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ABSTRACT 37 

Motor units convert the last neural code of movement into muscle forces. The classic view of motor 38 
unit control is that the central nervous system sends common synaptic inputs to motoneuron pools and 39 
that motoneurons respond in an orderly fashion dictated by the size principle. This view however is in 40 
contrast with the large number of dimensions observed in motor cortex which may allow individual and 41 
flexible control of motor units. Evidence for flexible control of motor units may be obtained by tracking 42 
motor units longitudinally during the performance of tasks with some level of behavioural variability. 43 
Here we identified and tracked populations of motor units in the brachioradialis muscle of two macaque 44 
monkeys during ten sessions spanning over one month during high force isometric contractions with a 45 
broad range of rate of force development (1.8 – 38.6 N∙m∙s-1). During the same sessions we recorded 46 
intramuscular EMG signals from 16 arm muscles of both limbs and elicited the full recruitment through 47 
neural stimulation of the median and deep radial nerves. We found a very stable recruitment order and 48 
discharge characteristics of the motor units over sessions and contraction trials. The small deviations 49 
from orderly recruitment were observed between motor units with close recruitment thresholds, and 50 
only during high rate of force development. Moreover, we also found that one component explained 51 
more than ~50% of the motor unit discharge rate variance, and that the remaining components could be 52 
described as a time-shifted version of the first, as it could be predicted from the interplay between the 53 
size principle of recruitment and one common input. In conclusion, our results show that motoneurons 54 
recruitment is determined by the interplay of the size principle and common input and that this 55 
recruitment scheme is not violated over time nor by the speed of the contractions.   56 

INTRODUCTION 57 

Theories of motor control are grounded on recording spinal motor unit activity during voluntary force 58 
contractions (1–4). Accurate understanding of motor unit function reveals in a direct way the strategies 59 
used by the nervous system to control and coordinate muscle forces (4). Generation of force is believed 60 
to occur by a combination of recruitment and rate coding of spinal motor neurons. While it is often 61 
assumed that recruitment order and rate coding are determined by the size principle (5, 6) and the 62 
common inputs that the motor neurons in a pool receive (2), some studies have challenged this view by 63 
proposing a more flexible motor unit control (7–9). Although previous evidence supports the size 64 
principle during isometric contractions (10, 11), these results have been challenged by the possibility 65 
that the motor cortex could provide independent input to spinal motoneurons. Moreover, it is still 66 
unclear if the high correlations in motor unit output (2, 12–14) have a functional origin or represent a 67 
physiological epiphenomenon.  68 

The current lack of definitive evidence for size principle and common input during recruitment with 69 
force modulation is due to technical limitations. Accurate measures of the recruitment order and 70 
common input necessitate multiple recordings from as many units as possible and the tracking of the 71 
same motor units across different days and across rates of muscle force development (4, 7, 8, 10, 11, 72 
15–18). Currently, no studies tracked the same population of motor units in longitudinal experiments 73 
during natural tasks in non-human primates. Such tracking of the same population of neurons is crucial 74 
to infer functional behaviour. This is even more important when testing intrinsic properties of 75 
motoneurons, such as those associated with the size principle. One way to identify motor unit activity 76 
during natural tasks is to insert percutaneous wire electrodes into muscles. However, these electrodes 77 
may yield limited signal quality and limited number of detected motor units.  78 

By tracking the behaviour of the same motor neurons across multiple experimental sessions with a new 79 
non-invasive neural interface consisting of high-density grids of electrodes placed on the muscle, we 80 
investigated for the first time the variability in motoneuron recruitment and discharge characteristics 81 
over a period of one month in two monkeys during natural contractions. The tracking of a relatively 82 
large population of spinal motor units during contractions at different rates of force development 83 
allowed us to define the neural strategies accomplished by the central nervous system to control muscle 84 
force. Moreover, it was possible to investigate the associations between recruitment of motoneurons 85 
and estimates of common synaptic inputs.  86 
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We found a very small day-to-day and trial-to-trial variability in recruitment order and rate coding, 87 
suggesting consistent control of the population of motoneuron ensembles. Moreover, with a 88 
factorization method we demonstrated that one common input component was sufficient to explain 89 
motor unit recruitment. The application of this approach in a primate species with a motor system 90 
closely similar to humans opens the future possibility of combining multiple single motor unit 91 
measurements with invasive recordings from central pathways. This has the potential to yield 92 
substantial new insights into the anatomical source of common drive during different motor tasks. 93 

RESULTS  94 

Motor unit decomposition and tracking 95 

We describe the strategies of control of macaque motor units and evaluate the performance of a new 96 
non-invasive neural interface framework to monitor the changes in the number and properties of 97 
longitudinally tracked units over 10 experimental days (gathered over one month) in two animals.  98 

We decomposed spike trains of individual motor units from high-density EMG signals using blind 99 
source separation techniques (Figure 1A; see details in Methods). After this process, the spike trains 100 
belonging to each decomposed motor unit were used to estimate the average 2D waveform of the 101 
corresponding action potentials (Figure 1A shows one column of the recording grid). The motor unit 102 
waveforms were used to track the same motor unit with a 2D cross-correlation function (19, 20). Figure 103 
1B shows the raster plot of all motor units across the ten days for Monkey MI. The y-axis in Figure 1B 104 
shows the total number of identified motoneurons across days (color-coded). The central panel of Figure 105 
1B shows an example of force signal and raster plot of the motor units during a contraction. 106 
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 107 

Figure 1. Motor unit decomposition in awake behaving macaques, experimental framework and analysis. A. From 108 
left to right, sixty-four monopolar EMG signals during three individual contractions. Each contraction lasted 109 
approximately 2 seconds. The monopolar EMG signals were spatially filtered with a double-differential 110 
derivation. After this process, blind source separation identified the spike trains belonging to individual motor 111 
units. The spike trains for each motor unit were used to spike trigger the average 2D motor unit waveform. The 112 
2D motor unit waveforms were used for the longitudinal tracking, through a 2D cross correlation function. B. 113 
Monkey 1 (MI) individual motoneuron spike trains across the 10 days (colour coded). Note that during the 114 
different days we identified a relatively similar number of motor units. The centre of the figure shows the 115 
experimental setup and an individual voluntary contraction (force signal in red) extracted from Day 3. *STA = 116 
Spike-triggered average. 117 

On average, each recording session (one per day, ten days in total) lasted 9.8 ± 2.5 min (Monkey MI) 118 
and 8.6 ± 2.8 min (Monkey MA). During these sessions, the monkeys performed on average 118.0 ± 119 
30.1 (MI) and 103.5 ± 33.9 (MA) contractions, that were used for the subsequent EMG analyses. The 120 
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monkeys were instructed to reach a target without a specific training on the rate of force development. 121 
Therefore, we obtained a relatively large variance in rate of force development and motor unit 122 
recruitment speeds across contractions. During these contractions the rate of force development ranged 123 
widely, with an average and standard deviation of 6.44 ± 4.00 N∙m∙s-1 (range 1.86 – 38.66 N∙m∙s-1). 124 
Moreover, the peak force obtained across days also showed high variability, spanning two-fold 125 
maximum EMG amplitudes. 126 

We identified a total of 389 motor units (192 MI and 197 for MA) in the individual recordings. Of these, 127 
only a subset (Figure 2) could be tracked and reliably matched with a unit from one or more different 128 
days on the basis of a two-dimensional correlation coefficients R>0.7 (see details in Methods). The 129 
average number of identified motor units for each experimental session was 19.2 ± 2.97 and 19.7 ± 2.4 130 
(mean and standard deviation), for MI and MA respectively. We were able to track on average 9.07 ± 131 
1.06 and 8.13 ± 2.08 motor units across all 10 days. Figure 2 shows the total number of identified motor 132 
units at each day and the number of tracked motor units across sessions, for the two monkeys. The upper 133 
panel of Figure 2 shows examples of 2D and 3D motor unit waveforms as well as the total number of 134 
motor units across contractions and days (bottom panels F-I). Figure 2F-I depicts the total number of 135 
motor units decomposed on each day for both monkeys. The right panels (Fig. 2G-I) show the individual 136 
motor units that were tracked across the different days (all possible combinations). Note that the largest 137 
number of units in these bar plots correspond to the units recorded during the examined day, which are 138 
highlighted with a black edged bar (Fig 2G and 2I). The number of the tracked units across days was 139 
lower than the total number of identified motoneurons (on average 19.45 vs. 8.60) because small 140 
changes in the proportion of recruited motor units challenge the tracking procedure. We previously 141 
obtained a very similar result in humans (20) due to different target forces and day-to-day variability.  142 
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 143 

Figure 2. Motor unit action potentials and total numbers of identified and tracked motor units across the 10 days 144 
(color-coded). A. Two-dimensional motor unit action potential propagating under the high-density EMG electrode 145 
array. The highlighted yellow inset shows the respective column and row of the high-density EMG matrix during 146 
the experiment. B. Raster plot of 12 identified motor units (color-coded) for seven representative contractions. C. 147 
Three-dimensional representation of the motor unit action potential in a specific time instant (highlighted with a 148 
red dot in A). Note that each action potential has a unique 3D signature which allows the independent component 149 
analysis to converge to the time-series of discharge timings of the motor unit. D. Shimmer plots for two action 150 
potential waveforms. Each action potential was averaged across an individual contraction and then superimposed 151 
across all contractions for a specific day. Note the high similarity across channels for two representative motor 152 
units.  F. The total number of identified motor units across the 10 days (black edge circles) and tracked motor 153 
units (open circles with vertical line depicting the standard deviation) for monkey MI and for MA (H). G-I. Bar 154 
plot of the number of motor units that were successfully tracked across the 10 days (color-coded). Note that the 155 
black edged bar plot corresponds to the number of motor units that were identified at the respective day and used 156 
for tracking those motor units in the other days.  157 

Despite the number of tracked motor units being lower than the number of identified motor units, the 158 
discharge characteristics of the tracked motor units was highly correlated across sessions over the full 159 
duration of the experiments (~1 month), as described in the following section.  160 

Motor unit identification validity 161 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.471592doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471592
http://creativecommons.org/licenses/by/4.0/


7 
 

The motor unit action potential similarity across sessions was assessed with the two-dimensional (2D) 162 
cross-correlation function (see details in Methods). Because the motor unit action potential waveform 163 
and motor unit discharge characteristics are independent, we first computed quality measures of 164 
decomposition based on the action potential waveform, and successively we computed correlation 165 
measures between the tracked motor units firing characteristics (discharge rate and recruitment 166 
threshold across days).  167 

The consistency of each motor unit action potential that was accepted to belong to the same cluster, was 168 
very high (Silhouette measure averaged across all the identified motor units and the 10 days, 0.91 ± 169 
0.01 and 0.92 ± 0.01, for MI and MA respectively). Silhouette measures above 0.9 have been associated 170 
with highly accurate decomposition with respect to intramuscular EMG signals (21). Moreover, the 171 
tracked units across sessions exhibited very high 2D correlation coefficients of the motor unit waveform 172 
(>0.7 for the tracked units) and similar discharge rates across the different days. Figure 2D shows the 173 
action potentials that were spike-trigger averaged across the individual contractions (all the action 174 
potentials for a representative contraction were used to generate the motor unit action potential 175 
waveform, across all 64 channels). The variability in the action potential waveforms across contractions 176 
for the same day were minimal, with action potentials 2D correlation values always above 0.9. This 177 
indicates very high reliability in identifying the same motor unit across contractions.   178 

Physiological characteristics of macaque motor units 179 

Figure 3 shows the discharge characteristics of the tracked motor units across and between days. The 180 
inter-day motor unit discharge rate variability was very low, at 3.51 and 5.41 % for MI and MA 181 
respectively. For Monkey MI, the bivariate Pearson correlation coefficients between the average 182 
discharge rate across the different days were significant in all cases (P<0.001 after Bonferroni 183 
correction, Fig.3A-B). Indeed, the absolute differences in discharge rate across the units over the 184 
different days (Fig. 3C) was very low (0.14 ± 3.45 spikes/s). For Monkey MA, the results were similar, 185 
although with a smaller number of reliably decomposed motor units during the first two days (Fig. 2B), 186 
that resulted in poorer tracking performance during those two days (Fig 3. D-E). However, the lower 187 
number of motor units did not change the performance of the tracking algorithm and discharge 188 
characteristics of the units. There was a very small variability in discharge rate of the tracked units and 189 
corresponded to 0.09 ± 3.12 spikes/s, with an average discharge rate across the ten days for all the 190 
identified motor units of 41.77 ± 1.46 and 38.42 ± 2.07 (spikes/s), for MI and MA respectively.   191 

 192 
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 193 

Figure 3. Motor unit discharge characteristics for the tracked motor units. A. The average instantaneous motor 194 
unit discharge rate was plotted for all tracked motor units at any given day. Note that some motor units may show 195 
different discharge rates because of changes in synaptic input. The day-to-day variability was very low (< 6 %) 196 
and this low variability is demonstrated by very high correlation values (B) for the tracked motor units. C. The 197 
absolute variability in discharge rate of the tracked motor units (i.e., the average motor unit discharge rate at day 198 
1 minus the discharge rate of the same motor unit in the other days). Note that this correlation can only be 199 
significant if the motor units are tracked successfully, since the motor unit discharge rate shows high variability 200 
across the different units (see the figures below). D-F. The same plots as in A-C for Monkey (MA). *P<0.01, 201 
**P<0.001 202 

Previous evidence showed that motoneurons are recruited according to the size principle (5). This 203 
implies that for a given synaptic input, motoneurons are recruited according to intrinsic properties (2). 204 
However, some current and previous studies suggests a flexible control of spinal motor units in the 205 
mammalian nervous system (7, 8), so that a strict recruitment order is seen as a special case of a flexible 206 
control. According to this view, it is conceivable that variability in recruitment may occur over multiple 207 
experimental sessions where the monkeys are instructed to reach a target force level according to a 208 
broad range of contraction speeds. Contrary to this idea, we found a consistent recruitment order of 209 
motor units that was maintained across contractions and days (Figure 5). The recruitment order across 210 
the 10 experimental sessions was occasionally violated for motor units with very close recruitment 211 
thresholds (Fig. 5A-D). In these cases, the occasional reversals of recruitment order were highly 212 
correlated with the speed of recruitment (and therefore with the rate of force development) (Fig. 5C). 213 
With very fast recruitment, the difference in threshold between motor units with close recruitment 214 
threshold compresses to very small values so that the variability in synaptic input may likely explain 215 
the occasional reversals (that happened in a small range).  216 
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 217 

Figure 4. Motor unit recruitment thresholds and intervals across different contractions, motor units, and days. A. 218 
For each motor unit we calculated the shifts in recruitment order with respect to the average recruitment threshold 219 
of that unit. The motor units in the two contractions in A are color-coded with respect to the recruitment threshold 220 
in the first contraction. For example, it is possible to observe the shift in the recruitment order of #2 to #4 in the 221 
second contraction. However, these changes only happen for motor units with very similar threshold. For example, 222 
the motor unit red (#1 in left panel) and the highest threshold motor unit (#12 green) shows a consistent recruitment 223 
order. This can be well appreciated in the following figures when showing the motor unit recruitment order with 224 
respect to the average across the specific day. B. Swarm-plots of the recruitment order across all motor units. We 225 
first computed the recruitment threshold as the first spike of the motor unit during a specific contraction. We then 226 
averaged the recruitment threshold across all contractions for the specific motor unit that was tracked across all 227 
contractions (each dot in the swarm plot represents the recruitment threshold of a motor unit in an individual 228 
contraction). The average recruitment threshold was then used to sort the recruitment interval of all motor units. 229 
Note that each motor unit shows a stable behaviour across all contractions. C. Three-dimensional swarm plot for 230 
all the motor units across the 10 days. For both monkeys the relationship between recruitment order and motor 231 
unit number was linear across the 10 experimental sessions spaced over a month (R = 0.88 ± 0.04 for monkey MI 232 
and R = 0.88 ± 0.04 for monkey MA, P < 0.00001). D. The variability in recruitment order across days and 233 
contractions was highly correlated with the recruitment speed of motoneurons. The recruitment speed of 234 
motoneurons is an estimate of supraspinal drive and corresponds to the time derivative of the first discharge 235 
timings of all motor units during an individual contraction. Each regression line in D shows the variability across 236 
contractions for a specific day. Note the high variability in recruitment speed, which indicates the variance in rate 237 
of force development across the contractions for a specific day.  238 
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The present results are in accordance with previous human and in-vitro experiments indicating that 239 
motor units are recruited in a specific order. We therefore wanted to understand if there are specific 240 
patterns in the motor unit discharge timings that control the recruitment and muscle force. We applied 241 
a non-negative matrix factorization analysis (22) to the motor unit discharge timings. Because of the 242 
large amount of motor unit data, we were able to discern the exact patterns common to all and to sub-243 
groups of motor units.  244 

 245 

Figure 5. Encoding of muscle force by motor units. We aimed at decoding and encoding the temporal motor unit 246 
information into components by non-negative matrix factorization. A. Raster plot of twelve motor units during a 247 
subset of macaque voluntary isometric contractions (grey lines indicate the torque signal). Note the variability in 248 
peak forces and rate of force developments. B-C-D show the first three contractions in A. C. The motor unit spike 249 
trains in A were convoluted with a 2.5 Hz Hanning window. Note the high correlation between the motor unit 250 
smoothed discharge rates and muscle force. D. We applied the reduction dimensionality technique non-negative 251 
matrix factorization. We constrained the model to learn the components in the motor unit discharge rates up to 10 252 
factors. In this example, the two modules that together explained approximately 80% of the variance are shown. 253 
Note that these two modules are highly correlated, and time shifted. The inset in D shows the reconstruction 254 
accuracy (variance %) of the neural modules with respect to the original signal (smoothed motor unit discharge 255 
rates). E. We applied cross-correlation analysis between the modules and muscle force. This example shows the 256 
correlation between the first module and second as well with voluntary force. The same method was then applied 257 
for all modules in both monkeys, which are shown in F. Note the high correlation across all days and for both 258 
monkeys. Moreover, there was always one module with a dominant component (the lag between the different 259 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.471592doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471592
http://creativecommons.org/licenses/by/4.0/


11 
 

modules was never zero). This indicates that there is only one component constrained by the size principle, since 260 
the motor unit recruitment thresholds are highly preserved across all contractions H.  The reconstruction accuracy 261 
(variance %) explained across the 10 days for both monkeys.  262 

The non-negative matrix factorization revealed a principal component that explained ~50% of the 263 
variance. This component was present in the activity of virtually all low-thresholds motor units. There 264 
was a significant second factor that explained ~25% of the variance. Interestingly, this originated mainly 265 
from high threshold motor units and was an undistorted, time-shifted version of the first component. 266 
We then performed correlation analysis between all the components (10 in total, see Methods) and 267 
looked at the specific weight distributions across the individual motor unit recruitment thresholds. We 268 
found that these components were consistently time-shifted and with very high correlation values 269 
between each other (Figure 5F). Moreover, the second component was consistently present only in the 270 
high-threshold motor units. These results indicate that motor unit discharge rates during natural tasks 271 
in macaque monkeys are driven by one dominant command, which manifests in time-shifted form 272 
because of the progressive recruitment imposed by the size principle. Because the motoneuron is a non-273 
linear system, the ensemble activity strongly indicates that these common fluctuations must originate 274 
from common input from cortical, afferents, or brainstem pathways. We provide strong evidence that a 275 
main component drives a pool of macaque brachioradialis motor units that is mediated by the 276 
recruitment order of the motor units.   277 

Motor unit synchronization 278 

It has been reported that the discharge timings of spinal motor units show very high synchronization 279 
values (2), which are associated with the generation of muscle force (23). Accordingly, we found high 280 
values of motor unit synchronization similar to what is typically observed in humans (24). We analysed 281 
synchronization in two frequency bandwidths; one which retains most of the information of the 282 
corticospinal pathways, 0-40 Hz  (25), and a narrowed one (0-5 Hz), which retains the information that 283 
is correlated to force generation (corresponding to the muscle low-pass filtering bandwidth, <5Hz (26)). 284 
The cross-correlation value for the low pass filtered signals (5 Hz) at lag 0 was 0.78 ± 0.01 and 0.72 ± 285 
0.10 for MI and MA, respectively. The values across the different bandwidths were consistently very 286 
high. These values also showed very small deviations across the contractions (1.55% and 2.30% for MI 287 
and MA; see Figure 6). Interestingly, the value of synchronization was in the highest portion of the 288 
range observed in humans (R = 0.5 – 0.8).  289 

 290 

 291 

Figure 6. Motor unit synchronization across the different contractions for monkey MI and MA (color-coded). A-292 
C Pipeline for the estimate of motor unit synchronization for an individual contraction. A. Raster plot of 12 motor 293 
units (grey indicates the torque with scale shown in panel B). B. The discharge timings of the motor units were 294 
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filtered with a Hanning window of 200 ms. C. The synchronization value was obtained by performing the cross-295 
correlation function between two groups of randomly permutated groups of motor units (number of permutations 296 
= 100). Note that the synchronization value was relatively high, and comparable to what observed in humans 297 
during rapid force contractions. D-E. Histogram of the synchronization value across the individual contractions 298 
for both monkeys. F. The synchronization value was stable across the ten days (average and standard deviation 299 
for each days are shown). For Monkey 2 the first two days resulted in a lower synchronization value due to a 300 
lower number of identified motor units, as shown previously. Note that the small variability in synchronization 301 
value in D and E was fully explained by the instantaneous discharge rate of the motor units, as previously shown 302 
(24, 27).  303 

The high correlation further indicates that the motoneurons likely received a strong common excitatory 304 
synaptic input and that this input was stable across days (Fig. 6F).  305 

Variability of motor commands are distributed within and between motor unit pools and have a 306 
common supraspinal origin 307 

The previous results indicated that despite a large range of values in rate of force development and 308 
motor unit recruitment discharge characteristics, the general motor control scheme shows high 309 
reliability in the recruitment order and neural output of brachioradialis motor units. We also monitored 310 
the activity of other muscles involved in the tasks to verify behavioural variability across trials and 311 
days. We implanted 16 intramuscular EMG (iEMG) electrodes into the muscles of the left and right 312 
arm (Figure 7) and nerve cuffs around the median and radial nerves. The recordings from the iEMG 313 
signals were performed for the voluntary force contractions as well as for the involuntary stimulated 314 
contractions. We investigated the full bandwidth of efferent and afferent volleys with small changes of 315 
electric currents applied on the axon, until maximum efferent activation (M-wave).  316 

The potentials evoked by electrical stimulation showed high reliability across days, with negligible 317 
deviations around the mean (Figure 7). This demonstrated stability of the recordings over days. On the 318 
other hand, the voluntary EMG amplitudes showed very high variability, with some muscles (including 319 
the brachioradialis) showing a 2-fold difference in maximal amplitude. This indicated relatively large 320 
variability in the way contractions were executed.  321 

We then applied the same method for the identification of motor unit components (Fig. 5) to identify 322 
the neural modules within the muscles, as classically referred to as muscle synergies (28–30). We found 323 
one invariant neural component that explained more than 90% of the variance. This component was 324 
present either in the iEMG signals only from the trained limb, or in the combined iEMG signals from 325 
both limbs. This result further supports the role of a common input that is distributed between and within 326 
motor nuclei that is processed by the size principle and spinal cord circuitries, despite the large 327 
variability in the muscle activities.  328 

 329 
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 330 

Figure 7. Neuromuscular implants in macaques. A. Both monkeys were implanted bilaterally with a nerve cuff 331 
around the median and radial nerves. Implanted intramuscular EMG signals recorded the gross myoelectric 332 
activity of 16 muscles bilaterally (8 muscles per side).  B. During each experiment, the nerve cuff delivered 333 
stimulation pulses at supramaximal intensity (M-waves) and ramped down in small decrements of 0.1µA. The left 334 
side of panel B (dark green lines) shows the iEMG recording sessions from supramaximal intensity to the smallest 335 
(light green). On the right side of the panel twelve M-waves obtained during the different days (color-coded). C. 336 
The iEMG signals from the voluntary contractions during one experimental session. Individual contractions as 337 
well as the average (black line) are shown. Note the high intertrial variability in gross EMG responses. D. The 338 
average iEMG traces across days (color-coded), for monkey MI and MA. E. Non-negative matrix factorization 339 
analysis applied to the gross iEMG signals. The neural modules that explained most of the variance are shown for 340 
each monkey. F. The reconstruction accuracy (variance %) of the components extracted by NNMF. Note that one 341 
component explained more than 80% of the variance. G. The cross-correlation of the first two modules for the 342 
respective muscles.  343 

 344 
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DISCUSSION 345 

We have proposed a new non-invasive method based on wearable sensors to monitor spinal 346 
motoneurons in non-human primates that surpasses previous invasive methods in terms of performance 347 
(number of motor units), accuracy, and the possibility to track units over time. With this method, we 348 
reveal an accurate representation of the strategies used by the nervous system to control motor units and 349 
muscle force. The condensed spatial dimensions given by the high-density grids allowed us to identify 350 
the same motor units in two macaque monkeys performing natural isometric contractions across several 351 
experimental sessions. The access to populations of spinal motor units and their longitudinal tracking 352 
provides a framework to study the changes in recruitment of spinal motoneurons and rate coding during 353 
natural tasks.  354 

With respect to intramuscular recordings, these non-invasive approaches provide stable signals even 355 
during fast contractions (31), a greater number of decoded motor units (21), and the possibility to track 356 
the same motor units over multiple experimental sessions across days (32) and weeks (20). These 357 
approaches have been developed and extensively validated in humans (20, 21, 33). Here, for the first 358 
time, we show a non-invasive framework for decoding and longitudinally tracking relatively large 359 
populations of spinal motor neurons in behaving monkeys.  360 

We found relatively high motor unit discharge rates in macaque monkeys (41.7 ± 1.4, 38.4 ± 2.0 361 
spikes/s for MI and MA respectively across the ten days). These discharge rates were higher than 362 
those observed in isometric contractions at low and moderate forces in humans (<50 % of maximal 363 
voluntary force, <30 spikes/s) (33). Conversely, when related to fast human isometric contractions of 364 
the tibialis anterior muscle, the observed rates are similar (40.09 and 42.85 spikes/s, for the non-365 
human and human motor units, respectively (31)). 366 

The discharge timings of the motor units represent the neural code that generates muscle force. 367 
Recordings of motor unit activity during voluntary force contractions allow us to test the recruitment 368 
of motor units by the central nervous system in a detailed way, clarifying current debates in motor 369 
control. It has been debated for decades whether the common motoneuron fluctuations observed at the 370 
motor unit level are an epiphenomenon or have a functional origin. Similarly, the Henneman size 371 
principle has been constantly under investigation, due to the lack of in-vivo evidence with contractions 372 
at different rates of force development (6–9, 34, 35). These problems arise because of the lack of 373 
adequate methods.  374 

Here we showed that the neural drive to the muscle is highly structured in a hierarchical fashion. We 375 
found strong associations between hierarchy and behaviour, so that for a given common input signal, 376 
the motoneurons behave synchronously once they reach their threshold to discharge, likely dictated by 377 
the intrinsic motoneuron properties. Our results are in strong accordance with simulations suggesting 378 
that the spinal cord decodes inputs from descending pathways by modulating the recruitment and 379 
derecruitment of motoneurons (36). The factorization analysis applied to individual motor unit 380 
discharge timings and gross intramuscular EMG signals from the trained and untrained limb, revealed 381 
that one component explained more than 80% of the variance. The motor unit findings revealed that 382 
this component is filtered by size principle. Our results demonstrate the interplay between common 383 
synaptic input and size principle.  384 

In conclusion we presented a new non-invasive framework to decode populations of single spinal neural 385 
cells in macaque monkeys, which allows us to move from simple measures of behaviour (force) to the 386 
inputs that determine that behaviour. In addition to being non-invasive, this framework identifies the 387 
same motor units across months over the full force range. This is critical since inferring the patterns of 388 
motor behaviour by random sampling small population of active units may be inadequate (7, 11, 16, 17, 389 
37). We anticipate that this approach may find further utility when combined with invasive recordings 390 
of central motor circuits, which can provide direct access to the various putative sources of common 391 
drive (38–40). 392 

Materials and Methods 393 
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Animals 394 

Recordings were performed from two adult female awake behaving monkeys (M. mulatta; monkeys MI 395 
and MA, age 6, weight 6.2 and 6.7 kg respectively). All animal procedures were performed under 396 
appropriate licences issued by the UK Home Office in accordance with the Animals (Scientific 397 
Procedures) Act (1986) and were approved by the Animal Welfare and Ethical Review Board of 398 
Newcastle University.  399 

Behavioural Task 400 

The monkeys were trained to perform an isometric elbow flexion task with their right arm. Monkey 401 
MA was also trained to perform this task with her left arm. The forearm was placed into a rigid plastic 402 
cast. This was 3D printed  from a digital model of the forearm made using a laser scanner (Go!Scan, 403 
Creaform 3D, Levis, Quebec, Canada), ensuring a close but comfortable fit. A further support held the 404 
upper arm; the supports were attached to the training cage to fix the elbow in 90° flexion, and the 405 
forearm in semi-pronation so that the radius and ulnar were oriented in a vertical plane.  A load cell 406 
(LC703-25; OMEGA Engineering Inc., Norwalk, CT, USA) attached to the forearm cast registered 407 
elbow flexion torque. The force (kgF) applied to the load cell was recorded as a voltage signal by a 408 
custom designed task programme. A calibration factor was determined which allowed for the 409 
conversion of the voltage signal back into kilogram force (kgF) at a later stage. To determine the torque 410 
(N·m) produced by the animals, the recorded kilogram force was gravity corrected and converted into 411 
Newtons (N) and secondly multiplied by the distance between the load cell sensor and the elbow pivot 412 
joint (0.08m). The monkey initiated a trial by contracting elbow flexors to place the torque within a set 413 
window (1.648-3.295 N·m). This window was kept constant in all sessions and for both animals. The 414 
torque had to be held in this window for 1 s before releasing to obtain a food reward. Auditory cues 415 
were used to indicate to the monkey that the exerted force was within the required window, or else it 416 
was too high. Auditory feedback was also given to mark the end of the hold period. Recordings were 417 
collected from 10 sessions spanning 30 and 24 days for monkey MI and MA, respectively.  418 

Surgical Preparation 419 

After behavioural training was complete, monkey MI underwent a sterile implant surgery. After initial 420 
sedation with ketamine (10mg·kg-1 IM), anaesthesia was induced with medetomidine (3 μg·kg−1 IM) 421 
and midazolam (0.3mg·kg-1 IM). The animal was then intubated and anaesthesia maintained using 422 
inhalation of sevoflurane (2.5-3.5% in 100% O2) and IV infusion of alfentanil (0.4 μg·kg−1·min−1). 423 
Methylprednisolone was infused to reduce oedema (5.4mg·kg−1·hr-1 IV). Blood-oxygen saturation, 424 
heart rate, arterial blood pressure (using a non-invasive blood pressure cuff on the leg), core and 425 
peripheral temperature and end-tidal CO2 were monitored throughout; ventilation was supported with a 426 
positive pressure ventilator. Hartmann’s solution was infused to prevent dehydration (total infusion rate 427 
including drug solutions 5–10 ml·kg−1·h−1). Body temperature was maintained at 37°C using a 428 
thermostatically controlled heating blanket and also a source of warmed air. Intraoperative prophylactic 429 
antibiotics (cefotaxime 20mg·kg-1 IV) and analgesia (carprofen 5 mg·kg-1 SC) were given. 430 

In monkey MI, nerve cuff electrodes (Microprobe, Gaithersburg, MD, USA) were implanted around 431 
the median and deep radial nerves bilaterally and secured with the integral sutures. Each cuff contained 432 
eight contacts, arranged as two sets of four wires placed radially around the inner circumference. A 433 
plastic headpiece (TECAPEEK MT CF30, Ensinger, Nufringen, Germany) was manufactured based on 434 
an MRI scan to fit the skull and fixed using ceramic bone screws (Thomas Recording Inc, Giessen, 435 
Germany) and dental acrylic. Intramuscular electrodes comprising Teflon-insulated stainless-steel 436 
wires were implanted in eight arm and forearm muscles bilaterally for gross electromyography (EMG) 437 
recording. Specifically, the muscles that were implanted with intramuscular electrodes corresponded 438 
to: deltoids, extensor carpi radialis (ECR), extensor digitorum communis (EDC), biceps brachii, 439 
brachialis, brachioradialis, flexor carpi radialis, and the flexor digitorum superficialis muscle (FD). The 440 
EMG and nerve cuff wires were tunnelled subcutaneously to connectors fixed to the headpiece. Nine 441 
weeks after monkey MI’s first implant surgery, several wires connected to the deep radial nerve cuffs 442 
bilaterally were found to be broken, and stimulation through these cuffs was no longer possible. 443 
Replacement cuffs (with three contacts each, organised radially around the inner circumference) were 444 
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then implanted bilaterally on the radial nerve below the spiral groove in a further brief surgery, again 445 
with wires tunnelled subcutaneously to the head. Monkey MA underwent the implant surgery at a later 446 
stage to monkey MI and so was implanted with the same three contact cuffs around the median and 447 
radial nerves, along with EMG electrodes in the same muscles and fitted headpiece. All recordings were 448 
subsequently collected using the three contact nerve cuffs. 449 

Post-operative care included a full programme of antibiotic (co-amoxiclav, dose as above) and 450 
analgesics (meloxicam, 0.2mg kg-1 oral plus a single dose of buprenorphine 0.02mg kg-1 IM).  451 

Nerve cuff stimulation and recording 452 

 Biopolar current pulses (0.2ms per phase) were delivered through the first and third contacts of the 453 
three contact radial cuffs with a bi-phasic constant current isolated stimulator (Model DS4, Digitimer, 454 
Hertfordshire, UK). Stimulus current was delivered at supramaximal intensity (0.45mA for monkey MI 455 
and 0.4mA for monkey MA) and ramped down in decrements of 0.1µA to threshold intensity. Left and 456 
right arms were stimulated in different sessions, following recordings of the motor task.  457 

Electrophysiological Recordings 458 

Recordings were made from the brachioradialis muscle using a high-density surface EMG grids 459 
(GR04MMI305, OT Bioelettronica, Turin, Italy) with 64 electrodes (spacing 4mm). A bi-adhesive foam 460 
strip with holes aligned to the matrix was placed on the grid, and the holes filled with conductive paste 461 
(CC1, OT Bioelettronica, Turin, Italy). This assembly was then stuck to the skin over the muscle. To 462 
ensure good skin contact the forearm was shaved and cleansed with alcohol wipes. The location of the 463 
grid on the skin was marked each day with permanent marker pen to ensure reproducible placement 464 
from session to session. Standard surface adhesive electrodes (Neuroline 720; Ambu A/S, Ballerup, 465 
Denmark) were placed over the flexor and extensor tendons at the wrist to act as reference and ground; 466 
in the implanted animal (monkey MI), one of the unused nerve cuff electrodes was used as the ground. 467 
The surface grid electrode was connected to a custom printed circuit board containing a 64-channel 468 
amplifier (gain 192; bandwidth 30Hz - 2 kHz) and an analogue-to-digital convertor (RHD2164; Intan 469 
Technologies LLC, Los Angeles, CA, USA). Digitized signals were sent over a serial peripheral 470 
interface (SPI) cable to an RHD USB interface board (also Intan Technologies). This allowed data to 471 
be captured to a computer hard disc (5 kSamples/s) along with the elbow torque signal and digital 472 
markers signalling the phases of task performance and stimulus timing. Voluntary brachioradialis 473 
activity was recorded from the grid electrode during performance of the behavioural task (typically 100 474 
successful trials per session). Involuntary contractions were recorded by the intramuscular electrodes 475 
and the grid electrode during the radial nerve stimulation protocol. 476 

Motor unit decomposition and analysis 477 

The high-density EMG recordings were offline digitally filtered with a 20-500 Hz Butterworth filter. 478 
Semi-automated MATLAB software extracted the area under the power spectrum and amplitude of 479 
each of the 64 channels and highlighted the channels with poor signal to noise ratio for visual inspection 480 
and exclusion from subsequent analysis. After this procedure, the monopolar signals were used for the 481 
decomposition. Identification of the individual motor unit firings was accomplished through a 482 
previously proposed algorithm (21), modified for these large datasets to use a graphical processing unit 483 
(GPU) running CUDA software (Nvidia Inc, Santa Clara, California, USA).  484 

Briefly, this algorithm takes advantage of the unique two-dimensional spatiotemporal features of 485 
individual motor unit action potentials, to converge on an estimate of the motor unit spike trains. The 486 
decomposition blindly identifies the motor unit firings; only motor units with high silhouette-measure 487 
(>0.92 SIL) are initially maintained. SIL represents a qualitative measure of decomposition accuracy 488 
which is comparable to the pulse to noise ratio, ranging from 0 to 1, where 1 indicates perfect clustering 489 
of the motor unit action potential. The blind source separation procedure leverages the high spatial and 490 
temporal dimensionality of motor unit action potentials. This information is used to converge in an 491 
iterative way in the unique time-series representation of the firing times of the alpha motoneurons. We 492 
briefly describe here the general steps of decomposition. For a more detailed look into the details of 493 
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high density EMG decomposition, the technical and physiological details have been described 494 
previously (41, 42) 495 

The EMG signal corresponds to the filtering of the motoneuron action potential by the muscle tissue 496 
with some added noise. Therefore, it is possible to represent in a mathematical form the signal that is 497 
carried by each channel of a multidimensional arrays of EMG signals. The EMG signal can be described 498 
as a convolution of the motoneuron discharge timings (sources) by the muscle tissue (muscle unit action 499 
potentials). The sources (s) are the motoneuron axonal action potentials when reaching the muscle fibres 500 
and can be written as Dirac delta function. 501 

                                    𝑠𝑗(𝑘) = ∑  𝑟 𝛿 (𝑘 − 𝜑𝑗𝑟)                                          (1) 502 

where 𝜑𝑗𝑟 represent the spike times of the jth motor unit. We can then write the EMG signal in a matrix 503 

𝑥 form (e.g., when recorded with multidimensional arrays such as the high-density EMG grids used in 504 

this study) as: 505 

                                               𝑥 (k) =∑  𝐿−1
𝑙=0 H (l)s (k - l) + n (k)                            (2)                                506 

where s (k) = [s1 (k), s2 (k),…, sn (k)]T represent the n motor unit discharge times that generate the EMG 507 
signal (x) and n is the noise to for each electrode.  The matrix H (l) in eq. 2 contains the spatial 508 

information of the motor unit action potential and has size m x  l with lth sample of motor unit action 509 

potentials for the n motor units and m channels (two-dimensional format, hereafter referred to 2D motor 510 
unit waveform). The high spatial sampling given by the 64 electrodes further enhanced by extending 511 
the observation numbers (41) allows the recovery of the sources in an iterative blind way with a function 512 
that maximizes the sparsity between each motor unit action potential  (Fig. 1A). This process is obtained 513 
in a fully automatic and blind way; therefore, we can inspect the validity of decomposition by spike-514 
triggered averaging. With spike-trigger averaging it is also possible to retrieve by correlation analysis 515 
the information that is carried by the action potential (H) in different days, in a fully automatic way. By 516 
using 2D correlation analysis it indeed possible track motor unit waveform across weeks (32) and even 517 
months (24). The motor unit tracking uses the information carried in H to compare across sessions the 518 
two dimensional cross-correlations across all possible combinations of motor unit action potentials. The 519 
two-dimensional cross-correlation (2D correlation hereafter) is comparable to a one-dimensional cross-520 
correlation, but with a weighted average across the time-space features of the motor unit waveforms 521 
(see Figure 1). The output of the two-dimensional cross-correlation ranges from 0 to 1, where 1 indicate 522 
maximal similarity. For example, two randomly-selected motor units have a two-dimensional cross-523 
correlation lower than 0.3 (20).  524 

Motor unit characteristics 525 

We first displayed all motor units 2D correlation values with R > 0.55 and with a total number of 526 
discharge timings (impulses) >100 and visually inspected the waveforms for potential errors. The 527 
unique combinations of motor unit waveform that were preserved after this visual inspection stage had 528 
R > 0.70. From all the retained motor units, we computed the instantaneous discharge rate (inverse of 529 
the inter-spike interval) averaged across the hold period for all trials of the task on a given day. 530 
Synchronization of the motor unit pool was also assessed, as the magnitude of the cross-correlation 531 
between two equally sized groups of motor unit spike trains. The number of motor units in each group 532 
was randomly assigned for a total of 100 permutations. For each iteration two random unique subsets 533 
of units were selected for each group (each group being half of the total number of the identified units 534 
during a specific contraction). The spike trains (binary signals) for each motor unit group were then 535 
summed and smoothed using a Hann window with two corner frequencies of 40 Hz and 2.5 Hz. We 536 
chose two Hann window because this cut-off retains most of the oscillatory activity of the motoneuron 537 
pool (40 Hz) and the low frequency is mainly associated to the neural drive that is responsible for force 538 
production (i.e., the correlation between a force signal and the low pass filtered motor unit discharge 539 
timings is minimally distorted by the musculotendinous unit).  540 
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For the motor unit recruitment threshold estimates, we first looked at the recruitment order (in seconds) 541 
of the motor unit during the individual contractions. This was estimated by taking the time point when 542 
that unit was active for the first time. We then calculated the average recruitment threshold (in seconds) 543 
for all units across all contractions. Afterwards, we labelled each unit from 1 to the maximum number 544 
of identified units in a specific contraction (i.e., a motor unit takes the value of 1 if it is the first 545 
recruited). Then we plotted the recruitment thresholds for each specific unit across all contractions. 546 
Because the labelling is not dependent on the average, if there is a correlation between the average 547 
recruitment threshold and the binarized recruitment threshold across all contractions, this relationship 548 
indicates the amount of flexibility in recruitment order obtained by the nervous system in a direct way.  549 

We then computed the derivative of the recruitment of the motor units. After calculating the recruitment 550 
thresholds (in seconds) of all the motor units in each contraction, the recruitment threshold was sorted 551 
from the smallest to the largest and we computed the derivative of this vector. The derivative of this 552 
vector corresponds to the number of motor units recruited per seconds, which is an estimate of the 553 
efferent drive received by the population of motor units, i.e., a faster recruitment speed of motoneurons 554 
results in a faster rate of force development (31, 43) . We then associated for each contraction the 555 
variability in recruitment order, that was calculated as the standard deviation of the binarized 556 
recruitment thresholds versus the motor unit recruitment speed (the first derivative of the recruitment 557 
thresholds). If there would be an association between these two variables it would indicate that a faster 558 
recruitment (which could be due to higher synaptic input) is associated with a violation in the 559 
recruitment order.  560 

Factorization of motor unit activities 561 

We factorized the motor unit discharge timings with a non-negative matrix factorization method 562 
(NNMF, 29). This method can learn specific features in 2D images such human face characteristics or 563 
sematic properties of a written text with the use of linear algebra. In the context of neural signals, we 564 
constrained this method to learn the unique components in the motor unit discharge rates that are 565 
responsible for force production. Figure 6 shows the overall architecture for this analysis.  566 

The force level developed by a muscle is driven by the number of motor unit activation signals, which 567 
can be represented as time sequences of M dimensional vectors, that correspond to the activation of the 568 
motoneurons m(t) in response to common and independent synaptic inputs arising from afferent and 569 
efferent volleys. Therefore, we can express the motoneuron behaviour as combinations of N varying 570 
synaptic inputs which construct a specific motor unit firing characteristic, or neural module, expressed 571 
as {𝑤𝑖(𝑡)}𝑖=1,…𝑁  572 

𝑚(𝑡) = ∑ 𝑐𝑖𝑤𝑖

𝑁

𝑖=1

 573 

where 𝑐𝑖 is a non-negative scaling coefficient of the i-th neural module. We are interested in finding the 574 
𝑤𝑖 vectors within the low-frequency motor unit discharge rates. Because motor unit firing rates are non-575 
negative, we can utilize NNMF (22) to constrain 𝑤𝑖 to be non-negative. This procedure maximizes the 576 
interpretability of the data since the representation of the neural motor unit ensemble only includes 577 
additive and not subtractive combinations, therefore having an output module with the same scale as 578 
the input signal. NNMF iteratively finds the non-negative factors W and H with an interactive procedure 579 
that minimize the residuals between D (the sources) and W*H. So that W*H is a lower-rank 580 
approximation of the firings of the individual motor units (D). The firing of the individual motor units 581 
are stored in a matrix with rows equal to the number of identified motor units and with columns having 582 
the duration of the recording. The motor unit are initially stored as Dirac delta’s function 𝛿 (𝑘 − 𝜑𝑗𝑟), 583 

and then low pass filtered at 2.5 Hz (Figure 6). NNMF is an iterative algorithm that starts with random 584 
initial value of W and H. Because the root mean square of D can have local minima, we performed up 585 
to 1000 iterations to converge to a representative reconstruction of D = W*H.  586 

We then evaluated the output of NNMF with different decoding-encoding functions. First, we 587 
constrained the number of factors number equal to the number of identified motor units across a specific 588 
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day. After this initial procedure, we consistently found that >10 factor explained 99% of the variance. 589 
The reconstruction accuracy (residual variance or variance explained) was calculated by computing the 590 
residuals (D - W*H) and then computing the deviation from the mean (R2). Second, we evaluated the 591 
decomposition by looking at the decoding-encoding of the individual neurons with the respect to the 592 
matrix W. This analysis was computed by performing the cross-correlation between the low-pass 593 
filtered motor unit discharge rates (D) and the individual neural modules (W) extracted by NNMF. The 594 
same method was applied on the gross EMG signals from the intramuscular electrode. After 595 
rectification and averaging, the average EMG signals for each day were processed by NNMF and the 596 
residual variance was calculated in the same way for the motor units (Figure 7 shows the results and 597 
analysis of the intramuscular EMG signals). All of the analyses were performed in MATLAB.  598 
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