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Abstract

Recent advances in cryo-electron microscopy (cryo-EM) has enabled modeling macro-

molecular complexes that are essential components of life. The density maps obtained

from cryo-EM experiments is often integrated with ab � initio, knowledge-driven or

first principles-based computational methods to build, fit and refine protein structures

inside the electron density maps. Going beyond a single stationary-structure determi-

nation scheme, it is becoming more common to interpret the experimental data with

a set of multiple physical models all of which contributes to the average observation
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seen by the experiment. Hence, there is a need to decide on the quality of an ensem-

ble of protein structures on-the-fly, while refining them against the density maps. In

this work, we demonstrate such adaptive decision making capabilities during flexible

fitting of biomolecules. Our solution uses RADICAL tools (RCT) and we test this

new implementation in exascale high performance computing environment for two pro-

teins, Adenylate Kinase (ADK) and Carbon Monoxide Dehydrogenase (CODH). Our

results indicate that using multiple replicas in flexible fitting with adaptive decision

making improves the overall quality of fit and model by 40 % improvement when com-

pared against the traditional flexible fitting approach. These advances are agnostic to

system-size and computing environments.

1 Introduction

Integrative modeling is an area of rapid methodological developments, wherein, atom-resolved structures of

biological systems are determined by merging data from multiple experimental sources with physics1–3 and

informatics-based approaches.4 These elegant fitting,1–3,5–8 learning9 and inferencing10–14 methodologies

have been successful in resolving a range of structures, starting with soluble and membrane proteins up to

sub-cellular complex architectures.Integrative models routinely make it to top positions at the CASP, EMDB

and PDB competitions, serving a diverse cross-section of the Biophysics community.

A key issue in structural or biochemical experiments is heterogeneity of data. The data can be rich, poor and

sparse in information depending upon the space or time scales they capture, and yet all of them contribute to

the holistic biophysics of the protein under investigation. As a natural consequence of this heterogeneity, a

single-model interpretation of the experimental data becomes implausible, opening the door to an ensemble

treatment of the data.15 These ensemble models derived by integrative approaches capture on one hand, the

most probable interpretation of the data, while on the other, pinpoints rare-events and hidden conformations,

indispensable to biology.

Post the 2017 Nobel Prize, the cryo-EM community has actively sought ways of extracting not just

stationary structures, but ensembles and more importantly, molecular dynamics information from electron

density data.16,17 An advantage of the ensemble’s interpretation is that, the generation of multiple inde-

pendent atomic models using an EM density and subsequent analysis of their atomistic agreement statistics

provide model quality metrics that directly correlate with global and local EM map quality.18 This ensemble
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approach o↵ers essentially both a quantitative and qualitative assessment of the precision of the models and

their representation of the density. However, the size of ensembles that collectively describes the diversity

in single-particle images (reflecting in the quality of the maps) grows nonlinearly with system-size.16 For

proteins of molecular mass 500 kDa or bigger, composed of 5000 residues or more, a single CPU is ex-

pected to take 5000 years of wall-clock time for sampling the collective ensembles using either molecular

dynamics (MD) or Monte Carlo (MC) simulations;19 even the fastest GPUs of the day will not rescue this

situation. Data-guided enhanced sampling methodologies, such as MELD11 (integrated with NAMD via

the recently completed CryoFold plugin12) or backbone tracing methodologies such as MAINMAST20 or

analogous methods,9 by themselves, either remain system-size limited, generating ensembles for only local

regions within a map, or require further further refinements using conjugate gradient minimization or MD

simulation schemes to determine ensemble models.

By leveraging classical force fields (so-called CHARMM21 energy functions) we have developed a range

of molecular dynamics flexible fitting (MDFF) methodologies for integrating X-Ray and Cryo-EM data with

MD simulations.1–3 The simulations are biased towards conforming molecular models into forms consistent

with the experimental density maps. These protocols are available through MD simulation engine NAMD,22

and are also expanded to community codes. As a natural outcome of this fitting procedure, the most

probable data-guided models are derived. However, the conformational heterogeneity that contributes to

the uncertainty of the the experimental data is lost. Biology often employs such conformational diversity in

problems of allostery and recognition, motivating further the need to refine experimental knowledge against

an ensemble of models,12 rather than a single model interpretation. In this article we explore whether, it

is possible to recover portions of the conformations lost in brute-force MDFF by running multiple replicas

of MDFF in parallel with adaptive decision making based on map-model consistency parameters. Rather

than physically enforcing a model into a map, this approach skews the probability of an ensemble of models

towards maximizing their consistency with the map. This way, there remains a finite probability of visiting

some uncertain models, while still emphasizing determination of the most probable molecular models.

Traditional High Performance Computing (HPC) approaches, however, fail to accommodate the map-

model analyses and on-the-fly decision making steps needed within an ensemble workflow.23 We used the

RADICAL-EnsembleToolkit (EnTK)24 to overcome these challenges, developing multi-replica MDFF as a

workflow application. EnTK exposes an application programming interface (API) that enables users to

define a workflow in terms of pipelines, stages and tasks, and the resources required by that workflow to

execute. EnTK also implements a workflow engine that interprets the given workflow description, acquires

the required resources, and manages the execution of the workflow.

Our MDFF workflow application composes individual simulations and supports analysis calculation on
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intermediate results to perform adaptive sampling. A classical approach runs molecular simulations with

long time scales which often require additional time to find interesting regions of the search space. In

contrast, adaptive sampling implements an iterative loop that concurrently execute multiple simulations,

each with short simulation time.25–27 Map-model similarities are analyzed at every iteration and to increase

the probability of finding models that are most consistent with the data, without getting trapped in any

local energy minimum. The decision to focus on the sampling of specific models can be based a number of

map-model metrics,28 such as TM scores,29 MolProbity,30 EMRinger,31 Q-score.32

In our first adaptive MDFF workflow, a simple global correlation coe�cient (CC) is employed as a

criteria to guide the choice of refinement models. This approach iteratively screens model populations based

on their CCs with the map, and improves e�ciency of computing resource consumption over longer brute-

force MD simulations that are notorious for converging to uninteresting local minima. We find that, powered

by EnTK’s data-staging capabilities and check-pointing of the parallel MD simulations available on NAMD,

MDFF trajectories intermittently screened by CC values (see Methods for details) o↵er ensemble refinement

of models.

We have tested the MDFF workflow with up to 100 replicas with 16 iterations across di↵erent resolutions,

1.8 Å, 3.0 Å, 5.0 Å and achieved around 40 % (= 0.8�0.57
0.57 ⇥100) improvement of converging cross-correlation

over the course of workflow lifetime. Specifically, we architect, design and implement an integrated pipeline

for ensemble refinement with EnTK and MDFF to support cryo-EM modeling across intermediate to high-

quality density maps between 2 to 5 Å resolution. The pipeline is tested for using up to 400 replica with (1

node/replica). In all these cases, we find that an ensemble approach with adaptive decision making o↵ers

more diverse ensembles than brute force MDFF, and still o↵ers the most data-consistent model. Going

beyond traditional MDFF, these ensembles capture on one hand, the ‘best’ model, while simultaneously the

uncertainty in the assignments on the other. The performance of the pipeline improves with system-size

(3341 ADK and 11452 CODH atom counts), and remains robust to computing platforms. Taken together,

our implementation breaks free of the traditional high-performance computing execution model that assumes

singular jobs and static execution of tasks and data, to one that is fundamentally designed for data-integration

and assimilation across di↵erent scales, quality and sparsity.
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Figure 1: Overview of the workflow application showing how NAMD/VMD is used to perform
flexible fitting iteratively. Internal boxes with annotation numbers indicate the sequence of
the workflow: (1) Input data (2) Simulation preparation and execution using VMD and
NAMD respectively (3) Building CC matrix and sort through CC matrix to select best CC
(4) Check if best CC is lower than threshold CC (5) Use the current state of the molecular
sytem corresponding to the best CC using the restart files (6) Re-seed all replicas with the
restart files and perform the next iteration of flexible fitting (7) Data guided ensemble refined
models.

2 Data guided ensemble refinement using MDFF and

EnTK

The adaptive decision-making for MD ensemble refinement with 3-dimensional density data sets is imple-

mented as a recursive simulation-analysis workflow application enabled by EnTk (Figure 1 and Algorithm 1).

This workflow consists of an ‘ensemble’ of simulation and analysis pipelines that executes concurrently on

HPC resources. Each constituent pipeline consists of seven serial tasks: (1) load an empirically determined

density map or generate a simulated map. Then convert this map to an MDFF potential. Independently, ex-

amine an initial search model quality in terms of stereochemical properties, and perform rigid body docking

to place this search model inside the EM density map. (2) Define the secondary structure restraints. Visual

Molecular Dynamics (VMD) then prepares the necessary input files required by NAMD to deploy MDFF.

In this step, multiple replicas of the system are prepared by individual EnTK pipeline for which MDFF is

performed. Finally the multi-replica MDFF simulations are performed in parallel. (3) VMD is re-used to

calculate the interim cross-correlation value between the atomic model (corresponding to replica window)

and the EM density map. The CC values from di↵erent replicas are then combined together to construct

a matrix of CC values. EnTK uses data staging area to move the CC values in files from flexible fitting to
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the adaptive decision making block across multiple replicas. (4) Here, a decision is made on whether the

flexible fitting simulations will be continued or terminated if the computed CC is � a user-defined threshold

cross-correlation. This on-the-fly map-model analysis enables an adaptive flexible fitting algorithm (such

as MDFF) to run iteratively inside EnTK, without user intervention. For scenarios which require multiple

iterations (5), all the replicas are re-seeded with the atom coordinates, velocities and periodic system infor-

mation corresponding to MDFF model with the best cross-correlation from the previous iteration, and the

next round of multi-replica MDFF proceeds 6. Again, EnTK uses data staging area to store these informa-

tion in files and provide them to the replicas. This feature does not only make the algorithm adaptive but

also enables intelligent decision making, with scope of improvement in future with advanced decision-making

or inferencing algorithms. Finally, the application converges to yield data-guided ensemble refined models

(7) which exits EnTK workflow application and downloads results to the end-user’s home directory.

Algorithm 1: Cross-correlation exchanging scheme.

begin

while CC replica resolution  CC threshold do

generate N replicas wih selected coordination

repeat simulation stage (selected coordination, new density map)

repeat analysis stage (last frame coordination, replica index)

increase iteration by 1

end

EnTK’s application programming interface (API) is implemented as a Python module, loaded into the

workflow application’s code. The API exposes classes for pipeline, stage and task, allowing to directly map

the workflow description to the logical representation of an ensemble of simulations. Each task object exposes

a set of variables with which to configure input, output files, executable, resource requirements and pre/post

execution directives. Finally, an appmanager object is used to contain the workflow description and execute

it with a single AppManager.run() method. The iteration logic to change the workflow description and issue

another AppManager.run() is written in pure Python as part of the workflow application. The entire MDFF

workflow application of this paper required only 500 lines of Python code.

As already described in,24 EnTK complements the ensemble simulation paradigm with decision-making

through real-time workflow and parameter changes, based on the results of the analysis stages. In the

present context, this feature enables iterative workflow executions with a single HPC batch-job submission,

avoiding costly manual evaluation of cross-correlation coe�cient, workflow editing and re-submission. EnTK

also abstracts from the users the need to explicitly manage data-flow and task execution. It manages data

staging so that each task of each stage has either a copy or a link to all the NAMD input files it requires,
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allowing the users to focus on the MDFF simulation and VMD analysis methods, without having to explicitly

manage data sourcing, saving and exchange. Furthermore, EnTK schedules and executes the workflow’s

tasks, managing the mapping of tasks to available resources on each compute node allocated to the workflow

execution. Users have only to specify the amount of CPU cores/GPUs needed by each task and whether the

task is (Open)MPI.

3 Methods

Modern adaptive sampling frameworks are dynamic, extensible, scalable and robust to facilitate hundreds

or thousands of experiments for searching di↵erent structures, and specialized features can be added to

solve existing problems through the framework. We developed a workflow application using RADICAL cy-

bertools33 that provides a scalable workflow framework for implementing ensemble refinement with cross

correlation calculation on HPC computing resources. MDFF-EnTK (Molecular Dynamics Flexible Fitting

using Ensemble ToolKit), depicted in Figure 1, supports adaptive decision making algorithms to iterate be-

tween molecular dynamics flexible fitting simulation and cross-correlation analysis. Our workflow application

is portable to explore the space of experimental configurations and support various use cases, so that the

ensemble refinement produces results on di↵erent dimensions of a physical system; resolution density, simu-

lation length, replica count, and HPC resource. The full integration is explained in the following sections:

(a) MDFF simulation, (b) CC analysis, (c) RADICAL cybertools.

3.1 Molecular Dynamics Flexible Fitting simulation:

In the simulation stage of the pipeline, MDFF-EnTK uses the conventional MDFF algorithm, as described

in.3 Briefly, MDFF requires, as input data, an initial structure and a cryo-EM density map. A potential

map is generated from the density and subsequently used to bias a MD simulation of the initial structure.

The structure is subject to the EM-derived potential while simultaneously undergoing structural dynamics

as described by the MD force field.

Let the Coulomb potential associated with the EM map be �(r). Then the MDFF potential map is

given by,

VEM (r) =

8
>><

>>:

⇣
h
�((r))��th

�max��th

i
, if �(r) � �th

⇣, if �(r) < �th

(1)

where ⇣ is a scaling factor that controls the strength of the coupling of atoms to the MDFF potential,

�th is a threshold for disregarding noise, and �max = max(�(r)). The potential energy contribution from
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the MDFF forces is then

UEM (r =
X

i

wiVEM (ri) (2)

where i labels the atoms in the structure and wi is an atom-dependent weight, usually the atomic mass.

During the simulation, the total potential acting on the system is given by,

Utotal = UMD + UEM + USS (3)

where UMD is the MD potential energy as provided by MD force fields (e.g. CHARMM) and USS is a

secondary structure restraint potential that prevents warping of the secondary structure by the potentially

strong forces due to UEM . A detailed description of the MDFF methodology is presented in. Specific

simulation parameters for the example cases of ADK and CODH are provided on the GitHub page.34

3.2 Cross-correlation analysis

For analysis as part of ensemble refinement, mainly towards adaptive decision making we calculate the cross

correlation (CC) value for all replicas at a given time (t) in the MDFF-EnTK pipeline. Note, the time (t)

here is not the number of MD steps. Instead the analysis is performed every iteration, for N MD steps and

for M replicas. So, based on this the total simulation time is equal to tsteps/iteration ⇥Niteration ⇥Mreplicas.

At the end of each iteration, the highest value of CC is analyzed and corresponding atomic coordinates are

used to seed the M replicas for the next iteration.

3.3 Ensemble ToolKit (RADICAL Cybertools)

In order to implement the pipeline, we have extended an open-source, Python framework that facilitates

adaptive ensemble biomolecular simulations at scale, RADICAL-EnsembleToolkit (EnTK). The first step

of writing the EnTK workflow code is to construct a task parallel execution of MDFF simulation using

NAMD, and to connect the analysis stage to find highest CC values among replicas. While all the necessary

information such as NAMD checkpoints and CC values are kept under EnTK’s data staging area, distributed

computing resources are coordinated to ensure the workflow performance over CPUs and GPUs from het-

erogeneous HPC platforms. In addition, several features have been added to the application by utilizing

existing capabilities of RADICAL tools. Tcl scripting is interfaced with EnTK APIs to interact with VMD

software directly and the partitioned scheduling is introduced to assign a single node per replica exclusively

for the best performance of NAMD simulations. Usability and productivity have been addressed to automate
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resource configurations and experiment settings as well as ensuring reproducibility of scientific data. With

the MDFF-EnTK application, replacing MD engines or analysis methods needs to change a few lines of

settings in a workflow management file without source code modifications. The application, MDFF-EnTK is

available on GitHub (https://github.com/radical-collaboration/MDFF-EnTK) and implemented to support

adaptive decision making for ensemble-based simulations and to enable the novel analysis method, MDFF

or others on HPC resources.

4 Results

In what follows, we have conducted a series of experiments for di↵erent replica numbers and compare the

flexible fitting and computational performance of di↵erent experiment settings on ADK and CODH proteins

in this section. Two HPC facilities were used where Oak Ridge Leadership Computing Summit has two IBM

Power9 processors and six NVIDIA V100 GPU accelerators and Pittsburgh Supercomputer Center Bridges2

has two AMD EPYC 7742 processors.

4.1 Adaptive Decision Making provides a variance in Ensemble

Refinement at High Resolution Density Maps

In Figure 2 we show how the cross correlation coe�cient (CCC) changes across iterations for di↵erent

ensemble members (replicas) and resolutions of EM density maps for the protein adenylate kinase (ADK).

Here, we perform molecular dynamics flexible fitting (MDFF) to fit ADK at three resolutions - high (1.8 Å),

intermediate (3.0 Å) and low (5.0 Å) density maps. The simulation length, which is defined as the number

of steps in a MD simulation times the total number of iterations, remains constant for di↵erent replicas. The

CCC basically provides a measure on the quality of fit of the atomic model to density map, where a higher

number means a better fit. As shown, for intermediate and low resolutions, the CCC is ⇡ 90%, while at high

resolution the CCC is ⇡ 80%. This occurs mainly because there are many ways to fit in an intermediate or

low resolution density maps, and not so many ways to fit inside a higher resolution density map. However, it

is important to note that, as the replica count increases the distribution of CCC traces across iterations gets

wider for high resolution density map. The wider distribution physically means, variance in the ensemble of

protein structures. Conventionally, MDFF and it’s variants - cascade MDFF (cMDFF), resolution exchange

MDFF (ReMDFF) generate ensemble of protein structures with very low variance. MDFF-EnTK, during

cryoEM ensemble refinement now enables us a measure on how far a set of protein structures are from their

mean, which is a structure one obtains from traditional MDFF.
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Figure 2: CC vs iteration comparison for high resolution (1.8 Å, intermediate resolution (3.0
Å) and low resolution (5.0 Å) cryo-Electron microscopy density maps, for di↵erent ensemble
members, 4 (blue), 8 (orange), 16 (green) and 32 (red) respectively.

4.2 Statistics of map-model fits improve with larger replica simu-

lations

In addition, to the variance in protein structure during ensemble refinement, the ensemble refinement algo-

rithm presented here uses adaptive decision making to improve model quality as shown in Figure 4 (A) for

ADK at 1.8 Å resolution density map. In this figure, results indicate for higher replicas the CCC value

improves by ⇡ 20% over a single long MDFF trajectory (CCC=0.67), while a fixed simulation length is

maintained for all replicas. Subsequently, in Figure 4 (B) we test if the simulation length has an e↵ect on

improving the quality of fit for larger number of replicas. Based on the Figure 4 (A), one would notice that

the CCC value grows and then drops and forks as the replicas increase. We anticipate here, since there are

higher number replicas, the simulation time per replica is shorter to maintain the same simulation length as

that of a single MDFF trajectory.

To test this hypothesis, for replicas 64, 100, 200, 400 we increase the simulation length per replica to

match that of 16 replicas. We choose the simulation length per replica from 16 replicas, as that provides the

best CCC value. Here, in Figure 4 (B) we see that simulation length per replica does have an impact on

the overall model quality, as now the CCC value improves by ⇡ 31% over a single long MDFF trajectory,
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providing a net increase of 11% over a MDFF trajectory with shorter simulation length per replica. As a

control experiment, we also performed the 64-replica simulation without decision-making. The the CCC

values still remain around the 50 % mark, reminiscent of the single long simulation, reinforcing the need for

adaptive decision-making.

Figure 3: Phase Diagram for best cross-correlation (CC) at high resolution 1.8 Å map for
Adenylate kinase (ADK) for di↵erent ensemble members (1 - 400), illustrating the e↵ect of
simulation time on the quality of fit. (A) Performance of best CC when the total length of the
simulation equals the length of a single long MDFF trajectory (red circle) where 16 ensemble
members provide the best model quality (B) Performance for best CC where the simulation
length per ensemble member was increased for 64, 100, 200 and 400 replicas, specifically to
match the same simulation length per ensemble member to that of the 16 ensemble member
(80 ps per ensemble member per iteration). Results show an increase in quality of fit with
increase in number of ensemble members, showing the dependence of trajectory length for
each ensemble member over successive iterations.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471672


Figure 4: Phase Diagram for best cross-correlation (CC) at high resolution 1.8 Å map for
Adenylate kinase (ADK) for di↵erent ensemble members (1 - 400), illustrating the e↵ect of
simulation time on the quality of fit. (A) Performance of best CC when the total length of the
simulation equals the length of a single long MDFF trajectory (red circle) where 16 ensemble
members provide the best model quality (B) Performance for best CC where the simulation
length per ensemble member was increased for 64, 100, 200 and 400 replicas, specifically to
match the same simulation length per ensemble member to that of the 16 ensemble member
(80 ps per ensemble member per iteration). Results show an increase in quality of fit with
increase in number of ensemble members, showing the dependence of trajectory length for
each ensemble member over successive iterations.

4.3 Computational ensemble refinement is robust to system size

Figure 5 shows the application of the performance of MDFF-EnTK pipeline for a larger system, carbon

monoxide dehydrogenase (CODH). The objective here is to evaluate the dependence of system size on

MDFF-EnTK parameters estimated from our multi-replica ADK simulations. For this purpose, we use the

same parameter values obtained from 64 replicas of ADK at 1.8 Å and perform flexible fitting simulations

of CODH at 1.8 Å and 3.0 Å. The results indicate that at both high and intermediate resolutions we find

multiple populations of an ensemble of structures fitted to a density map. The overall maximum CC value

improves in successive iterations, establishing that the present algorithm scales well with system size, for

di↵erent ensemble members, specifically 16 (5 A) and 100 replicas (5 B).
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Figure 5: CODH cross correlation vs iteration index for di↵erent ensemble members using
the optimal parameters from ADK phase plot at di↵erent resolutions - 1.8 Åand 3.0 Å.

5 Performance characterization of MDFF and EnTK

The goal of this section is to assess the computing performance of the workflow application on HPC resources

and provide evidence that MDFF-EnTK would manage computing resources e�ciently and have the overhead

of running multiple replicas restrained while using the integrated RADICAL environment.

5.1 Experiment Configuration

We designed 11 experiments to evaluate the e�ciency of EnTK, measured in terms of overhead and resource

utilization when executing MDFF-EnTK. We discuss two biological systems in the experiments: adenylate

kinase (ADK) and carbon monoxide dehydrogenase (CODH).

We use 16 nanoseconds (ns) for the MD simulation as a baseline (t) for our performance characterization.

Our experiments compare t to iterative MD simulations with 16 MD steps (N), showing the computational

e�ciency of adaptive ensemble refinement. Each experiment is configured with parameters of atomic res-

olution, number of replicas and simulation length (see Table 1). We also measure how performance varies

across two HPC platforms: ORNL Summit and PSC Bridges2.

Our performance characterization uses two metrics: overhead (OVH) and resource utilization (RU).

OVH is the amount of time in which compute nodes are available but not used to execute tasks, while RU is
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the percentage of compute nodes being used for executing tasks. We measure OVH through the parameter

settings (Table 1) and provide resource utilization of compute nodes so that the performance behavior of

MDFF-EnTK can be identified across experiments. Experiment 9 uses the same parameter settings as

Experiment 5 , and Experiment 10 shows the result with the intermediate resolution 3.0Å. Experiment 11

uses 100 Summit nodes with the same settings as Experiment 9.

Table 1: Experiments to characterize EnTK performance. System: biological system name;
Rep. (M): Total number of replicas between 2 and 100; Sim. Len. (ps): timescale per
iteration in picoseconds; Res. (Å): resolutions in Angstrom (high 1.8Å and intermediate
3.0Å); Resource: GPUs and CPU cores on OLCF Summit and CPU cores only on PSC
Bridges2; Tasks: number of tasks for each experiment; OVH(s): Overhead of EnTK in
second.

Exp.
System

Rep. Sim. Res.
Resource

Tasks OVH
ID (M) Len. (ps) (Å) (s)

1 ADK 2 64 1.8 Bridges (CPU) 256 81.0± 10
2 ADK 4 32 1.8 Bridges (CPU) 512 126.0± 10
3 ADK 4 250 1.8 Summit (GPU&CPU) 512 92.0
4 ADK 8 160 1.8 Summit (GPU&CPU) 1024 105.27± 18
5 ADK 16 80 1.8 Summit (GPU&CPU) 2048 114.06± 16
6 ADK 32 40 1.8 Summit (GPU&CPU) 4096 109.33± 10
7 ADK 64 20 1.8 Summit (GPU&CPU) 8092 158.87± 57
8 ADK 100 10 1.8 Summit (GPU&CPU) 12800 266.98± 245
9 CODH 16 80 1.8 Summit (GPU&CPU) 2048 93.34± 17
10 CODH 16 80 3.0 Summit (GPU&CPU) 2048 99.44± 20
11 CODH (long) 100 80 1.8 Summit (GPU&CPU) 12800 113.61± 20

We provide templates to allow users to replicate the experiments presented in this paper. The source code

and configuration parameters of the experiments are published on the MDFF-EnTK Github repository.34

Users can use those templates as a starting point to create and run their own experiments. The templates,

written in YAML, store user-defined attributes for experiments and HPC resources separately, ensuring

flexible analysis on diverse computing platforms.

We utilize up to 4 compute nodes on Bridges2 and 100 on Summit, executing each replica on a full

compute node. On Bridges2 we run the NAMD MD engine on 128 cores (AMD EPYC 7742 with of 256GB

DDR4 memory), without GPU acceleration. Note that Bridges2 o↵ers 24 compute nodes, each with 8 GPU

V100 accelerators but we decided to use only CPU resources due to their limited availability. On Summit,

we run the CUDA-enabled NAMD MD engine on 6 NVIDIA V100 GPU accelerators per node. Di↵erent

hardware platforms show wide performance gaps in time to solution but the cross-correlation is similar when

using the same configurations.
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5.2 EnTK Overhead Steady Across Di↵erent HPC Platforms

We measured the time spent by EnTK to bootstrap and clean up the execution environment. Those are

overheads as they measure the time spent before and after the execution of the workflow’s tasks, when

computing resources are already available. We measured the overheads across two HPC platforms and with

an increasing number of compute nodes, o↵ering a characterization of the cost of using the tool to execute

MDFF-EnTK at di↵erent scales and on two HPC platforms.

Note that both bootstrap and clean up overheads are independent of the workflow scale as the time taken

to manage the execution environment does not depend on the number of tasks executed in it. However,

bootstrap overhead can vary, depending on the performance of the filesystem that serves packages and

files during the bootstrapping process. Using a pre-configured environment may reduce the bootstrapping

overhead.

We explore the scalability of the iterative workflow MDFF-EnTK on Bridges2 and Summit. The overhead

is between 3% and 5% of the total execution time of the workflow presented in §3. Figure 6 and Table 1

show that such overhead is invariant of the number of replicas executed on Summit (150.90 ± 115 seconds)

and on Bridges (103.5 ± 22.5 seconds) when running from 2 replicas to 100 replicas. The overhead varies

across HPC platforms mainly due to di↵erences in filesystem performance, network latency and the use of

static environments to initialize.

Figure 6: EnTK Overheads on PSC Bridges2 (a, b) and Summit (c - g) compute nodes. The
total simulation time (equal to tsteps/iteration ⇥ Niteration ⇥ Mreplicas) is 16ns. TTX tends to
decrease with the increasing of the number of compute nodes.
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Bridges2 shows three times larger overhead compared to Summit, mainly due to the di↵erent performance

of the parallel filesystems: Lustre on Bridges2, GPFS on Summit. On Lustre, the initial access to files takes

longer than continuous access because Lustre has to retrieve a location of the actual storage device over the

network. The additional results from both platforms are reported in the Supporting Information (SI) 6.

5.3 EnTK Resource Utilization Is Independent of Five Dimen-

sions

Our experiments measure resource utilization at di↵erent scales and across five dimensions: HPC platform,

replica sets, simulation timesteps, system size, and resolution. For each experiment, we changed the number

of replicas with the same total simulation time (16ns)—equal to tsteps/iteration ⇥Niteration ⇥Mreplicas—and

varied the HPC platform and the number of used compute nodes.

Figure 7 depicts the CPU/GPU utilization for ADH at high resolution (1.8A) for 8, 16 and 32 replicas.

The regions with a red color indicate compute resources used by the replicas whereas other regions with a

orange, white, and green color represent resources are not utilized. The workflow needs to initialize, wait

for tasks to become available for an execution and to terminate in these regions repectively. The figure 7

shows the resource utilization with computing units divided into CPU (upper half) and GPU (bottom half).

The bottom halves shows the utilization of between 48 and 192 GPUs (NVIDIA V100) on Summit while

executing 16 iterations of the pipeline; the upper halves the utilization of between 336 and 1344 CPUs (IBM

Power9) on Summit.

Figure 7: Resource Utilization of MDFF-EnTK. CPU (top) and GPU (bottom) resources
are visualized for experiments 3, 4, and 5 with the ADK system, 1.8Å high resolution, 16ns
(t) and 16 iterations (N) on Summit. 8 (left), 16 (middle), and 32 (right) replicas (M),
executed at di↵erent scales with a 1:1 node/replica ratio.

Figure 7 shows that the utilization of CPU and GPU resources remains 73.3% in average across scales
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(83.2% for 8 replicas, 74.9% for 16 replicas and 62% for 32 replicas), and the slightly increased overheads are

negligible as the increased quality of fit with a large number of replicas is shown according to Section 4. For a,

b, and c, the number of executed tasks is increased and the average overall execution time is reduced for the

same simulation time. We identified the regions with a white color in the figure 7 in which tasks spent time

waiting for other tasks to be finished with a global barrier in the iterative workflow, e.g., exchange cc value

and then continue simulations. It may reduce these white regions by optimizing task executables. Another

observation is that the overheads of bootstrap and cooldown stages remain constant across replicas which

helps maintaining resource utilization at scale. Ensemble-style runs may su↵er from these overheads unless

the workflow framework is capable of dispatching many tasks quickly without sacrificing overall resource

utilization.

6 Conclusions

Cryo-EM data of a protein represents an average of many two-dimensional images transformed to a three-

dimensional density map. Classical methods in statistical mechanics such as MD fail to determine such an

ensemble in finite length simulations, as structures remain trapped in deep potential wells corresponding to

local dense points in density maps . To circumvent this algorithmic bottleneck of importance sampling and

to decide the quality of an ensemble of protein structures on-the-fly, we present a framework for ensemble

refinement of protein structures with adaptive decision making to improve both the quality of model and

fit. An ensemble model o↵ers, on one hand, the most probable structural representation based on available

density information, while capturing protein conformational dynamics that are often ignored in traditional

single-model interpretation.

Our ensemble refinement workflow allows adaptive decision-making for molecular dynamics flexible fitting

simulations by the the integration of correlation analysis with MD simulations via the EnTK pipeline. This

pipeline is implemented in multiple national resources. The pipeline performs an user-defined number of

iterative fitting and analysis tasks. This multi-replica scheme improves with statistical significance, the

quality of models over those derived from the traditional scheme of performing a single long MDFF simulation.

Consequently, the new scheme arrives not just at the best-fit but a population of models with varied ranges

of data-consistency. In addition, we show that MDFF integrated with EnTK is well suited for exascale high-

performance computing environments35 by managing resource utilization of GPU and CPU computing units

and the workflow overhead for increased ensemble members. We also show that our approach would have

a similar computational cost as the traditional single long MDFF simulation, but with a quick turnaround

time (shorter wall time of workload), while exploring interesting regions in the density map. We continue
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to extend the capability of MDFF-EnTK in complex applications in exascale high-performance computing

environments.
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Supporting Information Available

6.1 Performance Results of CODH

Figure 8: RADICAL Overheads for CODH on 16 and 100 Summit compute nodes. The
simulation time per iteration is 80ps and TTX tends to decrease with the increasing of the
number of compute nodes.

Figure 8 shows the RCT overheads of running CODH with 16 replicas and 100 replicas in which 99.44±20

seconds and 113.61±20 seconds are measured respectively. The bar plots with a light blue color (OVH label

on X-axis) indicate the overhead in seconds of completing the MDFF-EnTK workflow, and the bars with

orange color (TTX label on X-axis) report estimated workflow time to completion for sixteen iterations. The

experiments of id 7, 8 and 9 in the table 1 are corresponding to these plots.

Figure 9 shows the RCT overheads of running 2 and 4 replicas on PSC Bridges in which 636.18 ± 10

seconds and 332.39 ± 10 seconds are measured respectively. These overheads include 87 seconds and 42

seconds startup time (bootstrap) for 2 and 4 replicas and we believe that initial access delay performance

on Lustre filesystem is fluctuated.
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Figure 9: RADICAL Overheads on PSC Bridges2 compute nodes. (ADK, 1.8A, 2/4 replicas,
2048ps timescale)
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