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Abstract 11 
Ocular accommodation is the process of adjusting the eye’s crystalline lens so as to bring the 12 

retinal image into sharp focus. The major stimulus to accommodation is therefore retinal 13 

defocus, and in essence, the job of accommodative control is to send a signal to the ciliary 14 

muscle which will minimise the magnitude of defocus. In this paper, we first provide a tutorial 15 

introduction to control theory to aid vision scientists without this background. We then present 16 

a unified model of accommodative control that explains properties of the accommodative 17 

response for a wide range of accommodative stimuli. Following previous work, we conclude 18 

that most aspects of accommodation are well explained by dual integral control, with a “fast” 19 

or “phasic” integrator enabling response to rapid changes in demand, which hands over control 20 

to a “slow” or “tonic” integrator which maintains the response to steady demand. Control is 21 

complicated by the sensorimotor latencies within the system, which delay both information 22 

about defocus and the accommodation changes made in response, and by the sluggish response 23 

of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the 24 

system predicts the delayed sensory consequences of its own motor actions. For the first time, 25 

we show that critically-damped dual integral control with a Smith predictor accounts for 26 

adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In 27 

addition, we propose a novel proportional-control signal to account for the power spectrum of 28 

accommodative microfluctuations during steady fixation, which may be important in hunting 29 

for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency 30 

input. Complete Matlab/Simulink code implementing the model is provided at 31 

https://doi.org/10.25405/data.ncl.14945550. 32 
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 33 

Introduction 34 
Accommodation refers to the ability of the eye to change its focus between near and far 35 

distances, so as to ensure that images remain in sharp focus at the fovea across a wide range of 36 

object distances. This is achieved by changes in the convexity of the intra-ocular lens, brought 37 

about by contraction of the ciliary muscle (Figure 1).  To focus on distant objects, the ciliary 38 

muscle is relaxed, the lens curvature and thus its optical power is minimal; to focus on near 39 

objects, the ciliary muscle contracts, the lens curvature increases and so does its optical power. 40 

Accommodation is usually controlled by the brain as an unconscious reflexive process.   41 

 42 

 43 

 44 
Figure 1. (A) Accommodating on a distant object. When the ciliary muscle is slack, tension in the suspensory zonules is released 45 
and the intra-ocular crystalline lens flattens, enabling distant objects to appear in focus on the retina (for an emmetropic 46 
eye). Light from a nearby object, such as shown, is therefore out of focus. (B) Accommodating on a nearby object. The ciliary 47 
muscle has contracted, increasing the curvature of the lens (blue arrows) in order to bring nearby objects into focus. Not to 48 
scale. Image: Pearson Scott Foresman, public domain.  49 

  50 

A full understanding of this process requires a knowledge of (i) the optical and biomechanical 51 

properties of the eye; (ii) how the required accommodative response is derived from retinal and 52 

extra-retinal cues; and (iii) the neural signals controlling the ciliary muscle to bring about this 53 

response. In this paper, we concentrate on the third of these.   54 

 55 

In Section 1, we discuss the basic structure of models of neural control of accommodation. A 56 

key goal of this section is to provide a clear review of the subject, introducing concepts and 57 

summarizing previous work in a way which is accessible to vision scientists without a 58 
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background in classical control theory. Accordingly, this section acts as a tutorial to bring such 59 

readers up to speed.  60 

 61 

The core of accommodative control is a negative feedback loop attempting to null the error 62 

between accommodative demand, i.e. the accommodation at which the fixated object will be 63 

in sharp focus, and response, i.e. the accommodation actually adopted. We introduce the Smith 64 

predictor (Miall et al., 1993; Smith, 1957), which incorporates a forward model of the motor 65 

plant to predict the eye’s response to a motor command (and which might, in principle, also try 66 

to extrapolate the future sensory demand, though our model will not). Predictive models stand 67 

in contrast to models which do not take account of the sensory consequences of the body’s own 68 

motor actions, and which are thus vulnerable to instabilities caused by the finite latencies within 69 

the control system.  70 

 71 

Armed with this background, in Section 2 we discuss the evidence that accommodation uses a 72 

Smith predictor, and examine empirical constraints on the model parameters. We aim to 73 

produce a model which can account for behavior in both steady-state and smooth tracking, 74 

including accommodative lag/lead, adaptation, critical damping, and Bode plots of gain and 75 

phase. (Extending the model to reproduce dynamics of the step response (Bharadwaj & Schor, 76 

2005, 2006; Schor & Bharadwaj, 2006, 2004) will be covered in a subsequent paper.) 77 

 78 

This analysis leads us to conclude that accommodative control most likely incorporates a 79 

predictor, in order to avoid instabilities due to the sensorimotor latency. Again, by “predictor”, 80 

we mean a forward model to predict the effect of commanded accommodation changes on the 81 

visual input, not necessarily anything that predicts changes in accommodative demand.   82 

 83 

An oft-neglected component of accommodation models is the effect of noise in both closed-84 

loop and open-loop mode. Noise is manifest as small (~0.25D) microfluctuations in the steady-85 

state response (Campbell et al., 1959a; Kotulak & Schor, 1986b). We include a noise source, 86 

modelled as Gaussian noise added to the defocus signal. The presence of noise adds a further 87 

important constraint on model design.  Predictive models have an internal feedback loop via a 88 

virtual plant as well as an external feedback loop via the ocular plant. Thus they can end up 89 

amplifying internal noise when run in open-loop mode. This is not observed empirically; in 90 

fact, the power spectrum of accommodation tends to show resonances in closed-loop rather 91 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


4 

 

than open-loop mode. Avoiding open-loop resonances places further constraints on model 92 

parameters. 93 

 94 

We conclude that all constraints can be simultaneously satisfied, and that accommodation can 95 

be modelled successfully as a predictive system with integral control, but that there are fairly 96 

tight constraints on the gain and time-constant of the integral controller in order for the system 97 

to be consistent with empirical data for step and smooth tracking. Following previous work, 98 

we add a slow, second-order integral controller to account for adaptation effects, and show that 99 

care is required when using this dual-control with predictive models.  100 

 101 

Our inclusion of noise leads us to propose adding one further component to the model 102 

developed so far: namely a non-predictive proportional-control signal, clipped at low values. 103 

We originally rejected non-predictive control because it is prone to closed-loop resonances at 104 

particular frequencies. This is because the phase of the cycle where demand is high causes an 105 

increase in accommodation designed to null the defocus error, but – due to the latency – by the 106 

time the increase in accommodation has taken effect, the demand cycle has moved on to a 107 

phase where demand is low, and so the increase in accommodation in fact enhances the defocus 108 

error, causing a larger change in accommodation in the next cycle, and so on. We can limit the 109 

destabilizing effect of this signal by making it saturate at low values. This ensures that it has 110 

little influence on accommodation in general, which remains dominated by the predictive 111 

integral control discussed above. However, the closed-loop resonance associated with non-112 

predictive control remains detectable for small changes in demand. This amplifies noise within 113 

particular bandwidths, and means that the microfluctuations in the steady-state response show 114 

a peak at frequencies just over 1Hz, as observed. Opening the loop cuts the feedback pathway 115 

generating the resonance, explaining why this peak in the microfluctuation power spectrum is 116 

much less prominent in open-loop mode. The saturating proportional signal also accounts for 117 

the non-linear resonance observed when accommodation tracks low-amplitude – but not high-118 

amplitude – sinusoidal oscillations in demand.    119 

 120 

Putting these different components together results in a model where accommodation is 121 

controlled by the sum of four separate neural signals. The model has a total of ten parameters 122 

(Table 2), most of which are quite tightly constrained by the data. In Section 3, we present 123 
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simulation results demonstrating that this model can account simultaneously for a wide range 124 

of observations.  125 

 126 

 127 

 128 

Methods 129 

Accommodation as a linear, time-invariant negative feedback control system 130 
 131 

“A complex system that works is invariably found to have evolved from a simple system that 132 

worked. A complex system designed from scratch never works and cannot be patched up to 133 

make it work. You have to start over with a working simple system.” – Gall’s Law (Gall, 1977). 134 

 135 

In the spirit of Gall’s Law, we begin with the simplest possible conceptual model of 136 

accommodation (Figure 2). Viewed as a whole, the model has one input, accommodative 137 

demand, corresponding to the vergence of light rays from the object we wish to look at. This 138 

is measured in diopters; the demand in diopters corresponds to the reciprocal of the distance in 139 

metres from the eye. For an infinitely far object, the demand is 0D; for an object at 50cm, the 140 

demand is 2D.  141 

 142 

The model also has one output, ocular accommodation. When the eye is correctly 143 

accommodated, the accommodation will be equal to the demand so that the image is in focus 144 

on the posterior receptor layer of the retina. Defocus is the difference between the 145 

accommodative demand and the ocular accommodation, all measured in diopters. It acts as an 146 

error signal to the model. As discussed in the Introduction, we assume that defocus is a single, 147 

signed value which is somehow computed by the visual system from the retinal image (e.g. 148 

using blur, higher-order aberrations, longitudinal chromatic aberration etc (Burge & Geisler, 149 

2011; Cholewiak et al., 2018; Fincham, 1951; Kruger et al., 1993; Seidemann & Schaeffel, 150 

2002; Wilson et al., 2002)) and represented as a neural error signal; how this is achieved is 151 

beyond the scope of this paper. In our sign convention, positive defocus error means that the 152 

eye is not accommodating enough,  i.e. the eye is focusing on a point more distant than the 153 

object of interest, so the ocular image is focused behind the retina. Positive defocus error should 154 

therefore stimulate an increase of accommodation. The accommodative control system takes 155 

the defocus error as input and uses it to compute a neural control signal (Figure 2). This neural 156 
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signal is then fed into the ocular plant, meaning the ciliary muscle, lens and other components. 157 

Changes in the neural signal thus change the ocular accommodation, which in turn affects the 158 

defocus error (since defocus is demand minus accommodation). The accommodative control 159 

system is designed to adjust accommodation so as to minimise the defocus error signal (Toates, 160 

1972). Thus, this is a negative feedback system.  161 

 162 

In any negative feedback system, one faces the question of how to choose the control signal so 163 

as to minimize the error. One obvious form of error correction is to make the corrective signal 164 

proportional to the error. For example, a very simple form of automotive cruise control might 165 

make acceleration proportional to the difference between the current and the desired speed. 166 

Other widely-used possibilities are to integrate the error over time, or to anticipate changes by 167 

including a term scaling with the derivative. Together, control systems of this type are called 168 

PID (proportional-integral-derivative) controllers. 169 

 170 

In reality, of course, defocus is not the only cue to accommodation (Heath, 1956b; Maddox, 171 

1893). One additional component that we discuss below and include in our models is the 172 

system’s bias towards a particular baseline or resting accommodation (see (Rosenfield et al., 173 

1993a) for a review). Factors which for simplicity we neglect in this paper include pictorial 174 

cues to distance, sensed proximity and crosslinks from the vergence system. However, defocus 175 

is the only cue which is itself altered by accommodation, and thus the cue intrinsic to the 176 

negative feedback loop.  177 

 178 

 179 
 180 
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Figure 2. Conceptual model of accommodation. All accommodative models in the literature fit into this basic schematic. There 181 
is a feedback loop, whereby the output (accommodation) affects the input to the control system. The blocks labelled 182 
Accommodative Control System and Ocular Plant are shown here as “black boxes” which take inputs and yield outputs, 183 
without showing how the output is computed. The input to the overall system is the accommodative demand, reflecting the 184 
distance of the fixated object, and the output is the ocular accommodation, i.e. where the eye is focused. Defocus error is the 185 
difference between these, demand minus accommodation. 186 

 187 

 188 

Modelling neural signals as if they were in diopters 189 
In this initial part of the paper we will keep the discussion as general as possible, without 190 

committing to a particular model of the Ocular Plant or Accommodative Control System blocks 191 

shown in Figure 2. However, one detail is worth noting. Without loss of generality we will set 192 

the overall gain of the plant to 1, meaning that it passes a constant signal unchanged. In reality, 193 

the neural signal is encoded in spikes per second, and the output of the ocular plant is 194 

accommodation in diopters. There must therefore be a gain or conversion factor within the 195 

neural signal which converts spikes per second into diopters, taking into account the 196 

biomechanical gain of the plant (Gamlin et al., 1994) . Without loss of generality, we can fold 197 

this conversion factor into our neural signals. Thus by setting the plant gain to 1, we represent 198 

all the neural signals in the model as if they were diopters. This makes them particularly simple 199 

to interpret. 200 

 201 

Closed-loop versus open-loop  202 
The model shown in Figure 2 is “closed-loop”: that is, the input to the accommodative control 203 

system (defocus error) is affected by its output (ocular accommodation). As discussed, this 204 

forms a negative feedback loop, in which increases in defocus error stimulate changes in 205 

accommodation that in turn reduce defocus error.  206 

 207 

Figure 3 shows the equivalent open-loop system, in which the output of the system has no 208 

effect on its defocus error. It might seem impossible to “cut the wire” in this way in the living 209 

eye, but in fact all that is required to examine the open-loop mode is to make the optical error 210 

signal independent of the accommodative response. There are two main ways in which this can 211 

be done. First, by measuring accommodation and optically adding the current accommodation 212 

state onto the current input demand, as shown by the red text in Figure 4. The eye’s own optics 213 

then effectively removes accommodation, so that the error signal forming the input to the visual 214 

system is simply the demand applied by the experimenter, independent of the accommodative 215 
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response. A positive non-zero open-loop error signal continues to stimulate increases of the 216 

accommodation response until it reaches saturation, reminiscent of a dog chasing its tail.   217 

 218 

Alternatively, the optical error signal can be set to zero by using a pinhole pupil. Through small 219 

pinholes, objects appear slightly blurred due to diffraction, but critically this blur is virtually 220 

independent of the stimulus accommodative demand or the ocular accommodation. Pinholes 221 

do not cause a “dog chasing tail” accommodative response, but rather accommodation tends to 222 

assume its resting state. This suggests that the visual system experiences images seen through 223 

pinholes as having zero defocus. Thus, viewing through pinholes is a special case of open-loop 224 

in which the input is effectively clamped to zero regardless of output. 225 

 226 

 227 
Figure 3. An open-loop system: the inputs to the control system are independent of its outputs. 228 

 229 

   230 

 231 
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Figure 4. Accommodation driven in open-loop mode by adding the measured accommodation onto the input demand (red). 232 
The signal labelled “accommodation (ocular)” is the actual accommodation state of the eye, which is, as always, subtracted 233 
optically in the eye to yield defocus.  The signal labelled “accommodation (measured)” is the value measured by the 234 
experimenter, which is artificially added onto the original demand signal at the red summation block. Ideally, the measured 235 
accommodation should be identical to the actual accommodation, and so the ocular accommodation is perfectly cancelled 236 
out by the addition of the measured accommodation. Thus, the error signal input to the block labelled Accommodative Control 237 
System remains equal to the applied demand, regardless of the accommodative response. This system is therefore equivalent 238 
to the simpler one shown in Figure 3 and is so operated in open-loop mode. Effectively, the red measured accommodation 239 
signal “cuts the loop” represented by the ocular accommodation. In this figure, the blue line separates signals which are 240 
outside the head and thus accessible for non-invasive experimental manipulation (the original demand and the measured 241 
accommodation signal which is added onto it) from signals which are in the eye/brain and thus not easily manipulable.   242 

 243 

 244 

Primer on control system theory 245 
At this point, we note that vision scientists may not be familiar with the classical control 246 

systems approach taken in this paper. This section aims to provide a bare-bones introduction 247 

to enable such readers to follow subsequent sections. Table 1 provides a reference for all the 248 

symbols used throughout the paper. 249 

 250 

Linear time-invariant (LTI) systems and the Laplace domain 251 
Linear systems are those whose outputs for a linear combination of inputs are the same as a 252 

linear combination of individual responses to those inputs. For example, in Figure 2, if the 253 

system were linear, then if demand timecourse d1(t) elicited accommodation response a1(t), 254 

and demand d2(t) elicited a2(t), the response to a new demand made up of a weighted sum of 255 

these two timecourses, w1d1(t)+w2d2(t) would be w1a1(t)+w2a2(t). A time-invariant system is 256 

one where the same input, delayed by a time T, will always elicit the same response, also 257 

delayed by a time T. Thus if demand d1(t) elicited accommodation response a1(t), demand d1(t-258 

T) would elicit accommodation response a1(t-T). 259 

 260 

Where a system is both linear and time-invariant (LTI), its response can be analysed using 261 

Laplace transforms of the variables. The Laplace transform turns integral and differential 262 

equations into polynomial equations which are much easier to solve.  Time-domain functions 263 

are converted into Laplace-domain functions of a complex frequency variable s. We assume 264 

that all signals are zero for times before t=0, and write the Laplace transform of a signal f(t) as 265 

F(s), where  266 
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  267 

𝐹𝐹(𝑠𝑠) = � 𝑑𝑑𝑑𝑑 
∞

0
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠 268 

Equation 1 269 

We will adopt the convention where when a lower-case variable represents a function of time 270 

t, the corresponding upper-case denotes its Laplace transform as a function of s. The Laplace 271 

transform is closely related to the Fourier transform with which vision scientists are typically 272 

more familiar, with s representing a complex version of angular temporal frequency: s=jω 273 

(where we use j for the square root of -1 throughout). 274 

 275 

In a circuit diagram like Figure 2, the effect of an LTI block is simply to reweight the amplitude, 276 

and/or shift the phase, of each frequency in the input. This means that each LTI block can be 277 

written simply in terms of its complex transfer function H(s). As discussed in more detail 278 

below, a transfer function H(s) is a kind of gain, since it is the ratio of the output to the input, 279 

for each frequency s. For example, consider a transport delay block, whose effect is to delay 280 

the input signal by a latency T, and which thus shifts the phase of each frequency. If the input 281 

signal is i(t), the output after delay is o(t) = i(t-T). Substituting this into Equation 1, we find 282 

that  283 

𝑂𝑂(𝑠𝑠) = � 𝑑𝑑𝑑𝑑 
∞

0
𝑜𝑜(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠 = � 𝑑𝑑𝑑𝑑 

∞

0
𝑖𝑖(𝑡𝑡 − 𝑇𝑇)𝑒𝑒−𝑠𝑠𝑠𝑠 = � 𝑑𝑑𝑑𝑑 

∞

−𝑇𝑇
𝑖𝑖(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠 = 𝑒𝑒−𝑠𝑠𝑠𝑠𝐼𝐼(𝑠𝑠) 284 

Equation 2 285 

where we used the fact that i(t)=0 for t<0. Thus, the transfer function of a transport delay block 286 

is H(s)=exp(-sT).  287 

 288 

In LTI systems, one can do algebra on the Laplace transforms in the usual way. The transfer 289 

function for several LTI systems in parallel is the sum of the individual transfer functions, 290 

while the transfer function for several LTI systems in series is the product of the transfer 291 

functions for the individual systems.  292 

 293 

A mathematical trick to handle rest focus 294 
When viewing through pinholes, although the demand is zero, accommodation tends not to be 295 

zero but to converge on a “rest focus”, aRF, generally of around 1.4D (Leibowitz & Owens, 296 

1978; Rosenfield et al., 1993b). A similar default focus is also observed in darkness. To account 297 
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for this, we assume that the accommodative control system adds onto the signal computed from 298 

defocus a constant “bias” signal. Because we have normalized neural signals to be expressed 299 

in diopters, setting this bias signal equal to the rest focus ensures that accommodation returns 300 

to the rest focus if the defocus error is clamped at zero.   301 

 302 

This bias signal leads to a small complication, because it technically violates the assumption 303 

that all signals are zero for t<0. To handle this, we express both accommodation and demand 304 

relative to the rest focus. We define A(s) to be the Laplace transform, not of accommodation 305 

itself, but of accommodation relative to rest focus, a(t)-aRF. Similarly D(s) is the Laplace 306 

transform of demand relative to rest focus, d(t)-aRF. With this trick, we can then analyse the 307 

system in the Laplace domain as if there were no bias signal (aRF=0), and at the end simply add 308 

aRF back on to demand and accommodation when we move back to the time domain. All the 309 

analyses in this paper use this approach. 310 

 311 

Open- and closed-loop transfer functions 312 
In Figure 3, where accommodation is driven in open-loop mode, we have 313 

𝐴𝐴(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐵𝐵(𝑠𝑠)𝐷𝐷(𝑠𝑠) 314 

where B(s) is the transfer function representing the brain’s accommodative control system and 315 

P(s) that representing the ocular plant. As described in the previous section, A(s) and D(s) are 316 

the Laplace transforms of accommodation and demand relative to rest focus. The open-loop 317 

transfer function relating output A(s) (accommodation) to input D(s) (demand) is thus  318 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) =
𝐴𝐴(𝑠𝑠)
𝐷𝐷(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐵𝐵(𝑠𝑠) 319 

Equation 3 320 

 321 

 322 

In the closed-loop mode shown in Figure 2, the input to the accommodative control system is 323 

defocus error, E(s) = D(s)-A(s). We therefore now have 324 

𝐴𝐴(𝑠𝑠) = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠)[𝐷𝐷(𝑠𝑠) − 𝐴𝐴(𝑠𝑠)] 325 

and thus derive the closed-loop transfer function:  326 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) =
𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠)

1 + 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) 327 

Equation 4 328 
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where 329 

𝐴𝐴(𝑠𝑠) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)𝐷𝐷(𝑠𝑠) 330 

This relationship between the open- and closed-loop transfer functions is a standard result for 331 

a feedback loop like the on e in Figure 2. 332 

 333 

Steady-state response 334 
LTI theory shows that the steady-state response is obtained by evaluating the system at s=0 335 

(zero frequency). So, if we apply a constant demand dss in closed-loop mode, we have 336 

𝐴𝐴(0) = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0)𝐷𝐷(0) 337 
Equation 5 338 

where D(0)=dss-aRF and A(0)=ass-aRF (recalling that accommodation and demand are defined 339 

relative to rest focus aRF). From Equation 4, we can write 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0) in terms of 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(0). It 340 

will be convenient to introduce the notation Gopen for Hopen(0), i.e. the open-loop steady-state 341 

gain of the system. Putting this together with Equation 4 and Equation 5, we find that 342 

accommodation will eventually be   343 

𝑎𝑎𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑅𝑅𝑅𝑅 +
𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1 + 𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
(𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑅𝑅𝑅𝑅) 344 

Equation 6 345 

The steady-state defocus error is   346 

𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑠𝑠𝑠𝑠 =
𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑅𝑅𝑅𝑅
1 + 𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 347 

Equation 7 348 

Equation 7 shows that – regardless of the control system or plant – the defocus error will be 349 

zero when the demand is equal to the rest focus. This is natural enough, since the rest focus is 350 

the value to which the system is biased. 351 

 352 

However, for other demands, the steady-state error is not zero. When the demand is nearer than 353 

the rest focus, the accommodative response remains further than the demand, a situation 354 

referred to as accommodative lag. Conversely when demand is further than rest, 355 

accommodation is nearer than demand; this is accommodative lead.  356 

 357 

Importantly, the amount of the error depends on the steady-state open-loop gain Gopen. This 358 

demonstrates an important property of negative-feedback systems which attempt to minimise 359 
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error: small error requires high open-loop gain. Since we have set the gain of the plant to 1 360 

(without loss of generality, as noted above), the gain Gopen is set entirely by the brain’s 361 

accommodative control system. Empirically, accommodation reaches around 80%-90% of the 362 

demand when the demand is far from the rest focus. From Equation 4, we have 363 

𝑎𝑎𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑅𝑅𝑅𝑅
𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑅𝑅𝑅𝑅

=
𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1 + 𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 364 

so the observation that accommodation is around 80-90% of demand implies that 365 

Gopen/(1+Gopen) is around 0.8-0.9, and in turn that Gopen must be in the range 4-9. 366 

 367 

Gain and phase of response to sinusoidal inputs 368 
A property of any LTI system is that (after initial onset transients have died away) its response 369 

to a sinusoidal input is a sinusoidal output, with a gain and phase reflecting the transfer function 370 

of the system. Specifically, if the closed-loop transfer function is 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠), then if 371 

accommodative demand is a sinusoidal function of time, the accommodative response will also 372 

be a sinusoid with the same temporal frequency f. The amplitude of the response will be the 373 

amplitude of the demand multiplied by the gain at that frequency, g(f), and the phase will be 374 

delayed by φ(f). We will use lower-case g(f) to denote the gain of a system at a particular 375 

temporal frequency f, and upper-case G=g(0) to denote the steady-state gain, as we did above 376 

for Gopen. According to a standard result of LTI theory, the gain and phase-delay of an LTI 377 

system at frequency f can be obtained from the complex number represented by its transfer 378 

function H(s) evaluated at s=2πjf. The gain g(f) is the magnitude of the complex number 379 

H(2πjf) and the phase-delay φ(f) is its phase. 380 

 381 

Sometimes below for brevity we will refer to “the gain” of an LTI operator, without specifying 382 

a frequency. In this case, we mean its steady-state gain. For example, when we refer to “the 383 

gain” of a low-pass filter, we mean the ratio of its steady-state output to a constant input. 384 

 385 

Sensorimotor latencies: a problem for control 386 
These preliminaries out of the way, we now consider different possibilities for the contents of 387 

the block labelled Accommodative Control System in Figure 2. We begin by expanding this 388 

block as shown in Figure 5. We now explicitly include the rest focus signal discussed above. 389 

But critically, Figure 5 now also shows the system’s latency, which we have divided into two 390 

parts. The first is an afferent-sensory latency, representing the time taken for information about 391 

the retinal image to travel up the optic nerve and for the brain to compute a signed estimate of 392 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


14 

 

defocus, for example using longitudinal chromatic aberration or higher-order aberrations. The 393 

second is an efferent-motor latency, representing the time taken for the resultant neural signal 394 

to travel from the Edinger-Westphal nucleus down the IIIrd cranial nerve and reach the ciliary 395 

muscle. These have been estimated as Tsens~200ms and Tmot~100ms respectively (Gamlin et 396 

al., 1994; Schor et al., 1999; D. Wilson, 1973). In Figure 5, these latencies are shown within 397 

the Accommodative Control System, i.e. the brain, but the model functioning is unchanged if, 398 

for example, part of the motor latency occurs at a neuromuscular junction in the eye, or indeed 399 

if both latencies are merged into a single block. 400 

 401 

 402 

 403 
Figure 5. Expanding the conceptual model shown in Figure 2 so as to show the rest focus and sensorimotor latencies. This is 404 
the same circuit diagram, but the block labelled Accommodative Control System has here been expanded to explicitly show 405 
the constant bias signal accounting for the rest focus, and the latencies. There is a sensory latency Tsens before the retinal 406 
defocus signal reaches the controller, and a further motor latency Tmot before the neural signal reaches the plant.  407 

 408 

Latencies are a potentially serious problem for any control system. In the block diagram shown 409 

in Figure 5, we can see that the defocus error only becomes available to the block marked 410 

Controller after the sensory latency. The controller therefore operates not on e(t), but e(t-Tsens): 411 

the retinal defocus as it was a time Tsens ago. This in turn reflects the accommodation due to the 412 

neural signal sent up to a time Tsens+Tmot ago. Thus, the system suffers an overall latency of Tlat 413 

= Tsens +Tmot. This can easily lead to overshoots and “ringing”: oscillations in accommodation 414 

as the system is driven beyond the correct value by the out-of-date error signal. 415 

 416 
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Overshoots and ringing due to an out-of-date error signal would be seen with the response to 417 

step changes in demand, but in fact the second-order dynamics already indicate that LTI models 418 

do not suffice to account for the response to large step changes; accommodative control seems 419 

to have special mechanisms for these which are beyond the scope of this paper (Bharadwaj & 420 

Schor, 2005, 2006; Schor & Bharadwaj, 2005, 2004). However, an out-of-date error signal 421 

would also affect the response to sinusoidal oscillations in demand which we are concentrating 422 

on here. 423 

 424 

Empirically, accommodation shows a low-pass response: gain is greatest in the steady-state, 425 

and decreases monotonically with temporal frequency (Charman & Heron, 2000; Krishnan et 426 

al., 1973; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965). However, it is 427 

challenging to achieve this with the circuit diagram shown in Figure 5 and a Controller block 428 

which is simply a PID controller. Because of the latency, the system can easily end up out of 429 

phase, so that the changes in accommodation actually enhance the defocus rather than reducing 430 

it, as intended. This shows up as resonances or local peaks in the gain function, making it non-431 

monotonic. This is not observed empirically. To avoid this, the controller must be more 432 

complex, as shown in Figure 6. 433 

 434 

Overcoming latencies with a predictive control system: the Smith Predictor 435 
The solution seems to be that the visual system actually bases its neural control not on the 436 

currently available sensed value of retinal defocus, but on its internal prediction of the future 437 

retinal defocus. That is, whereas in Figure 5 the controller operates on the sensed defocus, 438 

which due to the sensory latency actually represents defocus as it was some time in the past, in 439 

a predictive model the controller operates on the fpredicted future defocus (Smith, 1957). 440 

Figure 6 shows how Figure 5 can be modified so that the input to the controller is predicted 441 

future defocus. Defocus is the difference between the stimulus accommodative demand and the 442 

ocular accommodation, so predicting future defocus requires a prediction both of demand and 443 

accommodation.  444 

 445 

The brain is in principle able to predict accommodation perfectly up to future times less than 446 

the motor latency, simply based on the signals it has already sent to the accommodative plant. 447 

(Campbell & Westheimer, 1960; Hung et al., 2002; Krishnan et al., 1973; Schor & Bharadwaj, 448 

2004; Stark et al., 1965; F. Sun et al., 1989) To do this, the visual system must effectively have 449 

its own internal model of the ocular plant, represented by the Virtual Plant block in Figure 6. 450 
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Such internal models are referred to as forward models in control systems theory. We assume 451 

that the motor latency Tmot largely represents delays in transmitting the control signal from the 452 

brain to the eye. We assume that the virtual plant is located in the brain close to where the  453 

neural control signal is generated, and thus has access to this signal with negligible delay. 454 

Accordingly, the output of the virtual plant is predicted future accommodation, i.e. the value 455 

that ocular accommodation will have at a time Tmot in advance of the present. We write this 456 

predicted future accommodation as â(t+Tmot): the predicted accommodation at a time Tmot in 457 

the future, where the circumflex indicates that this is an estimate of the future accommodation. 458 

Since the accommodation up to a time Tmot into the future is controlled by neural signals already 459 

sent by the brain, this estimate can in principle be perfect. It should be affected only by noise, 460 

and by any inaccuracies in the virtual plant as a model of the ocular plant. In the model we 461 

present here, neither of these apply and so the prediction of future accommodation is indeed 462 

perfect. 463 

 464 

  465 

 466 
Figure 6. Predictive control. Compare with Figure 5: the Controller block has been replaced with a more complex system 467 
including two predictive blocks (green) as well as the original Controller block (yellow). The prediction helps avoid instability 468 
due to the sensorimotor latencies. To predict accommodation, the model includes a Virtual Plant block (forward model) to 469 
compute what accommodation will be a time Tmot in the future, i.e. after the motor latency. If the forward model is accurate, 470 
this can in principle predict accommodation perfectly up to t+Tmot, since accommodation is under the system’s own control. 471 
To predict demand at time Tmot into the future, the model uses a Demand Predictor block. This requires extrapolating demand 472 
at time Tlat=Tsens+Tmot beyond the last available estimate. This is unlikely to be entirely accurate, since demand can reflect 473 
changes in the outside world, beyond the system’s control. Orange labels indicate locations referred to in the text. 474 

 475 
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Predicting stimulus demand is more challenging, since in general this reflects the motion of 476 

objects in the outside world. Nevertheless, several studies (Campbell & Westheimer, 1960; 477 

Charman & Heron, 2000; Krishnan et al., 1973; Phillips et al., 1972; Stark et al., 1965) have 478 

suggested that the accommodation system, like other motor systems, may be capable of 479 

predicting sufficiently regular input. For example, if the demand is a square wave, jumping 480 

between two values with a constant period, accommodation develops a very short latency or 481 

even changes in anticipation (Krishnan et al., 1973). How or whether this prediction is achieved 482 

is beyond the scope of this paper; it may be performed by the cerebellum (Ohtsuka & Sawa, 483 

1997; Popa & Ebner, 2019) or it may not actually occur (Águila-Carrasco & Marín-Franch, 484 

2021; Otero et al., 2019). The different possibilities can be modelled with the Demand 485 

Predictor block (Figure 6). As will become clear below, the Demand Predictor block takes as 486 

its input what demand is estimated to have been at time Tsens in the past, 𝑑̂𝑑(𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), and gives 487 

as output what it estimates demand will be at time Tmot in the future, 𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). That is, it 488 

needs to extrapolate its input into the future by a time corresponding to the entire sensorimotor 489 

latency, Tlat=Tmot+Tsens . In this paper, our model Demand Predictor block will simply pass its 490 

input on unchanged, effectively assuming that the demand will stay at its current value. A future 491 

model could incorporate a more elaborate form of prediction, e.g. taking account of stimulus 492 

periodicity, but that is beyond the scope of this paper. 493 

 494 

Having introduced the key elements of the predictive model – the virtual plant and the demand 495 

predictor – we now discuss how it works.  To help with this, we have annotated the signals in 496 

Figure 6 and marked some reference points with orange letters. Let’s start at A with the output 497 

of the virtual plant. As we saw above, this represents the brain’s prediction of what ocular 498 

accommodation will be at time Tmot in the future:  𝑎𝑎�(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). Our model brain uses this 499 

predicted future accommodation in two ways. First (B), the model brain delays this predicted-500 

accommodation signal by the total sensorimotor latency to obtain â(t-Tsens), an estimate of what 501 

the ocular accommodation was at a time Tsens in the past. Thus, the predictive model actually 502 

uses an internal estimate of past accommodation as well as of future accommodation. The point 503 

of doing this is to match the latency of the defocus signal. The input to the whole system is 504 

accommodative demand, d(t) (label D). In the eye (label E), the ocular accommodation a(t) is 505 

optically subtracted from d(t) to yield the error signal e(t), the defocus at time t. Ideally, this is 506 

what the accommodation control should be based on, but due to the sensory latency Tsens, the 507 

brain only has access to the delayed signal, e(t-Tsens), representing the defocus at a time Tsens 508 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


18 

 

ago. At the signal combination labelled C, the brain adds its estimate of past accommodation, 509 

â(t-Tsens), back onto this delayed defocus signal e(t-Tsens), in order to obtain an estimate of what 510 

the demand was at a time Tsens in the past: 𝑑̂𝑑(𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑒𝑒(𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑎𝑎�(𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). This 511 

demand signal is fed into the Demand Predictor block, which uses it to make a guess at what 512 

the demand will be at a time Tmot in the future:  𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) (label F).  513 

 514 

Now, the brain makes its second use of predicted future ocular accommodation, this time 515 

without applying any delay. At the signal combination labelled G, it subtracts the predicted 516 

accommodation 𝑎𝑎�(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) from the predicted demand 𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) to obtain the predicted 517 

future defocus: 𝑒̂𝑒(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)-𝑎𝑎�(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). This predicted future defocus is 518 

what is fed into the yellow Controller block and used to compute the neural control signal 519 

driving accommodation. It is this use of predicted future defocus which makes this a predictive 520 

model, as compared to the model shown in Figure 5.  521 

 522 

As noted above, a constant bias is added on to the output of the controller, which accounts for 523 

the non-zero resting focus. We call the result m(t) (label H). This is the actual motor signal sent 524 

to the ocular plant, with a latency Tmot, which results in the ocular accommodation a(t) (label 525 

I). An efference copy of the same motor signal is also sent to be the input of the virtual plant. 526 

The output of the virtual plant is, of course, the predicted future accommodation that we began 527 

with (A), so we have now followed the signals around the whole of the inner loop. 528 

 529 

In summary, then, although the input to the accommodative control system as a whole is the 530 

current optical defocus (Figure 2), in a predictive model the input to the accommodative 531 

controller itself is the predicted future defocus. With this modification, PID-type controllers 532 

can now work well and avoid the instabilities associated with an out-of-date error signal.  533 

 534 

Simplified representation of the predictive control system 535 
If the virtual plant is a perfect simulation of the physical plant, the predictive control system 536 

shown in Figure 6 is mathematically equivalent to the much simpler form shown in Figure 7. 537 

This form can appear confusing, because it shows accommodation being subtracted from the 538 

stimulus demand after the sensory latency (even though some of the sensory delay represents 539 

the optic nerve and cortical processing) and before the motor latency (even though that 540 

represents processes before accommodation). It is important to remember that apparently “non-541 
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causal” model diagrams like Figure 7 are a shorthand representing physiological predictive 542 

models like Figure 6, for the case where the virtual plant model is perfect. The reader is invited 543 

to trace the signals around Figure 6 and Figure 7, and verify that provided â(t)=a(t), the same 544 

inputs are fed into the same blocks and so the results must be the same. This can facilitate 545 

mathematical analysis. 546 

 547 

 548 
Figure 7. Simplified version of the model shown in Figure 6. This “non-causal” model structure is not physiological and cannot 549 
be mapped onto “brain” and “eye” like the predictive physiological model in Figure 6. For example, here the single block 550 
labelled “Plant” is used to represent both the physical plant in the eye and the virtual plant modelled in the brain. However, 551 
as shown by the annotated signals, it is mathematically equivalent to the physiological model in Figure 6, provided that the 552 
Virtual Plant block is a perfect simulation of the Ocular Plant. 553 

 554 

Transfer function of the predictive control system 555 
The transfer function of this predictive model depends on the form of the demand predictor. 556 

We can distinguish two extreme cases: perfect vs “no change” prediction. 557 

(i) Perfect prediction  558 
It is helpful to consider the unattainable ideal case in which the Demand Predictor block 559 

perfectly predicts the demand at a time Tsens+Tmot beyond the last available information:  560 

𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑑𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) 561 

In this case, the closed-loop transfer function is  562 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) =

𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)
𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) + 1

 563 

Equation 8 564 

With perfect prediction, the sensorimotor latency has no effect at all on the gain or phase or 565 

indeed any other aspect of the response, since the perfect prediction annuls its effect.  566 

 567 
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(ii) “No change” prediction 568 
In many natural viewing situations, accommodative demand probably often changes rather 569 

little over the timescale of Tlat. Thus it may be relatively safe to adopt an attitude of “plus ça 570 

change, plus c’est la même chose” and assume that the demand at future time t+Tmot will be the 571 

same as it was at the past time t-Tsens . In this case, the demand predictor block simply passes 572 

through its input as output:  573 

𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑑𝑑(𝑡𝑡 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 574 
Equation 9 575 

In this case, the overall closed-loop transfer function is 576 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) =

𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙)
1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)

 577 

 578 
Equation 10 579 

This is the simplest possible form of prediction: assuming things will stay the same as they are 580 

right now. And yet interestingly, the gain is exactly the same as for perfect prediction. 581 

Mathematically, this is because latency appears only in the numerator of Equation 10, and thus 582 

does not affect the magnitude of the complex transfer function, �𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗𝑗𝑗)�, which is what 583 

controls the gain at a given frequency (see Table 3). This means that the prediction of 584 

accommodation performed by the virtual plant suffices to avoid instability due to the latency, 585 

even if the “prediction” of demand is simply to assume it remains constant. Similarly, we can 586 

see that the phase of the “no change” transfer function is equal to the phase of the “perfect 587 

prediction” transfer function, plus a term ωTlat reflecting the sensorimotor latency. In other 588 

words, the response of the “no change” predictive model to sinuosoids is exactly the same as 589 

the perfect predictive model, but delayed by the sensorimotor latency. This suggests that 590 

whereas predicting accommodation confers stability, the advantage of predicting demand is 591 

not stability, but shorter phase-delay and thus a more rapid response. 592 

 593 

 594 

A specific model of accommodative control 595 
So far we have deliberately kept the discussion very general, without committing to a particular 596 

choice of transfer function for either the ocular plant or the Controller block which converts 597 

defocus into a neural signal to the plant. In this section, we develop and justify a more specific 598 
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model of accommodative control. We discuss plausible assumptions and constraints on both 599 

the forms of these transfer functions, and their particular parameters. 600 

Ocular plant 601 
The ocular plant can be regarded at least roughly as a first-order leaky integrator or low-pass 602 

temporal filter (A. P. A. Beers & Van Der Heijde, 1994; A. P. Beers & van der Heijde, 1996; 603 

Ejiri et al., 1969). We therefore model the transfer function of the plant as  604 

𝑃𝑃(𝑠𝑠) =
1

1 + 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
 605 

Equation 11 606 

where empirically τplant is around 0.156s for young eyes (Schor & Bharadwaj, 2006).  As noted 607 

above, we can assume without loss of generality that the steady-state gain of the plant is 1. 608 

Controller 609 
We now come to a key decision: the choice of transfer function for the Controller, C(s). As 610 

noted above, in industrial control systems, controllers typically have proportional, integral and 611 

derivative (PID) terms, with transfer functions which scale as constant, 1/s or s respectively.   612 

We can rule out pure proportional control, since with P(s) as given in Equation 11, making 613 

C(s) constant means that the system tracks rapid sinusoidal oscillations far better than human 614 

accommodation. For example, C(s)=5 results in a realistic steady-state gain of 83% (Equation 615 

6),  but the gain remains >50% out to frequencies as high as 8Hz, far higher than observed (see 616 

Figure 8 below). Derivative terms do not affect steady-state error, but improve stability and 617 

avoid overshoot. They also enable rapid response to rapid changes. However, they can be 618 

problematic in the presence of noise. Previous work by Schor and Bharadwaj (Bharadwaj & 619 

Schor, 2006; Schor & Bharadwaj, 2006, 2004) suggests that the accommodative system has a 620 

distinct “pulse” mechanism for responding to sudden large changes in accommodation such as 621 

occur when we change from looking at a distant to a near object, which cannot be modelled by 622 

an LTI system and which are beyond the scope of this paper. Furthermore, many of the benefits 623 

of derivative control are already achieved by our use of a forward model to predict future 624 

demand. We therefore do not include a derivative term. This leaves us with the integral term. 625 

A pure integral controller has a transfer function proportional to 1/s, and thus infinite gain at 626 

s=0. This is desirable since it eliminates steady-state error, but as noted, the human 627 

accommodation does not seem to completely eliminate steady-state error. We can account for 628 

this by modelling the controller as a leaky integrator, following Krishnan and Stark (Krishnan 629 

& Stark, 1975): 630 
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𝐶𝐶(𝑠𝑠) =
𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

1 + 𝑠𝑠𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 631 

Equation 12 632 

where Gfast is the steady-state gain and τfast the time-constant. The subscript “fast” is to 633 

distinguish this from a slow integrator which we shall introduce below. A leaky integrator acts 634 

like a pure integral controller over short timescales (sτ>>1), and like a pure proportional 635 

controller over long timescales (sτ<<1), thus combining aspects of both. We noted above that 636 

accommodative lead/lag suggests the steady-state gain must be in the range 4-9. We somewhat 637 

arbitrarily chose Gfast=8. 638 

 639 

Gain for sinusoidal input: sub-critical damping 640 
With both the plant and the controller being leaky integrators, and with a predictive control 641 

system, the closed-loop gain is that of a damped harmonic oscillator (Equation 21, Appendix). 642 

The behaviour of this system can be summarised by its natural frequency and damping 643 

coefficient ζ, both of which depend on the parameters Gfast,τfast,τplant (Equation 22). If the 644 

damping coefficient ζ is too low, the maximum gain is observed for a non-zero resonance 645 

frequency, and can even exceed 1. This does not agree with empirical observations of 646 

accommodative response to sinewaves, which is low-pass (Charman & Heron, 2000; Kruger 647 

& Pola, 1986; Ohtsuka & Sawa, 1997; Stark et al., 1965); Figure 8A. This indicates that ζ is at 648 

least 1/√2 , not far below critical damping (ζ=1) (Labhishetty & Bobier, 2017). Saccades have 649 

a damping coefficient of around 0.7 (Bahill et al., 1975); systems with this value have minimum 650 

settling time, i.e. they reach and remain within 5% of their final value most rapidly. We show 651 

in the Appendix that obtaining ζ~1/√2 for a system with Gfast>>1 requires the time-constant of 652 

the fast controller to be 653 

 654 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 655 

Equation 13 656 

Thus, with τplant=0.156s and Gfast=8, τfast must be at least 2.5s. 657 

 658 

Phase for sinusoidal input: further evidence for predictive control  659 
Empirically, up to ~1Hz the phase delay of accommodation is very close to a linear function 660 

of frequency, indicating a constant latency Tdelay : φ = 2πfTdelay (Charman & Heron, 2000; 661 
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Heron et al., 1999; Kruger & Pola, 1986; Ohtsuka & Sawa, 1997; Wildt et al., 1974). The slope 662 

usually corresponds to a delay of ~0.5s (dashed lines in Figure 8BC), though there is 663 

considerable variability between studies. Because this is close to the sensorimotor latency 664 

inferred from the response to step changes, it is often therefore assumed that this phase slope 665 

must represent the sensorimotor latency. However, this is not necessarily the case. First, the 666 

damped second-order system formed by the ocular plant and the neural control imposes delays 667 

in addition to the sensorimotor latencies. Second, in Equation 8 we saw that if the brain predicts 668 

demand perfectly – at least theoretically possible for a regular stimulus like a sinewave – then 669 

its phase delay becomes independent of the sensorimotor latency. 670 

 671 

The time-constant of the fast integrator 672 
Thus, together the gain and phase response of accommodation to sinusoidal oscillations in 673 

demand place quite tight constraints on the time-constant of the fast integrator, τfast, given that 674 

the time-constant of the plant is a biomechanical given, and the gain of the fast integrator is 675 

already quite tightly constrained by the observed lead/lag following a change in demand. 676 

Figure 8 illustrates this by comparing the theoretical gain and phase with different values of 677 

τfast with empirical results from various subjects and studies. As noted, we can rule out τfast < 678 

2.5s because the gain is then too high at high frequencies. The gain data is probably best 679 

described by τfast = 4s (green lines), but this does not account for the phase data. τfast = 4s in the 680 

perfect-prediction model gives phases which match empirical data up to around 0.5Hz, but at 681 

higher frequencies, empirical phase continues to increase roughly linearly, implying a constant 682 

delay, whereas phase for the perfect prediction model asymptotes at 180o. Thus, we probably 683 

have to reject the perfect-prediction model (not surprising given its idealised nature). The no-684 

change prediction model is qualitatively in much better agreement with the phase data, but then 685 

τfast = 4s predicts larger phases than are observed. The purple line shows the curve with 686 

minimum settling time, τfast=2.5s which yields ζ~1/√2. This is in reasonable agreement with 687 

both gain and phase data, assuming simple no-change demand prediction, and we therefore 688 

adopt this value in the rest of the paper. 689 

 690 

 691 
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 692 

Figure 8. Constraints on the time-constant of the fast integrator. Coloured lines show the gain and phase predicted for a 693 
predictive model with leaky-integral control, Table 3, with P(s) given by Equation 11 with τplant=0.156s , and C(s) given by 694 
Equation 12 with Gfast=8 and different choices of τfast. The phase is shown for a model capable of predicting demand perfectly 695 
(B), or for the “no-change” model which simply assumes demand will continue at its instantaneous value. Symbols show 696 
empirical results from Kruger and Pola (1986), Ohtsuka and Sawa (1997), and Stark et al (1965). Code to generate this figure 697 
is in Fig_TimeConstraints.m. The dashed line in the phase plots corresponds to a constant latency of 0.5s, close to what is 698 
observed. 699 

 700 

Adaptation and dual control 701 
Another distinctive feature of accommodation is that it adapts the open-loop decay time course 702 

to resting position after prolonged exposure to the same demand. This can be revealed by using 703 

pinholes to place the system in open-loop mode. As we have seen, in this situation, 704 

accommodation relaxes back to the resting focus. After short periods of stimulation, this 705 

happens rapidly, in a few seconds. However, after long periods of exposure to a particular 706 

demand, the relaxation happens over a much longer time period, sometimes several minutes. 707 

This cannot be accounted for with the leaky-integral control proposed so far. However, it can 708 

be explained by positing a dual control system in which a fast, or phasic, neural integrator 709 

controls changes in response amplitude and a slow, or tonic, neural integrator maintains the 710 

response amplitude (Khosroyani & Hung, 2002; Schor, 1979a; Schor et al., 1986; F. C. Sun & 711 

Stark, 1990).  712 

 713 

The fast integrator is the one we have considered so far, which responds to error signals 714 

computed from negative feedback. The slow integrator responds to the activity of the fast 715 

neural integrator, and not directly to the error signal. As the name implies, the slow integrator 716 

has a long time constant, which means that it has little effect on the response to rapid changes 717 

in demand, so our previous discussion is not invalidated by its addition.  With this arrangement, 718 

the transfer function of the Controller becomes 719 
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 720 

𝐶𝐶(𝑠𝑠) =
𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑠𝑠𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 1
�1 +

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1

� 721 

Equation 14 722 

 723 

 724 

The steady-state open-loop gain of the system is therefore 725 

𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 726 
Equation 15 727 

Figure 9 shows the control system of Figure 5, modified to include this second, slow integrator, 728 

since it is easier to appreciate its operation in a non-predictive system. Suppose the system 729 

starts from rest, with demand and accommodation both equal to the rest focus, so that the 730 

defocus error and the outputs of the fast and slow integrators are both zero and the neural signal 731 

sent to the plant is simply the bias signal, maintaining it at the rest focus. Suppose the demand 732 

then makes a step change to a nearer value, d0. This in turn makes the defocus error non-zero, 733 

which begins to charge up the fast integrator. This increases the neural signal m(t) above the 734 

bias value, altering accommodation so as to reduce the error. It also begins to charge up the 735 

slow integrator. Thus, over short timescales, the neural signal controlling accommodation is 736 

set mainly by the output of the fast integrator. However, over long timescales, the slow 737 

integrator takes over. The ratio of their steady-state contributions is equal to the gain of the 738 

slow integrator (Schor, 1979b; Schor et al., 1986); for example, with our value Gslow=5, steady-739 

state accommodation is 83% due to the slow integrator and 17% due to the fast integrator. 740 

Now suppose that pinholes are applied, making the defocus error zero regardless of 741 

accommodation. In this non-predictive model, after a delay corresponding to the sensory 742 

latency, the signal entering the fast integrator instantaneously drops to zero, and the fast 743 

integrator begins to discharge. As the fast integrator discharges, accommodation drops rapidly, 744 

with a decay time corresponding to τfast. When the signal from the fast integrator has dropped 745 

far enough, the slow integrator begins to discharges as well, resulting in a second, slower decay 746 

of accommodation, with a time constant corresponding to τslow. Thus, after a long period of 747 

exposure, there is an initial rapid drop as the proportion of accommodation due to the fast 748 

integrator, initially 1/(Gslow+1), decays rapidly, but then a much longer decay as the dominant 749 

component due to the slow integrator decays slowly. 750 

 751 
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 752 

 753 
Figure 9. Non-predictive model incorporating dual (fast+slow) control. The slow integrator can be added to predictive models 754 
in the same way. 755 

 756 

With predictive control, there is an additional subtlety. In such systems, the fast integrator is 757 

driven not by retinal defocus directly, but by the estimated future defocus (Figure 6). This does 758 

not immediately drop to zero when pinholes are applied. When the system is made open-loop 759 

by setting d(t)=a(t), the input to the fast integrator becomes a(t-Tsens)-a(t+Tmot) for the no-760 

change prediction model. This becomes zero once accommodation has stabilised, but is finite 761 

while it decays. When the gain of the slow integrator is sufficiently large, this small error input 762 

is enough to keep the slow integrator high. This in turn keeps accommodation high and thus 763 

sustains the error signal. Accommodation creeps slowly down to the rest focus with a time-764 

constant which, counter-intuitively, can be much longer than any of the three time-constants of 765 

the system: τplant, τfast, τslow. This effect is independent of exposure duration, so cannot account 766 

for the adaptation which the slow integrator was introduced to explain. To avoid this effect and 767 

obtain a clear difference between short and long exposure durations, we have found that Gslow 768 

needs to be less than around 10. Here, we have set Gslow=5. 769 

The slow integrator also increases the overall steady-state gain and thus reduces the steady-770 

state error. Using Equation 15 and Equation 6, the steady-state accommodative response is771 

  772 

𝑎𝑎𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑅𝑅𝑅𝑅 +
𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1 + 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
(𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑅𝑅𝑅𝑅) 773 

Equation 16 774 
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where with Gfast=8, Gslow=5  the gain term is 0.98, compared to 0.89 with only the fast 775 

integrator. Thus, following a step-change in demand, the model response rises rapidly to around 776 

90% of the demand, and then over the next tens of second rises more slowly to approach the 777 

demand exactly. 778 

Microfluctuations and noise 779 
Accommodation is subject to fluctuations, often called microfluctuations although they are 780 

actually quite substantial at around ±0.5D, exceeding the depth of field  (Charman & Heron, 781 

1988, 2015). The source and purpose of these is unclear: they may represent neural noise, 782 

disturbances from the intraocular pulse, mechanical resonances within the ocular plant, 783 

deliberate attempts at “hunting” in order to find the best point of focus, and/or fluctuating input 784 

from the other influences on accommodation mentioned above (Charman & Heron, 1988, 785 

2015; Collins et al., 1995; Denieul, 1982; Gray et al., 1993b).  786 

 787 

The power spectrum of open-loop accommodation is roughly a straight line on log-log axes 788 

(Campbell et al., 1959b; Campbell & Westheimer, 1960; Stark et al., 1965), i.e. a power-law 789 

spectrum, P=1/fα. We model this by injecting white noise onto the defocus signal prior to input 790 

to the neural controllers (Figure 11). White noise has a flat power spectrum, but integration by 791 

the two integrators within the system (the neural controller and the plant) converts it to a power-792 

law spectrum, with an approximately Brownian (1/f2) spectrum.  793 

 794 

Noise has often been omitted from models of accommodative control, presumably with the 795 

rationale that once the correct noise-free response has been obtained, noise can always be added 796 

later to simulate microfluctuations. However, this approach is unwise, because noise in fact 797 

adds important constraints to the system. This is especially true with a predictive control 798 

system, which can easily end up amplifying noise in the open-loop condition. Referring to 799 

Figure 6, we see that a predictive control system actually contains not one but two feedback 800 

loops: one via the eyes, and one internal to the brain, incorporating the virtual plant. Operating 801 

in open-loop mode cuts the outer feedback loop, but leaves the internal feedback loop intact. 802 

Depending on the coefficients, internal noise can easily resonate within this loop, creating a 803 

situation where the power spectrum of open-loop accommodation has sharp peaks which do 804 

not occur in closed-loop mode, since the outer feedback loop suppresses them in its effort to 805 

keep the error zero. This is not observed empirically. The power of low frequencies does 806 

increase in open-loop mode (Charman & Heron, 2015; Gray et al., 1993b), since without an 807 
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error signal accommodation performs a random walk around the rest focus, whereas it is kept 808 

close to the demand in closed-loop mode. But we do not see an increase in the power of 809 

particular high-frequencies, as would occur if internal noise were resonating within the internal 810 

feedback loop.  811 

 812 

Fortunately, we find that the values we have already derived are consistent with these data. A 813 

more underdamped system –  say Gfast=15, τfast=2s, which puts the damping coefficient ζ at 0.5 814 

– does show unrealistic high-frequency resonances within the forward model feedback loop, 815 

but our sub-critically-damped parameters Gfast=8, τfast=2.5s, ζ=0.7 already suppress the open-816 

loop resonance.  817 

 818 

Explaining the closed-loop resonance seen for high frequencies at low amplitudes 819 
In fact, several workers have found evidence for a resonance in closed-loop but not open-loop 820 

mode. The first evidence comes from microfluctuations during steady fixation. Several workers 821 

have found that the power-spectrum of closed-loop accommodation has a peak at around 2Hz 822 

(Figure 10A). It is not always present, but when found is always more prominent in closed-823 

loop than open-loop accommodation. Although the location of this peak varies with heartrate, 824 

suggesting the pulse as a possible source interacting with blood volume of the ciliary body 825 

(Collins et al., 1995; Winn et al., 1990), the fact that it is higher in closed-loop conditions 826 

suggests that the source must be amplified by a neural resonance within the outer feedback 827 

loop.  828 

 829 

Furthermore, the same resonance is assumed to be responsible for another puzzling 830 

observation, relating to gain with sinusoidal stimuli. In our discussion around Figure 8, we 831 

emphasised the lowpass nature of the gain response. This is true at high amplitudes, but for 832 

low-amplitude oscillations in demand, the curves become non-monotonic, with an increase in 833 

gain at around 2Hz (Figure 10B). Ockham’s Razor suggests this reflects the same closed-loop 834 

resonance causing the ~2Hz peak in microfluctuations. However, the dependence on amplitude 835 

indicates that this resonance must be caused by a nonlinear mechanism, since for a linear 836 

system gain is independent of stimulus amplitude.  837 

 838 
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 839 
Figure 10. Evidence for a resonance at around 2Hz in accommodative control. (A) Figure 5 from Stark et al 1965 (Stark et al., 840 
1965), replotting empirical results from Campbell et al 1959 (Campbell et al., 1959b), showing the power spectrum of 841 
accommodation under closed-loop (solid) and open-loop (pinhole, dashed) conditions. (B) Empirical results from Figure 4 of 842 
Stark et al 1965, showing gain for sinusoidal oscillations of three different amplitudes (0.2D, 0.4D, 0.6D). Gain is expressed in 843 
decibels (left axis): 0dB corresponds to an amplitude gain of 1, -10dB to 0.32, -20dB to 0.1, -30 to 0.03.  844 

 845 

Resonances observed in closed- but not open-loop mode immediately suggest a control system 846 

lacking the predictor we have argued for so far. Non-predictive control is prone to closed-loop 847 

instabilities in systems with latencies, like accommodation. This occurs in the outer feedback 848 

loop via the eye, when the accommodation change designed to null out defocus arrives out of 849 

phase due to the latency and ends up enhancing the defocus which cause it. Predictive control 850 

avoids these closed-loop instabilities, but if the prediction is imperfect, it can be vulnerable to 851 

open-loop resonances due a similar effect occurring via the internal feedback loop driven by 852 

the efference copy. (For a mathematical justification of these statements, see the Appendix, 853 

specifically the discussion around Equation 17, Equation 18 and Equation 20.) 854 

 855 

Thus to explain both the power spectrum of microfluctuations, and the non-linear resonance in 856 

the response to sinusoidal demand, we postulate an additional signal controlling 857 

accommodation. This is proportional to small amplitudes of the current defocus, not the 858 

estimated future defocus, and is thus not predictive. (This signal is, however, included within 859 

the efferent copy used to estimate future defocus within the predictive control system.) Because 860 

this signal is non-predictive, it is prone to closed-loop instabilities. But for the same reason, it 861 

avoids open-loop resonance which can occur within a predictive system.  862 
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To prevent the closed-loop instabilities from catastrophically destabilizing the response, we 863 

clip this non-predictive signal at a low value, set to 0.15D in our model (i.e. signals larger than 864 

0.15D in magnitude are set to ±0.15D depending on their sign). This saturating value is chosen 865 

simply because it gives a reasonable match to empirical results. It is low enough to ensure that 866 

the signal does not change the behavior of the model in response to large changes in defocus. 867 

However, it is large enough that the signal still produces a visible high-frequency peak in the 868 

power spectrum of closed-loop microfluctuations and a high-frequency resonance in the 869 

response to low-amplitude sinusoids (see Results).   870 

This non-predictive saturating signal has other interesting effects on accommodation. Notably, 871 

it facilitates a rapid response to small step stimuli, because non-predictive proportional signals 872 

tend to react faster than predictive integral signals. For example, suppose demand suddenly 873 

increases by 0.1D, causing an 0.1D step-change in defocus. The non-predictive proportional 874 

control signal, with unit gain, requests the full 0.1D increase in accommodation. The fast 875 

integrator begins responding at the same time, but due to its integral nature, its response ramps 876 

up more gradually. Furthermore, because the non-predictive proportional signal uses the 877 

current sensed defocus, rather than the predicted future defocus, it stays requesting the full 878 

0.1D for at least 0.3s, until the sensorimotor latency has elapsed and the ocular plant starts to 879 

respond and thus reduces the sensed defocus. In contrast, input to the fast integrator is estimated 880 

future defocus, which begins to fall immediately based on the requested change to 881 

accommodation (the predictive control system assumes that demand will stay at the new value, 882 

but it predicts that defocus will fall because of the predicted accommodative response). So, the 883 

input to the fast integrator begins to fall immediately from its initial peak of 0.1D, whereas the 884 

input to the proportional controller stays at 0.1D until the sensorimotor latency has elapsed. 885 

Thus for small step-changes in defocus, the non-predictive proportional signal enables a larger, 886 

faster response. However, the saturation means that its effect is limited to small changes, with 887 

the predictive-integral control dominating the response to large changes. Dynamics of larger 888 

step responses are controlled with a pulse signal  (Bharadwaj & Schor, 2005, 2006; Schor & 889 

Bharadwaj, 2006, 2004) that will be added to this model in a subsequent paper.   890 

 891 

Depth of focus 892 
In principle, small enough changes in defocus that, given the eye’s optics, produce no 893 

significant change in the retinal image cannot drive accommodation. The smallest change in 894 
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defocus which produces a detectable change in accommodation is referred to as objective depth 895 

of focus. This is typically much smaller than the subjective depth of focus, i.e. the smallest 896 

change in defocus which produces a perceptible change in image quality (Kotulak & Schor, 897 

1986a; Udlam et al., 1968; Yao et al., 2010). Depth of focus is often modelled as a deadzone 898 

(e.g. (Schor, 1979b)): the defocus signal is set to zero unless it exceeds some threshold value 899 

corresponding to the objective depth of focus, say 0.2D. However, this approach has a number 900 

of drawbacks:  901 

(i) It can result in unrealistic jumps, where a small change in demand pushes the defocus above 902 

the threshold and thus elicits a disproportionately large response.  903 

(ii) It produces a hysteresis effect, whereby accommodative lead and lag can depend on how 904 

the demand is approached. For example, with a threshold of 0.2D, if the demand steps up from 905 

1D to 2D, the effective defocus becomes zero once accommodation reaches 1.8D, so we get a 906 

lag. But if demand steps down from 3D to 2D, effective defocus becomes zero once 907 

accommodation reaches 2.2D, so we get a lead. This hysteresis is not typically observed, except 908 

with extremely blurred images (Heath, 1956a) . 909 

(iii) It reduces the gain of the response to low-amplitude oscillations. For example, consider a 910 

slow oscillation ranging between 1D and 3D. Assume for simplicity that the closed-loop gain 911 

of the system is 1, so that in the absence of a deadzone, the response would track demand 912 

exactly. With a deadzone clipped at 0.2D, the response would range from 1.2D to 2.8D, 913 

reducing the gain to 0.8. With a lower-amplitude oscillation where demand ranged from 1.5D 914 

to 2.5D, the response would range from 1.7D to 2.3D, making the gain 0.6. With a still lower-915 

amplitude demand ranging from 1.7D to 2.3D, response would range from 1.9D to 2.1D, 916 

making the gain 0.3. Yet this decrease in gain with decreasing amplitude is not observed. In 917 

fact, accommodative gain tends to be smallest for high amplitudes, not for low amplitudes 918 

(Stark et al., 1965, p. 196). 919 

 920 

For all these reasons, we have chosen not to include a dedicated defocus deadzone in our model. 921 

The objective depth of focus is adequately accounted for by the white noise we have added to 922 

the defocus signal, which effectively swamps small changes.  923 

 924 

 925 

 926 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


32 

 

Simulink implementation and summary of the model 927 
Figure 11 shows the complete model as it appears in our Matlab Simulink implementation, 928 

incorporating all the elements discussed above. The model has two inputs: (1) “demand”, 929 

accommodative demand in diopters, and (2) “pinhole”, which conveys whether the eye is 930 

currently viewing through a pinhole or not. If pinholes are present, the defocus signal is set to 931 

zero; otherwise it is set to demand minus accommodation. The defocus signal has white noise 932 

added to it and is delayed by the sensory latency before reaching the “brain” module.  933 

 934 

Here, four signals are combined to produce a neural signal which is delayed by the motor 935 

latency before reaching the ocular plant. From top to bottom, these four signals are: (1) the 936 

constant bias signal, which sets the rest focus;  (2) the proportional signal, which is simply the 937 

noisy defocus signal clipped at ±0.15D; (3) the signal from the fast integrator, which is driven 938 

by the estimated future defocus; (4) the signal from the slow integrator, which is driven by the 939 

fast integrator. One final detail not mentioned so far is that the neural signal is thresholded at 940 

zero to ensure it is positive. This is visible in the diagram as the “saturation” block on the far 941 

right, immediately after the four signals are combined. This accounts for the fact that the ciliary 942 

muscle can only be commanded to contract, making the lens more convergent, or allowed to 943 

relax. Negative values would effectively command the ocular lens to adopt a divergent form, 944 

which is physically impossible. 945 

 946 

As well as being sent down cranial nerve III to the eye, an efferent copy of the neural signal is 947 

directed to a virtual plant within the brain, which predicts the future accommodation. This in 948 

turn is used to estimate the future defocus which drives the fast integrator. For completeness, 949 

we have included a block labelled “Demand Predictor”, although in the current instantiation of 950 

the model, this simply passes its input through unchanged. 951 

 952 
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 953 
Figure 11. Simulink block diagram of our final model, incorporating all the features discussed in the paper.  The Simulink 954 
model has two inputs: (1) demand, and (2) whether or not the eye is viewing through a pinhole. It has one output: 955 
accommodation. 956 

 957 

Simulation details 958 
The next section shows simulation results for sine and step stimuli with this model. All 959 

simulations were run in Simulink, Matlab R2020b, with a variable-step solver, automatic solver 960 

selection and the default settings (relative tolerance 0.001 and max/min/initial step size and 961 

absolute tolerance all set to “auto”). For plotting, we interpolated the output to obtain results 962 

every millisecond. Note that this can give the impression of greater variability than in some 963 

empirical results where accommodation may be measured at a much lower rate, e.g. 50Hz. To 964 

obtain the velocity traces shown in Figure 17, we took the difference between successive 965 

accommodation values to obtain the change per millisecond, then smoothed this within a 966 

moving window of 10ms. 967 

 968 

To obtain the model gain and phase in response to sinusoidal oscillations in demand, we ran 969 

the model for 25 cycles of the specified frequency, then fitted a sinewave to the results using 970 

Matlab’s Curve Fitting Toolbox. We fixed the frequency of the sinewave to the frequency of 971 

the stimulus and fitted the three free parameters baseline, amplitude and phase (see code in 972 

Run_Sine.m). The amplitude and phase of the response were taken to be those of the fitted 973 

sinewave. 974 

 975 
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The simulation shows onset transients at its start point, as the integrators settle. In all cases, we 976 

therefore discarded the first few seconds of simulation time in order to exclude these transients. 977 

 978 

Results 979 
The different elements of this model were motivated by different observations – the gain and 980 

phase to sinusoids; adaptation; power spectra of microfluctuations so on. Components such as 981 

the fast and slow integrator and the virtual plant have been proposed before for the 982 

accommodation step response (Schor & Bharadwaj, 2005), but to our knowledge never tested 983 

in combination for pursuit sinusoidal tracking (Schor & Kotulak, 1986) or adaptation (Schor, 984 

1979b), or with white noise and the feeding through of a clipped signal proportional to the 985 

current defocus. This combination is to our knowledge a novel contribution. We now 986 

demonstrate that this unified model can reproduce each of the observations that motivated its 987 

different components. 988 

 989 

Response to sinusoidal demand 990 
Figure 12 shows the gain and phase of the model (heavy black line), compared with results 991 

from human subjects digitised from (Kruger & Pola, 1986; Ohtsuka & Sawa, 1997). This is of 992 

course similar to results already shown in Figure 8, but whereas those curves were obtained 993 

from mathematical formulae for a leaky integrator in a predictive control system, Figure 12 is 994 

obtained via Simulink simulation of the full four-signal model with noise.  There is reasonable 995 

agreement in gain (Figure 12AB); both humans and model are low-pass. The main quantitative 996 

disagreement is that the “knee”, where the gain drops rapidly, typically occurs around 0.4Hz 997 

in humans and slightly later, around 0.6Hz, in the model. There is also good agreement in phase 998 

(Figure 12C). For comparison, the dashed black line shows the phase which would be obtained 999 

for a model with perfect demand prediction. As we showed above, this can be obtained from 1000 

the phase of our model with “no change” demand prediction by subtracting the sensorimotor 1001 

latency: φperfect = φnochange – 360fTsens. Interestingly, the phase function of most human subjects 1002 

agrees better with that of the no-change model rather than the perfect model, suggesting that 1003 

these subjects had little ability to predict the oscillatory demand.  1004 

 1005 

 1006 

 1007 
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 1008 
Figure 12. Gain and phase of the model response to sinusoidal demand, compared to empirical results. A,B: Gain plotted on 1009 
linear and log axes. C: Phase plotted on linear axes. The heavy black line is the response of the model in Figure 11 with the 1010 
parameters given in Table 2. The dashed black phase line shows the phase which would be obtained by a model capable of 1011 
perfectly predicting the sinusoidal oscillation in demand. Triangles show empirical results for four human subjects, digitised 1012 
from Kruger and Pola (Kruger & Pola, 1986), using the data with white light and defocus cue only. Circles are for a further 1013 
four subjects, digitised from Ohtsuka and Sawa (Ohtsuka & Sawa, 1997), using only their control subjects. In (Kruger & Pola, 1014 
1986) and in the model, the demand oscillated between 1D and 3D, i.e. the amplitude of the sinusoid was 1D and its mean 1015 
value was 2D. In (Ohtsuka & Sawa, 1997), the amplitude was 1.5D and its mean value is not stated.  Code to generate this 1016 
figure is in Fig_CompareGainPhase.m. Run_Sine.m must be run first to generate the model data. 1017 

 1018 

Figure 12 was for sinusoidal demand oscillations with an amplitude of 1D. Of course, the gain 1019 

and phase of a linear system are independent of amplitude. However, our model is nonlinear 1020 

due to the saturation of the non-predictive proportional signal. Figure 13 shows the gain and 1021 

phase in the same format as Figure 12, but for different amplitudes of oscillation around a 2D 1022 

baseline. The green lines are for the 1D amplitude shown in Figure 12, but for lower amplitudes 1023 

the gain and phase start to deviate significantly from these results. Most strikingly, there is a 1024 

resonance at 1.2Hz where the gain actually goes above 1 for the smallest oscillations (±0.1D). 1025 

This represents the instability caused by the non-predictive proportional signal. Since this 1026 

signal is clipped at ±0.15D, it has a significant effect only for low-amplitude oscillations.  1027 

 1028 

 1029 

 1030 
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Figure 13. Model gain and phase as a function of amplitude. The green curves (1D) are what was shown in Figure 12, but we 1031 
see that the behaviour at low amplitudes is quite different, with a resonance at 1.2Hz.  Code to generate this figure is in 1032 
Fig_Sine.m. Run_Sine.m must be run first to generate the model data. 1033 

 1034 

This effect is qualitatively in agreement with the low-frequency resonance reported by Stark et 1035 

al. (Stark et al., 1965), which led them to conclude that human accommodative control must 1036 

include a nonlinearity. Digitized data from (Stark et al., 1965) is replotted in Figure 14, along 1037 

with the response of the model. The model does not reproduce the strong dip in gain at 0.8Hz 1038 

for an amplitude of 0.3D, but apart from that, the agreement is quite good. In particular, it 1039 

accounts for the key observation that gain is quite high, around 0.5, for 0.3D-amplitude 1040 

oscillations at around 2Hz, whereas gain is much lower, around 0.1, for higher amplitude 1041 

oscillations at this frequency. 1042 

 1043 

 1044 

 1045 
Figure 14. Symbols are digitised data from Figure 3 of  Stark, Takahashi & Zames (Stark et al., 1965). These are measured 1046 
gain and phase for one subject, for amplitudes of 0.3D (blue) and 1D (orange). The curves are model gains and phase for 1047 
these amplitudes, about a baseline of 2D. Code to generate this figure is in Fig_StarkTakahashiZames.m. 1048 
Run_StarkTakahashiZames.m must be run first to generate the model data. 1049 

 1050 

Limiting tracking frequency  1051 
Figure 13C and Figure 14C showed that the phase of the response relative to demand increases 1052 

with frequency, reaching 180 degrees at a frequency of around 1Hz. When this occurs, the 1053 

demand and response are in antiphase, and the error is greater than the stimulus. Interestingly, 1054 

if the response gain were zero, then the error for the 180 deg phase delay would be smaller than 1055 

if the gain were 1.0.  It is therefore of interest to ask how the gain and phase changes affect 1056 

defocus error for demand oscillations of different amplitude and frequency. We quantify this 1057 

using the mean absolute defocus error. The defocus error is the difference between demand and 1058 
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accommodation at any time; absolute defocus error is the rectified version of this waveform, 1059 

and mean absolute defocus is the average value of this over time: 〈|𝑑𝑑(𝑡𝑡) − 𝑎𝑎(𝑡𝑡)|〉 , where 1060 

𝑑𝑑(𝑡𝑡) = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(sin 2𝜋𝜋𝜋𝜋𝜋𝜋). 1061 

 1062 

The heavy curves in Figure 15A show how mean absolute defocus error varies with amplitude 1063 

and frequency of sinusoidal demand. In each case, the peak error is just below 1Hz, when the 1064 

response is 180o out of phase with the demand (Figure 13C). The error increases with demand 1065 

amplitude, even though for frequencies below the peak, the gain (i.e. the ratio of response to 1066 

demand) is closer to 1 for larger amplitudes (Figure 13AB).  1067 

 1068 

The aim of accommodative control is to track demand so as to minimize defocus error, 1069 

but the phase-delay means that for sufficiently high frequencies, this aim would be better 1070 

achieved by simply keeping accommodation fixed at the mean demand, i.e. by having a 1071 

response gain of 0, rather than attempting to track oscillations in demand about this baseline. 1072 

The dashed lines in Figure 15A shows this zero-gain tracking error, i.e. the mean absolute 1073 

defocus error which would be achieved if accommodation stayed at the steady-state value 1074 

elicited by the mean demand (Dmean=2D in this example). Because the amplitude of zero gain 1075 

tracking error depends only on the input amplitude, the error is independent of temporal 1076 

frequency of the sine input. Since the static accommodative lag is small, the zero-gain steady-1077 

state response is also close to 2D.  So the mean zero-gain error is approximately the average 1078 

value of  �𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(sin 2𝜋𝜋𝜋𝜋𝜋𝜋)�, or  2Damp/π, where Damp is the amplitude of the demand oscillations 1079 

about the 2D baseline.  1080 

 1081 

We define the limiting tracking frequency to be the frequency at which the actual gain 1082 

and phase-delay of the accommodative response produces the same error as would be achieved 1083 

with zero gain.  This is where the zero-gain tracking error is first equal to the actual error, 1084 

marked with a cross x in Figure 15A. For frequencies lower than this limit, the oscillation in 1085 

accommodative response is helpful, i.e. it tracks the oscillations in demand with a phase delay 1086 

low enough to reduce the mean defocus error below the zero-gain tracking error. However for 1087 

frequencies above the limit marked with a cross, the oscillatory response is out of phase and 1088 

ends up making mean defocus error larger than if accommodation simply remained constant at 1089 

the baseline value. 1090 

 1091 
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Because of the nonlinearity represented by the saturating non-predictive proportional 1092 

signal, this limiting-tracking frequency depends on amplitude, as shown in Figure 15B. For 1093 

large-amplitude oscillations in demand, accommodation can track only up to around 0.4Hz. 1094 

We saw above that the  non-predictive proportional signal enables a more rapid response to 1095 

small changes. This is shown in Figure 15B by the increase in limiting tracking frequency for 1096 

low-amplitude oscillations. 1097 

 1098 

Using the result that perfect demand prediction would reduce the phase by the sensorimotor 1099 

latency, we can also infer what these curves would be for a model with perfect demand 1100 

prediction but with the same leaky-integral controller. These are shown with the light curves 1101 

in Figure 15AB. Perfect demand prediction does reduce the error and increase the limiting 1102 

tracking frequency, but not dramatically, because of limits imposed by the time constant of the 1103 

plant and the fast integrator.  1104 

 1105 
Figure 15. (A) Mean absolute defocus error for sinusoidal demand oscillations of different frequencies and amplitudes about 1106 
a 2D baseline. The heavy curves show |d(t)-a(t)| for our model with its observed gain and phase; the light curves are those 1107 
inferred for a model with perfect demand prediction. The dashed lines show the expected high-frequency limit, i.e. the mean 1108 
defocus error if the demand oscillated but the response stayed at the steady-state value elicited by the mean demand, and 1109 
the crosses indicate where this is first less than the error with tracking. The crosses mark where this crosses the mean defocus 1110 
error.  We take this as an indication of the highest frequency which can be successfully tracked at this amplitude. (B) Tracking 1111 
frequency limit as a function of amplitude, for the actual model (heavy line, crosses) and for a model with perfect demand 1112 
prediction (upper light line). Code to generate this figure is in Fig_Sine.m. Run_Sine.m must be run first to generate the model 1113 
data. 1114 

 1115 
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Steady-state microfluctuations 1116 
Figure 16A shows example closed- and open-loop accommodation traces recorded from the 1117 

model over the course of 5 minutes. The red trace is for closed-loop viewing of a stimulus at 1118 

1D (red dashed line). Accommodation thus fluctuates around a value a little over 1D, reflecting 1119 

the accommodative lead for a stimulus nearer than the rest focus, here 1.4D. The fluctuations 1120 

span a range of around 0.1D (±2SD). The SD is 0.03D, which is small compared to the SD of 1121 

human microfluctuations (0.1-0.3D, (Charman & Heron, 1988, 2015; Gambra et al., 2009)). 1122 

The power spectrum, Figure 16D, has a prominent peak at around 1.5Hz. This periodic 1123 

structure is clearly visible in the 10s except from the trace shown in Figure 16B. 1124 

 1125 

The blue trace is for open-loop viewing, e.g. through pinholes. Now, the response wanders 1126 

around the rest focus, 1.4D (dashed blue line). However, because the bias is constant rather 1127 

than scaling with the difference between accommodation and rest focus, the excursions are 1128 

much wider. This is visible in the power spectrum, Figure 16D, where the power continues to 1129 

rise as frequency reduces.  1130 

 1131 

Figure 16B shows a 10s excerpt from the trace in Figure 16A, for comparison with the example 1132 

empirical data in Figure 16C, digitized from (Gray et al., 1993a). Although the amplitude of 1133 

the microfluctuations is larger in the human observer, the same qualitative features are visible: 1134 

closed-loop mode showing strong periodic structure at around 2Hz, open-loop mode showing 1135 

much larger low-frequency fluctuations. Figure 16E shows the closed- and open-loop power 1136 

spectra for a human observer, digitized from (Campbell et al., 1959b), for comparison with 1137 

Figure 16D.  1138 

 1139 

The presence of this relatively large, 1-2Hz periodic component in the closed-loop 1140 

microfluctuations may aid accommodative control, for example by “hunting” for the point of 1141 

optimal focus (Kotulak & Schor, 1986c). Thus, this could be a reason why the postulated  non-1142 

predictive proportional signal is beneficial for accommodative control. 1143 

 1144 

 1145 
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 1146 
Figure 16. AB: Example accommodation traces in (red) closed-loop response to 1D and (blue) open-loop mode. Dashed 1147 
horizontal lines show (red) the 1D demand and (blue) the 1.4D rest focus. A: trace over 5 minutes, to show slow fluctuations 1148 
in open-loop response; B: 10s excerpt from A, to facilitate comparison with C: Example 10s trace recorded from a human 1149 
observer, digitised from Fig 3 of Gray, Winn and Gilmartin (Gray et al., 1993a). The red trace is for a 5mm pupil; the blue trace 1150 
is for viewing through pinholes of 0.5mm diameter. A scalebar but no accommodation values are provided in (Gray et al., 1151 
1993a), so the vertical position is arbitrary. To facilitate comparison with the model, we have set the mean value to 1D for 1152 
the closed-loop and 1.4D for the open-loop trace. D: Power spectra of the closed- and open-loop response, obtained by 1153 
averaging the Fourier power spectra of 50 traces like those in A, generated from simulations with different noise seeds. For 1154 
comparison, a 1/f2 Brownian noise spectrum is drawn on with a black dashed line. E: Power spectra of closed- and open-loop 1155 
responses for a human observer, digitised from Fig 5 of (Campbell et al., 1959b). This is labelled DATA2 to make clear that it 1156 
is not the power spectrum of the trace shown in Figure 16C. No vertical axis scale was provided in (Campbell et al., 1959b), 1157 
so we have scaled the spectrum so it best agrees with D. The red curve was recorded with a 7mm pupil and the blue curve 1158 
with a 1mm effective entrance pupil. Code to generate this figure is in Fig_Noise.m; Run_Noise.m must be run first to generate 1159 
the data. 1160 
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 1161 

 1162 

Response to step changes 1163 
When motivating the introduction of the saturating non-predictive proportional signal, i.e. a 1164 

proportional controller responding to the current defocus signal (Figure 11), we discussed why 1165 

it produces a larger, more rapid response to small changes in demand. We have already seen 1166 

how this effect produces a higher gain for high-frequency low-amplitude oscillations (Figure 1167 

13) and thus the ability to track low-amplitude oscillations out to higher temporal frequencies 1168 

than is possible for larger amplitudes (Figure 15). Similarly, the non-predictive proportional 1169 

signal, clipped at ±0.15D, enables a faster response to small step changes in demand. 1170 

  1171 

Figure 17 demonstrates this by comparing results from the full model (blue) with those from a 1172 

model identical except that it lacks the non-predictive proportional signal (orange). To enable 1173 

the effects to be seen clearly, noise is also turned off in this simulation. On the left, Figure 1174 

17AC, we plot the accommodation and velocity for a 0.5D increase in demand. The model with 1175 

the non-predictive proportional signal responds more quickly. We also see the characteristic 1176 

ringing, which is of course what drives the high-frequency peak in the microfluctuations. 1177 

However, for the larger 2D step shown on the right (note different y-scales), the saturation of 1178 

the non-predictive proportional signal at 0.15D limits its effect, and it makes barely any 1179 

difference either to accommodation itself or to velocity. In fact, for large step changes like that 1180 

shown in Figure 17BD, there appears to be a fifth signal, a nonlinear pulse triggered by sudden 1181 

large changes in demand (Schor & Bharadwaj, 2006, 2004). The pulse accounts for the 1182 

empirical observation that the peak acceleration of the response for step increases in demand 1183 

is roughly independent of the step size, instead of scaling with step size as would occur for a 1184 

linear system. While implementing the pulse is beyond the scope of this paper, we note that the 1185 

non-predictive proportional signal already moves in the right direction by boosting the 1186 

acceleration for small steps, and thus helping reduce the difference between acceleration for 1187 

large and small steps. This could be another reason for the accommodative control system to 1188 

include the postulated non-predictive proportional signal. 1189 
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 1190 
Figure 17. Noise-free accommodation (AB) and velocity (CD) for two different step increases in demand (AC: 0.5D, BD: 2D). 1191 
The blue curve is for the usual model; the orange curve is for a similar model with no non-predictive proportional signal. To 1192 
enable the effect to be seen clearly, noise has been turned off for this figure only. Also note that the response to the 2D step 1193 
(BD) is included only to demonstrate the role of the non-predictive proportional signal. The model presented in this paper 1194 
does not accurately capture the dynamics of the response to such large steps, since it does not include the pulse signal (see 1195 
text).  Code to generate this figure is in Fig_EffectOfPropSignal.m. 1196 

 1197 

Adaptation 1198 
Next, we examine how the model adapts to accommodative demand to which it is exposed for 1199 

more than a few tens of seconds. This was the motivation for postulating the slow integrator 1200 

(Schor, 1979b; Schor et al., 1986). Its presence has not contributed to the results presented so 1201 

far, other than to boost the gain for very slow oscillations. Now we see how it accounts for 1202 

adaptation. 1203 
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Figure 18 shows the time course of accommodation following the application of pinholes at 1204 

t=0, shifting the system from closed-loop to open-loop demand. After the application of 1205 

pinholes, accommodation eventually ends up at the rest focus, but how rapidly it does so 1206 

depends on the demand before pinholes were applied. The model observer is initially adapted 1207 

to 0D, then switches to viewing 3D for variable amounts of time as shown in the legend. The 1208 

results show that after viewing one demand for at least two minutes, the observer adapts to it 1209 

such that accommodation remains close to the adapted value for several minutes after pinholes 1210 

have been applies (uppermost/red, lowermost/blue traces). Conversely, when the observer was 1211 

exposed to different demands immediately before pinholes are applied (middle traces), they 1212 

move much more rapidly to the rest focus. 1213 

 1214 

 1215 
Figure 18. The model shows adaptation to demand, due to the slow integrator. The model observer is initially viewing an 1216 
object at 0D, before then viewing an object at 3D  for varying durations as shown in the legend. Pinholes are applied at t=0s, 1217 
putting the system in open-loop mode. After long exposures, accommodation adapts to the demand, and moves only slowly 1218 
to the rest focus; the adaptation affects the accommodation for many minutes after pinholes have been applied (e.g. dark 1219 
blue curve: adapted to 0D, further than rest focus; red curve: adapted to 3D, closer than rest). Code to generate this figure is 1220 
in Fig_Adaptation.m; Run_Adaptation.m must be run first to save the data in Results_Adaptation.mat. 1221 

 1222 

 1223 

 1224 

Figure 19 shows a comparison with empirical data. Here, the observer was exposed to a demand 1225 

of 2D for either 5s (blue) or 60s (orange) before moving to open-loop mode at t=0. The traces 1226 

in Figure 19A are for a human observer (Schor et al., 1986); those in Figure 19B are from the 1227 

model, with rest focus set to 0.4D (dashed line) in order to better match this observer. In both 1228 
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cases, following the 5s exposure to 2D, accommodation falls rapidly once the system enters 1229 

open-loop mode, but following the 60s exposure, the decay is much slower. 1230 

 1231 

 1232 
Figure 19. Comparison of the model (B) with data digitised from Schor, Kotulak & Tsuetaki (Schor et al., 1986) (Fig 2, empty 1233 
field condition). As in Figure 18, pinholes are applied at t=0. Before then, the demand is at 0D for a long period, before moving 1234 
to 2D for either 5s (blue) or 60s (orange); for the model, we also include 1s (yellow). In (Schor et al., 1986), a scalebar is 1235 
provided, but absolute dioptre values are not available. The vertical position in the DATA panel is therefore arbitrary. 1236 
However, since the open-loop condition decays by well over 1D from the closed-loop position adopted in response to a 2D 1237 
demand, it seems clear that the rest focus for this observer was well below 1.4D.  For this comparison, therefore, the rest 1238 
focus of the model has been set to 0.4D (dashed line) in this figure only. Code to generate this figure is in 1239 
Fig_SchorKotulakTsuetaki.m. 1240 

 1241 

Steady state error 1242 
Finally, Figure 20 shows the model’s steady-state error. As discussed (Equation 16), this 1243 

reflects both the fast and slow integrator. In the model, the additional gain provided by the slow 1244 

integrator means that steady-state error eventually becomes extremely small. Figure 21 shows 1245 

this process for an example step up to 2D. The error is zero at the resting focus but shows 1246 

lag/lead on either side of this. The gain (response/demand) therefore becomes high as demand 1247 

tends to zero. 1248 

 1249 
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 1250 
Figure 20. Steady-state response of the model. The model was run for 320s with a constant demand dSS indicated by the value 1251 
on the x-axis, and accommodation was averaged over the final 60s to obtain the steady-state response, aSS.  (A) Input/output 1252 
function, i.e. steady-state accommodation as a function of demand. (B) Steady-state error, i.e. difference between response 1253 
and demand. For distant stimuli, this is positive (lead); for near, it is negative (lag). (C): Gain, i.e. ratio of response to demand. 1254 
In each case, blue curves show the response of the model; solid black line indicates response equal to  demand, and the dashed 1255 
vertical line marks the rest focus, where this occurs. Code to generate this figure is in Fig_SteadyState.m; Run_SteadyState 1256 
.m must be run first to save the data in Results_SteadyState.mat. 1257 

 1258 

 1259 
Figure 21. Model response to a step change in demand from 0D to 2D, showing the immediate rise to 89% of demand due to 1260 
the fast integrator, and the subsequent slow rise to 98% demand due to the slow integrator. The blue trace is one example 1261 
run from the full model; the superimposed orange line shows the response with no noise or non-predictive proportional signal, 1262 
in order to isolate the response due to the fast and slow integrators. Note that the dynamics of the immediate response to 1263 
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the step are not correct because they do not incorporate the pulse signal, but the point of this figure is to demonstrate the 1264 
time-course following this immediate response. Code to generate this figure is in Fig_ExampleStep.m 1265 

 1266 

Discussion 1267 
In this paper, we have discussed the neural control of accommodation. We have provided a 1268 

tutorial overview of the relevant control theory and key empirical observations. We have 1269 

discussed the evidence for a predictive control system, i.e. one incorporating a forward model 1270 

to predict the accommodative response in advance of the motor latency (Hung et al., 2002; 1271 

Khosroyani & Hung, 2002; Schor & Bharadwaj, 2004). Our analysis has led us to make the 1272 

novel proposal that a saturating non-predictive proportional-control component may operate in 1273 

parallel to the main predictive integrative-control feedback loop. This non-predictive 1274 

proportional signal causes a high-frequency resonance in the closed-loop response, observed 1275 

in the response to low-amplitude sinusoidal oscillations in demand. It amplifies noise within 1276 

the system, explaining the high-frequency peak observed in closed-loop but not open-loop 1277 

accommodation microfluctuations. It also speeds up the response to small, sudden changes in 1278 

demand. Yet its saturation means that it does not destabilize the system as a whole, and that it 1279 

becomes insignificant for large changes in demand. 1280 

 1281 

We have implemented these ideas in a Simulink model, and are publishing this and all code 1282 

along with the paper. Although most of the components of the model have been published 1283 

before, we believe that this model is the first to incorporate realistic sensorimotor latencies, 1284 

non-zero rest focus, noise and dual control by fast and slow integrators, as well as our novel 1285 

use of a non-predictive proportional-control signal. Accordingly, it is able to account well for 1286 

a wide range of empirical observations: the gain and phase of the response to sinusoidal 1287 

oscillations in demand, including the puzzling high-frequency low-frequency resonance; the 1288 

power spectrum of microfluctuations in closed-loop and open-loop modes, and the adaptation 1289 

of accommodation to a steady stimulus.   1290 

 1291 

In our model, accommodation is controlled by four separate signals (Figure 11), which offer 1292 

different benefits. The constant bias signal sets the rest focus, to which the system returns in 1293 

the absence of other stimulation (Figure 18). This may represent a typical demand, making it 1294 

easier for the system to respond when stimulation restarts. The slow integrator means that the 1295 
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system tends to adapt to steady demand, perhaps reducing disruption if vision is briefly 1296 

interrupted during sustained attention to one distance.  1297 

 1298 

The fast integrator is the main workhorse of the feedback loop, enabling accommodation to 1299 

respond rapidly yet smoothly to changes in demand (Figure 12, Figure 21). It is embedded 1300 

within a predictive control system, incorporating a forward model to predict the effect of 1301 

signals previously sent to the plant. This predictive control enables a smooth response and 1302 

avoids ringing and instability. In principle, it can entirely remove delay due to the sensorimotor 1303 

latency in a situation where demand can be predicted perfectly, as in a regular oscillation. 1304 

However, it becomes problematic where demand changes suddenly and unpredictably.  1305 

 1306 

The fourth signal, proportional to the current defocus, can facilitate rapid responses in such 1307 

situations (Figure 17). Clipping it at a low absolute value ensures that it does not cause 1308 

disastrous oscillations in response. Yet its limited instability in closed-loop generates a periodic 1309 

structure to microfluctuations (Figure 16), which may assist the system in hunting for the point 1310 

of clearest vision. The benefit of having this periodic structure in closed-loop but not open-1311 

loop mode may be because open-loop viewing occurs naturally for bright viewing conditions, 1312 

where the pupil stops down and depth of focus is large. Microfluctuations due to noise 1313 

resonances would then be of no assistance in improving vision, and might even cause ocular 1314 

fatigue. Presumably for this reason, the system has evolved to select control parameters that 1315 

avoid resonances in open-loop viewing.  1316 

 1317 

“Prediction” in the accommodation literature has often concentrated on predicting changes in 1318 

demand (Krishnan et al., 1973; Stark, 1968). We believe it is helpful to draw a clear distinction 1319 

between predicting one’s own accommodation, which is in principle possible perfectly with an 1320 

efferent copy and a forward model, and predicting demand, which is external and thus not 1321 

always possible, for example when a fixated object moves suddenly. Predicting 1322 

accommodation but simply using the current demand suffices to achieve closed-loop stability. 1323 

The additional benefit of predicting future demand accurately is to avoid delay and thus avoid 1324 

errors for rapidly changing stimuli. However, the low-pass characteristics of the plant and 1325 

leaky-integral controller mean that the benefits of demand prediction are limited unless one 1326 

also posits a different form of control. 1327 

  1328 
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The model as currently implemented has many omissions. First, we have not attempted a 1329 

realistic implementation of the demand-prediction model. There is some evidence that the brain 1330 

can predict changing accommodative demand some time into the future, but we have here 1331 

assumed it simply assumes demand will stay constant (Khosroyani & Hung, 2002). Second, 1332 

the model developed here cannot account for the dynamics of step changes, since it does not 1333 

include the “pulse” signal triggered by large step changes in accommodation (Schor & 1334 

Bharadwaj, 2006, 2004), which temporarily overrides the error-driven signal. This of course 1335 

means that the model presented here cannot accurately model the dynamics of the 1336 

accommodative response to such changes. However, the model should remain valid for 1337 

situations which do not trigger a pulse (all the situations modelled in the Results, except Figure 1338 

17BD, included for illustrative purposes). Third, this paper is purely about motor control, and 1339 

has nothing to say about how a signed estimate of defocus is obtained from the retinal image. 1340 

Fourth, we do not allow for physical limits on accommodation, a non-zero far point or 1341 

refractive error, nor do we consider how the system parameters may change with age 1342 

(Bharadwaj & Schor, 2005; Schor & Bharadwaj, 2005). Fifth, we do not consider control 1343 

signals driven by inputs other than retinal defocus and bias (Heath, 1956b; Maddox, 1893). 1344 

Notably, we do not include the crosslinks from and to the vergence system (Bharadwaj, 2005; 1345 

Schor & Kotulak, 1986). We also do not consider other noise sources, such as heartbeat. We 1346 

hope to address these deficiencies in future work. 1347 

 1348 

 1349 
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Tables 1357 
 1358 

Symbol Meaning 

ω Angular temporal frequency, ω = 2πf 

φ(f) phase-delay of accommodation at frequency f 

τfast Time-constant of the fast leaky-integrator controller, see Equation 12 

τplant Time-constant of the ocular plant, when this is modelled as a leaky 

integrator, see Equation 11 

τslow Time-constant of the slow leaky-integrator controller, see Equation 

14 

ζ Damping coefficient, see Equation 22 

𝑎𝑎�(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) Predicted accommodation at a time Tmot after the current time t. In 

this paper, generally assumed equal to a(t+Tmot), i.e. prediction is 

perfect. 

𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) Predicted demand at a time Tmot after the current time t. In the no-

change prediction model, this is assumed to be the same as the last 

available demand, from time Tsens before the current time, i.e. d(t-

Tsens) 

A(s) Laplace transform of accommodation relative to rest focus 

aRF Rest focus, i.e. accommodation adopted in the absence of any visual 

stimulus 

aSS Steady-state accommodation in response to dSS, see Equation 6 

C(s) Transfer function of controller 

D(s) Laplace transform of accommodative demand relative to rest focus 

dSS Steady-state demand, see Equation 6 

E(s) Laplace transform of defocus error, E(s)=D(s)-A(s) 

f Temporal frequency 

g(f) gain of accommodation at frequency f 

Gfast Steady-state gain of the fast leaky-integrator controller, see Equation 

12 

Gopen steady-state open-loop gain of accommodation 
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Gslow Steady-state gain of the slow leaky-integrator controller, see 

Equation 14 

Hclosed(s) Closed-loop transfer function relating demand to accommodation, 

see Equation 4 

Hopen(s) Open-loop transfer function relating demand to accommodation, see 

Equation 3 

j Square root of -1. 

P(s) Transfer function of ocular plant 

s Complex temporal frequency in Laplace domain, s = jω, see 

Equation 1 

t Time 

Tlat Total sensorimotor latency, Tlat=Tsens+Tmot 

Tmot Motor latency, i.e. time taken for the neural signal controlling 

accommodation to travel from the brain to the ocular plant 

Tsens Sensory latency, i.e. time taken for defocus at the retina to reach the 

accommodative control system in the brain 
Table 1. Symbols used in this paper. 1359 
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 1361 

 1362 

Parameter Symbol used in the 

paper 

Name in Simulink 

workspace 

Value 

Rest focus aRF RestFocus 1.4D 

Sensory latency Tsens SensoryLatency 0.20s 

Motor latency Tmot MotorLatency 0.10s 

Time constant of 

plant 
τplant PlantTimeConstant 0.156s 

Gain of fast 

integrator 

Gfast FastGain 8.0 

Time constant of 

fast integrator 
τfast FastTimeConstant 2.5s 

Gain of slow 

integrator 

Gslow SlowGain 5.0 

Time constant of 

slow integrator 
τslow SlowTimeConstant 100s 

Noise  power  NoisePower 0.001 with sample 

time 0.01s 

Where to clip the 

proportional signal 

 ProportionalClipping 0.15D 

Table 2. Parameter values for the Simulink model supplied with the paper and used to obtain the results (except where noted 1363 
otherwise in figure legends). These values are visible in the Simulink Model Workspace, and can be altered there if desired.  1364 

 1365 

 1366 

 1367 

 1368 
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Appendix 1370 
Here, we derive the total transfer function corresponding to the three types of linear models 1371 

discussed in the text: (i) the non-predictive model and the predictive models with (ii) perfect 1372 

and (iii) no-change prediction of demand. The bias signal due to the rest focus aRF is included 1373 

as an inhomogeneous “forcing” term. We handle this by defining A(s) and D(s) to be the 1374 

Laplace transforms of a(t)−aRF and d(t)−aRF, respectively, where a(t) and d(t) are 1375 

accommodation and demand as functions of time. In this way, we can effectively ignore aRF 1376 

when obtaining the transfer functions. 1377 

 1378 

(i) Non-predictive model 1379 
The system diagram for this model is given in Figure 5. Reading around this circuit diagram, 1380 

we see immediately that 1381 

  𝐸𝐸(𝑠𝑠) = 𝐷𝐷(𝑠𝑠) − 𝐴𝐴(𝑠𝑠),  1382 

where E(s) is the Laplace transform of the defocus error signal, d(t)-a(t). The input to the 1383 

Controller block is 𝐸𝐸(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), i.e. the defocus error signal after the sensory latency. 1384 

The output from the Controller block is 𝐶𝐶(𝑠𝑠)𝐸𝐸(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), where C(s) is the transfer 1385 

function of the Controller. After accounting for the motor latency, the input to the ocular plant 1386 

is 𝐶𝐶(𝑠𝑠)𝐸𝐸(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙). So, the output of the ocular plant, i.e. accommodation, is 1387 

 𝐴𝐴(𝑠𝑠) = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠)𝐶𝐶(𝑠𝑠)𝐸𝐸(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) 1388 

Substituting in for E(s), we obtain the closed-loop transfer function 1389 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) =
𝐴𝐴(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

=
𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙)

1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙)
 1390 

The gain and phase of the accommodative response to sinusoidal stimuli are the amplitude and 1391 

phase of the complex number given by this closed-loop transfer function evaluated at 1392 

s=jω=2πjf,  𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝜋𝜋)  . The closed-loop gain as a function of demand frequency is 1393 

therefore 1394 

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓) =
|𝑃𝑃𝑃𝑃|

�1 + 2𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) + |𝑃𝑃𝑃𝑃|2
 1395 

Equation 17 1396 

where the plant and controller transfer functions are similarly complex functions of frequency: 1397 

P=P(2πjf), C=C(2πjf). The denominator contains oscillatory terms which mean that, even if 1398 

PC is lowpass (i.e. a monotonically decreasing function of frequency), the denominator can be 1399 

close to zero at particular frequencies and thus produce large resonances, for which the closed-1400 
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loop gain exceeds 1. These manifest themselves as ringing or instability in the response to step 1401 

changes in demand, and as gains>1 for sinusoidal oscillations in demand, which are not 1402 

observed for large amplitudes. 1403 

 1404 

With proportional control with unit gain (C=1), a sensorimotor latency of Tlat=0.3s and the 1405 

plant being a leaky integrator with τplant=0.156s, Equation 17 has its first resonance at 1.2Hz 1406 

where the closed-loop gain goes well above 1. This is ultimately responsible for the model’s 1407 

high-frequency peak in microfluctuations (Figure 16) and the low-amplitude resonance in the 1408 

response to sine-waves (Figure 13), although the precise behaviour also depends on the 1409 

nonlinear clipping. The precise position of the first resonance depends on the gain of the 1410 

proportional control, but only rather subtly. We therefore kept unit gain for simplicity. 1411 

We obtain the open-loop transfer function in the same way, but with the input to the Controller 1412 

being D(s) instead of D(s)-A(s). This yields 1413 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) 1414 

𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔) = |𝑃𝑃𝑃𝑃| 1415 
Equation 18 1416 

Thus, whether we use an integral or proportional controller in this non-predictive control 1417 

system, the open-loop gain is purely low-pass, with no resonances. This means that adding our 1418 

non-predictive proportional signal does not introduce any peaks to the power spectrum of open-1419 

loop microfluctuations. 1420 

 1421 

Predictive models 1422 
The simplified system diagram for this model is given in Figure 7. As usual, we can ignore the 1423 

bias signal if we express accommodation and demand relative to the rest focus.  Reading around 1424 

the circuit diagram, the demand signal is the input on the left; we represent this as usual in the 1425 

Laplace domain by D(s). After passing through the sensory latency, it becomes 1426 

𝐷𝐷(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), with the exponential being the Laplacian representation of a time delay 1427 

(cf discussion of Equation 2). It then passes through the demand predictor, which attempts to 1428 

predict the signal Tlat =Tsens+Tmot into the future. If it did this perfectly, the output of the demand 1429 

predictor would be 𝐷𝐷(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) = 𝐷𝐷(𝑠𝑠) exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). To allow for the 1430 

fact that demand is unlikely to be predicted perfectly, we will write the output as 1431 

𝐷𝐷�(𝑠𝑠) exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). 𝐷𝐷�(𝑠𝑠) is the Laplace transform of the estimated future demand, again 1432 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471909
http://creativecommons.org/licenses/by/4.0/


54 

 

relative to the rest focus. That is, whereas 𝑑𝑑(𝑡𝑡) is the actual demand at time t, 𝑑̂𝑑(𝑡𝑡) is the 1433 

estimated demand at time t, as estimated at time (t-Tlat). 1434 

Looking at the bottom of Figure 7, the output is accommodation, or A(s) in the Laplace domain. 1435 

This is output after a motor latency Tmot; thus the output of the “Plant” block in Figure 7 is 1436 

𝐴𝐴(𝑠𝑠) exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). 1437 

Putting both these together, we see that the input to the Controller in Figure 7 is 1438 

�𝐷𝐷�(𝑠𝑠) − 𝐴𝐴(𝑠𝑠)� exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). After multiplying this by the Controller and Plant transfer 1439 

functions, we find that the output of the plant is 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)�𝐷𝐷�(𝑠𝑠) − 𝐴𝐴(𝑠𝑠)� exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). But we 1440 

previously saw that the output of the plant is 𝐴𝐴(𝑠𝑠) exp(+𝑠𝑠𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚). Equating these, we see that  1441 

𝐴𝐴(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)�𝐷𝐷�(𝑠𝑠) − 𝐴𝐴(𝑠𝑠)� 1442 

and thus that 1443 

𝐴𝐴(𝑠𝑠) =
𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)𝐷𝐷�(𝑠𝑠)
1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)

 1444 

Equation 19 1445 

 1446 

(ii) Perfect demand predictor 1447 
In this idealised case, the demand predictor successfully outputs the future accommodative 1448 

demand, so that 𝐷𝐷�(𝑠𝑠) = 𝐷𝐷(𝑠𝑠) and the transfer function is 1449 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) =

𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)
1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)

 1450 

The closed-loop gain is therefore 1451 

𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓) =

|𝑃𝑃𝑃𝑃|

�1 + 2𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃) + |𝑃𝑃𝑃𝑃|2
 1452 

To obtain the open-loop transfer function, we replace D(s) with D(s)+A(s) in Equation 19 1453 

(Figure 4), obtaining 1454 

𝐴𝐴(𝑠𝑠) =
𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)[𝐴𝐴(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)]

1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)
 1455 

and thus 1456 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) 1457 

If demand prediction is perfect, the open-loop gain of the controller is independent of latency. 1458 

For our situation where both the plant and controller are leaky integrators, the open-loop gain 1459 

is lowpass, with no resonances. 1460 

 1461 
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(iii) “No-change” demand predictor 1462 
In this opposite extreme, the demand predictor simply assumes that the future defocus after 1463 

time Tlat will still be the same as the defocus it is receiving now (Equation 9): 1464 

𝑑̂𝑑(𝑡𝑡 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) = 𝑑𝑑(𝑡𝑡) 1465 

and thus 1466 

𝐷𝐷�(𝑠𝑠) = 𝐷𝐷(𝑠𝑠)exp (−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) 1467 

Hence  1468 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) =

𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) 
1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)

 1469 

The closed-loop gain at any frequency f is therefore the same as for the perfect predictor, while 1470 

the phase is reduced by 2πfTlat. In fact, the closed-loop gain would be the same for any demand 1471 

predictor which accurately predicts demand any time at all into the future, even if, as here, that 1472 

time is zero. Inaccurate predictions would of course change the closed-loop gain.  1473 

 1474 

The open-loop gain does depend critically on demand prediction. With no-change prediction, 1475 

replacing D(s) with D(s)+A(s) in Equation 19 (Figure 4), yields 1476 

𝐴𝐴(𝑠𝑠) =
𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)[𝐴𝐴(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)]exp (−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙)

1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)
 1477 

and thus 1478 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) =

𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠) exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙)
1 + 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)(1 − exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙))

 1479 

Equation 20 1480 

The presence of the oscillatory exp(−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) term in the denominator can lead to local peaks in 1481 

the gain at some frequencies. Thus with inaccurate no-change prediction, the system is prone 1482 

to open-loop resonances due to the inner feedback loop via the efference copy. However, with 1483 

our parameter values (Table 2), Equation 20 is a monotonically decreasing function of 1484 

frequency. This ensures that we do not see local peaks in the power spectrum of open-loop 1485 

microfluctuations (Figure 16). 1486 

 1487 

 1488 

The predictive model with leaky-integral control: a damped harmonic oscillator 1489 
For the case where the plant and the controller are both leaky integrators (Equation 11, Equation 1490 

12), and we neglect the other signals, the transfer function of the perfect-prediction model is  1491 
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𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) =

𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
�1 + 𝑠𝑠𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝��1 + 𝑠𝑠𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� + 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 1492 

Equation 21 1493 

with s = 2πjf. This is the transfer function of a second-order damped oscillator. We can rewrite 1494 

it in the standard form 1495 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) ≈

𝐾𝐾𝜔𝜔0
2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔0𝑠𝑠 + 𝜔𝜔02
 1496 

where K is the closed-loop gain: 1497 

𝐾𝐾 =
𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�1 + 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
 1498 

ω0 the natural angular frequency: 1499 

𝜔𝜔0
2 =

�1 + 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 1500 

and ζ the damping coefficient: 1501 

𝜁𝜁 =
1

2�1 + 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�

�𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 1502 

Equation 22 1503 

For perfect demand prediction, the phase at angular frequency ω is: 1504 

𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑤𝑤) = − arctan�
2𝜁𝜁𝜁𝜁𝜔𝜔0

𝜔𝜔02 − 𝜔𝜔2� 1505 

while for no-change prediction,  1506 

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜔𝜔) = − arctan�
2𝜁𝜁𝜁𝜁𝜔𝜔0

𝜔𝜔02 − 𝜔𝜔2� − 𝜔𝜔𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 1507 

 1508 

If ζ<1/√2, then the maximum gain occurs at the resonant angular frequency: 1509 

𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔0�1 − 2𝜁𝜁2 = �
𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−

1
2𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2 −

1
2𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  1510 

If ζ>1/√2, then the gain is maximum for f=0 and decreases monotonically with frequency. If 1511 

ζ=1, the system is said to be critically damped.  1512 

As discussed in the text, to match the empirical gain of accommodation, ζ must exceed 1/√2, 1513 

the minimum value for which gain decreases monotonically with frequency. Solving Equation 1514 

22, we find that 1515 
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𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + �𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2 − 1� ≈ 2𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  yields ζ = 1/√2 , while 1516 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �2𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 1 + ��2𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 1�
2
− 1� ≈ 4𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 yields ζ=1, i.e. critical 1517 

damping 1518 

 1519 

where the approximations hold since the gain Gfast has to be >>1, say at least 5, to avoid 1520 

excessive lag.  (Mathematically, there are two solutions, but the other one gives a very short 1521 

time-constant for the controller, which in turn causes other problems such as open-loop 1522 

resonances in the noise.)  1523 

 1524 

The minimal-settling time solution 1525 
In the model presented here, we chose the “minimum settling time” solution which yields ζ = 1526 

1/√2:  1527 

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1528 

since this gave the best match to both gain and phase data. With this choice, since Gfast>>1,  the 1529 

natural frequency is approximately 1530 

𝜔𝜔0 =
1

𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝√2
 1531 

which with our value τplant=0.156s corresponds to 0.72Hz. 1532 

For ζ=1/√2, the phase function is very close to linear out to ω=ω0 . In this region, for perfect 1533 

demand prediction 1534 

𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈ −2𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜔𝜔 1535 

corresponding to an effective delay of Tdelay = 2τplant. Presumably coincidentally, this delay is 1536 

very similar to the sensorimotor latency, although as we can see it arises from a completely 1537 

different source. However, for frequencies beyond ~1Hz, the phase asymptotes to 180o (Figure 1538 

8). 1539 

For no-change prediction, the phase is approximately  1540 

𝜙𝜙(𝜔𝜔) ≈ −𝜔𝜔�2𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙� 1541 

at low frequencies, corresponding to an effective delay of 2𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙.  1542 

 1543 

 1544 

  1545 
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 1546 

Transfer 

function 

𝐴𝐴(𝑠𝑠)

= 𝐻𝐻(𝑠𝑠)𝐷𝐷(𝑠𝑠) 

Non-predictive model – no 

prediction 

Predictive model – 

perfect prediction of 

future demand 

Predictive model – 

“no change” 

prediction of future 

demand 

Open-loop 

transfer 

function 

 

𝑃𝑃𝑃𝑃𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙  𝑃𝑃𝑃𝑃 
𝑃𝑃𝑃𝑃𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

1 + 𝑃𝑃𝑃𝑃(1 − 𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙)
 

Closed-

loop 

transfer 

function 

 

 

𝑃𝑃𝑃𝑃𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙
1 + 𝑃𝑃𝑃𝑃𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

 
𝑃𝑃𝑃𝑃

1 + 𝑃𝑃𝑃𝑃
 

𝑃𝑃𝑃𝑃𝑒𝑒−𝑠𝑠𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙
1 + 𝑃𝑃𝑃𝑃

 

Closed-

loop gain 

|𝑃𝑃𝑃𝑃|

�1 + 2𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃𝑒𝑒−𝑖𝑖𝑖𝑖𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) + |𝑃𝑃𝑃𝑃
 

 

|𝑃𝑃𝑃𝑃|

�1 + 2𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃) + |𝑃𝑃𝑃𝑃|
 

 

|𝑃𝑃𝑃𝑃|

�1 + 2𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃) + |𝑃𝑃𝑃𝑃|
 

 

Table 3. Open- and closed-loop transfer functions H(s) for different control systems; see Appendix for derivation. The transfer 1547 
function relates accommodation to the demand via A(s) = H(s) D(s), where A(s) is the Laplace transform of accommodation 1548 
relative to rest focus, a(t)-aRF, and D(s) is the Laplace transform of demand relative to rest focus, d(t)-aRF. P(s) the transfer 1549 
function of the ocular plant, and C(s) is the transfer function of the neural control (block marked Controller in Figure 5, Figure 1550 
6, Figure 7). Tlat is the total sensorimotor latency from a change in demand to the accommodative response. 1551 
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