. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol, 15, 550. 

21. Ding,J., Li,X. and Hu,H. (2016) TarPmiR: a new approach for microRNA target site 
prediction. Bioinformatics, 32, 2768–2775. 

22. Li,J., Kim,T., Nutiu,R., Ray,D., Hughes,T.R. and Zhang,Z. (2014) Identifying mRNA 
sequence elements for target recognition by human Argonaute proteins. Genome Res., 
24, 775–785. 

23. Grimson,A., Farh,K.K.-H., Johnston,W.K., Garrett-Engele,P., Lim,L.P. and Bartel,D.P. 
(2007) MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. 
Molecular Cell, 27, 91–105. 

24. Breiman,L. (2001) Random Forests. Machine Learning, 45, 5–32. 
25. Liu,Y., Esyunina,D., Olovnikov,I., Teplova,M., Kulbachinskiy,A., Aravin,A.A. and 

Patel,D.J. (2018) Accommodation of Helical Imperfections in Rhodobacter sphaeroides 
Argonaute Ternary Complexes with Guide RNA and Target DNA. Cell Reports, 24, 453–
462. 

26. Sheu-Gruttadauria,J. and MacRae,I.J. (2017) Structural Foundations of RNA Silencing 
by Argonaute. Journal of Molecular Biology, 429, 2619–2639. 

27. Rehmsmeier,M., Steffen,P., Höchsmann,M. and Giegerich,R. (2004) Fast and effective 
prediction of microRNA/target duplexes. RNA, 10, 1507–1517. 

28. Yu,G., Wang,L.-G., Han,Y. and He,Q.-Y. (2012) clusterProfiler: an R Package for 
Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative 
Biology, 16, 284–287. 

29. Fawagreh,K., Gaber,M.M. and Elyan,E. (2014) Random forests: from early 
developments to recent advancements. Systems Science & Control Engineering, 2, 
602–609. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472430
http://creativecommons.org/licenses/by/4.0/


13

FIGURES  

Figure 1. An example structure of a random forest algorithm, including how the forest is used 
for classification. Feature profiles (squares) represent each tRF-gene pair's unique set of feature
calculations for all 11 features. These feature profiles are fed through independent trees which 
each make a series of binary decisions at each node (circle). To make this decision at each 
node, the tree identifies the best feature for optimal splitting of the node from a subset of 
random features from the feature profile (29). Over the course of several such splits, the tree 
gains a better understanding of the tRF-gene pair. This series of decisions results in the tree 
classifying the gene as a target or non-target, and the majority vote of all trees in the algorithm 
determines the overall classification. 
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Figure 2. Comprehensive workflow from initial dataset to validated algorithm applied to tRFs in 
seven species.  
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Figure 3. Site type breakdown for seed-matching. The 6mer seed comprises nucleotides 2-7 on 
the tRF, with additional matching of the target at nucleotides 1 and/or 8 on the tRF based on the 
site type.  

 
Figure 4. Heatmap of Pearson correlations between pairs of features for tRF-3009a. Only the 
two different methods of computing evolutionary conservation scores are highly correlated, with 
low-to-moderate correlation between all other pairs.  
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Figure 5. Accuracy-efficiency analysis of tRForest. tRForest continues to perform well as the 
most time-intensive features are removed, allowing it to become more efficient while maintaining
accuracy above 95%.  
 

 
Figure 6. Receiver operating characteristic curve. tRForest performs nearly ideally compared to 
random guessing during training and testing.  
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Figure 7. tRForest distinguishes targets from non-targets of tRF-3009 in RNA-sequencing data 
collected after parental tRNA (chr6.trna83-LeuTAA) overexpression in HEK293T cells. This is 
known to increase the level of tRF-3009a (8).  
 
 

17 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472430doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472430
http://creativecommons.org/licenses/by/4.0/


18

 
Figure 8. tRForest distinguishes targets from non-targets of tRF-3009 in independent RNA-
sequencing data collected from upon tRF-3009 mimic single-stranded overexpression 
transfection in U87 cells. 
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Figure 9. Several tRFs and tRF target GO terms are conserved. (A) Infographic showing the top
10 GO Biological Processes targeted by tRFs terms across four species. (B) Upset plot showing 
the intersection of conserved tRF sequences across four species. (C) Venn diagram of the 
intersection of conserved, significant GO terms of targets predicted for the 54 conserved tRFs 
between humans and mice. (D) Top ten GO terms conserved among predicted targets of 
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human and mouse tRFs. Top ten GO terms were selected based on q value. MF: Molecular 
Function. CC: Cellular Component. BP: Biological Process. (E) An example gene ontology 
analysis plot describing biological processes enriched among predicted targets of tRF-3009a. 
Left: dot plot. Right: Gene-concept network plot. 
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TABLES 
 

Seed match Sensitivity PPV 
6mer 0.9439 0.9446 

7mer-A1 0.9523 0.9525 
7mer-m1 0.9616 0.9620 
7mer-m8 0.9588 0.9585 

8mer 0.9622 0.9617 
 
Table 1. Sensitivity and PPV values for tRForest with different seed match criteria (see Figure 
3). 7mer-m1 and 8mer seed matches outperform other criteria.  
 
 

Rank by time to 
calculate Feature subset Sensitivity PPV 

0 All features 0.9616 0.9620 
1 Removed phastCons flanking score 0.9596 0.9597 
2 Removed phastCons stem score 0.9603 0.9605 
3 Removed phyloP flanking score 0.9596 0.9599 
4 Removed phyloP stem score 0.9594 0.9597 
5 Removed binding energy 0.9583 0.9587 
6 Removed position of longest consecutive pairing 0.9606 0.9609 
7 Removed length of longest consecutive pairing 0.9605 0.9610 
8 Removed AU content 0.9604 0.9608 
9 Removed number of paired positions 0.9616 0.9620 

10 Removed seed 0.9602 0.9607 
11 Removed binding region length 0.9570 0.9577 
12 Removed number of 3' end pairs 0.9602 0.9605 
13 Removed difference between seed and 3' end pairs 0.9613 0.9616 

N/A All RFE ranked > 1 (RFE = 7) 0.9458 0.9453 
N/A All RFE ranked = 1 (RFE = 7) 0.9423 0.9422 
N/A Randomly shuffled 0.5053 0.5054 

 
Table 2. Run time comparisons, sensitivity and PPV values for tRForest evaluated on various 
subsets of features. The run times are ranked from 0 (slowest) to 13 (fastest). The clustering of 
the sensitivity and PPV values after removal of various features suggests that no individual or 
small subset of features contributes disproportionately to the classification. RFE: Recursive 
Feature Elimination. Last row: tRForest performs significantly better when labels properly 
indicate targets and non-targets compared to randomly shuffling the labels. 
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Experiment Cell 
type Algorithm # of 

targets Effect Size p value 

tRNA 
overexpression 

(GSE99769) 

HEK-
293T 

miRDB 287 -0.0436 0.0714 

targetScan 118 -0.0484 0.0830 

tRFTar 308 -0.0770 0.0152 

tRFTarget 1,380 -0.0417 9.74E-04 

tRFTars 2,519 -0.0446 8.15E-05 

tRForest 1,083 -0.0732 3.65E-04 

tRF-3009a mimic 
overexpression 
(GSE189510) 

U87 

miRDB 284 -0.0082 0.759 

targetScan 114 0.0267 0.560 

tRFTar 309 -0.1646 0.0015 

tRFTarget 1,336 -0.0350 0.0219 

tRFTars 2,458 -0.0746 8.350E-05 

tRForest 578 -0.1458 2.64E-05 

miR-941 mimic 
overexpression 

(GSE93717) 

HEK-
293T 

miRDB 27 -0.2160 9.45E-07 

targetScan 776 -0.0279 3.35-05 

miR-101-3p.1 
mimic 

overexpression 
(GSE180331, 
sample GSM 

5460899) 

143BTK 

miRDB 893 -0.2177 < 2E-16 

targetScan 834 -0.2107 < 2E-16 

 
Table 3. tRForest outperforms several miRNA target prediction algorithms in its ability to predict 
repression of target genes upon tRF induction in two different cells. tRForest matches or 
outperforms all existing tRF target prediction algorithms in its ability to predict repression of 
target genes upon tRF induction in two different cells. Its performance is also comparable to 
miRDB and TargetScan evaluated on miRNA mimic overexpression data.  
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