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ABSTRACT 7 

Background:  8 

Diffuse Glioblastoma (GBM) has high mortality and remains one of the most challenging type of 9 

cancer to treat. Identifying and characterizing the cells populations driving tumor growth and 10 

therapy resistance has been particularly difficult owing to marked inter and intra tumoral 11 

heterogeneity observed in these tumors.  These tumorigenic populations contain long lived cells 12 

associated with latency, immune evasion and metastasis.  13 

Methods: 14 

 Here, we analyzed the single-cell RNA-sequencing data of high grade glioblastomas from four 15 

different studies using integrated analysis of gene expression patterns, cell cycle stages and copy 16 

number variation to identify gene expression signatures associated with quiescent and cycling 17 

neuronal tumorigenic cells.  18 

Results:  19 

The results show that while cycling and quiescent cells are present in GBM of all age groups, 20 

they exist in a much larger proportion in pediatric glioblastomas. These cells show similarities in 21 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.472030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472030
http://creativecommons.org/licenses/by/4.0/


their expression patterns of a number of pluripotency and proliferation related genes. Upon 22 

unbiased clustering, these cells explicitly clustered on their cell cycle stage. Quiescent cells in 23 

both the groups specifically overexpressed a number of genes for ribosomal protein, while the 24 

cycling cells were enriched in the expression of high-mobility group and heterogeneous nuclear 25 

ribonucleoprotein group genes. A number of well-known markers of quiescence and proliferation 26 

in neurogenesis showed preferential expression in the quiescent and cycling populations 27 

identified in our analysis.  Through our analysis, we identify ribosomal proteins as key 28 

constituents of quiescence in glioblastoma stem cells.  29 

Conclusions:  30 

This study identifies gene signatures common to adult and pediatric glioblastoma quiescent and 31 

cycling stem cell niches. Further research elucidating their role in controlling quiescence and 32 

proliferation in tumorigenic cells in high grade glioblastoma will open avenues in more effective 33 

treatment strategies for glioblastoma patients. 34 

 35 
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INTRODUCTION 43 

Diffuse gliomas are tumors of the central nervous system with histological similarity to glial 44 

cells.  Worldwide, approximately 100,000 new cases of diffuse glioma are reported every 45 

year[1]. Despite it being a relatively rare cancer type, diffuse gliomas have a very poor prognosis 46 

with high mortality burden. The 2016 WHO classification of gliomas divides them into 47 

astrocytomas, oligodendrogliomas and oligoastrocytomas with subgroupings based on IDH 48 

mutations and 1p19q co-deletion status[2]. Irrespective of the categories, the tumors are graded 49 

from one to four according to the histological degree of malignancy.  50 

The grade IV diffuse astrocytoma (IDH-wildtype) also called as glioblastoma (GBM) accounts 51 

for about 75% of all diffuse gliomas with a median survival of about one to two years after 52 

therapy, making it the most lethal of gliomas[2, 3]. Intratumoral heterogeneity in GBM is a key 53 

challenge to developing effective therapeutic strategies. Neurodevelopmental bi-lineage 54 

hierarchy does partially explain the heterogeneity in IDH-mutant and pediatric gliomas, 55 

however, this bi-lineage hierarchy model fails to explain the widespread phenotypic 56 

heterogeneity and evolving phenotypic states in GBM. The cancer stem cells (CSC) theory 57 

suggests that Glioblastoma Stem-like Cells (GSCs) are at the center of the tumor organization 58 

and instrumental in generating and replicating intratumoral phenotypic heterogeneity[4]. Indeed, 59 

similar to other cancers, intratumoral heterogeneity, resistance to treatment and relapse in GBM 60 

has been attribute to this small subpopulation in a number of studies. Although GSCs seem to be 61 

a key target in GBM therapy, their existence and cellular nature remains a hotly debated topic. 62 

While there is evidence pointing to the presence of such GSCs, identification of these cells has 63 

remained a challenge. Primarily because there is no marker which can be considered to 64 

universally identify GSCs[5].  65 
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In most cancers including GBM, single surface marker approach has been used to identify 66 

CGSCs. A number of cell membrane antigens like CD133, CD15/SSEA, CD44, PDGFRA, 67 

EGFR or A2B5 are shown to be associated with potential GSCs. Earlier studies showing the 68 

tumorigenic potential of cells isolated using one or a combination of these markers [6–11] did 69 

not address the tumorigenic potential of marker negative cells. Later studies however show that 70 

both the marker positive and negative glioma fractions can show multipotent behavior [8, 12]. 71 

Recent reports show that marker negative cells are able to generate marker positive cells and 72 

replicate the tumor heterogeneity[13]. Thus the evidence so far indicates a non-hierarchical 73 

model where cells niches with strong cellular plasticity are at the core of recreating intratumoral 74 

heterogeneity. Evidence supporting intratumoral cell niches with high cellular plasticity in 75 

glioblastoma comes from a recent study by Jung, Erik, et al.[14]. The authors show the existence 76 

two complementary cellular niches driving tumor progression and therapy resistance in GBM. 77 

Further evidence of the plastic nature of GSC niches come from studies which demonstrate the 78 

generation of potential GSCs from non-tumorigenic glioma cells [15]. Based on these and a 79 

number of other recent studies, it seems that within the tumor, potential GSCs remain in 80 

interactive niches and are highly plastic in addition to being able to acquire therapy resistance 81 

and tumorigenicity. Recent studies in tumor immunosurveillance evasion suggests that these 82 

niches are composed of small populations of cycling and quiescent stem cell like cells [16].   83 

Advances in newer methods to study cellular transcriptomes at the single cell level especially 84 

massively parallel single-cell RNA-sequencing (scRNAseq) has significantly enhanced our 85 

understanding of spatial and temporal heterogeneity in glioblastoma. Recent single cell studies of 86 

gliomas have shown the presence of a progenitor type population [17–19]. Interestingly, in terms 87 

of conventional markers, tumors from different patients show variability in their expression, 88 
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suggesting heterogeneity within GSCs[20]. As more and more genomic and transcriptomic data 89 

from single cell experiments in gliomas becomes available, it is becoming more evident that 90 

although canonical GSC markers seem to be associated with proliferative cells in low grade 91 

gliomas, such correlation is not evident in GBM[21]. Thus, projects designed to identify GSCs 92 

on the hierarchical CGSC model have largely been ineffective.  93 

To develop a better diagnostic and treatment strategy for GBM as well as low grade glioma, is it 94 

important understand the dynamics of the tumor microenvironment, especially the intrinsic 95 

plasticity of the cell niches. Understanding the mechanism of maintenance of these highly plastic 96 

cell subpopulations within the tumor, the role of the microenvironment dynamics in selection and 97 

survival of such populations and their propagation are instrumental in unearthing the reasons for 98 

the development of resistance to Temozolomide (TMZ) chemotherapy and radiotherapy.  99 

A number of recent studies have utilized scRNAseq to study gliomas of different origin and 100 

grade generating a wealth of data on the transcriptomic nature of cells within the tumor[14, 17, 101 

19, 22]. While these studies primarily focused on different states of gliomas and tumor-immune 102 

cell interaction, few studies have tried to delineate differences in cellular states within neural 103 

cells in GBM.  Reanalysis of these scRNA-seq datasets can give us a deeper understanding of the 104 

genomic and transcriptomic commonalities within malignant neural subpopulations. 105 

Identification of GSC niches with quiescent population perhaps holds and the key to developing 106 

strategies which can target genes/transcripts involved in maintaining GSC plasticity and 107 

crosstalk in high grade gliomas. 108 

 Here, we analyze the scRNAseq data from four different studies encompassing thousands of 109 

tumor and peripheral cells from pediatric and adult IDH-wildtype glioblastoma patients to 110 

identify and study quiescent and cycling GSCs. The tumor types range from primary to relapsed 111 
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tumors. Our results show that cycling and quiescent like-cell subpopulation are present in most 112 

GBM tumors with a gene expression signature associated with ribosomal biogenesis, cell cycle 113 

activation and malignancy. Key overexpressed genes include DCX, SOX4 and DLL3, known 114 

markers for quiescence, stemness and tumorigenicity. These cells have a Copy number variance 115 

pattern distinguishing them from other neural cells subtypes within the tumor. and key 116 

genes/transcripts expression pattern in these niches across GBM tumor types. 117 

 118 
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 132 

 133 

 134 

 135 

RESULTS 136 

Selection of datasets and identification of neural cells 137 

To identify common GSC like populations across GBMs, we selected scRNAseq datasets from 138 

different studies representing IDH-wildtype, grade IV glioblastomas. Included datasets represent 139 

major patient groups (pediatric, adult and recurrent). Table 1 shows the major characteristics of 140 

the included datasets. For differential gene expression analysis of GBM subpopulations, we also 141 

included brain metastasis (lung squamous cell carcinoma) data set from the study GSE117891.  142 

Table 1 Dataset Summary 143 

Dataset No. of 

Cells 

Location No. of 

Patients 

Tumor Type Tumor Grade 

GSE84465 1745 Tumor/Periphery 4 Primary IDH-wildtype 

GSE131928 1460 Tumor 6 Primary/ 

Recurrent 

IDH-wildtype 

GSE103224 3679 Tumor 2 Recurrent IDH-wildtype 

GSE117891 359 Tumor/Periphery 1 Metastatic (Lung 

Squamous Cell 

Carcinoma) 

NA 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.472030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472030
http://creativecommons.org/licenses/by/4.0/


 144 

Significant inter and intratumoral heterogeneity is a challenge in identifying GSC like niches 145 

because gene expression patterns of different cell types and sample origin (i.e., transcriptomic 146 

diversity of the samples) induce strong variance which often masks the similarities in cellular 147 

programs in small subpopulations. Malignant cells with stem cell like properties are typically a 148 

very small subset of the tumor population.  We therefore first sought to enrich our datasets based 149 

on clear cell identity and malignancy. The datasets were first clustered using the standard Seurat-150 

sctarnsform pipeline. As, GBMs primarily originate in neural cells, we first identified the clusters 151 

of clear neural/glial (neuronal) or myeloid/immune origin by measuring the expression of known 152 

markers for immune cells (CD4, CD83 & HLA-DRA) and neuronal cells (S100B, OLIG1 & 153 

SCG2) [23, 24] (Figure 1 B, C). Clusters are represented using Uniform Manifold 154 

Approximation and Projection (UMAP) (Figure 1A). The neuronal cluster significantly 155 

overexpressed EGFR, a gene overexpressed in 30-50% of all GBMs and associated with 156 

neoplasia. Interestingly, non-GBM tumor cells (GSE117891) did not express EGFR and showed 157 

markedly different non myeloid/immune cluster profile. (Figure 1D). These clusters showed 158 

distinct expression profiles for glial cell markers for astrocyte(S100B) and 159 

oligodendrocytes(OLIG2). Indicating the presence of transformed non neural cells in these 160 

clusters (Figure 1 B, C). 161 

 162 

 163 

 164 

Table 1 Study Group Composition 165 
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Group Source Patient-ID Molecular 

Subtype 

No. of 

Transformed 

Cells 

 

 

 

Adult 

GSE84465 BT-S1 Classical 351 

BT-S2 Classical 713 

BT-S4 Classical 367 

BT-S6 Proneural 143 

GSE103224 PJ-32 Mesenchymal 574 

PJ-35 Classical 3105 

GSE117891 GS-15 NA 352 

 

 

 

Pediatric 

 

 

 

GSE131928 

BT-749 Proneural 253 

BT-771 Mesenchymal 256 

BT-786 Proneural 160 

BT-830 Mesenchymal 166 

BT-920 Mesenchymal 07 

BT-1160 Proneural 332 

MGH-85 Proneural 245 

 166 

Integrated cluster analysis 167 

To identify malignant or transformed stem-like cells, we decided to focus exclusively on 168 

neuronal cells and examine them in detail. To do so, we first removed the immune/myeloid 169 

clusters from the study. Next, we used the mutual nearest neighbors (MNNs) method in 170 

conjugation with Seurat to integrate the datasets. For comparative analysis, we created two 171 
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integrated datasets comprising of adult and pediatric GBM patients. Table 2 shows the patient 172 

wise detail of the adult and pediatric groups. Both adult and pediatric groups clustered largely 173 

according to cell types and cell stages (figure 2 A, B). Comparison of adult and pediatric groups 174 

showed that a number of genes specific to cell cycle, neuronal and glial cells like TOP2A, 175 

SLC1A2, SSR4, APOD, PLP1, CD74, RTN1, HMGB2, CHI3L1, SERPINE1 were commonly 176 

overexpressed in certain clusters in both the groups. (figure 2 B). Whilst SLC1A2, APOD, PLP1, 177 

CD74, and RTN1 are cell type specific proteins and expressed by astrocytes, oligodendrocytes, 178 

OPCs and endothelial cells respectively[25], TOP2A and HMGB2 expression is specific to 179 

transcriptional activation and cell cycle[26, 27]. CHI3L1 and SERPINE1 are both proteins 180 

related to cell differentiation and malignant transformation[28, 29]. Comparatively, Adult GBM 181 

dataset exhibited greater number of distinct clusters which might be reflective of higher cell type 182 

and disease stage diversity. The presence of specific clusters overexpressing TOP2A and SOX4 183 

in both adult and pediatric groups indicated a similarity in gene expression profile of these 184 

clusters across groups. Cycling or actively dividing and quiescent stem cells are known to 185 

coexist in adult stem cell niches[30]. Hence, we assessed the expression distribution of known 186 

markers for proliferation (KI67and CD44) and maintenance of cellular plasticity (SOX11 and 187 

DCX). The expression of these genes coincided with clusters1,2 and 3 the adult group while in 188 

the pediatric group, all clusters except clusters 3 and 7 showed high expression of these genes 189 

(Figure 2 C). Interestingly, CD44 expression did not follow this pattern, its expression was 190 

confined to clusters unrelated to the expression of other markers. Indeed, recent reports have 191 

questioned the validity of CD44 as a reliable marker of proliferation in glioblastoma [20, 31]. As, 192 

TOP2A, MKI67, DCX,SOX4 and SOX11 genes are known to show high expression in cycling 193 

and Quiescent stem cells respectively[26, 32], we suspected the presence of similar niches within 194 
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the above mentioned clusters in the GBM groups. To verify this hypothesis, we decided to 195 

further analyze the cell type context of these clusters. Top 50 differentially expressed genes for 196 

both adult and pediatric groups are included in additional file 1. 197 

Identification of types and cell cycle stages 198 

To determine the presence of cycling and Quiescent cells in both groups, we sought to identify 199 

and distinguish these cells from mature neural and glial cells. We used single cell datasets of 200 

adult and embryonic brain, from Darmanis, Spyros, et al.[25] as reference dataset and performed 201 

unbiased cell type recognition using SingleR package (see methods). The parameters used are 202 

described in the methods section. The results confirmed the initial clustering based predictions 203 

and showed the presence of both cycling stem cell like (cGSC) and Quiescent stem cell like 204 

(qGSC) cells in patient samples from both groups (Figure 3 A). Comparatively, the proportion of 205 

cGSCs and qGSCs was much higher in the pediatric group. Specifically, qGSC population was 206 

markedly low in adult group. Patient samples BT-S2 and BT-S4 had no identified qGSCs, while 207 

only one cell could be identified as qGSC in PJ-32, while PJ-35 had highest number of both 208 

qGSCs and cGSCs in the adult group (Figure 3 D), probably because a large number of cells in 209 

the group are from PJ-35. Expectedly, both these populations were absent in the non-GBM 210 

metastatic tumor sample (GS-15), confirming their importance as key originators of GBM.  211 

Analysis of cycling and quiescent cells 212 

To do a comparative analysis of the gene expression patterns between the groups, differential 213 

gene expression analysis was performed using Model-based Analysis of Single Cell 214 

Transcriptomics (MAST) package from R. Significant differentially expressed genes for both 215 

qGSCs and cGSCs were compared with other cell types in both adult and pediatric groups 216 

(figure 3 B). In both groups, qGSCs had a markedly high expression of DCX, SOX4, SOX11 and 217 
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DLL3 genes. While SOX4 and SOX 11 are both critical in the development and maintenance of 218 

neural pluripotent cells, DCX is an essential factor in neurogenesis in neuronal migration. DLL3 219 

is a ligand for the Notch pathway and plays a pleotropic role in notch pathway regulation [32]. 220 

On the other hand, cGSCs in both groups were marked by overexpression of HMGB2, HSP90B1 221 

and KPNA2 apart from TOP2A (figure 3 C). HMGB2 is a member of the high mobility protein 222 

family, functioning as a modulator of chromatin structure. However, recent study has shown its 223 

role in transition from quiescence to activated state in neuronal stem cells (NSCs) [27]. 224 

Similarly, HSP90B1, a member of the heat shock protein family, has a role in maintaining 225 

embryonic pluripotency [36], whereas KPNA2 is known to be associated with a number of 226 

cancers[37]. comparatively, in the adult group, qGSCs and cGSCs have a marked difference in 227 

their expression profiles, but less so in the pediatric group. A possible reason for this distinction 228 

perhaps is the fact that pediatric brain cells are primed for development.  229 

This is also evident from the cell cycle stage prediction. Previous studies have shown that 230 

pluripotency in stem cells is intricately related with cell cycle stages. Whilst a short or truncated 231 

G1 (gap1) phase is considered a hallmark of pluripotent state, lengthening of G1 phase is 232 

observed when the cells enter cycling phase of rapid differentiation[33–35]. To further confirm 233 

the cellular states of these populations, we did a cell cycle state pseudotime prediction using 234 

Tricycle R package as described in the methods section. As, the Quiescent or G0 state is not 235 

exclusively defined in continuous cell state pseudotime embedding, we expected to find the 236 

qGSC cells to be predicted in the G0/G1 phase range, whilst cGSCs to be in G2/M state range. 237 

The results were as expected with qGSC almost exclusively in G0/early G1 state whilst cGSCs 238 

in late G1 to M states (Supplementary Figure S1). Interestingly, the distribution of cells within 239 

cellular states was continuous showing the presence of cells in intermediate states, indicating a 240 
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transition between qGSC and cGSC states. As, the stem cell like nature of these clusters was 241 

supported by both cell type and cell state analysis, we separated these clusters from other cell 242 

types and did a comparative analysis of underlying gene expression patterns between adult and 243 

pediatric groups to identify universal expression signatures of qGSCs and cGSCs. 244 

Cluster analysis of cycling and quiescent cells 245 

qGSCs and cGSCs from both groups were reclustered using the same unbiased approach of batch 246 

correction as described earlier. Five clusters were observed in both groups (Figure 4 A). Cell 247 

cycle pseudotime analysis of the clusters revealed a clear distinction in the cell cycle phase of the 248 

clusters in both groups (Figure 4 B). Differential gene expression analysis of the clusters not only 249 

revealed the genes involved in quiescence and activation in both groups (Supplementary Figure 250 

S2), but also showed a marked similarity between the clusters. we found that a number of highly 251 

overexpressed genes in clusters 1 and 2 from the adult group were also highly expressed in 252 

clusters 2 and 3 in the pediatric group (Figure 4 C).  while the set of clusters overexpressing a 253 

large number of ribosomal genes (RP), especially RPL23, RPL34, RPS3, RPS13, RPS29 also 254 

correlate with qGSC cells, the cGSC dominant set was marked by the overexpression of a 255 

number of high mobility group (HMG) genes including HMGB1 and HMGB2 and heterogeneous 256 

nuclear ribonucleoprotein (hnRNP) genes, notably HNRNPA3 and HNRNPD. Recent research 257 

points to intricate relation between ribosomal activity and quiescence in stem cells[38, 39]. 258 

Indeed, high level of ribosomal presence can block stem cell differentiation. On the other hand, 259 

while HMG and TOP2A transcription regulators represent dynamic cell division, hnRNPs are 260 

key factors in pre-mRNA processing and transport. Indeed, based on gene expression pattern and 261 

cell cycle pseudotime analysis, a picture of sequential progression between the clusters is 262 

indicated with the overexpression of ribosomal proteins positively correlating with true 263 
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quiescence while the overexpression of HMG and hnRNPs indicating progression into cycling 264 

phase. In terms of disease model, it is likely that the mechanism of transition from quiescent to 265 

cycling states in GBMs remains similar to that of NSCs. In terms of patient samples, all patient 266 

samples from the adult group had the presence of ribosome overexpressing cluster (cluster 1), 267 

whereas in the pediatric group the ribosome overexpressing cluster (cluster 2) was absent in BT-268 

830. Similarly, the hnRNP/ HMG overexpressing cluster in the adult group (cluster 2) was absent 269 

in PJ-32 (Figure 4 D). This may be because the number of cells included in the study may not 270 

represent the total tumoral heterogeneity or that the qGSC and cGSC states are interconvertible. 271 

Cluster wise differentially expressed genes for both adult and pediatric groups are included in 272 

additional file 2.  273 

Gene ontology (GO) analysis of the clusters further confirmed our observations with the 274 

ribosome overexpressing cluster enriched in the biological process of cotranslational protein 275 

targeting to membrane or endoplasmic reticulum. The HMG and hnRNPs overexpressing 276 

clusters were enriched in   cell cycle stages of DNA replication and sister chromatid separation. 277 

These clusters are likely representative of cycling cells from S to G2 phases. Interestingly, in the 278 

pediatric group, we found that the cluster 5 which comprised of a few cells from samples BT-279 

1160, BT-749, BT-771 and MGH-85 was enriched for neuronal development and differentiation 280 

(Figure 5 A). However, we could not determine if this subpopulation is a transformed NSC 281 

precursor of a specific lineage.  282 

Analysis of copy number variations (CNVs) 283 

Copy number alterations (gain and/or loss) of the DNA are known to be associated with disease 284 

progression in various cancers[40]. Based on the gene expression patterns in the qGSCs and 285 

cGSCs, we reasoned that the variations in the chromosomal regions of these cells is likely 286 
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distinct from normal or differentiated neoplastic glial/neuronal cells. To confirm this hypothesis, 287 

we compared the CNV status of GSC (qGSC and cGSC) clusters with non-malignant and 288 

differentiated neoplastic cells. For comparison, we used the gene expression counts of 332 of 289 

adult normal brain cells from dataset: GSE67835 as reference[25]. The results did not show a 290 

clear similarity in CNV patterns of adult and pediatric groups, however, we did observe a pattern 291 

of copy number gain at chromosomes 19 and 11 in some patients in the pediatric group (BT-292 

1160, BT-749, BT-771, MGH-85). In terms of pediatric group, we found a consistent CNV 293 

pattern in the GSC population (Figure 5 B) (see also supplementary Figure S3). Chromosomes 294 

19 showed a copy number gain while chromosome10 showed a loss of copy number. Locus gain 295 

at chromosome 19 is relevant in this study’s context because Chromosome 19 which has a high 296 

gene density, also harbors a large number of ribosomal genes [41]. While there seems to be a 297 

correlation between copy number alteration at chromosome 19 and ribosomal protein abundance, 298 

we could not verify this correlation in terms of causation. However, we consider this an 299 

interesting finding, which needs to be explored in detail in the future.   300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 
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 309 

DISCUSSION 310 

Glioblastomas present marked inter and intra tumoral heterogeneity which is a key hurdle in 311 

identifying tumorigenic cell populations and therefore designing robust therapeutic strategies to 312 

target them. Recent advances in single cell techniques has helped immensely in studying and 313 

intratumoral cellular niches. However, identification of GSCs which are considered to be the 314 

drivers of tumor progression and therapy resistance largely remains a challenge because they 315 

exist as a small population of cycling and quiescent cells within these niches. The dynamic 316 

nature of tumor microenvironment means that these cells show considerable phenotypic 317 

plasticity. This behavior of GSCs would suggest that a marker based strategy, although very 318 

informative in describing cellular state at a given time, is insufficient in identifying stem cell like 319 

tumor populations with marked cellular plasticity. The existence of GSC-like cells in 320 

proliferative and quiescent states within these niches is largely agreed upon, however, the 321 

identification of quiescent GSC-like population has remained a challenge. Through our study of 322 

scRNAseq data from a diverse panel GBM samples we have identified gene signature patterns 323 

uniquely associated with cycling and quiescent states in GBM cells.  324 

A number of single cell sequencing based studies in recent years have focused on identifying 325 

GSCs[15, 18, 20, 22, 42], these studies support the theory that malignancy in glioblastoma is a 326 

function of a small number of progenitor like cells which may exist in neural, mesenchymal, 327 

oligodendrocyte or astrocyte like states. The results of this analysis show that although most of 328 

the cycling and quiescent GSCs do share similarities with endothelial and glial like cells, they 329 

have unique transcriptomic profiles which suggest that these cells are maintained in their own 330 

niches within the microenvironment surrounded or populated with mature endothelial, neural 331 
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and/or glial cells. It is important to underline the observation that while transformed cells from 332 

the non–GBM tumor (GS-15) had endothelial, microglia and oligodendrocyte like populations, 333 

they lacked both cGSC and qGSC like cells. This provides evidence that glioblastoma is 334 

inherently a disease of neural stem/progenitor cells.  335 

A number of studies on cancer stem cells have largely focused on the expression of genes related 336 

to a few key transcription factors (Yamanaka factors), OCT4, SOX2, KLF4, and MYC[43] 337 

including NANOG which are well known markers for pluripotency. Similarly, makers for 338 

proliferation like MKI67 and CD44 are the focus of most of the research on proliferating and 339 

pluripotent malignant cells in GBM. However, such approaches overlook the molecular 340 

processes involved in maintaining quiescence or triggering proliferation. Indeed, we observed no 341 

correlation between CD44 expression and cGSCs. On the other hand, our analysis gives further 342 

evidence that SOX4, SOX11 and DCX do overexpress in cycling and quiescent GSCs, however, 343 

studying these markers alone won’t explain the molecular process involved in maintaining 344 

quiescence or triggering proliferation.  345 

The results of this analysis provides strong evidence that quiescent and cycling stem like cells in 346 

GBM share common molecular pathway to maintain quiescence. By comparing the difference in 347 

the gene expression profiles of qGSC and cGSC clusters, we have been able to captures the 348 

changes in cellular processes of the cells transitioning from quiescent to cycling state.  Notably, 349 

the quiescent state is underlined by the overexpression of a number of ribosomal genes while the 350 

cycling state is marked by the overexpression of HMG and hnRNPs. This switch from ribosomal 351 

gene family to HMG and hnRNP genes suggests triggering of entry into cycling phase is 352 

accompanied by profound changes in cell physiology. The presence of migration and neuronal 353 

differentiation related genes like S100B, VIM and SPARC in a quiescent like separate cluster 354 
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(cluster 5) may show the presence of NSC like or progenitor cells. further research is required to 355 

understand their interaction with other clusters.  In terms of patient groups, the results show that 356 

adult tumor samples had a much lower proportion of qGSCs, this is probably reflective of the 357 

differences in developmental state of brain. Importantly, the results suggest that qGSCs and 358 

cGSCs of NSC nature are a key feature of the glioblastoma tumor microenvironment. These 359 

populations are largely interconvertible but are maintained predominantly by the expression of 360 

genes distinct to these states.  361 

The role of ribosomal proteins in stem cell maintenance is an area of active research[44]. Recent 362 

research on mouse NSCs has shown low protein synthesis rate as a hallmark of quiescent 363 

state[45]. This phenomenon of quiescent NSCs is probably due to reduced activity of the mTOR 364 

(mammalian target of rapamycin) kinase which   acts as a key bridge linking ribosome 365 

biogenesis and protein synthesis to induction of pluripotency, self-renewal and differentiation in 366 

adult stem cells[46, 47]. Experimentally, it has been shown that knockdown of 4E-BP1 (an 367 

mTOR target) promotes differentiation in mouse NSCs[48], mTOR signaling drops when the cell 368 

exits cell cycle, leading to suppression of ribosome synthesis, controlling NSC 369 

differentiation[49]. It is thus likely that a number of ribosomal proteins are maintained in the 370 

quiescent cells to trigger differentiation, thus ensuring and effective transformation of the stem 371 

cell state upon receiving environmental signal[47, 48, 50, 51]. While this is a possible theory for 372 

the overexpression of ribosomal genes in quiescent cells, further studies are needed to understand 373 

this phenomenon in glioblastoma.  374 

In conclusion, this study provides vital insight in the expression profile of cycling and quiescent 375 

like cells in glioblastoma. Therapy designs targeting these cells holds great promise in the 376 

treatment of GBM patients because studies have shown that these cells are key to developing 377 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.472030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472030
http://creativecommons.org/licenses/by/4.0/


therapy resistance, migration and proliferation. Targeting quiescent GSCs is critical to overcome 378 

tumor relapse. This work is an important step in understanding the molecular processes that 379 

govern the quiescent and cycling states in GBMs.   380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.472030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472030
http://creativecommons.org/licenses/by/4.0/


 398 

MATERIALS AND METHODS 399 

Data resource and selection 400 

All Single-Cell RNA-Seq raw read count matrices and metadata files (wherever available) were 401 

were downloaded from Gene Expression Omnibus (GEO) repository. Specifically, gene/cell 402 

expression counts from datasets GSE84465[17],GSE117891[18],GSE131928[52] and 403 

GSE103224[19] downloaded. The expression matrix for patients included in the study was then 404 

curated from the raw expression files. Raw counts for patient data from GSE131928 was not 405 

made available by the authors. Log2 transformed count (available) was used instead.  406 

Data filtration and normalization 407 

All datasets were filtered and analyzed using Seurat V4[53].  Raw data matrix was first filtered 408 

using the slandered Seurat protocol to remove possible low quality cells, cells with <200 or 409 

>3000 transcripts were excluded from the analysis. In addition, cells of poor quality, recognized 410 

as cells with >5% of their transcripts coming from mitochondrial genes, were excluded from the 411 

downstream analysis. 412 

Clustering techniques 413 

Primary clustering of the datasets was done following Seurat protocol. Briefly, after filtering and 414 

removal of mitochondrial counts, the data was log normalized and highly variable features were 415 

calculated (for this study, we kept the nfeature setting to 6000). Next, the data was scaled before 416 

performing linear dimensional reduction. High variable principal components were selected 417 

based on percentage variance. Next, the K nearest neighbor graph was constructed based on 418 
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calculated principal components and clustered. Finally, the dimensional reduction and 419 

visualization was done using Uniform Manifold Approximation and Projection (UMAP).  420 

Differential gene expression analysis 421 

Analysis of differentially expressed genes for each clusters was done by implementing Model-422 

based Analysis of Single Cell Transcriptomics (MAST) package with Seurat[54]. 423 

Integration of datasets 424 

For integrated analysis, following initial Seurat protocol, the fast mutual nearest neighbors 425 

(fastMNN) R/Bioconductor package was applied to correct for differences between data sets 426 

(batch effect correction)[55]. Clustering was done using default parameters. 427 

Reference based cell type identification  428 

Cell type identification was performed using singleR[56]. which is an R/Bioconductor package 429 

to perform unbiased cell type recognition from single-cell RNA sequencing data, by using 430 

reference datasets of pure cell types to identify the cell type of individual single cells 431 

independently. Here we used the dataset from Darmanis, Spyros, et al.[25] as reference dataset 432 

for cell type identification. Cells not recognized as either of the cell types (NAs) were removed 433 

from further analysis. 434 

Cell cycle trajectory inference 435 

 Cell cycle phase of the integrated datasets was inferred using the Tricycle R/Bioconductor 436 

package, which uses a fixed reference dataset to infer cell cycle phase of the test dataset[57]. 437 

Here, we used the reference dataset provided in tricycle with default parameters to infer cell 438 

cycle positions of cells in integrated data. The inferred positions were then project on to the 439 

UMAP for visualization. The estimated cell cycle position is bound between 0 and 2pi. The cycle 440 
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positions approximately relate to theta as: 0.25pi-1.75pi to G0/G1 stage, 0.5pi to start of S stage, 441 

pi to start of G2M stage and 1.5pi the middle of M stage. 442 

CNV analysis   443 

To compare the copy number variations between clusters and datasets, we used CONICSmat 444 

(Copy-Number Analysis in Single-Cell RNA-Sequencing from an expression matrix) R package 445 

which compares average gene expression of genes within a region to calculate the variance in 446 

copy number across samples[58]. Although reference data is not explicitly required, yet, for 447 

added certainty, we used normal brain expression matrix of 322 normal brain cells from 448 

Darmanis, Spyros, et al[25]. Analysis was done following the default protocol. 449 

Gene Ontology (GO) analysis 450 

Up to 50 (wherever possible) overexpressing genes for each cluster were analyzed for the 451 

enrichment of associated GO terms. Top 5 terms were selected based on fold change and 452 

represented graphically.  453 

Statistical analysis 454 

All data analysis was performed with R. Specific packages used are mentioned in the above 455 

sections. 456 

 457 

 458 

 459 

 460 

 461 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.472030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472030
http://creativecommons.org/licenses/by/4.0/


 462 

 463 

 464 

 465 

 466 

 467 

FIGURE LEGENDS 468 

 469 

Figure 1: Identification of Immune and neural cells clusters 470 

 (A) UMAP representation of clusters of all datasets. Immune cells are colored yellow; neural 471 

cells are colored blue, for GSE117891, blue represents transformed cluster, yellow-immune and 472 

green, neuronal-like. (B)  Bar plot showing cluster wise expression levels of immune cell 473 

markers, bars are color coded according to the clusters in A. (C) Bar plot showing expression 474 

levels of neuronal markers, bars are color coded according to clusters in A.(D) Bar plot showing 475 

expression levels of EGFR, bars are colored red. All expression values are log transformed. 476 

Figure 2: Cell type comparison of Adult and pediatric groups 477 

(A) UMAP representation of Adult and Pediatric groups. Clusters are numbered and color coded. 478 

(B) Violin plot of cluster wise expression distribution of cell cycle and neural cell type markers. 479 

(C) UMAP representation of expression distribution of markers for quiescence, proliferation and 480 

migration in adult and pediatric clusters. Color transition represents expression levels with high 481 

expression represented in deep blue. All expression values are log transformed. 482 
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Figure 3: Group wise comparison of identified cell types 483 

(A) Heat map of cluster wise expression comparison of markers for cell types in adult and 484 

pediatric groups. Cells with no strong matches are marked as NA. (B) Violin plot of top nine 485 

overexpressed genes in the cycling cells common to both adult and pediatric groups. (C) Violin 486 

plot of top eight overexpressed genes in the quiescent cells common to both adult and pediatric 487 

groups. (D) Patient sample wise composition of cell types in adult and pediatric groups. All 488 

expression values are log transformed. 489 

Figure 4: Group wise comparison of cycling and quiescent clusters 490 

(A) UMAP representation of integrated clustering of cycling and quiescent cells in Adult and 491 

Pediatric groups. Clusters are numbered and color coded. (B) UMAP representation of cell cycle 492 

status of the clusters from A. Theta values correspond cell cycle stages as follows: 0.25-1.75π ~ 493 

G0/G1 stage, 0.5π ~ start of S stage, π ~ start of G2M stage and 1.5π ~ middle of M stage. (C) 494 

Cluster wise composition of cycling quiescent populations in patient samples from adult and 495 

pediatric groups. 496 

Figure 5: Pathway enrichment and copy number variations in cycling and quiescent cells 497 

(A) Bar plots of top five biological processes enriched in cycling and quiescent clusters based on 498 

common overexpressed genes in adult and pediatric groups. log fold enrichment of biological 499 

processes is represented as bars. (B) Representative images of inferred CNVs in cycling and 500 

quiescent cells from one pediatric patient sample (BT-1160) compared to normal cells.  501 
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 511 

LIST OF ABBRIVIATIONS 512 

 513 

GBM: Glioblastoma  514 

GSC: Glioblastoma stem cell 515 

NSC: Neural stem cell 516 

UMAP: Uniform Manifold Approximation and Projection 517 

cGSC: Cycling glioblastoma stem cell 518 

qGSC: Quiescent glioblastoma stem cell 519 

HMG: High mobility group protein 520 

hnRNP: Heterogeneous nuclear ribonucleoprotein 521 
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 544 

 545 

ADDITIONAL FILES AND SUPPLEMENTARY FIGURES  546 

 547 

Additional File 1: Group wise list of differentially expressed genes according to respective 548 

clusters for Figure 2 A.  549 

Additional File 2: Group wise list of differentially expressed genes and common genes according 550 

to respective clusters for Figure 4. 551 

Supplementary figure S1: Cell Cycle pseudotime representation of unclustered cycling and 552 

quiescent GSCs from adult and pediatric groups. 553 

Supplementary figure S2: Dot plot representation of top ten genes per cluster for figure 4. 554 

Supplementary figure S: CNV profiles of GSCs from pediatric group patient samples. 555 

 556 
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