bioRxiv preprint doi: https://doi.org/10.1101/2021.12.08.471779; this version posted December 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Identification of New In Vivo TonB-FepA Rendezvous Sites
2	
3	
4	
5	Kathleen Postle ^{1, 2*} , Kelvin Kho ^{1,3} , Michael Gresock ^{1,4} , Joydeep Ghosh ^{2, 5} , and
6	Ray Larsen ^{2,6}
7	
8	Running title: In vivo TonB-FepA interactions
9	
10	Keywords: TonB, FepA, disulfide bond, amphipathic helix, energy
11	transduction
12	
13	Department of Biochemistry and Molecular Biology, The Pennsylvania State
14	University, University Park, PA, 16802, USA
15	* Correspondence: ¹ Kathleen Postle, Department of Biochemistry and
16	Molecular Biology, The Pennsylvania State University, University Park, PA
17	16802, USA. e-mail: <u>postle@psu.edu</u> , Ph. 1-814-863-7568, Fx. 1-814-863-7024

19	² School of Molecular Biosciences,	Washington St	tate University,	Pullman,	WA

- 20 **99163**
- 21 Current addresses:
- ²² ³Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne,
- 23 Département de Microbiologie, Paris 75015, France
- ⁴Department of Biology, University of Mt. Union, Alliance OH, 44601
- ⁵Division of Cellular and Gene Therapies, US FDA Center for Biologics
- 26 Evaluation and Research, Silver Spring, MD
- ⁵Department of Biological Sciences, Bowling Green State University, Bowling
 Green OH, 43403

29

30

32 ABSTRACT

The TonB system of Gram-negative bacteria uses the protonmotive force of the 33 cytoplasmic membrane to energize active transport of large or scarce nutrients 34 across the outer membrane by means of customized beta-barrels known as TonB-35 dependent transporters (TBDTs). The lumen of each TBDT is occluded by an 36 amino-terminal domain, called the cork, which must be displaced for transport of 37 nutrients or translocation of the large protein toxins that parasitize the system. A 38 complex of cytoplasmic membrane proteins consisting of TonB, ExbB and ExbD 39 harnesses the protonmotive force that TonB transmits to the TBDT. The specifics 40 of this energy transformation are a source of continuing interest. The amino 41 terminal domain of a TBDT contains a region called the TonB box, that is essential 42 for the reception of energy from TonB. This domain is the only identified site of in 43 vivo interaction between the TBDT and TonB, occurring through a non-essential 44 region centered on TonB residue Q160. Because TonB binds to TBDTs whether or 45 not it is active or even intact, the mechanism and extent of cork movement in vivo 46 has been challenging to discover. In this study, we used in vivo disulfide 47 crosslinking between eight engineered Cys residues in Escherichia coli TonB and 48 42 Cys substitutions in the TBDT FepA, including the TonB box, to identify novel 49 sites of interaction in vivo. The TonB Cys substitutions in the core of an essential 50 carboxy terminal amphipathic helix (residues 199-216) were compared to TonB 51

Q160C interactions. Functionality of the in vivo interactions was established when 52 the presence of the inactive TonB H20A mutation inhibited them. A previously 53 unknown functional interaction between the hydrophilic face of the amphipathic 54 helix and the FepA TonB box was identified. Interaction of Q160C with the FepA 55 TonB box appeared to be less functionally important. The two different parts of 56 TonB also differed in their interactions with the FepA cork and barrel turns. While 57 the TonB amphipathic helix Cys residues interacted only with Cys residues on the 58 periplasmic face of the FepA cork, TonB Q160C interacted with buried Cys 59 substitutions within the FepA cork, the first such interactions seen with any TBDT. 60 Both sets of interactions required active TonB. Taken together, these data suggest a 61 model where the amphipathic helix binds to the TonB box, causing the 62 mechanically weak domain of the FepA cork to dip sufficiently into the 63 periplasmic space for interaction with the TonB O160 region, which is an 64 interaction that does not occur if the TonB box is deleted. The TonB amphipathic 65 helix also interacted with periplasmic turns between FepA β-strands in vivo 66 supporting a surveillance mechanism where TonB searched for TBDTs on the 67 periplasmic face of the outer membrane. 68

70 INTRODUCTION

The TonB system of *Escherichia coli* appears to be an answer to the challenges 71 posed to Gram-negative bacteria by their dual membrane cell envelope. In 72 particular, the outer membrane is a largely protective sieve with a diffusion cut-off 73 of around 600 Da in E. coli (1). To capture large, scarce, essential nutrients, the 74 outer membrane displays high-affinity customized β-barrels for active transport of 75 diverse ligands (2). The energy for the active transport across the essentially 76 77 unenergized outer membrane comes from a complex of cytoplasmic membrane proteins, TonB, ExbB, and ExbD. This complex harvests the cytoplasmic 78 membrane proton gradient and transforms it into mechanical energy which drives 79 vectoral transport of ligands through TBDTs and into the periplasmic space (3) 80 (Fig. 1). Because these transporters bind directly only to TonB and not ExbB or 81 ExbD during the energy transduction, they have been termed TonB-dependent 82 transporters (TBDTs) (4). There is some confusion in the historical literature 83 84 whereby they were first called TonB-dependent receptors because they were initially identified as receptors for colicins and bacteriophages, now known to be 85 opportunistic agents (5-7). They have also been called TonB-gated transporters, 86 TGTs, (8) and ligand-gated porins, LGPs, (9). Escherichia coli K12 encodes nine 87 different TBDTs mostly devoted to acquisition of iron by various means with one 88 devoted to cobalamin transport. While E. coli has dedicated TBDTs for a variety 89

90	of siderophores, enterochelin (a.k.a. enterobactin) is the single iron-chelating
91	siderophore that E. coli synthesizes and excretes to capture iron from its
92	environment [for a review see (10)]. The TBDT that provides for the recovery of
93	iron-bearing enterochelin is FepA.
94	Each TBDT consists of a 22-stranded β -barrel, the lumen of which is
95	occluded by an essential internal globular domain of ~ 150 residues called the cork
96	(or hatch) [(11); for a review see (2)]. Because they are similar in structure, the
97	results from one TBDT largely apply to most TBDTs. The mechanism by which
98	TBDTs actively transport ligands such as the iron-siderophore enterochelin or
99	cobalamin across the outer membrane remains a mystery, but there is general
100	agreement that the cork must somehow move.
101	A TBDT cork has both a mechanically weak (approximately residues 1-70)
102	and mechanically recalcitrant domain (approximately residues 70-150) both in vivo
103	and in vitro (9, 12-14). An essential motif of five to seven mostly conserved
104	residues known as the TonB box occupies the amino terminus of the mechanically
105	weak domain. The TonB boxes of TBDTs are interchangeable, indicating that they
106	do not mediate ligand specificity (15, 16).

The precise energy-transducing interaction of TonB with TBDTs has been
challenging to define by structural determinations *in vitro* because ExbB and ExbD

109	functions, and the protonmotive force of the cytoplasmic membrane are all
110	required for TonB-dependent energy transduction. Furthermore, in vitro and in
111	vivo TonB binds to TBDTs regardless of its ability to transduce energy, (17-22),
112	suggesting that certain residue-specific interactions result in energy transduction
113	while other interactions fail to accomplish it.
114	The TonB protein is anchored in the cytoplasmic membrane by its
115	hydrophobic amino terminal signal anchor with the rest of the protein (residues 33-
116	239) occupying the periplasmic space [(23), Fig.1]. Interestingly, there are no
117	essential residues in TonB (17, 24-28). In fact, even the His20 residue in the
118	transmembrane domain can be replaced with non-protonatable Asn and retain full
119	function, suggesting that the H20A mutation used in that study renders TonB
120	inactive through steric distortion of its transmembrane domain in complex with
121	ExbB and ExbD transmembrane domains (28).
122	There are, however, seven residues in the periplasmic TonB carboxy
123	terminus (out of 90 sequentially scanned) that are functionally important (Y163,
124	F180, G186, F202, W213, Y215, and F230) (27). With the exception of G186,
125	these residues represent the complete set of aromatic residues in the last 90
126	residues of the carboxy terminus from 150-239, with the only other aromatic
127	residue in the entire periplasmic domain (residues 33-239) being F125. We think
128	these seven residues are the key because:

1) When substituted with Ala or Cys, each of these residues exhibits an
 idiosyncratic phenotype, with the profile of activities in four different assays being
 distinct for each of the seven substitutions (27, 29). They appear to be the means
 by which TonB discriminates among different TBDTs or possibly the colicins that
 parasitize them (30). In contrast, Cys substitution at the only other aromatic
 residue, TonB F125C, supports wild-type activity.

2) They are synergistic with one another such that any combination of two 135 mutations (2 Ala, 2 Cys, or a combination) is completely inactive in all assays in a 136 double mutant cycle analysis. For example, TonB F202A, W213A used in previous 137 studies is completely inactive, whereas TonB F125A is not synergistic with 138 substitutions at any of the seven residues (17, 27, 29). It therefore seems to set a 139 maximal boundary on the active domain of the TonB carboxy terminus from G186 140 to F230, which contains a single amphipathic helix (residues 199-216). 141 3) Cys substitutions in five out of the seven important carboxy terminal 142 residues (G186C, F202C, W213C, Y215C, F230C) are the only ones out of the 90 143

144 Cys substitutions that form disulfide-linked triplet homodimers (17, 27). While

both inactive and active TonB binds to transporters, the disulfide-linked

146 homodimers formed through the five Cys substitutions are trapped in

147 configurations such that they no longer fractionate significantly with the outer

148 membrane (17, 27). In contrast, TonB F125C, which appears to be outside the

active domain of the carboxy terminus, forms triplet homodimers that, like wildtype TonB, still fractionate ~ 40% with the outer membrane, indicating that the
subsequent, more carboxy-terminal residues, including especially the amphipathic
helix, are free to undergo necessary conformational changes (31).

TonB is the limiting protein in the TonB system (32) and different TBDTs must compete for its attention (33). TonB therefore interacts transiently with ligand-loaded TBDTs in *E. coli* K12, giving rise to an energy transduction cycle (67). Over the years we have defined stages in that cycle *in vivo*, the model for which is depicted in Fig. 2.

In the model, the TonB carboxy termini of homodimers are conformationally 158 dynamic while the amino termini remain stably homodimerized throughout the 159 energy transduction cycle (31). Protonmotive force of the cytoplasmic membrane 160 is transduced into active transport at the outer membrane through sequential 161 contacts by the TonB carboxy terminus, first with itself, then with the ExbD 162 carboxy terminus, then with a TBDT (31). In vivo interaction sites between TonB 163 homodimers and between TonB-ExbD heterodimers have been identified, and a 164 common region between them is the TonB amphipathic helix (residues 199-216; 165 Fig. 3) (27, 34, 35). The primary goal of this study was to determine if the TonB 166 amphipathic helix played a role in contact with FepA. 167

168	Here we explored TonB interactions with three different regions of FepA—
169	the TonB box, the cork, and the β -strand turns of the barrel. A novel <i>in vivo</i>
170	interaction between Cys substitutions in the hydrophilic face of the essential TonB
171	amphipathic helix and Cys substitutions in the essential FepA TonB box was
172	identified. Interactions between TonB amphipathic helix and β -strand turns of the
173	FepA barrel were identified, providing the first in vivo support for a surveillance
174	model where TonB searches for a TBDT. The difference in interaction profiles
175	with the mechanically weak domain of the FepA cork between the TonB
176	amphipathic helix and TonB Q160 led to a model where the amphipathic helix
177	pulls the mechanically weak domain of the FepA cork out of the barrel sufficiently
178	that TonB Q160 interacts with otherwise buried residues.
179	

RESULTS

The carboxy terminal TonB amphipathic helix is essential for TonB system activity.

187	The TonB region from \sim R158-N162, centered on TonB Q160 interacts with
188	the TonB boxes of TBDTs in vivo [Fig. 4A; (4, 36)]. While the TonB box as a
189	whole is essential for TBDT activity, its precise amino acid composition is tolerant
190	of substitutions except for structure-breaking residues such as L8P in BtuB or I14P
191	in FepA, substitutions that result in inactivation of the TBDT (4, 15, 36, 37). Even
192	then, the TonB Q160 region still interacts with the BtuB L8P mutant TonB box in
193	vivo, but in a different way (4).
194	Based on the position of residue Q160 within the TonB carboxy terminus,
195	the solved crystal structures of TBDTs, and the solved crystal structures of TonB
196	carboxy termini in complex with those TBDTs (Fig. 4B), it seems unlikely that
197	Q160 contacts a TBDT without significant conformational changes to make the
198	TonB box more accessible. The deletion of the proline rich domain that accounts
199	for ~ 100 Å of TonB's reach to a TBDT has negligible effect upon its activity
200	unless the periplasmic space is artificially expanded by transient exposure to high
201	salt (24, 38, 39). This observation suggests that residues nearer the carboxy

202	terminus of TonB could be more important. There is also evidence that unknown
203	regions in addition to the FepA TonB box and TonB Q160 are involved in
204	transport (12, 40). Furthermore, the TonB Q160 region is not essential, suggesting
205	that its role in contacting a TBDT is not essential (11).
206	The periplasmic TonB carboxy terminus contains an amphipathic helix
207	(residues 199-216) which has been intriguing for many years (24, 29, 41). It
208	includes three of the seven functional carboxy terminal residues, F202, W213 and
209	Y215. To further explore the role the amphipathic helix plays in the mechanism of
210	TonB-dependent energy transduction, we deleted the amphipathic helix codons
211	199-216 from plasmid pKP325, resulting in plasmid-encoded TonB $_{\Delta AH}$ (Fig. 5A).
212	Plasmids expressing chromosomal levels of TonB $_{\Delta AH}$ (pKP476) were unable to
213	complement KP1477 ($\Delta tonB$) in cross-streaks against colicins B, Ia, and M, the
214	most sensitive assays known for TonB function, requiring ~1 active TonB
215	molecule per cell (42).
216	$TonB_{\Delta AH}$ fractionated on sucrose density gradients with ~ 60% located in the

217 cytoplasmic membrane fractions and $\sim 40\%$ with the outer membrane fractions

218 (Fig. 6A), the same proportions with which wild-type TonB fractionates (43). It is

not known what causes TonB to bind sufficiently tightly to outer membrane

components that ~ 40 % is pulled out of its complex with cytoplasmic membrane

proteins ExbB and ExbD to fractionate with the outer membrane. One hypothesis

is that TonB outer membrane fractionation reflects a transient tight association 222 with outer membrane molecules--likely TBDTs--during Stage IV in the energy 223 transduction cycle (Fig. 2). While the region required for outer membrane 224 fractionation, residues 175-239, includes the amphipathic helix (43) and is 225 responsible for the ability of TonB to formaldehyde crosslink to FepA (37), this 226 result indicated that the amphipathic helix was not the region responsible for 227 fractionation of TonB with the outer membrane. 228 The inactivity of $TonB_{\Delta AH}$ could have been due to structural perturbation. 229 Alternatively, it could have been due to the simultaneous deletion of residues 230 F202, W213, and Y215, since combination of two Ala substitutions at any of those 231 residues renders TonB inactive (27, 29). Individual Cys substitutions from E203 232 through R212 have little phenotypic effect (27). To retain F202, W213, and Y215 233 and broadly restore the overall structure, we shifted the 10-amino acid core region 234 within the helix out of frame starting at residue 203 and shifted it back into frame 235 at residue 213 (TonB_{fs}, pKP372). The result for TonB_{fs} was that the predicted 236 helical region was shortened slightly to encompass residues 201-209 (as analyzed 237 by JPRED), lost much of its amphipathic character, and at residue 210, Met was 238 substituted with Cys due to the frameshift (Fig. 5). Like TonB_{ΔAH}, TonB_{fs} was 239 completely insensitive in the colicin assays. 240

241	Due to the newly created M210C, $TonB_{fs}$ efficiently formed triplet
242	homodimers. Like those of the Cys substitutions in functionally important
243	residues, the TonB _{fs} triplet homodimers fractionated essentially entirely with the
244	cytoplasmic membrane, suggesting that they had trapped TonB at a stage in the
245	energy transduction cycle before TonB associates with the outer membrane [Fig.
246	6B; (17, 27)]. TonB M210C in the context of otherwise wild-type residues is
247	active and does not form triplet homodimers (27).
248	The in vivo dynamics of the TonB carboxy terminus suggest that it achieves
249	a monomeric conformation at some point in the energy transduction cycle to allow
250	productive interaction with FepA (31). Because a detectable proportion of $TonB_{fs}$
251	remained monomeric and was also found in the outer membrane on longer
252	exposures (data not shown), its inactivity was not due to 100% entrapment as a
253	triplet homodimer (Fig. 5B). We concluded that one or more aspects of the core
254	amphipathic helix domain were required for TonB activity.
255	
256	The TonB amphipathic helix interacts functionally with the FepA TonB box.
257	
258	An analysis of whether and how the TonB amphipathic helix interacts in
259	vivo with any of the TBDTs has never been performed. To investigate interactions
260	between the TonB amphipathic helix and the FepA TonB box, we used in vivo

261	disulfide crosslinking of TonB and FepA Cys substitutions expressed at
262	chromosomal levels, followed by electrophoresis on non-reducing SDS gels and
263	immunoblotting with anti-TonB monoclonal antibodies.
264	We surveyed crosslinking by TonB amphipathic helix residues R204C,
265	V206C, N208C, A209C, and R212C (Fig. 5). When expressed at chromosomal
266	levels, each of the TonB Cys substitutions was at least 60% active in 55 Fe-
267	ferrichrome transport assays (Table 1). TonB Q160C, over 100% active and a
268	known site of interaction with other TBDT TonB boxes, was also tested for
269	comparison to the amphipathic helix Cys substitutions [Table 1; (4, 16)]. The
270	FepA TonB box Cys substitutions tested were D12C, T13C, I14C, V15C, V16C
271	and T17C; FepA T13C is fully active (44) as was FepA V16C (Table 1) with the
272	rest assumed to be active.
273	The amphipathic helix substitutions at R204C, N208C and R212C formed
274	disulfide-linked complexes with all FepA TonB box Cys residues except N208C
275	with FepA T17C (for unknown reasons) (Fig. 7A). In contrast, TonB V206C and
276	A209C did not form significant complexes with any of the FepA TonB box Cys
277	residues, thus constituting a non-reactive hydrophobic face of the amphipathic
278	helix. Steady state levels of monomeric TonB from samples in Fig. 7A are
279	presented in Fig. 7B.

280	To determine if the TonB-FepA disulfide crosslinks were biologically
281	relevant, each TonB Cys substitution was also paired with the H20A mutation in
282	the TonB transmembrane domain (44). This mutation inhibits homodimerization of
283	TonB through its carboxy terminus, a step necessary for formation of carboxy
284	terminal TonB-ExbD heterodimers and the subsequent correct interaction of the
285	TonB carboxy terminus with FepA [Figs. 2 and 4A, (18, 31)]. TonB H20A
286	epitomizes the behavior of inactive TonB because it still interacts at unknown sites
287	with FepA in vivo (17, 18). The TonB H20A mutation rendered all the TonB Cys
288	substitutions inactive (Table 1).
289	The H20A mutation essentially eliminated complex formation by R204C,
290	N208C and R212C, indicating that the H20 wild-type versions were engaging in
291	biologically relevant interactions. The possibility that H20A somehow promoted
292	new interactions with the hydrophobic face (substitutions V206C and A209C) was
293	excluded since no complexes were observed. These results indicated that the TonB
294	amphipathic helix contacted the essential FepA TonB box in vivo, consistent with
295	its role in TBDT reception of TonB-transmitted energy. The TonB amphipathic
296	helix is the first known alternative to the TonB Q160 region for contact with the

297 FepA TonB box.

In the solved co-crystal structures of the TonB carboxy terminus with the TBDTs BtuB and FhuA, TonB residues R204, N208 and R212 of the amphipathic

300	helix interact with the barrels, but not the TonB boxes [Fig. 8, (20, 45)]. The lack
301	of interaction with the TonB amphipathic helix in those elegant co-crystal
302	structures supports the idea that the TonB carboxy terminus remains able to bind to
303	TBDTs and other proteins in an "un-energized" conformation (17, 18, 46, 47).
304	
305	TonB Q160 interaction with the FepA TonB box is only partially dependent on
306	TonB activity.
307	
308	Although the interaction of the TonB Q160 region with the TonB boxes of
309	several TBDTs has been well-documented both in vivo and in vitro (4, 15, 16, 48-
310	51), there has not yet been an analysis of how TonB Q160 interacts with the TonB
311	box of FepA nor an analysis of effects of inactive TonB upon any TBDT TonB box
312	interaction. In Fig. 7A, TonB Q160C crosslinked with all of the FepA TonB box
313	Cys substitutions, consistent with its behavior seen previously for BtuB Cys
314	substitutions in the TonB box (4). FepA V16C was chosen as the standard in all
315	subsequent experiments because it exhibited the highest degree of disulfide
316	crosslinking to TonB Q160C (Fig. 7A, left panel, lane 3), allowing comparisons of
317	relative levels of TonB-FepA complex formation.

318	The H20A mutation detectably decreased TonB Q160C crosslinking, but
319	without obliterating it altogether, suggesting that it represented a partially
320	functional interaction (Fig. 7A, left panel, compare lanes 3 and 4).
321	All of the interactions gave rise to an apparent higher and an apparent lower
322	mass complex within an approximate mass of one TonB plus one FepA (~116
323	kDa). [Although it has a calculated molecular mass of 26 kDa, TonB has an
324	apparent mass of 36 kDa on SDS gels because 17% of its residues are prolines
325	(41)]. Each of the two forms likely represented two different conformations made
326	by the same complex. First, because only a single unoxidized Cys exists in FepA
327	[because its two native Cys residues C487 and C494 are always oxidized (52)] and
328	in the TonB Cys substitutions studied here, all of which carry the C18G
329	substitution that removes the single native Cys. Second because the complexes are
330	also detected with anti-FepA polyclonal antibodies, ruling out participation of a
331	different protein (data not shown). And third, because similar doublets are also
332	seen with TonB-BtuB disulfide-linked complexes in vivo (4). That disulfide-linked
333	complexes can have different apparent masses depending on conformations of the
334	participants is exemplified by the three different disulfide-linked TonB
335	homodimers that result from a single TonB Cys substitution and demonstrably
336	occur on non-reducing SDS polyacrylamide gels (17).

338 Other FepA Cys substitutions assessed include the cork and periplasmic turns 339 between β-strands of the barrel.

340

Interaction of the TonB Cys substitutions with several additional FepA Cys 341 substitutions other than the TonB box was assayed to identify potential additional 342 sites of interaction by both the TonB amphipathic helix and Q160. In the 343 mechanically weak domain of the FepA cork, L23, S29, T32, A33, D34, and E35 344 are periplasmically accessible in the crystal structure. Residues A42, S46, and G54 345 are buried; T51 is partially buried. L85 is in the mechanically recalcitrant domain 346 and is partially buried [Fig. 9]. FepA residue T32, semi-conserved across TBDTs 347 (53), and the less-well-conserved A33 were included because they bind to TonB at 348 unknown sites and respond differentially to the presence and absence of ligand in 349 FepA photocrosslinking studies in vivo (40). G54 exhibits a modest change in 350 periplasmic exposure upon ligand binding (9). 351 FepA residues in the mechanically recalcitrant segment of the FepA cork 352 (V91, S92, S112, E120, V124, A131, V142, I145) were also evaluated to detect 353

possible cork movements not observed previously [(12) Fig. 10]. Also evaluated

were FepA R75, R126, E511, and E567, which form part of the "lock region", with

R75 and R126 in the recalcitrant domain of the FepA cork, and E511 and E567

positioned in the barrel (12, 14, 54). The lock region is proposed to be important

358	for transport but not binding of ligand, with the positively and negatively charged
359	residues forming a structure that keeps the cork bound to the barrel [(36, 55, 56).
360	Contact with residues in periplasmic turns between β -strands of the FepA
361	barrel, including the cork and barrel linker (D185, P243, D298, D356, D422,
362	D455, D519, E576, D618, and D664; Fig. 11) were assessed, something that has
363	not been investigated before for any TBDT. FepA residue E152, which marks the
364	transition from cork to barrel and residue T722, the third residue from the carboxy
365	terminus of FepA, were also included in the analysis.
366	Overall, 35 additional Cys substitutions in FepA were tested for their ability
367	to form disulfide crosslinks with TonB Cys substitutions.
368	
369	TonB amphipathic helix interactions extend into the mechanically weak region
370	of the FepA cork.
371	
372	To define the boundaries of reactive residues in the TonB amphipathic helix,
373	the set of core TonB amphipathic helix Cys substitutions was expanded to include
374	M201C and R214C (Fig. 5). Each TonB Cys substitution was assayed pairwise at
375	least twice in combination with the 35 additional FepA Cys substitutions outside
376	the TonB box.

377	Together, these results indicate that only Cys residues in the mechanically
•••	
378	weak region of the FepA cork interacted with TonB Cys substitutions, whereas
379	mechanically recalcitrant cork region (substitutions R75C through I145C) and the
380	two lock region residues in the barrel, E511C and E567C were essentially non-
381	reactive (Fig. 12A, B). Several interactions also occurred with FepA periplasmic
382	β -strand turns (Fig. 12C). All interactions involved the same reactive face of the
383	amphipathic helix that interacted with the TonB box: R204C, N208C, and R212C.
384	TonB M201C and R214C gave little to no interaction with any FepA Cys,
385	confirming the boundaries of the core reactive residues. A key observation for a
386	model to be described in the discussion was that none of the core amphipathic
387	helix Cys residues (R204C, N208C, and R212C) interacted detectably with FepA
388	Cys substitutions that were buried in the crystal structure (A42C, S46C, T51C, and
389	G54C) (Figs. 9, 12A).
390	TonB R204C made several H20-dependent contacts with most of the
391	periplasmically-accessible FepA cork Cys residues (L23C, S29C, T32C, A33C,

abundant (Fig. 13A).

392

The only residue in the cork region significantly contacted by TonB N208C was FepA S29C and it was an H20-dependent interaction (Fig. 14A).

and D34C, but not E35C), with S29C and A33C interactions being the most

396	TonB R212C made the highest degree of H20-dependent contacts with FepA
397	S29C—as high as the contacts between TonB Q160C and the FepA TonB box
398	residue V16C, which were the highest we observed (Figs. 7, 14B).
399	FepA S29C appeared to be a hot spot since R204C, N208C, and R212C as
400	well as the boundary-defining TonB M201C and R214C made complexes with it.
401	FepA S29 is located close to the center of the first β -strand of the cork. It is within
402	the region through which TonB could mechanically pull to unravel the cork as
403	suggested before for FhuA (20), possibly as the site of <i>in vivo</i> TonB interaction at
404	the as-yet-to-be-identified non-TonB box site prior to TonB box exposure (12).
405	
406	The TonB amphipathic helix interacts with periplasmic FepA β -strand barrel
406 407	The TonB amphipathic helix interacts with periplasmic FepA β-strand barrel turns.
407	
407 408	turns.
407 408 409	<i>turns.</i> <i>In vivo</i> , TonB interacts with FepA at one or more sites before it interacts
407 408 409 410	<i>turns.</i> <i>In vivo</i> , TonB interacts with FepA at one or more sites before it interacts with the FepA TonB box (12). Instead of FepA S29, the periplasmic β -strand turns
407 408 409 410 411	<i>turns.</i> <i>In vivo</i> , TonB interacts with FepA at one or more sites before it interacts with the FepA TonB box (12). Instead of FepA S29, the periplasmic β -strand turns of TBDTs could constitute such sites.
407 408 409 410 411 412	<i>turns.</i> <i>In vivo</i> , TonB interacts with FepA at one or more sites before it interacts with the FepA TonB box (12). Instead of FepA S29, the periplasmic β-strand turns of TBDTs could constitute such sites. The last 150 residues of the TonB periplasmic domain, within which the
407 408 409 410 411 412 413	<i>turns.</i> <i>In vivo</i> , TonB interacts with FepA at one or more sites before it interacts with the FepA TonB box (12). Instead of FepA S29, the periplasmic β -strand turns of TBDTs could constitute such sites. The last 150 residues of the TonB periplasmic domain, within which the amphipathic helix resides, have a calculated pI of 10.4 (41). It seemed logical that

416 (except Pro243 in turn 2), including Glu152 in the linker region between cork and
417 β-strand 1. Such interactions would likely be mediated through additional
418 residues of TonB and FepA that would bring the now Cys-substituted residues into
419 proximity (Fig. 11).

420	All of the FepA Cys substitutions in β -strand turns exhibited the ability to
421	support fully wild-type levels of ⁵⁵ Fe-enterochelin transport except FepA E152C
422	and T722C, where the levels dropped to ~ 60% (Table 1). Two Cys substitutions
423	in the lock region of the barrel, E511C and E567C, were also assayed. FepA
424	E511C had little effect on FepA activity, and E567C reduced activity to 65% of
425	wild-type. Cys substitutions in the cork components of the lock region, R75C and
426	R126C, reduced transport to ~40% of wild-type levels but did not eliminate it.
427	Thus, neither the charged residues in the periplasmic β -strand turns nor the lock
428	region residues were individually essential for FepA function.
429	Several sites of interaction between the TonB amphipathic helix residues
430	R204C, N208C, and R212C and the periplasmic FepA β -strand barrel turns are

431 summarized in Fig. 12C.

For TonB R204C, two different forms of the complex were observed, as was
also seen with the FepA cork Cys substitutions (Fig. 13B). In contrast to
interactions with the FepA cork, the apparent masses of the complexes with

435 E152C, P243C, D298C, and D422C shifted to significantly higher values, highest

436	in the case of the latter three for unknown reasons. In contrast to interactions with
437	the cork, the β -strand barrel complexes were largely insensitive to the presence of
438	TonB H20A. Overall intensities of the complexes remained similar with both
439	TonB H20 and TonB H20A versions of R204C, but in the case of TonB H20A, the
440	complexes appeared to slightly shift their abundance to the higher mass complex—
441	again for unknown reasons.
442	For TonB N208C, weak interactions were detected with FepA E152C,
443	P243C, D298C, and D519C, each of which was H20-dependent (Fig. 14A). In
444	addition, TonB N208C made a very high level of contacts with D422C whether
445	TonB H20 or H20A was present. TonB R212C made a moderately high level of
446	H20-sensitive contacts with P243C, D422C, and D519C, whereas the contact with
447	D455C was largely H20-insensitive (Fig. 14B). Thus, both functional and non-
448	functional TonB amphipathic helix contacts occurred with the FepA β -strand turns.
449	
450	TonB Q160 interactions include buried cork residues.
451	

452 Previous studies of TonB Q160C with TBDTs have been confined to the
453 TonB box. Since the TonB amphipathic helix made FepA contacts outside the
454 TonB box, we wanted to explore the possibility that Q160 did so as well.

455	Surprisingly, TonB Q160C interacted more widely than the amphipathic
456	helix did with Cys substitutions throughout the mechanistically weak part of the
457	FepA cork (Figs. 15A, B). Disulfide-linked heterodimers were observed between
458	TonB Q160C and FepA V16C, L23C, S29C, T32, A33C, D34C, E35C, A42C,
459	S46C and T51C, with the highest degree of interactions occurring with D34C and
460	S42C. The presence of the H20A mutation greatly diminished, and in most cases
461	eliminated, the crosslinking detected, suggesting that when TonB was inactive, the
462	ability of Q160C to make contacts within the mechanically weak domain of the
463	FepA cork was entirely prevented, unlike the interaction with the FepA TonB box
464	(Fig. 7A; 15C)
465	The disulfide crosslinking between TonB Q160C and FepA A42C or S46C
466	was notable because A42 and S46 are buried in the FepA crystal structure. TonB
467	Q160C crosslinks with FepA A42C were as abundant as those between the
468	standard TonB Q160C-FepAV16C pair (Figs. 9 and 15C). FepA A42 and S46 are
469	positioned in a plane approximately mid-way between top and bottom of the cork.
470	FepA A42 is on the interface with the FepA barrel. FepA S46 is entirely buried
471	within the cork (Fig. 9). These key observations are incorporated into a model in
472	the discussion.
473	TonB O160C did not interact abundantly with any Cys substitutions more

TonB Q160C did not interact abundantly with any Cys substitutions more
carboxy-terminal than FepA T51C (Fig. 12). Consistent with cork movement,

475	weak H20-specific interactions with FepA G54C were also observed on long
476	exposures (Fig. 16, lane 5). Ma et al. previously observed modest periplasmic
477	exposure of FepA G54C in the presence of enterochelin (9). With the exception of
478	scarcely detectable interactions with D519C in a barrel turn, no interactions of
479	TonB Q160C with any of the remaining FepA Cys substitutions from V91C
480	through I145C (the mechanically recalcitrant domain), the lock region or the barrel
481	turns were detected no matter how long the exposures were (Figs. 12B and 12C;
482	data not shown). These observations form an important part of the model
483	presented in the discussion.
484	

485 Deletion of the FepA TonB box prevents Q160C FepA cork interactions. 486

Prior to the experiments above, the interaction of TonB Q160 with TBDT 487 sites other than their TonB boxes had not been tested. Since several additional 488 interactions were identified, we attempted to determine an order of events by 489 analyzing the effect of a FepA TonB box deletion on complex formation with the 490 FepA Cys substitution D34C with which TonB Q160C interacts with as abundantly 491 as it does the FepA TonB box, and G54C, which is buried and where the 492 interaction is weaker. In both cases, deletion of the FepA TonB box (residues 12-493 17) essentially prevented the interaction (Fig. 16A, lanes 4 and 6). This finding 494

suggested that prior contact by unspecified TonB residues with the FepA TonB
box was required for TonB Q160C to interact with FepA cork residues beyond the
TonB box.

498

499 TonB F202A, W213A lacks ExbD contact and inhibits the interaction of TonB
500 Q160C with the FepA TonB box.

501

In TonB, the F202A and W213A mutations boundary the core of the 502 amphipathic helix and, in combination, completely inactivate it (29). TonB F202A, 503 W213A was used as a tool to better understand parameters of the interaction 504 between TonB Q160C and FepA V16C in the TonB box. 505 At the time when we discovered the inactivity of TonB F202A, W213A, the 506 TonB-ExbD interaction captured by in vivo formaldehyde crosslinking of TonB 507 had yet to be identified, however we knew that such double Ala mutations in the 508 carboxy terminus did not prevent formation of the disulfide-linked TonB triplet 509 homodimers (17, 29). In this study, the effect of the F202A, W213A mutation as 510 well as another double Ala mutation--F202A, Y215A--was to prevent formation of 511 the Stage III TonB-ExbD formaldehyde crosslinked heterodimer (18, 31). It was 512 particularly telling that even when the TonB double Ala mutants were 513 overexpressed, there was still no formation of the TonB-ExbD heterodimer, which 514

515	appears to play a key role in configuring TonB for successful energy transduction
516	to FepA (Fig. 17; Fig. 2, Stage III TonB-ExbD heterodimers).

When F202 and W213 are mutated individually, they support intermediate 517 and assay-specific levels of TonB activity (29). Consistent with that, the TonB 518 Q160C, F202A substitution was still able to form the Q160C-V16C complex (Fig. 519 lane 4). Although the presence of the F202A, W213A double mutations rendered 520 TonB proteolytically unstable (Fig. 18, lane 5), as seen previously (29), it was 521 possible to increase the exposure time of the immunoblot to the point where the 522 level of monomer (Fig. 18, lane 6) was slightly greater than the level seen for the 523 TonB Q160C and its F202A derivative (Fig. 18, lanes 3 and 4). In the longer 524 exposure, it was clear that the ability of the TonB Q160C, F202A, W213A to form 525 complexes with FepA V16C was significantly diverted away from the FepA TonB. 526 Instead, the absence of a functional TonB carboxy terminus led Q160C to form 527 three complexes, too small to be complexes with FepA. The location and spacing 528 of the complexes were reminiscent of disulfide-linked TonB triplet homodimers 529 that represent three different conformations of the TonB carboxy terminus in vivo 530 (17). 531

532

```
533 DISCUSSION
```

While TonB remains anchored in the cytoplasmic membrane by its amino 535 terminal transmembrane domain, the periplasmically localized TonB carboxy 536 terminus binds transiently and cyclically to TonB-dependent transporters (TBDTs) 537 in the outer membranes of Gram-negative bacteria to transduce cytoplasmic 538 membrane protonmotive force energy required for the active transport of ligands 539 (8). The *in vivo* molecular mechanism is not well understood. Previously, the only 540 known in vivo interaction between TonB and TBDTs involved the region of TonB 541 Q160 and the BtuB and FecA TonB boxes (4, 16, 50). Because our earlier studies 542 had suggested additional but unknown sites are involved in vivo, we searched for 543 site-specific interactions between TonB and FepA, the TBDT that transports the 544 sole siderophore synthesized and secreted by E. coli (12). TonB sites focused on 545 TonB Q160 and the TonB carboxy terminal amphipathic helix and their potential 546 interactions with sites in the FepA TonB box, in both mechanically weak and 547 mechanically recalcitrant domains of the FepA cork, and in FepA β-strand barrel 548 turns. It is important to study TonB interactions with TBDTs in their native 549 environment, where ExbB, ExbD and the protonmotive force of the cytoplasmic 550 membrane are all present (57). 551

552

The TonB carboxy terminal amphipathic helix is essential for the energy
transduction cycle.

556	TonB encoded from an amber mutation at codon 175 is inactive,
557	demonstrating that, although TonB Q160 has been the only site established to
558	interact with TBDTs, it is not sufficient for activity, and indicating that some
559	aspect of the last 65 TonB residues is essential (37). Within those last 65 residues,
560	we focused on the role of a sole amphipathic helix in the TonB carboxy terminus
561	(residues 199-216).

We found that the TonB amphipathic helix was essential either by deleting it or by frameshifting it to maintain overall residue continuity. While this confirmed the importance of the region, those results could also reflect an inability to form TonB-TonB homodimers or TonB-ExbD heterodimers, both of which are important for the energy transduction cycle (27, 31, 34, 35). We therefore asked if the TonB amphipathic helix interacted directly with the only known essential region of the TBDT, FepA, its TonB box.

Based on the *in vivo* disulfide crosslinking experiments, amphipathic helix residues R204C, N208C and R212C defined a hydrophilic face that interacted with Cys substitutions throughout the FepA TonB box, whereas the two residues on the hydrophobic face, V206C and A209C did not interact with FepA. TonB R204C was previously shown to be solvent exposed at some point in the energy transduction cycle, consistent with localization on the hydrophilic face (58).

575 Because these *in vivo* interactions were prevented by the presence of the

inactivating TonB H20A mutation, they comprised a set of novel, functional, and
specific interactions that have been identified between TonB and a TBDT for the
first time.

The amphipathic helix interaction with the TonB box is absent from solved co-crystal structures of the TonB carboxy terminus (~ residues 152-235) with TBDTs BtuB and FhuA. The sidechains of the hydrophilic face residues R204C, N208C, and R212C are oriented towards the TBDTs and distant from the TonB boxes in both structures (20, 45), demonstrating either the difference between *in vivo* "energized" and inactive TonB, or differences between TBDTs.

Now that an essential TonB component has been identified that interacts 585 with an essential FepA component (TonB box), it is tempting to speculate that the 586 TonB amphipathic helix holds the entire key to the TonB energy transduction cycle 587 for E. coli. As a result of this study and previous work, residues within the TonB 588 amphipathic helix have now been recognized to participate in sequential 589 interactions with three different proteins-TonB with itself, with ExbD and, here, 590 with FepA [(24, 59); Fig.2]. The amphipathic helix sequences are 55% conserved 591 (72% if E/D, R/K, and W/F substitutions are considered equivalent) amongst 592 enteric bacteria, but barely conserved with *Pseudomonas putida tonB*, which does 593 not complement an *E. coli tonB* mutation (24, 59). 594

595	Like wild-type TonB, TonB H20A formaldehyde-crosslinks with FepA in
596	vivo, but does not transmit energy to it (18, 28, 44). Formation of disulfide
597	crosslinks and their elimination by the inclusion of the TonB H20A mutation was a
598	clear indication that they represented functional interactions. While the lack of
599	disulfide-linked complexes for some pairs likely represented lack of interactions, it
600	could also be that the interactions could not be trapped due to due to misorientation
601	of the thiol side chains or because the interactions were too transient. It is also
602	likely that other important in vivo regions of interactions remain to be discovered.
603	
604	A model: does the FepA cork "fish" for the TonB Q160 region?
604 605	A model: does the FepA cork "fish" for the TonB Q160 region?
	<i>A model: does the FepA cork "fish" for the TonB Q160 region?</i> On the face of it, the amphipathic helix region (residues 199-216) of TonB is
605	
605 606	On the face of it, the amphipathic helix region (residues 199-216) of TonB is
605 606 607	On the face of it, the amphipathic helix region (residues 199-216) of TonB is more logical than TonB Q160 as a site of initial contact with a TBDT TonB box
605 606 607 608	On the face of it, the amphipathic helix region (residues 199-216) of TonB is more logical than TonB Q160 as a site of initial contact with a TBDT TonB box because it is theoretically somewhat closer to the outer membrane. This is

- eliminating TonB activity [Fig. 4; (24, 39)]. In addition, the amphipathic helix is
- essential, whereas TonB Q160 and the region encompassing it (residues R158-

613 Q162) can be deleted without inactivating TonB (26). Why this region has been a

source of second site suppressors for inactive TBDT TonB box mutations remainsa mystery (48, 49).

Because it is not essential, the wide range of *in vivo* contacts made by TonB 616 Q160C was surprising, encompassing not only the FepA TonB box seen previously 617 for other *E. coli* TBDTs but also, for the first time, residues throughout the region 618 of the mechanically weak domain of the FepA cork. Most importantly, two of the 619 interacting residues (A42, and S46) are buried within in the FepA cork (60). In 620 contrast to the partially H20-senstive Q160C interactions with the FepA TonB box, 621 both of these contacts were completely prevented if the TonB Q160C also carried 622 the inactivating H20A mutation, indicating that they fully represented the action of 623 functional TonB. The FepA region of TonB Q160C interaction ended just prior to 624 the beginning of the mechanically recalcitrant domain of the FepA cork. 625 TonB Q160C interacted as abundantly with FepA A42C as it did with the 626 FepA V16C standard within the TonB box, which was the most abundant 627 interaction seen in this entire study. Because FepA A42C is buried, this strongly 628 suggested that enough of the cork domain entered the periplasm to expose A42C, 629 along with S46C, to interaction with TonB Q160C. Our previous discovery of 20-630 to-25-fold increases in periplasmic accessibility of the buried cork residues A42C, 631 S46C (and the partially buried T51C) in response to the addition of colicin B 632 ligand *in vivo* validates the finding here that at some point in the energy 633

transduction cycle, these residues become available for interaction with TonB
Q160C and likely neighboring residues (4, 12). In striking contrast, none of the
amphipathic helix Cys substitutions interacted with FepA Cys substitutions that
were buried within the cork, with targets limited to periplasmically accessible Cys
residues.

The overall non-reactivity of the mechanically recalcitrant domain of FepA 639 in this in vivo study also validated our earlier finding of its resistance to being 640 periplasmically labeled in the presence of a large (~55 kDa) ligand, colicin B. In 641 that study, two distinct possibilities were proposed for the mechanically 642 recalcitrant domain: first that it did not move and second that it moved but was 643 blocked from being labeled by the presence of another protein (12). Our studies 644 here did not exclude either possibility. For the first possibility to be true, colicin B 645 would need to denature on its way through a small opening, which, given its size 646 and structure as a dumbbell that fills the FepA lumen, seems unlikely (61). 647 Nonetheless, such denaturation has been observed for the amino-terminal domain 648 of colicin pyoS2 of *P. aeruginosa* through its TBDT FpvA in vivo (62). 649 Furthermore, the significantly smaller (~29 kDa) colicin M, which parasitizes the 650 TBDT FhuA, uses a chaperone to fold it in the periplasm where it inhibits 651 peptidoglycan formation (63). A mechanically recalcitrant domain for the TBDT 652 BtuB has been characterized in vitro (14). 653

While it is not possible to definitively turn static data into a dynamic model, 654 these results suggested a possible sequence of events where the TonB amphipathic 655 helix binds to the FepA TonB box, which moves the FepA cork sufficiently that its 656 mechanically weak domain extends into the periplasm. Previously buried cork 657 residues are thus able to "fish" for interactions with various sites on TonB, among 658 which we captured the TonBQ160C interaction. It is notable that the hydrophilic 659 face of the amphipathic helix contacted multiple residues in the β -strand turns of 660 the FepA barrel, whereas TonBQ160C could contact none of them, consistent with 661 the idea that it does not reach that far across the periplasmic space. These results 662 may also explain why the Q160 region of TonB is not essential—it is secondary 663 and incidental to the action of the TonB amphipathic helix at the FepA TonB box. 664 Consistent with this model, without the FepA TonB box present for the 665 amphipathic helix to engage, TonB Q160C did not interact at either a residue 666 central to the mechanically weak FepA domain (D34C) or a residue at its near 667 boundary with the mechanically recalcitrant FepA domain (G54C). 668 The combination of F202A, W213A mutations on either side of the TonB 669 amphipathic helix substantially inhibited the normal interaction of TonB Q160C 670 with FepA TonB box residue V16C. As such, the double TonB mutation 671 somewhat mimicked the effect of the FepA TonB box deletion that prevented 672

673 Q160C interactions with FepA D34C and G54C, suggesting that TonB F202A,

674	W213A might have inhibited the amphipathic helix from engaging the FepA TonB
675	box, preventing the FepA cork from fishing for TonB Q160C.
676	Consistent with our results revealing movement of the FepA cork, Majumdar
677	et al. engineered intra-cork disulfide bonds in FepA, most of which significantly
678	decreased Fe-enterochelin transport. The transport was restored in the presence of
679	reducing agent, indicating that there are required conformational changes within
680	the cork itself (52).
681	
682	Comparison to results from in vivo photocrosslinking to study FepA dynamics
683	
684	We previously identified FepA residues that interact with TonB using in vivo
685	photocrosslinking by the reagent pBpa inserted at sites of engineered amber
686	substitutions in <i>fepA</i> (40). A potential conformational switch signaling to TonB
687	that ligand (enterochelin) is bound was identified. FepA T32pBpa bound TonB in
688	the absence enterochelin whereas FepA A33pBpa bound TonB in its presence. In
689	the current study, both FepA T32C and A33C interactions occurred with both
690	TonB R204C in the amphipathic helix and Q160C without discrimination, perhaps
691	reflecting an average of ligand-bound and unbound states for FepA. FepA
692	S29pBpa, A42CpBpa, S46pBpa, and T51pBpa in the mechanically weak domain
693	did not significantly photocrosslink to TonB, even though these variants all

supported ~ 75% activity. This could be because the interactions are too rapid to
capture, whereas in the current study, the disulfide bond formations would
potentially have been aided by the DsbA system (64).

Although the effect of a *dsbA* mutation on disulfide formation in this study 697 was not tested, the effect on TonB triplet homodimer formation are informative 698 and suggest that the frustrating answer is: it depends. Plasmids expressing TonB 699 F125C, G186C, F202C, W213C, Y215C, or F230C substitutions were transformed 700 into an isogenic dsbA strain, KP1514 [W3110, Δ (tonB, P14::blaM), dsbA::kan], 701 and the degree of disulfide-linked triplet homodimer formation was compared to 702 previous results from a *dsbA*+ strain (27). TonB F125C, TonB Y215C and TonB 703 F230C showed greatly diminished triplet dimer formation in the absence of DsbA, 704 with an intermediate decrease for W213C. In no case was triplet dimer formation 705 entirely abolished. For TonB F202C and TonB G186C, there was no effect of the 706 dsbA mutation (Spicer and Postle, unpublished data). 707

In contrast to the present study, FepA E120pBpa and I145pBpa on the periplasmic face of the FepA cork, did photocrosslink to TonB (40). We do not have an explanation for these differences but note that the techniques are dissimilar, and the disulfide crosslinking studies here were congruent with our studies of *in vivo* FepA cork accessibility (12).

713

Current in vivo approaches are not amenable to discovery of TonB aromatic *residue contacts with FepA*.

716

717	This study revealed the importance of the TonB amphipathic helix core
718	(residues 204-212) in contacting the TonB box of FepA. However, individual Cys
719	substitutions within that core have no phenotype (27). Similarly, the sequences of
720	TBDT TonB boxes contain little residue-specific information and indeed can be
721	swapped for one another (15, 16). It is therefore unlikely that this set of
722	interactions is responsible for the idiosyncratic phenotypes observed for Cys and
723	Ala substitutions of the aromatic residues that boundary the amphipathic helix
724	core—F202 and W213 among others.

We have been, unfortunately, thwarted in our ability to define the sites on 725 FepA where TonB F202 and W213 interact due to two factors, both based on 726 signal-to-noise ratios. First, Cys substitutions at these aromatic residues form a 727 sufficiently high abundance of disulfide-linked triplet homodimers in vivo that any 728 side reactions would be swamped out and difficult to interpret (17, 27). Second, 729 there appears to be a region of TonB that cannot be analyzed by in vivo 730 photocrosslinking. We previously used targeted amber mutations in *fepA* and in 731 *exbD* to guide insertion of the photocrosslinkable amino acid pBpa and generate 732 crosslinks at unknown sites in TonB in vivo. In those studies, both the fepA and 733

exbD amber mutations fully incorporate the pBpa and result in full-length proteins(40, 65).

We were hopeful that a reciprocal approach using targeted amber mutations 736 in *tonB* at the carboxy terminal aromatic residues would be fruitful, however, we 737 were thwarted by failure to incorporate sufficient pBpa, except small amounts and 738 only after highest overexpression, such that ~ 85-100% of the TonB was present as 739 740 the truncated amber mutant form or its degradation product. Given the dominant negative gene dosage effect of tonB overexpression, the high level of incomplete 741 TonB fragments would have obscured meaningful interpretations (3, 66). There 742 may be something unusual about this particular region of *tonB* during translation 743 since we have been able to successfully incorporate pBpa into tonB at engineered 744 amber sites in the transmembrane domain (Postle and Guzek, unpublished data). 745 746

747 Surveillance of FepA periplasmic β -strand turns

748

TonB binds to transporters whether or not it is "energized", although it is still not clear what that term means mechanistically. For example, inactive TonB H20A formaldehyde-crosslinks to FepA *in vivo* (18) and purified inactive carboxy terminal domains of TonB bind with varying affinities to purified transporters *in vitro* (19, 21, 22). Here we identified the first *in vivo* interactions between the

TonB amphipathic helix and the FepA β -strand turns, the majority of which appeared to represent interactions with inactive TonB.

The periplasmic β -strand turns are candidates for one or more TonB-FepA 756 binding sites since they protrude more deeply into the periplasm than the face of 757 758 the cork does (Fig. 11). We chose Cys substitutions at Asp or Glu residues (and Pro243) in the periplasmic β -strand turns as most likely to be required for FepA 759 activity and were surprised they were all functional. The fact that they had little to 760 no effect on activity, builds on and confirms a tolerance to mutation that generally 761 characterizes TBDTs (36, 40), where only certain structurally disruptive mutations 762 such as a Leu-to-Pro mutation in the TonB box, its complete deletion, or Arg-to-763 Pro in the lock region residue 75 lead to TBDT inactivation (4, 15, 55). 764 Interaction of TonB N208C with the FepA periplasmic β -strand turn 5 765 D422C variant was striking for two reasons: first, because it was so abundant--as 766

abundant as the control TonB Q160C-FepA V16C interaction, and second because it was impervious to the presence of the inactivating TonB H20A substitution. In contrast, TonB R212C formed complexes with Cys residues in several β -strand turns, the majority of which decreased if TonB was inactivated by the H20A mutation.

Phage panning using a purified TonB carboxy terminus identifies TonB
interaction sites on FhuA sites corresponding to barrel turns 1 and 2, represented in

774	this study by FepA D185C and P243C (56). We did not observe interaction of
775	TonB with D185, but we did observe R204C, N208C and R212C interacting with
776	P243C; interactions by N208C and R212C were both H20-dependent.
777	Considering all the results, this study demonstrated that the hydrophilic face
778	of the essential TonB amphipathic helix was used for contacts throughout FepA. It
779	also validated the idea that, in vivo, there are certain TonB-FepA contacts made by
780	active TonB, with a different set of contacts that do not lead to energy transduction
781	events. The contacts made by inactive "unenergized" TonB, some of which were
782	quite abundant, could be consistent with membrane surveillance and
783	conformational sampling (27, 46) where TonB discriminates between a TBDT and
784	a porin, or searches for a ligand-loaded TBDT (67). Because the ligand
785	enterochelin was present throughout the experiments here, it will be important to
786	determine which TonB-FepA interaction sites are ligand-dependent. If any in vivo
787	TonB-FepA interactions are H20-dependent as well as ligand-dependent, they
788	would constitute candidates important for energy transduction.
789	

790

l

791 METHODS AND MATERIALS

792

793 Bacterial strains & plasmids

The strains and plasmids used in this study are listed in Table 2. All bacteria are derivatives of *Escherichia coli* K-12 strain W3110. KP1491 was constructed by $P1_{vir}$ transduction of the $\Delta(tonB, P14)$::blaM cassette from KP1477 into KP1489 (W3110 $\Delta fepA$).

Plasmids pKP1858 and pKP1859 were created from pKP476 and pKP372 798 respectively, using polymerase chain reaction (PCR)-based site-directed 799 mutagenesis as previously described (26) to create C18G substitutions in both 800 plasmids. The majority of plasmids encoding *tonB* mutants were derived from 801 pKP1362 (tonB C18G), which was constructed by cloning tonB C18G from 802 pKP568 into the Sph1 site of pPro33, allowing for expression from the propionate 803 promoter (68). Plasmids encoding *fepA* mutants were derived from pKP515 where 804 fepA is expressed from the arabinose promoter in pBAD24 (11). Mutations were 805 engineered through PCR-based site-directed mutagenesis as previously described 806 (26). The coding region of each engineered mutant gene was confirmed through 807 Sanger sequencing at the Pennsylvania State University Nucleic Acid Facility. 808 809

810 Growth media and culture conditions

811	Liquid cultures were grown at 37°C with aeration in LB broth or in M9
812	minimal salts supplemented with 1% glycerol, 0.2% vitamin-free casamino acids,
813	40 μ g ml ⁻¹ of tryptophan, 4 μ g ml ⁻¹ of thiamine, 1 mM MgSO ₄ and 0.5 mM CaCl ₂ .
814	For disulfide-crosslinking, the M9 minimal salts medium was further
815	supplemented with 10 μ M Fe (as ferric chloride). For [⁵⁵ Fe]-enterochelin transport
816	assays, the M9 minimal salts medium was supplemented with 1.85 μ M Fe (as
817	ferric chloride) as well as 40 μ g ml ⁻¹ of tyrosine and 40 μ g ml ⁻¹ of phenylalanine to
818	facilitate growth of <i>aroB</i> strains on which they were performed (69).
819	Chloramphenicol at 34 μ g ml ⁻¹ and ampicillin at 100 μ g ml ⁻¹ were used to maintain
820	TonB and FepA plasmids respectively. The TonB plasmids were induced with the
821	following concentrations with sodium propionate to achieve chromosomal levels;
822	TonB C18G (10 mM), TonB C18G M201C (10 mM), TonB C18G R204C (0.5
823	mM), TonB C18G V206C (10 mM), TonB C18G N208C (10 mM), TonB C18G
824	A209C (10 mM), TonB C18G R212C (1 mM), TonB C18G R214C (10 mM), all
825	TonB C18G H20A cysteine substitutions (15 mM). FepA cysteine substitutions
826	were not induced as the base expression level approximated chromosomally
827	encoded FepA levels in cells grown with 1.85 μ M Fe.
828	

829 Sucrose density gradient fractionations

830	Sucrose density gradient fractionation was carried out essentially as					
831	described previously (43) with some modifications. Strain KP1344 containing					
832	plasmids pKP1858 or pKP1859 was grown as described above, in the presence of					
833	0.002% arabinose and 0.1% arabinose respectively, to mid exponential phase.					
834	Cells were harvested and lysed by French pressure cell at 4° C. The cell lysate					
835	supernatant was applied to the top of the sucrose gradient and centrifuged in a					
836	Beckman SW40 rotor at 35,000 r.p.m. for 19 hours at 4° C. Collected fractions					
837	were precipitated with an equivalent volume of 20% trichloroacetic acid (TCA) at					
838	4° C, and suspended in Laemmli sample buffer (70) (LSB) at 95°C for 5 minutes.					
839	10 μ l of each sample was electrophoresed on 12% SDS-polyacrylamide gels and					
840	then immunoblotted with TonB 4F1 monoclonal antibodies (71).					

841

842 In vivo formaldehyde crosslinking

843 Strains were subcultured 1:100 from saturated LB cultures into 844 supplemented M9 minimal salts medium supplemented with L-arabinose as 845 described in the Figure 17 legend and 34 μ g ml⁻¹ chloramphenicol without added 846 iron. Cells were harvested at an A₅₅₀ of 0.5 in 1 ml aliquots, centrifuged and 847 aspirated. The pellet was suspended in 938 μ l of 100 mM sodium phosphate buffer 848 at pH 6.8 to which 62.5 μ l of 16% formaldehyde was added and incubated for 15 849 minutes at 22°C. Cells were then pelleted, suspended in 50 μ l of 2x LSB (twice the

usual concentration) and heated for 5 minutes at 60°C. The samples were 850 electrophoresed on 11% SDS-polyacrylamide gels and then immunoblotted with 851 TonB 4F1 monoclonal antibodies or anti-ExbD polyclonal antibodies (32, 71). 852 853

In vivo disulfide crosslinking 854

KP1491 harboring pairwise combinations of plasmid-encoded TonB and 855 plasmid encoded FepA were subcultured 1:100 from saturated LB cultures into 856 supplemented M9 minimal salts medium and grown with appropriate antibiotics to 857 $A_{550} = 0.45$. 0.4 OD ml⁻¹ of cells were harvested by centrifugation and precipitated 858 with an equal volume of 4°C 20% TCA to stop the proteolysis of TonB that occurs 859 in LSB at 95°C when TCA is not used (72). The TCA-precipitated pellets were 860 boiled at 95°C for 10 minutes in 100 µl of LSB with 50 mM iodoacetamide to 861 block any remaining free cysteines to prevent in vitro disulfide crosslinking. All 862 samples were analyzed on 9% SDS-PAGE gels and followed by immunoblot 863 analysis with TonB 4F1 monoclonal antibody and FepA polyclonal antibodies 864 (32). 865

To eliminate the possibility that disulfide crosslinks formed due to the 866 presence of TCA during cell harvesting, the efficiency of crosslinking was 867 compared with and without TCA precipitation. Upon harvesting cells were 868 pelleted without TCA. The cell pellets were boiled at 95°C for 10 minutes in 100 869

870	μl of LSB with 50 mM iodoacetamide. TCA slightly enhanced the recovery of both
871	crosslinked complexes, which also still formed in the absence of TCA and the
872	monomer such that levels of crosslinking were proportional to the controls with
873	and without TCA (data not shown).
874	
875	[⁵⁵ Fe]-enterochelin transport
876	TonB and FepA with individual Cys substitutions were assessed for their
877	initial rates of enterochelin (Sigma-Aldrich) transport as described previously (40).
878	FepA constructs were assayed in KP1490 (W3110 aroB ΔfepA) whereas TonB
879	constructs were assayed in strain KP1406 (W3110 <i>aroB</i> Δ (<i>tonB</i> , <i>P14</i>):: <i>blaM</i>).
880	Enterochelin is the sole siderophore synthesized and secreted by <i>E. coli</i> K12. The
881	aroB mutation prevents enterochelin synthesis and the synthesis of any
882	intermediates that could interfere in the assay (69).
883	
884	
885	ACKNOWLEDGEMENTS
886	
887	We thank Ryan Guzek for analysis of the TonB pBpa substitutions and
888	construction of pKP1836 and pKP1837; Bradley Spicer for construction of
889	pKP1382, pKP1400, pKP1403, pKP1427, FepA Cys substitutions in the TonB

46

890	box, and analyzing effects of a <i>dsbA</i> strain on TonB triplet homodimer formation;
891	Suzanne Wardell for construction of pKP372; Shaima El Mowafi for construction
892	of pKP1369 and pKP1370; Siti Kamarudin for construction of pKP1858,
893	pKP1859, and pKP1861; Surendran Devanathan for construction of KP1491;
894	Cheryl Swayne for construction of pKP1362; Raka Ghosh for construction of
895	pKP1581; Yu-An Liu for construction of pKP1361; Larissa Goldman for
896	construction of pKP1506; Gui Teng Chua for construction of pKP1841, pKP1850,
897	and pKP1854; Elizabeth McFadden for the formaldehyde crosslinking experiment
898	on the TonB double Ala variants, and Glenn Hwang for construction of pKP2299,
899	pKP2303, pKP2304, the analysis of amphipathic helix Cys substitutions
900	interactions with the FepA TonB box and excellent technical assistance. We thank
901	the E. coli Genetic Stock Center and the Jonathan Beckwith lab for their dsbA::kan
902	strain, RI90. Support from NIGMS grant GM112710 is gratefully acknowledged.

903

REFERENCES 904

905

1. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability 906 revisited. Microbiol Mol Biol Rev 67:593-656. 907

- 2. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent 908
- transporters: regulation, structure, and function. Annu Rev Microbiol 64:43-60. 909
- Fischer E, Günter K, Braun V. 1989. Involvement of ExbB and TonB in 3. 910
- transport across the outer membrane of *Escherichia coli*: phenotypic 911
- complementation of *exb* mutants by overexpressed *tonB* and physical stabilization 912
- of TonB by ExbB. J. Bacteriol. 171:5127-5134. 913
- Cadieux N, Kadner RJ. 1999. Site-directed disulfide bonding reveals an 4. 914
- interaction site between energy-coupling protein TonB and BtuB, the outer 915
- membrane cobalamin transporter. Proc. Natl. Acad. Sci. USA 96:10673-10678. 916
- Davies JK, Reeves P. 1975. Genetics of resistance to colicins in 5. 917

Escherichia coli K-12: cross-resistance among colicins of group B. J. Bacteriol. 918

123:96-101. 919

- Pugsley AP, Reeves P. 1976. Increased production of the outer membrane 6. 920 receptors for colicins B, D and M by Escherichia coli under iron starvation.
- Biochem. Biophys. Res. Commun. 70:846-853. 922

923	7.	Frost GE,	Rosenberg	H. 1975.	Relationship	between the ton	B locus and
-----	----	-----------	-----------	-----------------	--------------	-----------------	-------------

iron transport in *Escherichia coli*. J. Bacteriol **124**:704-712.

925 8. Gresock MG, Savenkova MI, Larsen RA, Ollis AA, Postle K. 2011.

- 926 Death of the TonB shuttle hypothesis. Front. Microbiol. **2**:206.
- 927 9. Ma L, Kaserer W, Annamalai R, Scott DC, Jin B, Jiang X, Xiao Q,
- 928 Maymani H, Massis LM, Ferreira LC, Newton SM, Klebba PE. 2007.
- 929 Evidence of ball-and-chain transport of ferric enterobactin through FepA. J. Biol.
- 930 Chem. **282:**397-406.
- 10. Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL,
- 932 Munger C, Chakravorty S. 2021. Iron acquisition systems of Gram-negative

bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chem.

- 934 Rev. **121:**5193-5239.
- 935 11. Vakharia HL, Postle K. 2002. FepA with globular domain deletions lacks
- 936 activity. J. Bacteriol. **184:**5508-5512.
- 937 12. Devanathan S, Postle K. 2007. Studies on colicin B translocation: FepA is
 938 gated by TonB. Mol. Microbiol. 65:441-453.
- 13. Udho E, Jakes KS, Finkelstein A. 2012. TonB-dependent transporter FhuA
- 940 in planar lipid bilayers: partial exit of its plug from the barrel. Biochemistry
- **941 51:**6753-6759.

14. Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. 2017.

- 943 Gating of TonB-dependent transporters by substrate-specific forced remodelling.
- 944 Nat. Commun. **8:**14804.
- 15. Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ.
- 1989. Point mutations in a conserved region (TonB Box) of the *Escherichia coli*
- outer membrane BtuB protein affect vitamin B12 transport. J. Bacteriol. 171:65266533.
- 16. Ogierman M, Braun V. 2003. Interactions between the outer membrane
- 950 ferric citrate transporter FecA and TonB: studies of the FecA TonB box. J.
- 951 Bacteriol. **185**:1870-1885.
- 952 17. Ghosh J, Postle K. 2005. Disulphide trapping of an *in vivo* energy-
- 953 dependent conformation of *Escherichia coli* TonB protein. Mol. Microbiol.
- **55:**276-288.

955 18. Ollis AA, Manning M, Held KG, Postle K. 2009. Cytoplasmic membrane
956 protonmotive force energizes periplasmic interactions between ExbD and TonB.

- 957 Mol. Microbiol. **73:**466-481.
- 958 19. Koedding J, Howard SP, Kaufman L, Polzer P, Lustig A, Welte W.
- 2004. Dimerization of TonB is not essential for its binding to the outer membrane
- siderophore receptor FhuA of *E. coli*. J. Biol. Chem. **279**:9978-9986.

961 20. Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, N	, Moiseeva
---	------------

- 962 N, Allaire M, Coulton JW. 2006. Structure of TonB in complex with FhuA, E.
- *coli* outer membrane receptor. Science **312**:1399-1402.
- 964 21. Khursigara CM, De Crescenzo G, Pawelek PD, Coulton JW. 2004.
- 965 Enhanced binding of TonB to a ligand-loaded outer membrane receptor. Role of
- the oligomeric state of TonB in formation of a functional FhuA-TonB complex. J.
- 967 Biol. Chem. 279:7405-7412.
- 968 22. Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. 2013.

Monomeric TonB and the Ton Box are required for the formation of a high-affinity
transporter-TonB complex. Biochemistry 52:2638-2648.

971 23. Postle K, Skare JT. 1988. Escherichia coli TonB protein is exported from

- the cytoplasm without proteolytic cleavage of its amino terminus. J. Biol. Chem.
- **263:**11000-11007.

24. Larsen RA, Wood GE, Postle K. 1993. The conserved proline-rich motif is

not essential for energy transduction by *Escherichia coli* TonB protein. Mol

976 Microbiol **10**:943-953.

- 25. Skare JT, Roof SK, Postle K. 1989. A mutation in the amino terminus of a
- 978 hybrid TrpC-TonB protein relieves overproduction lethality and results in
- 979 cytoplasmic accumulation. J. Bacteriol. **171:**4442-4447.

- 980 26. Vakharia-Rao H, Kastead KA, Savenkova MI, Bulathsinghala CM,
- 981 **Postle K.** 2007. Deletion and substitution analysis of the *Escherichia coli* TonB
- 982 Q160 region. J. Bacteriol. **189:**4662-4670.
- 983 27. Postle K, Kastead KA, Gresock MG, Ghosh J, Swayne CD. 2010. The
- TonB dimeric crystal structures do not exist *in vivo*. mBio 1:e00307-00310.
- 985 28. Swayne C, Postle K. 2011. Taking the *Escherichia coli* TonB
- value transmembrane domain "Offline"? Non-protonatable Asn substitutes fully for
- 987 TonB His20. J. Bacteriol. **193:**3693-3701.
- 988 29. Ghosh J, Postle K. 2004. Evidence for dynamic clustering of carboxy-
- terminal aromatic amino acids in TonB-dependent energy transduction. Mol.
- 990 Microbiol. **51:**203-213.
- 30. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubes R, Postle K,
- 992 Riley M, Slatin S, Cavard D. 2007. Colicin Biology. Micro. Mol. Biol. Rev.
- **993 71:**158-229.
- 31. Gresock MG, Kastead KA, Postle K. 2015. From homodimer to
- heterodimer and back: Elucidating the TonB energy transduction cycle. J.
- 996 Bacteriol. **197:**3433-3445.
- 997 32. Higgs PI, Larsen RA, Postle K. 2002. Quantitation of known components
 998 of the *Escherichia coli* TonB-dependent energy transduction system: TonB, ExbB,
 999 ExbD, and FepA. Mol. Microbiol. 44:271-281.

1000	33. Kadner RJ, Heller KJ. 1995. Mutual inhibition of cobalamin and
1001	siderophore uptake systems suggests their competition for TonB function. J.
1002	Bacteriol. 177:4829-4835.
1003	34. Ollis AA, Postle K. 2011. The same periplasmic ExbD residues mediate <i>in</i>
1004	vivo interactions between ExbD homodimers and ExbD-TonB heterodimers. J.
1005	Bacteriol. 193:6852-6863.
1006	35. Ollis AA, Postle K. 2012. Identification of functionally important TonB-
1007	ExbD periplasmic domain interactions in vivo. J. Bacteriol. 194:3078-3087.
1008	36. Endriss F, Braun M, Killmann H, Braun V. 2003. Mutant analysis of the
1009	Escherichia coli FhuA protein reveals sites of FhuA activity. J. Bacteriol.
1010	185: 4683-4692.
1011	37. Larsen RA, FosterHartnett D, McIntosh MA, Postle K. 1997. Regions of
1012	Escherichia coli TonB and FepA proteins essential for in vivo physical
1013	interactions. J. Bacteriol. 179:3213-3221.
1014	38. Evans JS, Levine BA, Trayer IP, Dorman CJ, Higgins CF. 1986.
1015	Sequence-imposed structural constraints in the TonB protein of E. coli. FEBS Lett.
1016	208: 211-216.
1017	39. Seliger SS, Mey AR, Valle AM, Payne SM. 2001. The two TonB systems
1018	of Vibrio cholerae: redundant and specific functions. Mol. Microbiol. 39:801-812.

53

- 1019 40. Gresock MG, Postle K. 2017. Going outside the TonB Box: Identification
- 1020 of novel FepA-TonB interactions *in vivo*. J. Bacteriol. **199**:e00649-00616.
- 1021 41. Postle K, Good RF. 1983. DNA sequence of the *Escherichia coli tonB*
- 1022 gene. Proc. Natl. Acad. Sci. USA **80:**5235-5239.
- 1023 42. Larsen RA, Chen GJ, Postle K. 2003. Performance of standard phenotypic
- 1024 assays for TonB activity, as evaluated by varying the level of functional, wild-type
- 1025 TonB. J. Bacteriol. **185:**4699-4706.
- 1026 43. Letain TE, Postle K. 1997. TonB protein appears to transduce energy by
- shuttling between the cytoplasmic membrane and the outer membrane in Gram-
- negative bacteria. Mol. Microbiol. **24:**271-283.
- 1029 44. Larsen RA, Deckert GE, Kastead KA, Devanathan S, Keller KL, Postle
- 1030 K. 2007. His20 provides the sole functionally significant side chain in the essential
- 1031 TonB transmembrane domain. J. Bacteriol. **189**:2825-2833.
- 1032 45. Shultis DD, Purdy MD, Banchs CN, Wiener MC. 2006. Outer membrane
- active transport: structure of the BtuB:TonB complex. Science **312**:1396-1399.
- 1034 46. Kaserer WA, Jiang X, Xiao Q, Scott DC, Bauler M, Copeland D,
- 1035 Newton SM, Klebba PE. 2008. Insight from TonB hybrid proteins into the
- 1036 mechanism of iron transport through the outer membrane. J. Bacteriol. 190:4001-
- 1037 4016.

1038 47. Higgs PI, Letain TE, Merriam KK, Burke NS, Park H, Kang C, Postle

1039 K. 2002. TonB interacts with nonreceptor proteins in the outer membrane of

1040 *Escherichia coli*. J. Bacteriol. **184**:1640-1648.

- 1041 48. Heller KJ, Kadner RJ, Günter K. 1988. Suppression of the *btuB*451
- 1042 mutation by mutations in the *tonB* gene suggests a direct interaction between TonB
- and TonB-dependent receptor proteins in the outer membrane of *Escherichia coli*.
- 1044 Gene **64:** 147-153.
- 1045 49. Bell PE, Nau CD, Brown JT, Konisky J, Kadner RJ. 1990. Genetic

suppression demonstrates direct interaction of TonB protein with outer membrane

transport proteins in *Escherichia coli*. J. Bacteriol. **172**:3826-3829.

1048 50. Cadieux N, Bradbeer C, Kadner RJ. 2000. Sequence changes in the ton

box region of BtuB affect its transport activities and interaction with TonB protein.J. Bacteriol. 182:5954-5961.

- 1051 51. Mende J, Braun V. 1990. Import-defective colicin B derivatives mutated in
- 1052 the TonB box. Mol. Microbiol. **4:**1523-1533.

1053 52. Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T,

- 1054 Scott DC, Long NJ, Newton SM, Klebba PE. 2020. Conformational
- rearrangements in the N-domain of *Escherichia coli* FepA during ferric
- 1056 enterobactin transport. J. Biol. Chem. **295**:4974-4984.

1057 53. Chimento DP, Kadner RJ, Wiener MC. 2005. Comparative structural
1058 analysis of TonB-dependent outer membrane transporters: implications for the
1059 transport cycle. Proteins 59:240-251.

1060 54. Chakraborty R, Storey E, van der Helm D. 2006. Molecular mechanism
1061 of ferricsiderophore passage through the outer membrane receptor proteins of
1062 Escherichia coli. Biometals 20:263-274.

1063 55. Barnard TJ, Watson ME, Jr., McIntosh MA. 2001. Mutations in the

1064 Escherichia coli receptor FepA reveal residues involved in ligand binding and

1065 transport. Mol. Microbiol. **41:**527-536.

1066 56. Carter DM, Gagnon JN, Damlaj M, Mandava S, Makowski L, Rodi DJ,

1067 **Pawelek PD, Coulton JW.** 2006. Phage display reveals multiple contact sites

between FhuA, an outer membrane receptor of *Escherichia coli*, and TonB. J. Mol.

1069 Biol. **357:**236-251.

1070 57. Nilaweera TD, Nyenhuis DA, Cafiso DS. 2021. Structural intermediates

1071 observed only in intact Escherichia coli indicate a mechanism for TonB-dependent1072 transport. Elife 10:e68548.

1073 58. Larsen RA, Letain TE, Postle K. 2003. *In vivo* evidence of TonB shuttling
1074 between the cytoplasmic and outer membrane in *Escherichia coli*. Mol. Microbiol.
1075 49:211-218.

.076	59.	Bitter W, Tommassen J	Weisbeek PJ. 1993	. Identification and
.076	39.	Ditter w, I ommassen J	, WEISDEEK FJ. 1995	. Identificatio

- 1077 characterization of the *exbB*, *exbD* and *tonB* Genes of *Pseudomonas putida*
- 1078 WCS358 Their involvement in ferric pseudobactin transport. Mol. Microbiol.
- **1079 7:**117-130.
- 1080 60. Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M,

1081 Chakraborty R, van der Helm D, Deisenhofer J. 1999. Crystal structure of the

1082 outer membrane active transporter FepA from *Escherichia coli*. Nat. Struct. Biol.

- **6:**56-63.
- 1084 61. Hilsenbeck JL, Park H, Chen G, Youn B, Postle K, Kang C. 2004.
- 1085 Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 A resolution.
- 1086 Mol. Microbiol. **51**:711-720.
- 1087 62. White P, Joshi A, Rassam P, Housden NG, Kaminska R, Goult JD,
- 1088 Redfield C, McCaughey LC, Walker D, Mohammed S, Kleanthous C. 2017.
- 1089 Exploitation of an iron transporter for bacterial protein antibiotic import. Proc.
- 1090 Natl. Acad. Sci. USA **114:**12051-12056.
- 1091 63. Hullmann J, Patzer SI, Romer C, Hantke K, Braun V. 2008. Periplasmic
- 1092 chaperone FkpA is essential for imported colicin M toxicity. Mol. Microbiol.
- **69:**926-937.
- 1094 64. Landeta C, Boyd D, Beckwith J. 2018. Disulfide bond formation in
- 1095 prokaryotes. Nat. Microbiol. **3:**270-280.

1096	65.	Kopp DR, Postle K.	2020. The	intrinsically	disordered	region	of ExbD is
------	-----	--------------------	-----------	---------------	------------	--------	------------

- required for signal transduction. J. Bacteriol. **202**:e00687-00619.
- 1098 66. Mann BJ, Holroyd CD, Bradbeer C, Kadner RJ. 1986. Reduced activity
- 1099 of TonB-dependent functions in strains of Escherichia coli. FEMS Lett. 33:255-
- 1100 260.
- 1101 67. Larsen RA, Thomas MG, Postle K. 1999. Protonmotive force, ExbB and
- ligand-bound FepA drive conformational changes in TonB. Mol. Microbiol.
- 1103 **31:**1809-1824.
- 1104 68. Lee SK, Keasling JD. 2005. A propionate-inducible expression system for
 1105 enteric bacteria. Appl. Environ. Microbiol. 71:6856-6862.
- 1106 69. Postle K. 2007. TonB system, *in vivo* assays and characterization. Methods
 1107 Enzymol. 422:245-269.
- 1108 70. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of
- the head of bacteriophage T4. Nature **227:**680-685.
- 1110 71. Larsen RA, Myers PS, Skare JT, Seachord CL, Darveau RP, Postle K.
- 1111 1996. Identification of TonB homologs in the family Enterobacteriaceae and
- evidence for conservation of TonB-dependent energy transduction complexes. J.
- 1113 Bacteriol. **178:**1363-1373.
- 1114 72. Skare JT, Postle K. 1991. Evidence for a TonB-dependent energy
- transduction complex in *Escherichia coli*. Mol. Microbiol. **5:**2883-2890.

1116	73. Hill CW, Harnish BW. 1981. Inversions between ribosomal RNA genes of
1117	Escherichia coli. Proc. Natl. Acad. Sci. USA 78:7069-7072.
1118	74. Baker KR, Postle K. 2013. Mutations in <i>Escherichia coli</i> ExbB
1119	transmembrane domains identify scaffolding and signal transduction functions and
1120	exclude participation in a proton pathway. J. Bacteriol. 195:2898-2911.
1121	75. Chang C, Mooser A, Pluckthun A, Wlodawer A. 2001. Crystal structure
1122	of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem.
1123	276: 27535-27540.
1124	76. Peacock SR, Weljie AM, Peter Howard S, Price FD, Vogel HJ. 2005.
1125	The solution structure of the C-terminal domain of TonB and interaction studies
1126	with TonB box peptides. J. Mol. Biol. 345:1185-1197.
1127	77. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. 2009.
1128	The assembled structure of a complete tripartite bacterial multidrug efflux pump.
1129	Proc. Natl. Acad. Sci. USA 106:7173-7178.
1130	78. Drozdetskiy A, Cole C, Procter J, Barton GJ. 2015. JPred4: a protein
1131	secondary structure prediction server. Nucl. Acids Res. 43:W389-394.
1132	

TABLES

Mutant	Percent activity (%) relative
	to "wild-type"
TonB C18G	100
TonB C18G Q160C	113
TonB C18G M201C	95
TonB C18G R204C	107
TonB C18G V206C	71
TonB C18G N208C	76
TonB C18G A209C	65
TonB C18G R212C	96
TonB C18G R214C	75
TonB C18G H20A Q160C	5
TonB C18G H20A M201C	3
TonB C18G H20A R204C	3
TonB C18G H20A N208C	1
TonB C18G H20A R212C	2
TonB C18G H20A R214C	2
FepA wild-type	100

Table 1: [⁵⁵Fe]-enterochelin transport activities of TonB and FepA Cys substitutions

FepA V16C	91
FepA L23C	79
FepA S29C	98
FepA T32C	92
FepA A33C	89
FepA D34C	115
FepA E35C	86
FepA A42C	77
FepA S46C	76
FepA T51C	85
FepA G54C	86
FepA R75C	40
FepA L85C	107
FepA V91C	84
FepA S92C	101
FepA S112C	105
FepA E120C	83
FepA V124C	102
FepA R126C	46
FepA A131C	72

FepA V142C	78
FepA I145C	84
FepA E152C	62
FepA D185C	118
FepA P243C	106
FepA D298C	126
FepA D356C	115
FepA D422C	109
FepA D455C	121
FepA E511C	92
FepA D519C	136
FepA E567C	65
FepA E576C	134
FepA D618C	104
FepA D664C	105
FepA T722C	60

1138 **Table 2**: Strains and plasmids

pKP372

Strain or plasmid	Genotype	Reference
Strains		
DH5α	F- Φ80d/acZΔM15 Δ(lacZYA-argF) U169 deoR recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 I- thi- 1 gyrA96 relA1	Life Technologies
W3110	F- IN(<i>rrnD-rrnE</i>)1	(73)
KP1270	W3110 aroB	(67)
KP1344	W3110 Δ(<i>tonB, P14</i>)::blaM	(67)
KP1406	W3110 aroB Δ(tonB, P14)::blaM	(11)
KP1477	W3110 Δ(tonB, P14)::kan	(12)
KP1487	W3110 ∆fepA::kan	(40)
KP1489	W3110 $\Delta fepA$, a derivative of KP1487	(40)
KP1490	W3110 aroB ΔfepA	(12)
KP1491	W3110 ∆fepA (tonB, P14)::kan	Present study
RA1021	W3110 ΔexbD	(18)
TonB Plasmids		
рКРЗ25	Wild-type TonB in pACYC184	(67)

pKP1859 pKP372, C18G Present study

TonB amphipathic helix frameshift in pKP325

Present study

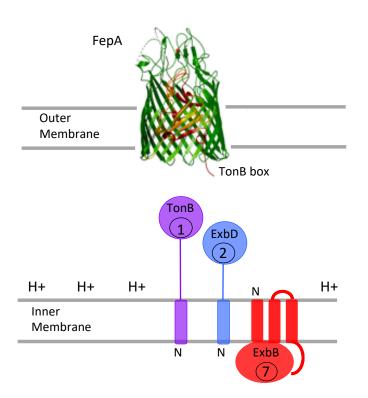
рКР442	Wild-type TonB in pKP325, silent Xhol site	(29)
рКР568	pKP442 with TonB C18G	(29)
рКР531	pKP442 with TonB F202A, W213A	(29)
рКР532	pKP442 with TonB F202A, Y215A	(29)
рКР476	pKP442 with TonB Δ199-216	Present study
pKP1858	рКР476, С18G	Present study
рКР1362	TonB C18G in pPro33	Present study
рКР1427	TonB C18G Q160C, a derivative of pKP1362	Present study
рКР2303	TonB C18G Q160C F202A, a derivative of pKP1427	Present study
рКР2304	TonB C18G Q160C F202A W213A, a derivative of	Present study
	pKP2303	
рКР1676	pKP2303 TonB C18G M201C, a derivative of pKP1362	Present study
рКР1676 рКР1867		Present study Present study
	TonB C18G M201C, a derivative of pKP1362	
рКР1867	TonB C18G M201C, a derivative of pKP1362 TonB C18G R204C, a derivative of pKP1362	Present study
рКР1867 рКР1683	TonB C18G M201C, a derivative of pKP1362 TonB C18G R204C, a derivative of pKP1362 TonB C18G V206C, a derivative of pKP1362	Present study Present study
рКР1867 рКР1683 рКР1646	TonB C18G M201C, a derivative of pKP1362 TonB C18G R204C, a derivative of pKP1362 TonB C18G V206C, a derivative of pKP1362 TonB C18G N208C, a derivative of pKP1362	Present study Present study Present study
рКР1867 рКР1683 рКР1646 рКР1647	TonB C18G M201C, a derivative of pKP1362 TonB C18G R204C, a derivative of pKP1362 TonB C18G V206C, a derivative of pKP1362 TonB C18G N208C, a derivative of pKP1362 TonB C18G A209C, a derivative of pKP1362	Present study Present study Present study Present study
рКР1867 рКР1683 рКР1646 рКР1647 рКР1624	TonB C18G M201C, a derivative of pKP1362 TonB C18G R204C, a derivative of pKP1362 TonB C18G V206C, a derivative of pKP1362 TonB C18G N208C, a derivative of pKP1362 TonB C18G A209C, a derivative of pKP1362 TonB C18G R212C, a derivative of pKP1362	Present study Present study Present study Present study Present study

pKP1868	TonB C18G H20A R204C, a derivative of pKP1645	Present study
рКР1722	TonB C18G H20A V206C, a derivative of pKP1683	Present study
pKP1692	TonB C18G H20A N208C, a derivative of pKP1646	Present study
рКР2299	TonB C18G H20A V209C, a derivative of pKP1647	Present study
pKP1861	TonB C18G H20A R212C, a derivative of pKP1624	Present study
рКР1723	TonB C18G H20A R214C, a derivative of pKP1684	Present study

FepA plasmids

pKP515	WT FepA in pBAD24	(11))
		(/	,

pKP1410	FepA D12C, a pKP515 derivative	Present study
рКР718	FepA T13C, a pKP515 derivative	(12)
рКР1411	FepA I14C, a pKP515 derivative	Present study
pKP1383	FepA V15C, a pKP515 derivative	Present study
рКР1384	FepA V16C, a pKP515 derivative	Present study
рКР1416	FepA T17C, a pKP515 derivative	Present study
рКР1626	FepA D34C, ΔTonB box (residues 12-16), derivative of pKP1583	Present study
рКР1627	FepA G54C, ΔTonB box (residues 12-16), derivative of pKP1382	Present study
pKP1582	FepA L23C, a pKP515 derivative	Present study


рКР719	FepA S29C, a pKP515 derivative	(12)
pKP1577	FepA T32C, a pKP515 derivative	Present study
рКР728	FepA A33C, a pKP515 derivative	(12)
pKP1583	FepA D34C, a pKP515 derivative	Present study
pKP1578	FepA E35C, a pKP515 derivative	Present study
рКР720	FepA A42C, a pKP515 derivative	(12)
рКР729	FepA S46C, a pKP515 derivative	(12)
рКР730	FepA T51C, a pKP515 derivative	(12)
pKP1382	FepA G54C, a pKP515 derivative	Present study
pKP1400	FepA R75C, a pKP515 derivative	Present study
pKP1581	FepA L85C, a pKP515 derivative	Present study
pKP731	FepA V91C, a pKP515 derivative	(12)
рКР721	FepA S92C, a pKP515 derivative	(12)
рКР732	FepA S112C, a pKP515 derivative	(12)
pKP1836	FepA E120C, a pKP515 derivative	Present study
рКР733	FepA V124C, a pKP515 derivative	(12)
pKP1506	FepA R126C, a pKP515 derivative	Present study
pKP1854	FepA A131C, a pKP515 derivative	Present study
pKP1841	FepA V142C, a pKP515 derivative	Present study
pKP1837	FepA I145C, a pKP515 derivative	Present study

pKP1857	FepA E152C, a pKP515 derivative	Present study
рКР1369	FepA D185C, a pKP515 derivative	Present study
рКР1864	FepA P243C, a pKP515 derivative	Present study
pKP1361	FepA D298C, a pKP515 derivative	Present study
pKP1685	FepA D356C, a pKP515 derivative	Present study
рКР1726	FepA D422C, a pKP515 derivative	Present study
рКР1656	FepA D455C, a pKP515 derivative	Present study
рКР1609	FepA E511C, a pKP515 derivative	Present study
рКР1410	FepA D519C, a pKP515 derivative	Present study
рКР1610	FepA E567C, a pKP515 derivative	Present study
рКР1793	FepA E576C, a pKP515 derivative	Present study
рКР1370	FepA D618C, a pKP515 derivative	Present study
рКР1727	FepA D664C, a pKP515 derivative	Present study
pKP1850	FepA T722C, a pKP515 derivative	Present study

1139

1140 FIGURES

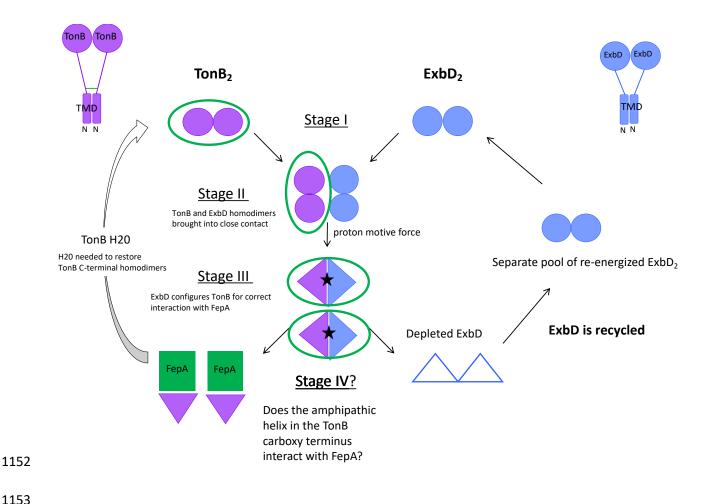
1141

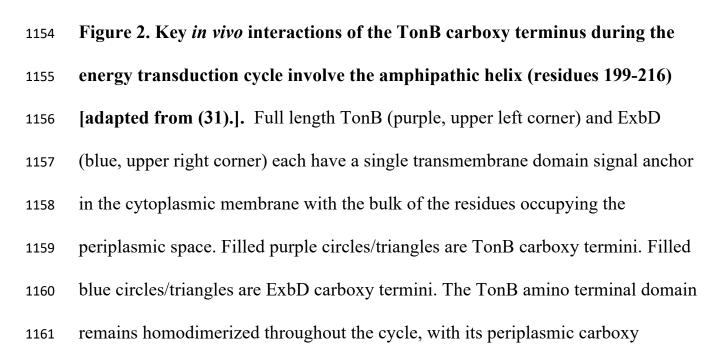
1142

Figure 1. The TonB system of *Escherichia coli* **K12.** The TonB-dependent

1144 transporter, FepA, is shown in the outer membrane. At its extreme amino terminus,

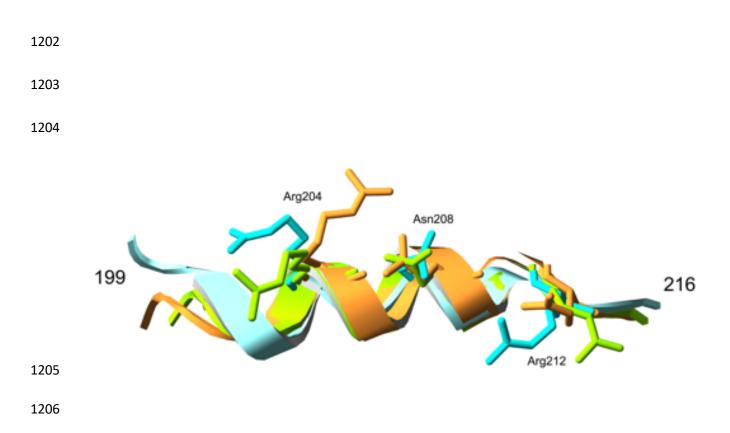
the TonB box, the only known site of *in vivo* interaction with TonB, is shown


1146 protruding into the periplasm. The topologies and cellular ratios of the cytoplasmic

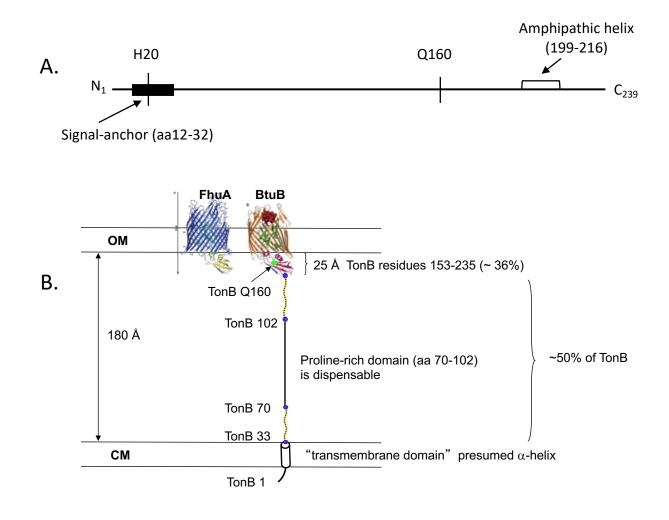

1147 membrane proteins TonB, ExbB and ExbD are shown in the cytoplasmic

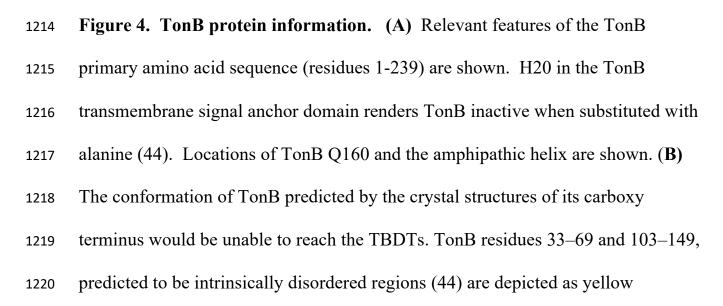
1148 membrane. The protonmotive force gradient of the cytoplasmic membrane (H+) is

shown. The crystal structure of FepA was solved by Buchanan et al. (60).


1150

terminus undergoing sequential protein-protein interactions (31). Interactions of 1162 the periplasmic carboxy-terminal domains of both TonB₂ and ExbD₂ homodimers 1163 are shown. In Stage I, H20 in the TonB transmembrane domain is required for 1164 TonB carboxy termini to form obligatory homodimers through residues in and near 1165 the carboxy terminal amphipathic helix (residues 199-216), (17, 31). ExbB 1166 tetramers (ExbB₄) independently stabilize both TonB₂ and ExbD₂, homodimerized 1167 1168 through their carboxy termini, and are proposed to be the scaffolds upon which $TonB_2$ and $ExbD_2$ are independently assembled ($ExbB_4$ is not shown). In Stage II, 1169 TonB₂ and ExbD₂ homodimers are brought into close contact by ExbB tetramers 1170 but have not yet formed the heterodimers of the subsequent Stage. In Stage III, in 1171 the presence of the cytoplasmic membrane protonmotive force (PMF), the TonB₂ 1172 and ExbD₂ carboxy termini reassort to form two TonB-ExbD heterodimers. ExbD, 1173 which contains the sole potentially PMF-responsive residue (Asp25) among five 1174 transmembrane domains that make up the TonB system, configures TonB correctly 1175 for a productive interaction with FepA [(28, 74); Jana and Postle, unpublished]. 1176 This is necessary because inactive TonB also binds to TBDTs but without energy 1177 transduction, meaning that the correct configuration must be based on prior 1178 interaction with ExbD. Stage IV is binding of a monomeric carboxy terminus of 1179 TonB to FepA, such that active transport of the siderophore enterochelin across the 1180 outer membrane occurs. Notably, the TonB amphipathic helix makes important 1181


1182	contacts with another TonB or ExbD in Stages I-III (green circles), however it has
1183	never been tested for important contacts with FepA (green square). After a
1184	transport event, H20 is required for re-formation of TonB dimers in Stage I.
1185	$ExbD_2$ is de-energized after this event (empty blue triangles) and needs to be
1186	recycled. We speculate that ExbD ₂ moves in and out of the complex escorted by
1187	ExbB tetramers. A separate pool of recycled ExbB ₄ -ExbD ₂ is hypothesized to
1188	exist to replenish Stage I ExbB ₄ -ExbD homodimers. See (31) for a full explanation
1189	of the experimental basis for the model.
1190	
1191	
1192	
1193	
1194	
1195	
1196	
1197	
1198	
1199	
1200	
1201	



structures. Blue is from Chang et al. (75); green is from Peacock et al. (76); gold

- is from Shultis et al. (45). The hydrophilic residues that, as Cys substitutions,
- interact with the FepA TonB box Cys substitutions in Fig. 7 are shown.

1212

1221	rectangles. TonB Q160 is the green dot within the structured carboxy terminus of
1222	the BtuB-TonB structure. The proline-rich domain, which contributes ~ 100 Å to
1223	the extension of TonB across the periplasmic space (38), can be deleted without
1224	inactivating TonB (24, 39). The span of the periplasmic space was estimated based
1225	on crystal structure reconstructions of the AcrA/B/TolC complex which has
1226	proteins in both outer and cytoplasmic membranes (77). The crystal structure of
1227	FhuA-TonB is from Pawelek et al. (20). The crystal structure of BtuB-TonB is
1228	from Shultis et al. (45). Part B of this figure is from (44). Abbreviations: CM,
1229	cytoplasmic membrane; OM, outer membrane.
1230	

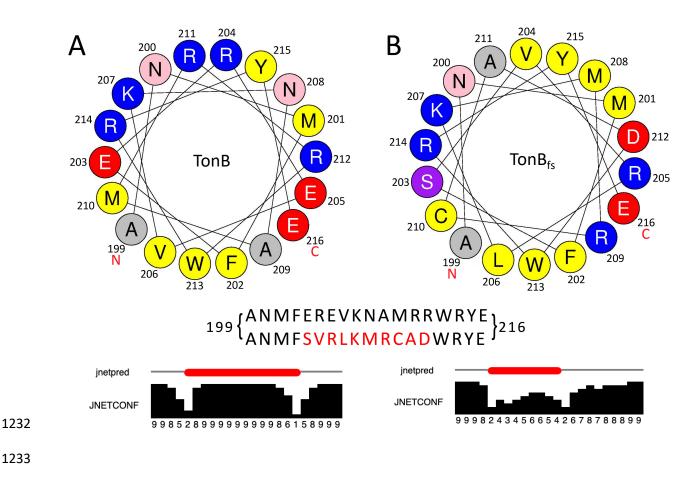


Figure 5. Comparison of wild type TonB and frame-shifted (TonB_{fs}) 1234 amphipathic helix regions (residues 199-216). (A) Helical wheel diagram of the 1235 TonB amphipathic helix and its corresponding JPRED4 prediction (bottom) as 1236 compared to (B) the corresponding frame-shifted region of TonB presented in a 1237 helical wheel diagram with its corresponding JPRED4 prediction (bottom). For 1238 JNetPred, predicted helices are shown in red. For JNETCONF, high values along 1239 the bottom edge indicate high confidence in the prediction (78). The comparison of 1240 the two amino acid sequences is shown in the middle panel, with the frame-shifted 1241 residues noted in red. The frameshifted version has lost much but not all of its 1242

- 1243 helical character and it resulted in multiple substitutions in the core helix residues
- 1244 203-212.
- 1245
- 1246

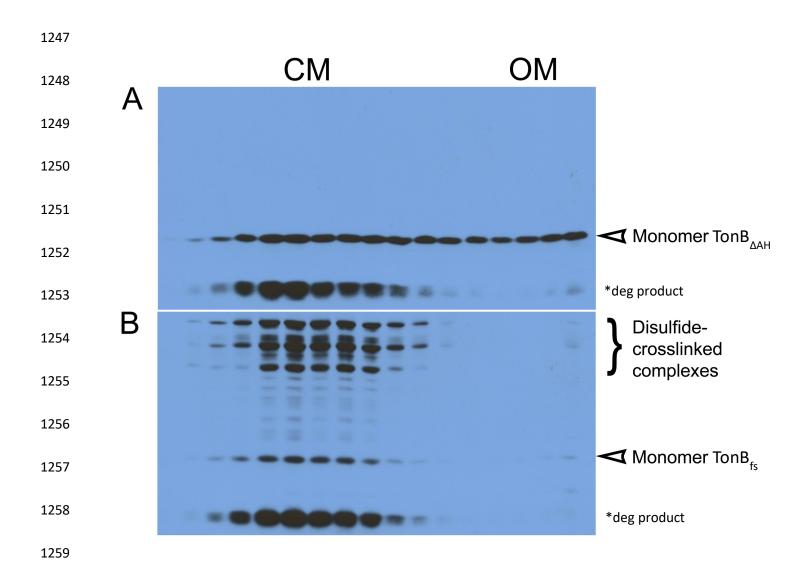
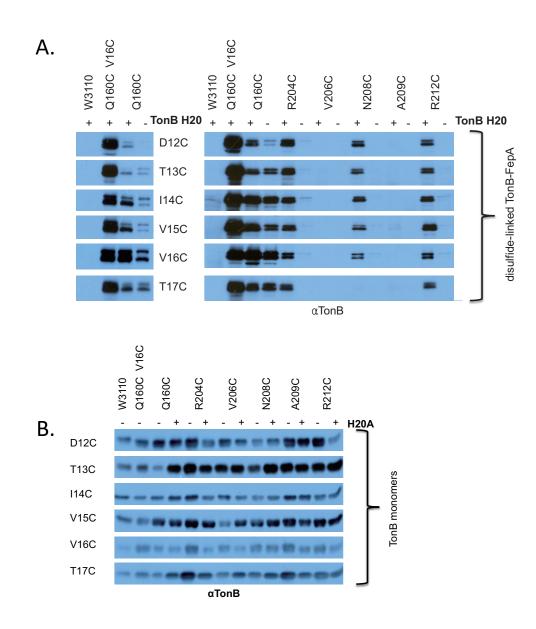
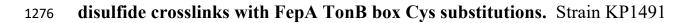




Figure 6. Monomeric TonB with major alterations of its amphipathic helix retains its ability to associate with the outer membrane. Wild-type TonB fractionates ~ 40% with the outer membrane and ~ 60% with the cytoplasmic membrane (43). (A) Sucrose density gradient fractionation of TonB_{ΔAH}, where TonB associates with both membranes. (B) Sucrose density gradient fractionation of TonB_{fs}. Because most of the TonB_{fs} is trapped as triplet homodimers through M210C that cannot associate with the outer membrane (17, 31), only a small

- amount of monomer is apparent in OM fractions on this exposure. On longer
- 1268 exposures, monomer TonB_{fs} association with the outer membrane becomes more
- apparent (data not shown). CM is for cytoplasmic membrane fractions; OM is for
- 1270 outer membrane fractions. Immunoblots of SDS polyacrylamide gels with anti-
- 1271 TonB monoclonal antibody are shown (71).

- 1277 [W3110 Δ *fepA*, Δ (*tonB*,*P14*)::*kan*] with various TonB and FepA plasmid
- 1278 combinations was grown and analyzed as described in Materials and Methods.
- 1279 TonB and its Cys substitutions are indicated across the top of the immunoblots.

FepA Cys substitutions in the TonB box are indicated between the two panels (in 1280 (A) or on the left side of the immunoblot in (B). (+) indicates the presence of the 1281 wild-type H20 allele in the TonB transmembrane domain. (-) indicates the 1282 presence of the inactivating H20A mutation. Immunoblots of the ~ 116 kDa region 1283 of non-reducing SDS polyacrylamide gels developed with monoclonal anti-TonB 1284 antibody are shown. (A) Wild-type control W3110 shows that wildtype TonB and 1285 1286 wildtype FepA do not innately form stable complexes. Panel right: TonB-FepA disulfide-linked complexes are shown. Panel left: shorter exposures of the first 1287 four lanes of panel right are shown. In panel left, the TonB Q160C-FepA V16C 1288 pair demonstrated the most efficient crosslinking among five TonB FepA TonB 1289 box Cys substitutions tested and was therefore used as a standard for relative levels 1290 in all subsequent figures characterizing disulfide crosslinks. (B) Steady state levels 1291 of chromosomally encoded TonB in W3110 and plasmid-encoded TonB variants 1292 from samples in (A) are shown as immunoblots of the ~ 36 kDa region of reducing 1293 SDS polyacrylamide gels developed with anti-TonB monoclonal antibody. 1294

1295

1296

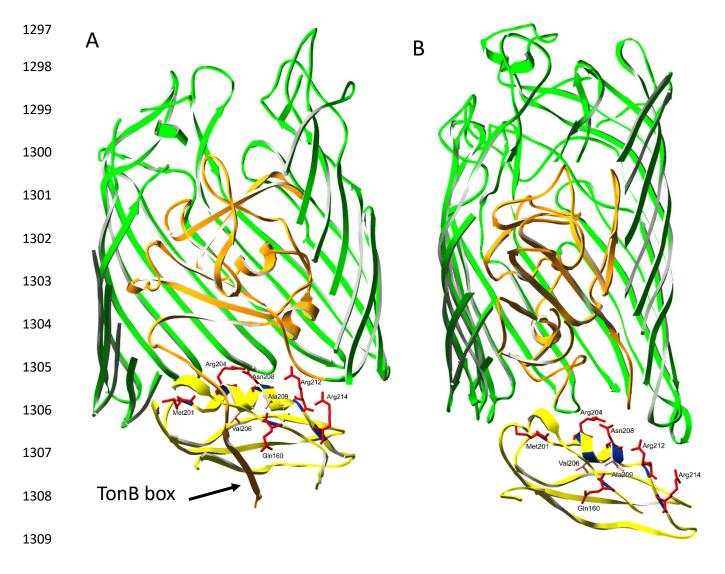
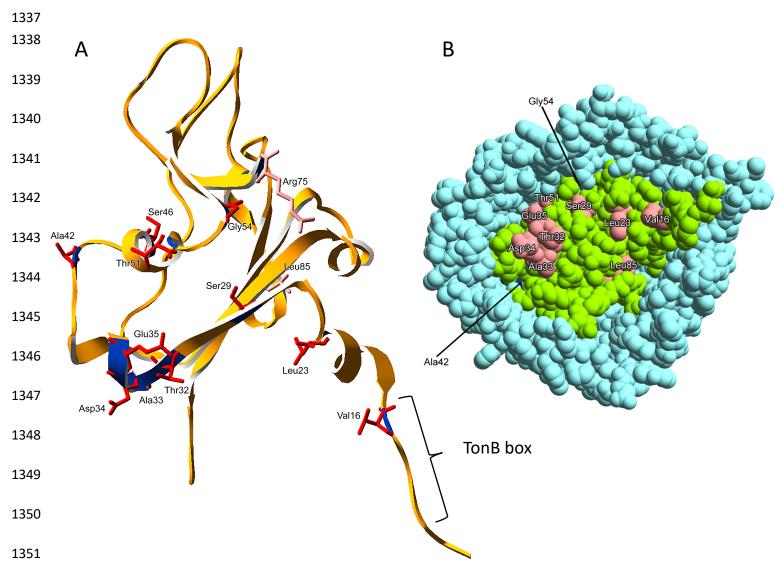
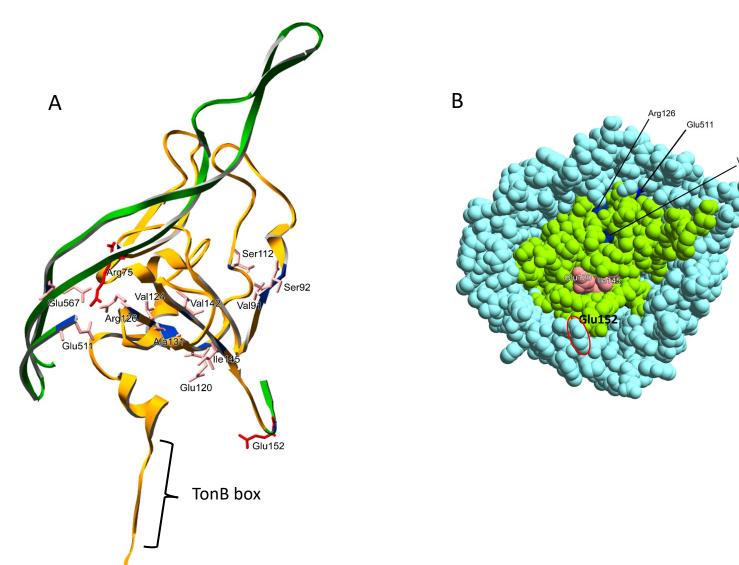



Figure 8: Ribbon diagrams of TonB Cys-substituted residues displayed on
TonB carboxy terminus co-crystal structures with BtuB [A; Shultis et al., (45)]
and FhuA [B; Pawelek et al., (20)]. TonB Cys substitutions from this study that
made disulfide crosslinks with a variety of Cys substitutions in FepA, including the
TonB box, are in red; those in pink (A206C and A209C) made no crosslinks. The
TonB box of BtuB is shown. The FhuA TonB box was not visible in the FhuA-


1317	TonB structure. The authors of that study propose that FhuA TonB box residues
1318	19, T10, V11, and A13 interact with TonB residues V225, V226, L229, and K231
1319	on one side and with TonB Q160 on the other (20).
1320	
1321	
1322	
1323	
1324	
1325	
1326	
1327	
1328	
1329	
1330	
1331	
1332	
1333	
1334	
1335	
1336	

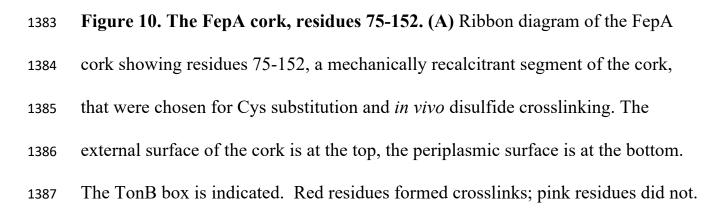
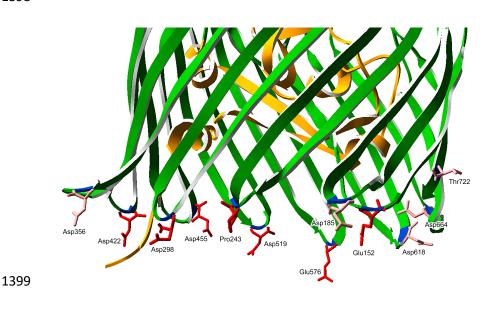
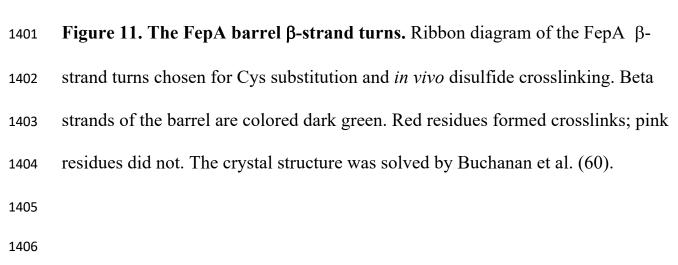
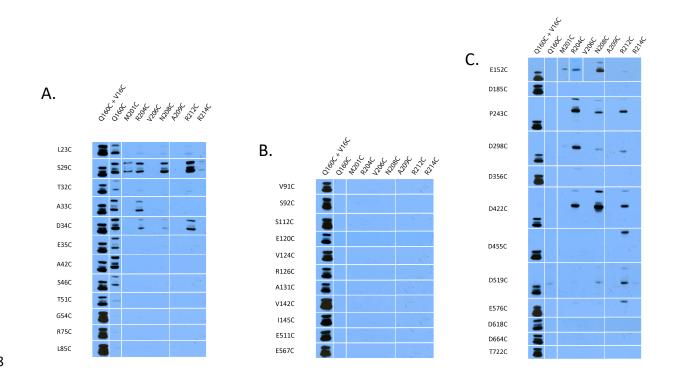


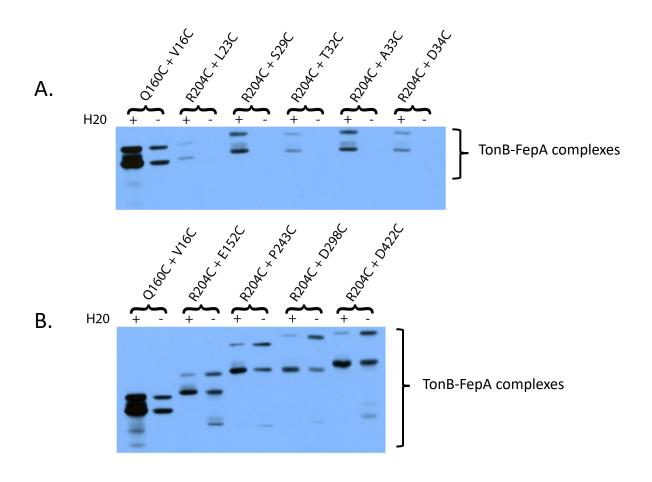
Figure 9: The FepA cork, residues 1-85. (**A**) Ribbon diagram of the FepA cork showing residues 1-85 in the mechanically weak segment of the FepA cork that were chosen for Cys substitution and *in vivo* disulfide crosslinking. The external surface of the cork is at the top, the periplasmic surface is at the bottom. The TonB box is indicated. Red residues formed crosslinks; pink residues did not. (**B**) Space filling model of the periplasmic surface of FepA, showing periplasmic accessibility


1359	of the residues labelled in (A). The FepA barrel is light blue; the FepA cork is
1360	light green; the periplasmically accessible residues tested are shown in pink. T51 is
1361	partially accessible; Gly54 and Ala42 (dark blue) are barely visible; Ser46 is
1362	completely buried. The crystal structure was solved by Buchanan et al. (60).
1363	
1364	
1365	
1366	





1388	Arg75 should be pink instead of red. Portions of the FepA barrel (dark green) show
1389	residues Glu511 and Glu567 which together with cork residues Arg75 and Arg126
1390	form the lock region (54). (B) Space filling model of the periplasmic surface of
1391	FepA, showing periplasmic accessibility of the residues labelled in (A). The FepA
1392	barrel is blue; the FepA cork is light green; periplasmically accessible residues are
1393	shown in pink. Semi-accessible residues are dark blue. Glu 152 is circled in red.
1394	The crystal structure was solved by Buchanan et al. (60).
1395	

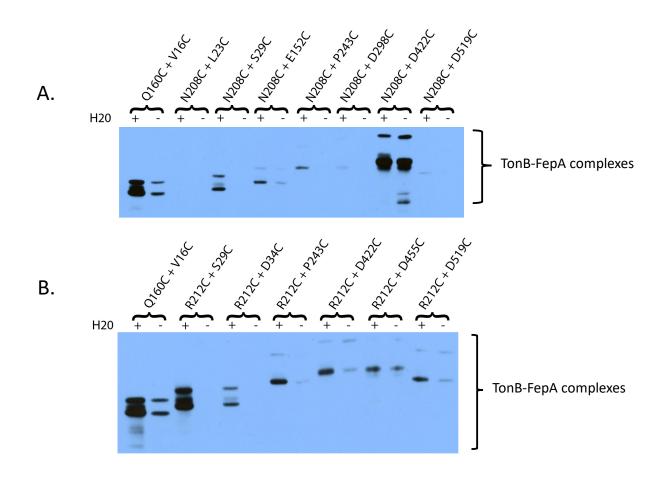

1410 Fig. 12 The composite comparison of *in vivo* TonB-FepA disulfide

interactions identifies the interactive core of the TonB amphipathic helix as its
hydrophilic face. (A) TonB Cys substitutions paired with FepA Cys substitutions
from the mechanically weak region of the FepA cork (residues 1-70) as well as
R75C and L85C from the transition between mechanically weak and mechanically
recalcitrant domains. R75 is considered a part of the "lock region". (B) TonB Cys
substitutions paired with FepA Cys substitutions from the mechanically recalcitrant
region of the FepA cork (residues 91-145) and the FepA "lock region" (residues

- 1418 R126, E511C and E567C). (C) TonB Cys substitutions paired with FepA Cys
- substitutions located in barrel β -strand turns as well as FepA E152C located at the

1420	transition between the FepA cork and barrel. TonB Cys substitutions are indicated
1421	across the top of the immunoblots. FepA Cys substitutions are indicated along the
1422	left side of each composite. TonB-FepA disulfide-crosslinked complexes were
1423	visualized in strain KP1491[W3110 ∆ <i>fepA</i> , ∆(tonB,P14)::kan]. Composite
1424	immunoblots of non-reducing SDS polyacrylamide gels with anti-TonB
1425	monoclonal antibody are shown. Since not all experiments were performed on the
1426	same immunoblot, exposures for this composite summary were chosen based on
1427	matching the Q160C + V16C standards among immunoblots (left-most lanes in A,
1428	B, and C).

1430



1431

1432

Figure 13: In vivo, TonB R204C makes both functionally important and 1433 functionally unimportant disulfide crosslinks with FepA Cys substitutions. 1434 TonB Cys substitution + FepA Cys substitution combinations are indicated at the 1435 top of each set of lanes. H20 (+) indicates the presence of the wild-type H20 allele 1436 in the TonB transmembrane domain. (-) indicates the presence of the inactivating 1437 H20A mutation. (A) The presence of the TonB H20A mutation significantly 1438 reduced disulfide crosslinking by FepA early cork Cys substitutions (depicted in 1439 Fig. 9). **B**). The H20A mutation has little effect on the overall abundance of 1440

- 1441 R204C-mediated disulfide crosslinks at the cork-barrel interface, specifically FepA
- 1442 E152C (depicted in Fig. 10) or the barrel turns, where they occurred (depicted in
- 1443 Fig. 11). The TonB Q160C-FepA V16C pair was used as a standard for
- 1444 comparison of relative levels (far left lanes in A. and B.). TonB-FepA disulfide-
- 1445 crosslinked complexes were visualized in strain KP1491[W3110 $\Delta fepA$,
- 1446 $\Delta(tonB, P14)$::kan]. Immunoblots of non-reducing SDS polyacrylamide gels with
- 1447 anti-TonB monoclonal antibody are shown. Monomer TonB levels for all samples
- in these immunoblots were at or near chromosomal levels (data not shown).

1451

1452

Figure 14: In vivo, TonB N208C and TonB R212C make both functionally 1453 important and functionally unimportant disulfide crosslinks with FepA Cys 1454 substitutions. TonB Cys substitution + FepA Cys substitution combinations are 1455 indicated at the top of each set of lanes. H20 (+) indicates the presence of the wild-1456 type H20 allele in the TonB transmembrane domain. (-) indicates the presence of 1457 the inactivating H20A mutation. (A) The presence of the TonB H20A mutation 1458 generally reduced disulfide crosslinking by TonB N208C. The notable exception 1459 was the very abundant crosslink with D422C, located in a FepA barrel turn 1460

1461	(depicted in Fig. 11). This interaction was impervious to the presence of the H20A
1462	mutation. (B) Most notably, TonB R212C makes a very abundant, H20-specific,
1463	crosslink with FepA S29C (depicted in Fig. 9). It also makes H20-specific
1464	complexes with some of the FepA Cys substitutions in the barrel turns (depicted in
1465	Fig. 11). The TonB Q160C-FepA V16C pair was used as a standard (far left lanes
1466	in A. and B.). TonB-FepA disulfide-crosslinked complexes were visualized in
1467	strain KP1491[W3110 ∆ <i>fepA</i> , ∆(<i>tonB</i> , <i>P14</i>):: <i>kan</i>]. Immunoblots of non-reducing
1468	SDS polyacrylamide gels with anti-TonB monoclonal antibody are shown.
1469	Monomer TonB levels for all samples in these immunoblots were at or near
1470	chromosomal levels (data not shown).
1471	
1472	
1473	

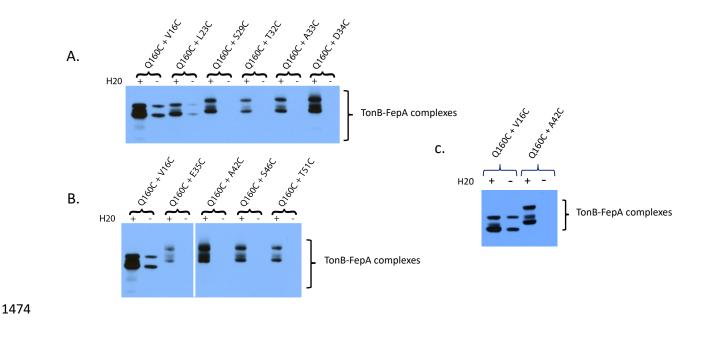
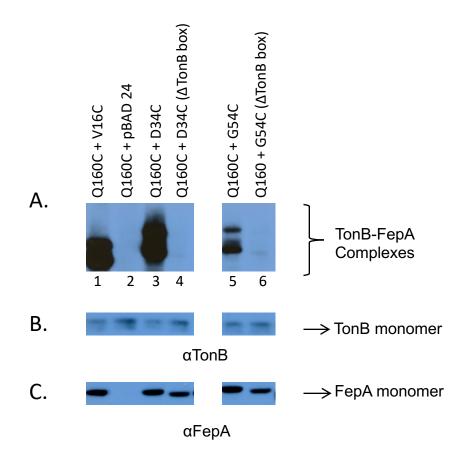
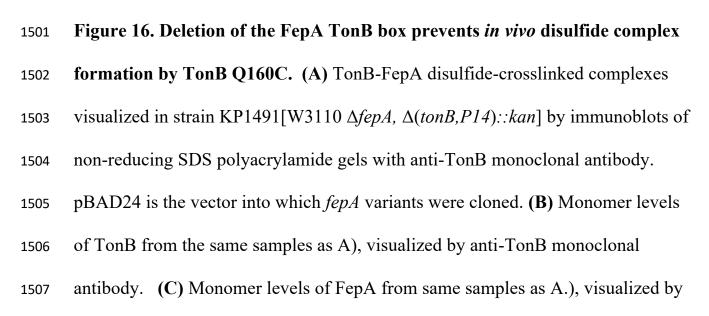
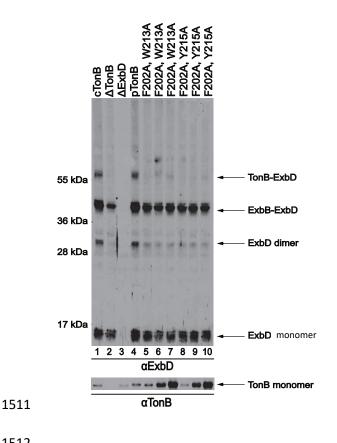




Figure 15: In vivo, TonB Q160C makes several functionally important 1476 disulfide crosslinks within the mechanically weak segment of the FepA cork, 1477 including with buried residues (depicted in Fig. 9). TonB Cys substitution + 1478 FepA Cys substitution combinations are indicated at the top of each lane. H20 (+) 1479 indicates the presence of the wild-type H20 allele in the TonB transmembrane 1480 domain. (-) indicates the presence of the inactivating H20A mutation. (A) TonB 1481 Q160C made complexes with several FepA substitutions, all of which were 1482 prevented by the TonB H20A mutation. Notably the complex with FepA D34 was 1483 of nearly equal abundance to the standard TonB Q160C-FepA V16C pair; unlike 1484 that standard, it was entirely prevented by the presence of the TonB H20A 1485 mutation. (B) TonB Q160C makes a complex with buried residue FepA A42C of 1486 nearly equal abundance to the standard TonB Q160C-FepA V16C pair; it was 1487

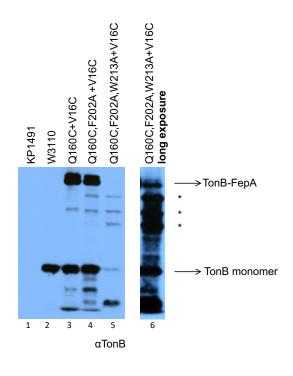
1488	entirely prevented by the presence of the TonB H20A mutation. For this composite
1489	immunoblot, the exposure on the right was chosen based on matching it to the
1490	same intensity as the Q160 + V16C standard shown in the left panel. (C) Direct
1491	comparison of Q160C complexes with FepA V16C and FepA A42C on the same
1492	immunoblot and with a shorter exposure. TonB-FepA disulfide-crosslinked
1493	complexes were visualized in strain KP1491[W3110 $\Delta fepA$, $\Delta(tonB,P14)$::kan].
1494	Immunoblots of non-reducing SDS polyacrylamide gels with anti-TonB
1495	monoclonal antibody are shown. Monomer TonB levels for all samples in these
1496	immunoblots were at or near chromosomal levels (data not shown).
1497	



anti-FepA polyclonal antibody. All lanes are from the same immunoblot with a

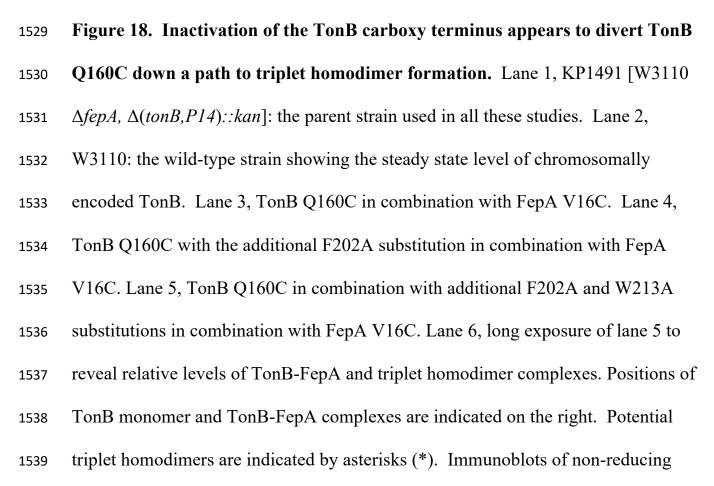
1509 center lane masked.

1510



1513 Figure 17. TonB F202A, W213A does not form the TonB-ExbD heterodimer.

- 1514 Upper: Immunoblot with anti-ExbD antibodies of formaldehyde crosslinked
- 1515 samples. Lane 1, W3110 expressing chromosomally encoded TonB (cTonB);
- 1516 Lane 2, KP1344 [W3110 Δ (*tonB*, *P14*)::*blaM*]; Lane 3 RA1021 (W3110 Δ *exbD*);
- Lane 4, plasmid-encoded TonB (pKP442) with 0.001% arabinose; Lane 5, pKP531
- 1518 (pKP442 TonB with F202A, W213A double mutations) with 0.002% arabinose;
- Lane 6, pKP531 with 0.005% arabinose; Lane 7, pKP531 with 0.01% arabinose;
- Lane 8, pKP532 (pKP442 TonB with F202A, W215A double mutations) with
- 1521 0.002% arabinose; Lane 9, pKP532 with 0.005% arabinose; Lane 10, pKP532 with
- 1522 0.01% arabinose. Lower: Corresponding steady state levels of TonB from the


- samples above are shown. For pKP531 and pKP532, note the increase in TonB
- 1524 expression with increasing addition of the inducer, arabinose.

1526

- 1540 SDS polyacrylamide gels developed with monoclonal anti-TonB antibody are
- 1541 shown.