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Abstract 24 

Phage-displayed immunoprecipitation sequencing (PhIP-Seq) has successfully enabled 25 

high-throughput profiling of human antibody profiles. However, a comprehensive 26 

overview of environmental and genetic determinants shaping human adaptive immunity 27 

is currently lacking. In this study, we aimed to investigate the effects of genetic, 28 

environmental and intrinsic factors on the variation in human antibody repertoires. We 29 

characterized serological antibody repertoires against 344,000 peptides using PhIP-Seq 30 

libraries from a wide range of microbial and environmental antigens in 1,443 participants 31 

from a population cohort. We demonstrate individual-specificity, temporal consistency 32 

and co-housing similarities in antibody repertoire. Genetic analyses showed involvement 33 

of the HLA, IGHV and FUT2 regions. Furthermore, we uncovered associations between 48 34 

phenotypic factors and 544 antibody-bound peptides, including age, cell counts, sex, 35 

smoking behavior and allergies, among others. Overall, our results indicate that human 36 

antibody epitope repertoires are shaped by both host genetics and environmental 37 

exposures and highlight unique signatures of distinct phenotypes and genotypes. 38 

 39 
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 41 

 42 

 43 

Introduction 44 

The adaptive immune system encompasses an extremely complex group of biological 45 

processes that orchestrate responses to invading pathogens in all jawed vertebrates 46 

(gnathostomes), including humans (Cooper and Alder, 2006). The adaptive immune system’s 47 
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capacity to recognize, adapt to and remember a wide variety of threats is determined by highly 48 

polymorphic genetic structures that encode receptors able to interact with complex structures 49 

known as antigens that most commonly represent amino acid sequences (epitopes) from 50 

foreign proteins (Cooper and Alder, 2006). Antibodies are the key effector molecules in the 51 

human adaptive immune system and are responsible for humoral immunity. Each individual’s 52 

antibody epitope repertoire is characterized by a high degree of versatility and adaptability and 53 

is continuously altered during their lifetime, with host genetics and environmental factors being 54 

the main contributors. Antibody repertoires determine the fate of the immune response against 55 

pathogens and the development of autoimmunity or allergies, and they have garnered special 56 

attention because they can be used to study herd immunity acquisition (Burkholder et al., 2017). 57 

In an adult human, there are around 1010–1011 B-lymphocytes, each expressing a unique B-cell 58 

receptor (BCR) (a non-soluble antibody form) that identifies a molecular pattern (Ganusov and 59 

De Boer, 2007). The antigenic diversity of BCRs is the net result of the high diversity and 60 

somatic rearrangements of V(D)J gene segments, insertion and deletion (indel) of nucleotides 61 

and subsequent somatic hypermutation (SHM) to increase antigen affinity and specificity 62 

(Hoehn et al., 2016).  63 

To gain more insight into antibody–antigen interaction, efforts have been made to 64 

directly sequence the BCR (Galson et al., 2020; Goldstein et al., 2019) and to directly infer it 65 

from single-cell transcriptomic sequencing (Lindeman et al., 2018). Although this methodology 66 

provides information on the potential for generation of immune responses against yet unknown 67 

antigens, it does not directly link BCR sequences to the exact nature of antigenic epitopes. In 68 

addition, in terms of scaling, it is limited to just a small proportion of the immense number of 69 

these receptors (Kim and Park, 2019). On the other hand, antibody-binding analysis, such as 70 

peptide microarrays (Atak et al., 2016; Yu et al., 2017) or enzyme-linked immunosorbent assay 71 

(ELISAs), enable the determination of antibody seroprevalence against selected antigens. While 72 

easily implemented for a limited set of antigens, these methodologies have been difficult to 73 
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scale up to thousands of antigens in a large population. Phage-displayed immunoprecipitation 74 

sequencing (PhIP-Seq) is an immuno-precipitation–based sequencing technique that enables 75 

quantification of antigen peptides that are displayed as phage libraries, which subsequently 76 

react with human antibodies, and antibody-bound phages are eventually sequenced to obtain 77 

an ‘immunological fingerprint’ of an individual’s antibody repertoire. PhIP-Seq has been 78 

described previously (Larman et al., 2011; Mohan et al., 2018) and has been successfully 79 

applied to characterize autoimmune antibody prevalence in patients with multiple sclerosis, type 80 

1 diabetes and rheumatoid arthritis (Larman et al., 2013; Román-Meléndez et al., 2021), the 81 

human virome (Eshleman et al., 2019; Finton et al., 2014; Mina et al., 2019; Shrock et al., 2020; 82 

Xu et al., 2015), the widespread presence of antibodies against virulence factors (Angkeow et 83 

al., 2021; Vogl et al., 2021) and the gut microbiome (Vogl et al., 2021). However, no 84 

comprehensive study has been carried out to date that identifies the environmental, intrinsic, 85 

lifestyle and genetic factors that determine antibody generation against antigen exposures in the 86 

general population. 87 

In this work, we set out to uncover the antibody epitope repertoire in a deeply 88 

phenotyped population cohort from the northern part of the Netherlands, Lifelines-DEEP (LLD) 89 

(Tigchelaar et al., 2015). We used the PhIP-Seq libraries described in (Vogl et al., 2021) and 90 

(Leviatan et al., in prep) to characterize 344,000 peptide antigens related to: (1) microbes 91 

(including human gut microbiota, probiotic strains, pathobionts, antibody-coated species and 92 

virulence factors from the virulence factors database (VFDB)), (2) the immune epitope database 93 

(IEDB) (Vita et al., 2015), (3) proteins from allergen databases and (4) bacteriphages. 94 

Leveraging the rich metadata available for this deeply phenotyped cohort (including imputed 95 

genotypes, gut microbiota shotgun sequencing, clinical blood tests (immune, metabolic and 96 

autoimmune markers), family information, lifestyle and self-reported diseases and allergy 97 

questionnaires) alongside the PhIP-Seq data allowed us to establish key genetic and 98 

environmental factors shaping the human antibody epitope repertoires.  99 
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Results 100 

Antibody-bound peptide repertoires are personalized, linked to shared environments (co-101 

housing) and time-dependent 102 

We interrogated a total of 344,000 peptides in 1,778 samples from 1,437 individuals (for 341 of 103 

whom we have data at two time points 4-years apart) from a northern Dutch population cohort 104 

(Tigchelaar et al., 2015) [Fig 1A].  105 

After immunoprecipitation with protein A/G (binding primarily IgG antibodies (Vogl et al., 106 

2021)) and sequencing, we detected an enrichment of sequenced reads (compared to a null 107 

distribution without immunoprecipitation) of 175,242 (antibody-bound) peptides in at least one 108 

participant (average number of peptides bound per person = 1,168, range = 3–3,161) (see 109 

Methods). Peptide seropositivity was defined as a presence/absence binary score (enriched/not 110 

enriched) that was used for all subsequent analyses. Most antibody-bound peptides showed low 111 

seroprevalence, indicating the individual-specificity of the antibody epitope repertoire [Fig 1B]. 112 

Based on peptide sequence identity and prevalence (see Methods for details), we chose 2,815 113 

peptides for further analyses [Supplementary Table 1.1]. 114 

The large variability in the antibody-bound peptide enrichment profile can be seen 115 

through a principal component analysis (PCA), where the amount of variability recovered by the 116 

first 10 components was just 15.5% and 709 components were needed to retrieve 90% of the 117 

total antibody-bound peptide variability [Fig 1C]. Despite the relatively low variability accounted 118 

for by the first two PCs (6.3%), we observed two clusters in PC2 that were driven by 119 

cytomegalovirus (CMV)-related antibody-bound peptides (K-means, k = 2) [Figure 1A] (removal 120 

of these peptides resolves PC2 clustering, Supplementary Fig 1A).This is consistent with a 121 

previous observation that nearly 50% of the Dutch adult population are seropositive for this 122 

herpesvirus (Korndewal et al., 2015). In contrast, PC1 was highly related to the number of 123 

seropositive peptides (affine linear model R2 = 72%). In a permutational multivariate analysis of 124 
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variance (PERMANOVA), the person-to-person antibody-bound peptide repertoire dissimilarity 125 

showed effects of age (R2=1.4%), lifestyle phenotypes (smoking R2=0.18%), blood 126 

measurements (cholesterol R2=0.12%) and blood cell counts (lymphocytes relative abundance, 127 

R2=0.16%), among many others (while correcting for age, sex and sequencing plate) 128 

[Supplementary Table 2.1]. 129 

In agreement with previous reports, we observed temporal consistency in the antibody-130 

bound peptide repertoire (Angkeow et al., 2021; Vogl et al., 2021) for the 322 LLD participants 131 

who were followed-up after 4 years. We observed that the distance between samples taken 132 

from the same individuals 4-years apart were on average lower than the distance of unrelated 133 

individuals (p < 5x10-4; 2,000 label permutations) [Figure 1D]. Overall, the distance between 134 

baseline and follow-up was not associated with baseline age or sex. The temporal consistency 135 

of antibody-bound peptides showed a binomial distribution, with most peptides consistent 136 

between timepoints while a subset others tended to change [Supplementary Fig 137 

2B][Supplementary Table 1.1]. This change was more often a loss of enrichment rather than 138 

gain, and this difference could not be directly attributed to a batch effect (Wilcoxon test, p = 139 

0.45). This highlights that the time elapsed since antigen encounter might be a determining 140 

factor for the detection of antibody-bound peptide enrichment, which is in agreement with 141 

humoral studies showing that the prevalence of antibodies seemed to fade over time (Erles et 142 

al., 1999; Hendrikx et al., 2011; Kontio et al., 2012). 143 

Next, we studied whether genetically related individuals or those living in similar 144 

environments (co-housing) would show more similarity in antibody-bound peptide enrichment 145 

compared to unrelated individuals. To explore this, we used 26 family trios from the LLD 146 

population (Genome of the Netherlands Consortium, 2014) (note that most offspring are unlikely 147 

to currently cohouse with their parents as mean age = 37±10.1 years old). Mother–offspring, 148 

father–offspring and father–mother antibody-bound peptide distances were significantly lower 149 

than those between unrelated individuals (p < 5x10-4, p = 0.013 and p < 5x10-4, respectively; 150 
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2,000 label permutations). However, no significant differences were found between family 151 

members although father–offspring pairs were, on average, more distant [Figure 1D]. The role 152 

of common environment in shaping antibody repertoires is supported by the decreased father–153 

mother distance, while offspring associations could indicate an important role for environment 154 

during early life, a common lifestyle, the effect of genetics, or all to some degree. 155 
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Figure 1. PhIP-Seq antibody-bound peptide profiles of 1,443 individuals representative of 157 

the Dutch population. A. Cohort characteristics. Lifelines-Deep is a population cohort from 158 

Northern Netherlands. In this work, we performed PhIP-Seq in 1,443 participants (including 26 159 

trio families), 322 of whom have data from a second time point after 4 years. Other data layers 160 

include phenotypes (questionnaires and clinical measurements), genetics (imputed microarrays) 161 

and microbiome (bacterial taxonomic quantification). There is a higher proportion of females 162 

within the participants (57%). The age distribution is slightly left skewed, with a mean of 44.5 163 

years (no significant sex differences). B. Prevalence of antibody-bound peptides in the 164 

population. X-axis depicts seroprevalence. Y-axis is the number of antibody-bound peptides 165 

with a given seroprevalence. C. Principal component analysis identified two clusters (color 166 

represents cluster labels after 2-means clustering) related to PC2, which is mainly driven by 167 

CMV peptides. D. Longitudinal samples taken 4 years apart in 322 participants are more closely 168 

related to the individual’s baseline than to other participants. E. 26 family trios show a lower 169 

distance between their antibody-bound peptide profiles than unrelated participants. 170 

Co-occurrence of peptides identifies multiple epitopes for the same antigen, antibody cross-171 

reactivity in related structures and co-occurrence of antibodies against unrelated structures 172 

 173 

To understand the relation between antibody-bound peptides, we computed their correlation 174 

and built a network using weighted gene co-expression network analysis by computing 175 

correlation coefficients from the binary profile of all selected peptides without missing values. all, 176 

435 peptides could be assigned to 22 modules of at least 10 highly correlated peptides [Figure 177 

2] [Supplementary Table 1.1]. Assessing antibody-bound peptides within each of the modules 178 

(denoted by the number of peptides per module, 1 to 22) and the sequence similarity between 179 

them allowed us to identify three main types of modules: (1) modules driven by antigens from 180 

the same biological source, (2) modules driven by antigens of similar peptide sequence and (3) 181 
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modules that include peptides that are not taxonomically or structurally related, but do correlate 182 

strongly with each other [Supplementary Table 1.3]. 183 

We observed five category (1) modules [Figure 2]. For example, module 16 was 184 

composed of two different Epstein-Barr virus (EBV) proteins, including capsid protein VP26 and 185 

nuclear antigen 1 (EBNA-1); module 20 was composed of high-identity peptides belonging to 186 

different strains of Influenza B viruses and module 1 is mainly driven by CMV peptides, while 187 

also including some EBV and other peptides. All modules are described in Supplementary 188 

Table 1.3.  189 

Category (2) modules, driven by similar sequences in different peptides, highlight the 190 

cross-reactivity of antibody response [Figure 2]. For example, module 21 is composed of plant 191 

thionins, small cytotoxic plant compounds produced by many species, but here mainly derived 192 

from common wheat (Triticum aestivum), barley (Hordeum vulgare) and rye (Secale cereale). 193 

Module 9 contained related antigens from wheat, Asian rice (Oryza sativa), rye, barley and 194 

grass (Setaria italica) that represent plant granule–bound starch synthase peptides. Modules 195 

14, 17 and 18 were characterized by antibody-bound peptides representing genome 196 

polyproteins from a series of viruses, including Enterovirus A71, B and C; Rhinovirus B and 197 

serotype 2; Coxsackievirus (type A9) and Poliovirus. Module 3 was dominated by allergen 198 

peptides, including antigens involved in common insect and seafood allergies, e.g. Artemia 199 

franciscana (shrimp), Octopus vulgaris (octopus), Blattella germanica (German cockroach), 200 

Dermatophagoides farinae (house dust mite), Portunus trituberculatus (gazami crab), Bombus 201 

hypocrita (bumble bee) and Ctenocephalides felis (cat flea). 202 

Examples from category (3), where no structural or taxonomic relation is seen, are 203 

harder to interpret [Figure 2]. While some members in this category have a majority of peptides 204 

belonging to category (1) or (2), others do not show major structural relations and are mainly 205 

composed of bacterial peptides or bacterial and autoimmune peptides clustering together. 206 
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Figure 2. Co-occurrence network. Weighted gene network analysis identified 22 different 208 

antibody-bound peptide co-occurrent modules with at least 10 members. A. A minimum 209 

spanning tree was used to create the network of peptides belonging to one of the 22 modules. 210 

Nodes represent peptides, and node size is proportional to the peptide prevalence. Edges bind 211 

nodes with at least 0.3 Pearson correlation (between binary profiles). Colors represent different 212 

taxonomic sources of the peptide. Shades group modules and are labeled “M + module 213 

number”. B. Pie charts showing the taxonomic relative composition of each module. Pie charts 214 

are grouped in three categories. At right, category (1) indicates modules composed of different 215 

peptides from the same species. At left, category (2) indicates modules composed of structurally 216 

related peptides. At bottom is category (3) in which a mix of unrelated peptides from different 217 

organisms are seen. Category (3) may overlap with modules where the majority of peptides 218 

belong to category (1) or (2). 219 

 220 

Peptide enrichment is associated to HLA, FUT2 and IGHV genetic regions 221 

Our observation that both common environments and genetic relations within families affect the 222 

antibody-bound peptide repertoire [Figure 1E] made us wonder about the specific drivers of 223 

repertoire variability. Genetics are known to influence antibody repertoires (Grundbacher, 1974; 224 

Kalff and Hijmans, 1969; Rowe et al., 1968; Venkataraman et al., 2021), but the exact 225 

contribution of genetic and environmental factors to bacterial and, especially, commensal gut 226 

microbiota immune-reactivity is incompletely characterized. 227 

We estimated the proportion of antibody-bound peptide presence/absence variability 228 

accounted for by common genetic variation, i.e. its heritability (H2), using common genetic 229 

variants in 1,255 unrelated individuals. We saw an overall moderate genetic contribution to the 230 

variability of antibody-bound peptides enrichment (mean H2 = 0.1, median = 0.06, min = 0, max 231 

= 0.96) [Supplementary Table 1.1]. A total of 35/2,814 antibody-bound peptides showed very 232 
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high heritability (H2 ≥ 0.5), while a substantial number (597/2,814) had a relatively high 233 

heritability (H2 ≥ 0.2). Using the highly heritable antibody-bound peptides (H2 ≥ 0.5), we then 234 

computed genetic correlations in order to determine similar genetic signals across antibody-235 

bound peptide presence. We found a correlation of 0.47 between the matrices of 236 

presence/absence and genetic correlations (Mantel test, p < 1x10-04, 9,999 permutations) 237 

[Supplementary Fig 1C]. We also observed hubs of highly genetically correlated groups of 238 

peptides in which the genetic signatures are more correlated than antibody-bound peptide 239 

presence itself [Supplementary Fig 1C]. This indicates the existence of a common genetic 240 

architecture explaining the presence of antibody-bound peptides. 241 

Next, we set out to uncover specific loci contributing to the observed heritability. We ran 242 

a genome-wide association study (GWAS) on 1,3640,125 genotyped and imputed SNPs in 243 

2,815 peptides. To reduce the false discovery rate (FDR) and increase the power of the 244 

analysis, we meta-analyzed the results of our LLD GWAS with those of a dataset that used the 245 

same PhIP-Seq libraries in the context of inflammatory bowel disease (IBD) (490 participants), 246 

bringing us up to a total of 1,745 individuals (Bourgonje et al., in prep.)[Supplementary Table 247 

2.2]. At study-wide significance threshold (p < 5.67x10-11), we identified three genetic loci 248 

associated to 149 antibody-bound peptides. These were located in chromosome 6 (Human 249 

leukocyte antigen (HLA) locus), chromosome 14 (Immunoglobulin heavy chain variable (IGHV) 250 

region) and chromosome 19 (fucosyltransferase 2 (FUT2) gene) [Figure 3A]. 251 

The strongest genetic signal belonged to the HLA-class II region in chromosome 6, 252 

where we found 130 peptides associated with 134 different leading SNPs. Most of the 253 

associated peptides belonged to Streptococcus and Staphylococcus species, but we also found 254 

several peptides belonging to human viruses (adenoviruses or herpesviruses) and phages and 255 

to allergens (ovomucoid, barley, casein and wheat, amongst others) and gut microbiota. To dig 256 

into this genomic region, we conducted a specific imputation of HLA SNPs, indels, amino acids 257 
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and gene isoforms and performed an association analysis with all peptides (see Methods) 258 

[Supplementary Table 2.3]. This analysis substantially increased the number of associated 259 

peptides and the strength of associations. We discovered that a large number of peptides 260 

(530/2,813) had at least one significant (p < 1x10-6, after correction for number of independent 261 

tests, see Methods) association with HLA variants (amino acids, insertions, SNPs or genes). At 262 

HLA gene level, we identified 1,267 significant peptide–gene associations to 276 different 263 

peptides. Most of those associations (and the strongest) belonged to allelic variants of HLA-II 264 

(1,139 associations to 271 different peptides) in comparison to variants of HLA-I (128 265 

associations to 41 different peptides). Within the HLA-II variations, most associations were 266 

observed for various alleles in DQ and DR beta chain genes. 267 

To determine whether these associations are due to the capacity of a specific HLA 268 

complex to present the peptide, we performed computational modeling of the HLA–peptide 269 

complex using some of our top associations. Here we identified that the predicted residues that 270 

are recognized from the peptide by a specific HLA complex (Reynisson et al., 2020a) can form 271 

stable structures with their associated HLA complexes. For instance, the streptococcal C5a 272 

peptidase 273 

(TPSDAGETVADDANDLAPQAPAKTADTPATSKATIRDLNDPSQVKTLQEKAGKGAGTVVAVID274 

A) is highly associated with DRB1*0301 (always bound to the alpha chain DRA*01, DR3 275 

haplotype) (Odds ratio (OR) = 3.78, p = 1.65x10-31) and with DQB1*0201 (OR = 3.75, p = 276 

5.16x10-31) and the alpha chain DQA1*0501 (OR = 1.91, p = 4.80x10-13), which together form 277 

the haplotype DQ2.5 that is highly linked to DR3. The predicted core recognized by the HLA 278 

complex was nearly identical for both DR3 and DQ2.5 (VADDANDL) and is very similar to the 279 

amino acid composition identified from HLA ligand elution experiments (Reynisson et al., 280 

2020b). This reveals a close relationship in the composition of the streptococcal C5a peptidase 281 

peptide sequence in comparison to chemically synthesized peptides tested for DR3 and DQ2.5. 282 

Additionally, we employed the predicted binding metric (percentage of elution score -283 
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%Rank_EL, Methods) to assess the binding of the core peptide to the selected alleles. 284 

%Rank_EL is calculated as the percentile of the predicted binding affinity compared to the 285 

distribution of affinities calculated on a set of random natural peptides (%Rank_EL; strong 286 

binding: ≤ 2.0, weak binding: 2.0-10.0, no binding: > 10). This analysis found a favorable binding 287 

prediction of the core to DR3 and DQ2.5 complexes, with a higher binding for DQ2.5 (2.39 and 288 

0.65, respectively). We further compared the binding prediction for this epitope to a non-289 

associated negative control (DR14) that was predicted to be non-binding (%Rank_EL 14.77). 290 

Structural modeling and analysis of the binding mode of the peptide revealed a favorable 291 

binding energy with both DQ2.5 and DR3 (-9.1 and -10.1 Kcal/mol, respectively) compared to 292 

the non-associated structure DR14 (-7.7 Kcal/mol) [Figure 3B]. Additionally, the computed 293 

dissociation constant (Kd) showed an order of magnitude less affinity for the non-associated 294 

allele (2.3x10-6 M) compared to DR3 (3.7x10-8 M) and DQ2.5 (1.7x10-7 M). As a result, the 295 

peptide core exhibited similar behavior and key stabilizing polar interactions when binding into 296 

the binding sites of DR3 and DQ2.5. For example, the hydrogen bonds occurring between the 297 

Tyrosine 60 (Tyr60) and Tryptophan 61 (Trp61) present in the beta chain of both DR3 and 298 

DQ2.5 interact with Glutamic acid (Glu) and Threonine (Thr) in the peptide core. By contrast, 299 

although we could model the peptide binding into the negative control DR14, the majority of the 300 

peptide’s amino acids are located outside of the binding site and in the opposite direction 301 

compared to DR3 and DQ2 [Figure 3B]. 302 

In addition, we selected two other highly associated HLA–peptide complexes to explore 303 

in detail: (1) the combination of the peptide Lactococcus phage (YP_009222335.1 hypothetical 304 

protein LfeInf_097) with the DR15 haplotype (DRB1*0301), which showed the strongest study-305 

wide association (OR = 13.3, p = 1.44x10-47) [Supplementary Figure 2A], and (2) a 306 

combination of a peptide from the Human mastadenovirus minor core protein with the 307 

associated DR4-DQ8 haplotype (encoded by the DRB1*0401 and DQA1*0301-DQB1*0302 308 

genes) (DRB1*0401, OR = 5.69, p = 4.45x10-15; DQA1*0301, OR = 2.55, p = 2.12x10-18; 309 
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DQB1*0302, OR = 3.14, p = 4.17x10-20) [Supplementary Figure 2B]. We observed a positive 310 

identification of the peptide core matching known deconvolution motifs, as well as a favorable 311 

binding prediction for the Lactococcus phage peptide to DR15 and for the Human 312 

mastadenovirus peptide to DR4-DQ8 haplotypes. Similarly, the binding mode modeling of the 313 

peptide cores to the HLA-II complexes resulted in energetically favorable binding energy 314 

calculations and Kd in the nanomolar range (Lactococcus phage–DR15, 1.6x10-7 M; Human 315 

mastadenovirus–DR4/DQ8, 1.2x10-7M and 1.3x10-7M, respectively). These results suggest that 316 

the identified HLA–peptide associations point to biologically relevant processes in which a 317 

specific HLA complex can preferentially bind and display the specific peptide sequence. 318 

A second study-wide significant signal in our GWAS pointed to the IGHV region in 319 

chromosome 14 that encodes the immunoglobulin heavy chain variable domain. Here, we found 320 

16 associated peptides in 11 leading loci within the region. The majority of SNPs (11/16) were 321 

located in non-coding regions around the IGHV gene, whereas Ovis aries casein protein 322 

(representing the primary sheep’s milk allergy food allergen) was associated with a missense 323 

variant that changes Glycine, a non-polar amino acid, for Arginine, a positively charged amino 324 

acid. Next to the Ovis aries casein peptide, the top peptides associated to this region are 325 

bacteria-related (Bacteroides uniformis, Blautia producta and Lactobacillus plantarum) or viral 326 

(Influenza A, Lactobacillus phage and Norwalk virus). The strongest association was observed 327 

in Lactobacillus plantarum (aggregation promoting factor) and Lactobacillus phage (endolysin). 328 

We found a third study-wide significant signal in the FUT2 gene in chromosome 19. This 329 

gene status controls the secretion or non-secretion (homozygous for loss of function) of the H-330 

antigen, an oligosaccharide. Thus, we subsequently ran the analysis in a dominant/recessive 331 

model to increase power and detected three study-wide significant peptides, all of which 332 

originally belonged to Norwalk virus polyproteins and were negatively associated with the same 333 

leading variant, rs2251034 (A>G,3’ UTR). This variant is in high linkage with an early-stop 334 

variant in FUT2 that is known to stop the secretion of the H-antigen, rs601338 (A>G, R2 = 0.85, 335 
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1000G, CEU population). FUT2 secretor status has been previously associated with multiple 336 

phenotypes, including infection susceptibility (Tian et al., 2017), gut microbiome (Kurilshikov et 337 

al., 2021; Lopera-Maya et al., 2020), human milk oligosaccharides (Williams et al., 2021) and 338 

cardiovascular traits (Zhernakova et al., 2018). Our finding supports the previously reported 339 

association between Norwalk virus susceptibility and FUT2 secretor status (Lindesmith et al., 340 

2003), since this virus requires the H type-1 oligosaccharide ligand for successful attachment in 341 

the cell surface. 342 
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Figure 3. The genetic contribution to antibody-bound peptide variability A. Manhattan plot 344 

from genome-wide association study of 2,798 antibody-bound peptides. Genome-wide 345 

association threshold (5x10-8, blue) and study-wide significance (7x10-11, red) are shown as 346 

horizontal lines. Labels indicate the three major loci identified. Colored dots represent a 347 

recessive model. Gray dots represent additive models. B. Peptide motif deconvolution maps of 348 

DR3, DQ2.5 and DR14 (amino acids code: negatively charged = red, positively charged = blue, 349 

polar uncharged = green, hydrophobic = black) compared with the Streptococcus agalactiae 350 

C5a peptidase peptide core and percentage of elution score (%Rank_EL: strong binding ≤ 2.0, 351 

weak binding 2.0–10.0, no binding > 10) predicted by NetMHCIIpan-4.0 (Reynisson et al., 352 

2020a). Predicted binding mode, polar molecular interactions (dashes, hydrogen bonds: green, 353 

salt bridges: yellow), binding energy and dissociation constant (Kd) of the Streptococcus 354 

agalactiae C5a peptidase peptide core (red cartoon and sticks) into HLA-II receptors (chain A in 355 

green and chain B in blue). 356 

 357 

Phenotypic and environmental effects on antibody-bound peptide enrichment 358 

More than 200,000 bacterial antigens, including proteins originating from pathogenic, probiotic, 359 

and commensal gut microbiota species, were included in the peptide libraries. We therefore 360 

explored the relations between gut microbiome composition, analyzed by metagenomics 361 

sequencing, and presence of antibody responses. To increase the power of the study, we 362 

performed taxonomic abundance–peptide associations in 1,051 LLD participants and then ran 363 

the meta-analysis including 137 IBD participants (Bourgonje et al., in prep). Neither the cohort-364 

specific analysis nor the meta-analysis strongly supported taxonomy metagenomic association 365 

with antibody-bound peptides (minimum FDR 0.52) [Supplementary Table 2.4]. These results 366 

are also in line with previous observations (Vogl et al., 2021). 367 
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To uncover specific effects of lifestyle and environmental factors in the antibody-bound 368 

peptide profile, we associated 84 available phenotypes [Supplementary Table 1.2] with the 369 

presence/absence of antibody-bound peptide profiles in 1,437 LLD participants. Here, we 370 

uncovered 837 strongly supported associations between the presence of antibody-bound 371 

peptides lifestyle and environmental factors (FDR < 0.05), covering 544 peptides and 48 372 

different phenotypes [Figure 4A] [Supplementary Table 2.5]. Phenotypic factors that were 373 

associated (after age, gender and sequencing plate correction) with most antibody-bound 374 

peptides included age (386 associations), lymphocyte counts (101 associations, both absolute 375 

counts and cell proportions), neutrophil counts (86 associations, absolute counts and cell 376 

proportions), smoking (84 associations, both former and current smoking), sex (43 377 

associations), allergies (35 associations, including any, pollen, dust or animals), autoantibodies 378 

(40 associations) and blood cholesterol levels (13 associations, both total cholesterol and LDL-379 

cholesterol). 380 

Of the 386 significant associations with age, 199 were positive and 187 were negative. 381 

Older age was associated with a higher prevalence of antibody-bound peptides from several 382 

herpes viruses (including CMV, EBV and Herpes simplex virus (HSV) 1 and 2), Streptococcus 383 

bacteria (in particular S. pyogenes and S. dysgalactiae) and several pathogenic bacteria 384 

(including Shigella flexneri, Yersinia enterocolitica, Campylobacter genus and Helicobacter 385 

pylori). Younger individuals had higher frequencies of antibody-bound peptides related to 386 

particular viruses (including human rhinovirus serotype 2, influenza A virus and enteroviruses) 387 

and bacteria, mainly Streptococcus pneumoniae, Staphylococcus aureus, Mycoplasma 388 

pneumoniae, Haemophilus influenzae and Escherichia coli (particularly antigens from the type 389 

III secretion system (T3SS) of serotype O157:H7). Younger individuals also showed more 390 

frequent antibody responses against alpha S1 casein proteins. 391 

Sex demonstrated 43 significant enrichments (24 for males, 19 for females). Females 392 

exhibited more frequent antibody-bound peptides from Lactobacillus acidophilus and 393 
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Lactobacillus johnsonii, both known inhabitants of the vaginal microbiome (Davoren et al., 2019; 394 

Integrative HMP (iHMP) Research Network Consortium, 2019). Antibody-bound peptide 395 

responses were particularly directed against Lactobacillus surface proteins, including S-layer 396 

proteins (SLPs, e.g. SIpA and SIpX proteins) and the peptidoglycan lysozyme N-397 

acetylmuramidase, reproducing previous findings in (Vogl et al., 2021). Females also 398 

demonstrated increased enrichment of EBV and CMV peptides. Males showed higher 399 

prevalence of antibody-bound peptides from Haemophilus influenzae bacteria (e.g. serotype Rd 400 

KW20 or strain 3179B), also as previously described (Angkeow et al., 2021; Kurtti et al., 1997), 401 

and of several peptides derived from Streptococcus, Staphylococcus, Bacteroides and 402 

alphaherpesviruses (including HSV-1 and varicella zoster virus). 403 

Associations between antibody-bound peptides and laboratory cell counts included both 404 

cell proportions and absolute cell quantifications, which appeared to be largely driven by 405 

antibody-bound peptides from CMV. Lymphocyte counts showed almost exclusively positive 406 

associations with CMV, but also some to EBV, whereas the same antibody-bound peptides 407 

demonstrated many inverse associations with neutrophil counts. 408 

Smoking associations included associations to current smoking status (41) [Figure 4B], 409 

ever smoking for at least a year (43) and parental smoking (7). Most associations were related 410 

with higher prevalence of peptides belonging to enteroviruses, both rhinovirus and poliovirus. 411 

The relationship between smoking and rhinovirus infection has been previously described 412 

(Cohen et al., 1993), and thus associations to other viral peptides belonging to enteroviruses 413 

could be due to cross-reactivity to homologous proteins. We also observed a consistently higher 414 

seroprevalence of EBV in smokers, which might be reactivated by smoking, as shown by an in 415 

vitro model (Xu et al., 2012). In addition, there were increased antibody responses against 416 

miscellaneous respiratory pathogens, including several Streptococcus spp. Interestingly, 417 

flagellin antibody–bound peptides (Roseburia, Lachnospiraceae, Eubacterium and Clostridiales) 418 

show a lower prevalence in smokers, as do Escherichia virulence factors [Figure 3B]. 419 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.471553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471553


We used serological information about the presence of autoantibodies to identify 420 

bacterial and allergen peptides linked to the presence of these autoimmune antibodies [Figure 421 

4C]. Anti-cyclic citrullinated peptide (anti-CCP) antibody levels, a marker for rheumatoid arthritis, 422 

were positively associated with 23 antibody-bound peptides, including peptides derived from 423 

Bacteroides, Parabacteroides, Prevotella and Porphyromonas gingivalis bacteria. These 424 

findings correspond well with bacterial genera that are known to be altered in the microbiome of 425 

patients with anti-CCP-positive rheumatoid arthritis (Bodkhe et al., 2019). On the other hand, 426 

the connective tissue disease (CTD) screen panel, in which total reactivity to a mixture of 427 

antigens associated with several autoimmune diseases is measured, was almost exclusively 428 

associated with increased antibody-bound peptide frequencies of alpha-S1-casein or kappa 429 

casein belonging to Bos taurus (cow), Ovis aries (sheep), Bubalus bubalis (buffalo) and Capra 430 

hircus (goat). Indeed, several autoimmune diseases such as celiac disease, juvenile idiopathic 431 

arthritis and Ehlers-Danlos syndrome have been associated with mucosal reactivity against milk 432 

allergy, where the casein protein seems to be a regulator of the inflammatory response (Cutts et 433 

al., 2012; Kristjánsson et al., 2007). Anti-Sjögren’s-syndrome-related antigen A antibodies (anti-434 

SS-A/anti-Ro), which are typical anti-nuclear antibodies associated to autoimmunity, were 435 

positively associated with an antibody-bound peptide representing thymidine kinase of EBV. 436 

Interestingly, this association has previously been described in the context of Sjögren’s 437 

syndrome, in which anti-SS-A autoantibodies and higher frequencies of serological EBV 438 

reactivation (Fox et al., 1991) are more frequently observed. 439 

The strongest association to total cholesterol levels was with an antibody-bound peptide 440 

of Haemophilus parainfluenzae strain T3T1. Other bacterial peptides are also enriched with 441 

higher cholesterol labels, including Streptococcus or Pseudomonadaceae. We also observed an 442 

enrichment of viral peptides, such as rubeola, Pneumoviridae, HSV and EBV. Many intracellular 443 

pathogens are known to use cholesterol drafts to successfully infect cells and to impair the 444 

regular cholesterol metabolism and the immune system (Sviridov and Bukrinsky, 2014). We 445 
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observed three associations between body-mass index (BMI) and antibody-bound peptides, all 446 

of which represented glycoprotein D of human alphaherpesviruses (HSV-1/HSV-2). Indeed, 447 

obesity has previously been associated with a higher prevalence of herpesvirus infections, in 448 

particular HSV-1, by promoting human adipogenesis (Hasan et al., 2021). 449 

Finally, participant’s having any allergy (44.5% of participants) showed associations with 450 

six different antibody-bound peptides [Figure 4D]. Using more-detailed questionnaires with 451 

information about different allergies such as dust, pollen, food and others [Supplementary 452 

Table 1.3], we identified 13 different peptides associated with at least one phenotype. As 453 

expected, the strongest association was observed for dust allergy, showing associations with 454 

antibody-bound peptides from the house dust mite Dermatophagoides pteronyssinus (FDR = 455 

3.84x10-5). In addition, the most common associations were observed between casein proteins 456 

derived from cow, sheep and buffalo milk, which were linked not only with food allergies but with 457 

almost all allergy types. Wheat allergens were linked with self-reported dust and pollen allergies. 458 

Interestingly, we identified a couple of associations with influenza (higher prevalence with pollen 459 

allergy), bacterial flagellin associations with animal allergies and Shigella flexneri with dust 460 

allergy. Previous analyses have linked dust mite with bacterial sensitization, although not for 461 

these specific lineages (Dzoro et al., 2018). Importantly, several of these significant associations 462 

represent linkage between common aeroallergens (e.g. pollen and dust) and food allergy (e.g. 463 

Triticum aestivum [wheat] and casein), recapitulating the frequent co-occurrence of allergen 464 

cross-reactivity (Popescu, 2015). 465 
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 466 

Figure 4. Phenotype-antibody-bound peptide associations. A. Bar plot displaying the 467 

number of associations per phenotype (FDR < 0.05). Phenotypes are grouped in categories. 468 

Peptides associated with > 5 phenotypes are grouped. Peptides associated with < 5 phenotypes 469 

are labeled ‘Other’. B. Smoking-linked antibody-bound peptide prevalence. X-axis shows 470 

prevalence of peptides in smokers. Y-axis shows the prevalence in non-smokers. Colors of dots 471 

depict peptide taxonomy. C,D. Autoimmune- and allergy-specific association counts of antibody-472 

bound peptides, per category. Bacterial peptides are binned as “Bacteria”. Viral peptides are 473 

binned as “Virus”. Auto-antigens or antigens to casein are binned as “Mammal”. Plant peptides 474 
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are binned as “Plant”. Anti-SSA: anti–Sjögren's-syndrome-related antigen A autoantibodies. 475 

Anti-CTD: anti-connective tissue diseases screening ratio. Anti-CCP: anti-cyclic citrullinated 476 

peptide.  477 
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Discussion 478 

In this project, we aimed to characterize the antibody repertoire in the blood of a Dutch 479 

population and reveal which factors contribute to its variation. In particular, the factors that 480 

contribute to the generation of antibodies against microbiota and different allergens remain 481 

elusive. Here, we combined phenotypic and genetic information together with the immune-482 

interrogation of 2,815 common peptides from microbes, viruses, allergens and self-peptides to 483 

study this variability. Using population, family and longitudinal samples, we identified the 484 

antibody profile in the general population, assessed the stability of antibodies after 4 years and 485 

investigated the effect of genetic and environmental factors on individual immune profiles. 486 

The relation between genetics and antibody repertoire has been extensively described 487 

(Grundbacher, 1974; Kalff and Hijmans, 1969; Rowe et al., 1968; Venkataraman et al., 2021) 488 

but has been limited to a relatively small number of antibodies until now. PhIP-Seq has recently 489 

enabled the investigation of the genetic contribution to antibody variability in a much broader 490 

scale, although it has mainly been investigated for viruses, toxins and virulence factors 491 

(Angkeow et al., 2021; Venkataraman et al., 2021) and not for other antigens such as allergens 492 

and gut microbiota–derived proteins. Here, we identified three genomic regions highly 493 

associated with the variability of antibody-bound peptide repertoires. As expected, we replicated 494 

the relation between HLA loci and antibody-bound peptide prevalence (Angkeow et al., 2021; 495 

Kachuri et al., 2020; Scepanovic et al., 2018; Venkataraman et al., 2021). Through imputation of 496 

HLA alleles, amino acids and structural variants, we also set out to uncover the specific HLA 497 

variations that allow the peptide to be displayed. Our structural simulations of the HLA alleles 498 

agree with the observed association patterns, supporting the hypothesis that the strong 499 

associations are due to HLA-display capabilities. For the first time, we report massive and 500 

specific HLA associations to more than 500 peptides at a high confidence level. This association 501 

data will be used in the future to further understand HLA–peptide interactions by modeling 502 
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possible residue interactions. Our findings also support previous observations, such as the 503 

association of FUT2 and Norwalk virus peptides (Lindesmith et al., 2003) that is explained by 504 

the attachment of the viral particle to the epithelia of FUT2-secretor cells (Marionneau et al., 505 

2002). We also observed association in the IGHV locus that was not previously reported in 506 

relation to antibody profiles. This association is in a complex genetic region as several genes 507 

with multiple isoforms coexist in the genome that are hard to address with microarrays (Watson 508 

and Breden, 2012). In addition, we lack information about the rearrangements that this gene 509 

undergoes during B-cell maturation. Nevertheless, although we cannot directly interpret the 510 

relation between variation and peptide recognition, this is a genetic region that is expected to 511 

contribute to antibody-bound peptide variability. Interestingly, our study did not identify the 512 

previously reported association of the nucleoredoxin gene (NXN) with S. pyogenes’ M3 513 

Streptolysin O (SLO) protein (Angkeow et al., 2021), although we do find a weak positive 514 

association between rs4968063 and the prevalence of this antibody-bound peptide in the 515 

combined LLD and IBD cohort (p = 0.01). 516 

In the present study, we observe a lack of concordance between meta-analyzed fecal 517 

microbial composition and PhIP-Seq-based epitope repertoires, which is in line with findings 518 

from studies using the exact same library of antigens in a healthy population-based Israeli 519 

cohort and in a disease cohort consisting of patients with IBD (Vogl et al., 2021; Bourgonje et 520 

al., in prep). The top associations do not present clear relationships between specific microbial 521 

taxa and antibody-bound peptides, which could be explained in various ways. First, this 522 

apparent lack of association might point to past events, such as microbial translocation, that 523 

may have triggered long-lasting immunity that was captured by PhIP-Seq profiling (Marchix et 524 

al., 2018), while the respective bacteria have been cleared from the gut. Second, there may 525 

have been a lack of resolution in the microbiome data. For example, some bacterial species 526 

commonly detected by metagenomics may have been accompanied by higher detection 527 

thresholds in PhIP-Seq, whereas highly immunogenic antigen peptides may not be frequently 528 
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detected by metagenomics sequencing (Vogl et al., 2021). In addition, the use of fecal 529 

microbiota as a proxy for the gut microbiota limits the characterization of local immune–530 

microbiota interactions. Profiling mucosa-attached microbiota rather than fecal microbiome 531 

could have improved the antibody-bacteria concordance as locally residing (mucosal) microbial 532 

communities may elicit stronger immune responses that may also depend on the anatomical 533 

location within the intestines (Christmann et al., 2015). 534 

We also explored the relationship between peptide prevalence and various 535 

morphological, biochemical and lifestyle factors. Our observations reveal a number of 536 

interesting associations. For instance, EBV and CMV were associated with lymphocyte and 537 

neutrophil counts. These findings are in accordance with observations of absolute 538 

lymphocytosis and neutropenia that constitute characteristic laboratory findings in individuals 539 

affected by EBV (infectious mononucleosis) (Fisher, 1973; Hudnall et al., 2003) or CMV 540 

infections (Lima et al., 2006; Solana et al., 2012), which may translate into altered immune cell 541 

proportions on the longer-term. We also identified a series of associations of allergies and 542 

allergens. Allergies are normally triggered by the epitope interaction with IgE antibodies. 543 

However, in this study, we mainly used IgG for immunoprecipitation since IgE are found in small 544 

amounts in serum and bind with relatively low affinity to the protein A/G coated magnetic beads 545 

employed for the immunoprecipitation. Previous studies have shown that allergens have the 546 

chance to bind both to IgG and IgE, although they might have different epitope preferences 547 

(Monaco et al., 2021). Thus, the allergen associations presented here should be interpreted with 548 

caution as they may differ from the classical pathway involved in allergy. 549 

Using co-occurrence networks, we identified different peptide groups that normally 550 

belonged to the same taxa or orthologous structures in different taxa. However, the existence of 551 

modules with apparently unrelated peptides may indicate either interesting biological 552 

phenomenon or technical factors that we are not accounting for. For instance, H. pylori peptides 553 

were seen to occur with the prevalence of antibody-bound peptides for a couple of phages. The 554 
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disruption of the gut barrier by this pathogen (Fukuda et al., 2001) could potentially explain the 555 

translocation of those phages to blood and the generation of mucosal and systemic immune 556 

responses. On the other hand, phenotypic associations also allow us to conjecture about 557 

observed cryptic peptide co-occurrence. For instance, CMV peptides were seen to co-occur with 558 

several bacterial and plant peptides. Most of those peptides were associated to the same 559 

phenotypes, mainly blood cell leukocyte and granulocyte counts, age and sex, meaning that the 560 

co-occurrence could be driven by those factors, or that those phenotypes may mediate their co-561 

occurrence. 562 

Widespread antibody screenings will be of great importance for the immunology field. 563 

Large longitudinal studies will enable us to go from association to causality, for instance 564 

uncovering factors that influence the development of autoimmune diseases (Elkon and Casali, 565 

2008) or common allergies (Kearney et al., 2015). Studies like this will enable the development 566 

of personalized treatments, e.g. through vaccination strategies (Cotugno et al., 2019). 567 

 568 

Study limitations 569 

PhIP-Seq is currently limited to linear epitopes and lacks post-translational modification 570 

information, and thus new technologies or improvements of the current method (e.g. as in 571 

(Román-Meléndez et al., 2021)) are still to be developed. Similarly, the nature of the assay will 572 

also miss tridimensional structure information from the antigens that might be recognized by the 573 

antibodies. In addition to these technological issues, our relatively small sample size for genetic 574 

studies hampers an accurate estimation of antibody-bound peptide heritability and genetic 575 

correlation. It is also important to acknowledge that the antibody-bound peptides we identified 576 

mainly correspond to circulating IgG and may overlook other types of immunoglobulins or 577 

immunoglobulins not in systemic circulation. Finally, due to the mostly cross-sectional nature of 578 
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the experimental design, it is hard to draw causal links from the associations we present and 579 

further studies are needed to establish causality and dependence.  580 

 581 

Materials & Methods 582 

Lead contact: Further information and requests for resources should be directed to the Lead 583 

Contact, Alexandra Zhernakova (a.zhernakova@umcg.nl). 584 

Material availability: List of antibody-bound peptides enriched in LLD participants will be made 585 

available upon publication. 586 

Data code and availability: https://github.com/GRONINGEN-MICROBIOME-CENTRE/Phip-Seq_LLD-IBD 587 

1. Cohort information 588 

Lifelines is a multi-disciplinary prospective population-based cohort study examining, in a unique 589 

three-generation design, the health and health-related behaviors of 167,729 individuals living in 590 

the North of the Netherlands. It employs a broad range of investigative procedures to assess the 591 

biomedical, socio-demographic, behavioral, physical and psychological factors that contribute to 592 

the health and disease of the general population, with a special focus on multi-morbidity and 593 

complex genetics (Scholtens et al., 2015). We collected data from the subcohort LLD 594 

(Tigchelaar et al., 2015) (58% female, mean age 45.04 years, mean BMI 25.26, 12% obese 595 

participants with BMI > 30). Approval from institutional ethics review is available under reference 596 

number M12.113965. In this study, we used a subset of LLD (n = 1,437, 57% female, mean age 597 

44.5 years) with available information including anthropometrics, blood parameters and self-598 

assessed questionnaires about health and lifestyle. The autoantibody panels for anti-CCP and 599 

CTD-ratio and anti-SSA were originally described in (Lambers et al., 2021) and (van Zanten et 600 

al., 2017), respectively. 601 
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The 1000IBD cohort is a large, prospective observational cohort study based in 602 

Groningen, the Netherlands, aiming to biologically and clinically characterize patients with IBD 603 

who are included at the outpatient IBD clinic of the University Medical Center Groningen 604 

(UMCG) (Imhann et al., 2019). Detailed phenotypic data and multi-omics profiles have been 605 

generated for over 1,000 included patients with IBD, enrolled from 2,007 onwards. Antibody-606 

bound peptide repertoires (PhIP-Seq profiles) were generated for 497 patients included in the 607 

1000IBD cohort (median age 39 years, 63% females, median BMI 24.7 kg/m2), of which 256 608 

patients were diagnosed with Crohn’s disease, 207 with ulcerative colitis and 34 with an 609 

undetermined type of IBD (IBD-U). Ethical approval for participation in the 1000IBD cohort has 610 

been granted by the Institutional Review Board of the UMCG (in Dutch: “Medisch Ethische 611 

Toetsingscommissie”, METc) under registration number 2008/338 and the study has been 612 

conducted in accordance with the principles of the Declaration of Helsinki (2,013). Patients 613 

provided written informed consent for their participation in the study. Further details on the 614 

subcohort of 1000IBD of which PhIP-Seq profiles were generated can be found elsewhere 615 

(Bourgonje et al, in prep). 616 

2. PhIP-Seq library design, preparation, sequencing and processing 617 

Library description can be found in (Vogl et al., 2021) (microbiota antigens) and (Leviatan et al, 618 

in prep) (allergen databases, complete IEDB, phages). The general PhIP-Seq protocol is 619 

described in (Larman et al., 2013) and was performed with minor modifications outlined by (Vogl 620 

et al., 2021). In short, PCR plates in contact with phage/antibody mixtures were blocked with 621 

bovine serum albumin (BSA) solution (concentration as described in (Vogl et al., 2021)). BSA 622 

was supplemented into phage-buffer mixtures for immunoprecipitations (IPs). Phage wash 623 

buffer for IPs contained 0.1% (wt/vol) IPEGAL® CA 630 (Sigma-Aldrich cat. no.I3021). Phage 624 

and antibody amounts for IPs were used as optimized by (Vogl et al., 2021) at 3 µg of serum 625 

IgG antibodies (measured by ELISA) and phage library at 4,000-fold coverage of phages per 626 
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library variant. As technical replicates of the same sample were in excellent agreement (average 627 

Pearson ρ = 0.96, (Vogl et al., 2021)), measurements were performed in single reactions. The 628 

libraries (Vogl et al., 2021) (230 nt, 244,000 variants) were mixed in a 2:1 ratio with the phage, 629 

immune and allergen library (200 nt, 100,000 variants) (S.L., manuscript in preparation). 630 

Phage–antibody mixtures mixed with overhead mixing at 4°C. A 50%-50% mix of protein A and 631 

G magnetic beads (total 40 μl; Thermo Fisher Scientific, cat. nos. 10008D and 10009D, 632 

prepared according to the manufacturer’s recommendations) was added after overnight 633 

incubation and further rotated at 4°C for 4 h, then the beads were transferred to PCR plates and 634 

washed twice, as previously reported (Vogl et al., 2021). Therefore, a Tecan Freedom Evo 635 

liquid-handling robot with filter tips was used. 636 

PCR amplifications (pooled Illumina amplicon sequencing) were run with Q5 polymerase 637 

(New England Biolabs, cat. no. M0493L) according to the manufacturer’s recommendations 638 

(primer pairs as outlined by (Vogl et al., 2021)). 639 

Composition of the antigen library 640 

This work uses two previously developed peptide libraries: a microbial library (Vogl et al., 2021) 641 

and an allergen library (Leviatan et al, in prep). The microbial library contains 244,000 peptide 642 

sequences from 28,668 different proteins, from which 27,837 proteins were derived from 643 

microbial antigens, while the rest are controls. This contains genes predicted from metagenome 644 

assembled genomes (147,061 peptides), known pathogenic bacterial species (61,250 peptides), 645 

bacteria known to be coated with antibodies (22,050 peptides), probiotic bacteria (14,700 646 

peptides), virulence factors extracted from the virulence factor database (VFDB) (24,164 647 

peptides) and controls (11,525 oligos). Antigens were selected giving priority to known 648 

immunogenic antigens and focusing on secreted, membrane and motility proteins. The second 649 

library contained 5,527 peptides from five different allergen databases (Leviatan et al, in prep), 650 
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31,436 peptides from the Immune Epitope Database (IEDB) (Vita et al., 2015) and 651 

approximately 40,000 phage peptides. 652 

Peptide antibody-binding enrichment 653 

Antibody-binding against peptide (seropositivity) was defined as described in (Vogl et al., 2021). 654 

In brief, for each sample, null distributions per input level (number of reads per clone without IP) 655 

are generated. A two-parameter generalized Poisson model is fit to the null distribution, and the 656 

P-value to obtain the coverage level after IP for a given clone is estimated. Model parameters 657 

were estimated for each null distribution using maximum likelihood or directly interpolated as 658 

described in (Larman et al., 2011). A strict Bonferroni cut-off at PBonferroni < 0.05 was then used to 659 

define seropositivity. A total of 175,242 peptides were seropositive in at least one participant. 660 

3. Antibody-bound peptides exploratory analysis 661 

Data analysis was performed in R v4.0.3 using the packages tidyverse, stats, vegan (Dixon, 662 

2003), corrplot, igraph (Csardi et al., 2006), WGCNA (Langfelder and Horvath, 2008), readxl, 663 

pheatmap, cairo and patchwork. 664 

 665 

Antibody-bound peptide selection 666 

Peptides to be used in the analysis were selected based on two filters. We chose peptides that 667 

had a prevalence at least of 5% and below 95% in either 1000IBD or LLD (excluding follow-up 668 

samples). For antibody-bound peptides with identical sequence, we chose the most prevalent 669 

antibody-bound peptide, resulting in 2,815 selected antibody-bound peptides. 670 

Principal component analysis 671 

We used 2,815 peptides to compute a PCA. Eigenvalues were used to produce a scree plot and 672 

eigenvectors to identify top peptides contributing to the first components. A K-means algorithm 673 
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(k = 2) was performed on the dimensionally reduced dataset (PC1 and 2) to label observed 674 

clusters. This analysis was reproduced after removal of the 90 peptides belonging to CMV. 675 

Time and family distance analysis 676 

322 LLD samples belonging to two different time points were used for a time consistency 677 

analysis. Jaccard distance was used as the dissimilarity metric between samples. P-value of 678 

longitudinal effect of mean distance was estimated by computing the P-value of the mean 679 

pairwise difference of longitudinal samples in a null distribution of mean distances of pairwise 680 

differences of 2,000 label swaps. Interrogation of factors that might affect the degree of change 681 

in longitudinal samples was performed using pairwise distances from longitudinal samples as 682 

dependent variable and age and sex as covariates in a linear model. Antibody-bound peptide 683 

consistency was computed by averaging the number of changes in the enrichment profile of a 684 

peptide among all samples with longitudinal data points. To check whether antibody-bound 685 

peptide enrichment changes seen in follow-up are due to a different reactivity of the plates used 686 

for baseline and follow-up samples, we ran a Wilcoxon test comparing the number of enriched 687 

antibody-bound peptide of participants profiles from plates with follow-up samples vs plates with 688 

no follow-up samples. 689 

We then selected samples belonging to the same family (Genome of the Netherlands 690 

Consortium, 2014) with three members (26 families). We computed pairwise distances 691 

(Jaccard) between family members (father to offspring, mother to offspring and father to 692 

mother). For each of the comparisons, we estimated a P-value comparing the mean distance 693 

with a random distribution of means between 2,000 permuted labels. 694 

Network analysis 695 

We used a weighted gene co-expression network analysis (Langfelder and Horvath, 2008) in 696 

the context of antibody-bound peptide presence/absence to identify modules of peptide co-697 
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occurrence. We used all LLD samples (1,784) and the subset of selected peptides with no 698 

missing values (2,770) to build the network. The soft thresholding power was chosen by visually 699 

inspecting the model fit of powers from 1 to 20. It was decided to use a power of 7. A network 700 

was built using Pearson correlation between antibody’s presence/absence profiles, followed by 701 

hierarchical clustering. A cut-off height for merging of 0.5 was used and a minimal module size 702 

of 10 peptides was required for a module to be called. The peptide identity from the identified 703 

modules was checked and a sequence similarity analysis was run. Module eigengenes were 704 

extracted using WGCA. Eigengenes were correlated between modules. Strong module 705 

correlation was defined on the basis of achieving a PBonferroni < 0.05. 706 

Peptides belonging to a module of at least 10 peptides were used to build a visual 707 

network graph (igraph). A maximum spanning tree algorithm was used to build the network. 708 

To check if co-occurrence modules might be driven by batch effects (due to PhIP-Seq 709 

plate), we computed the prevalence of each peptide within a module. If a common batch effect 710 

was present in all peptides of a module, we would expect to see a significant batch effect adding 711 

variation to the mean prevalence within all modules (Null hypothesis, Prevalence ~ Peptide + 712 

Batch). If this batch effect was different per peptide, then the batch effect would show a 713 

significant interaction with the peptide (Alternative hypothesis, Prevalence ~ Peptide + Batch + 714 

Peptide*Batch). If the alternative hypothesis was true, the batch would have a different effect 715 

per peptide, and thus it is not the only explanation to observe high co-occurrence between 716 

antibody-bound peptides. We fitted the null and alternative hypothesis in two linear models, and 717 

computed a P-value for the peptide–batch integration by computing a likelihood ratio test 718 

between both models. All tested models showed a significant interaction effect, indicating that 719 

batch most likely has a different effect per peptide. 720 
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Peptide similarity 721 

Sequence similarity between peptide groups of interest was estimated using Clustal Omega 722 

(Sievers et al., 2011). Clustal Omega uses this distance matrix to build guiding trees for the 723 

progressive multiple sequence alignment algorithm. This distance is internally calculated using 724 

the k-tuple method (Wilbur and Lipman, 1983). 725 

4. Phenotype association analysis 726 

Jaccard distances between all samples were used as the dependent variable in a 727 

PERMANOVA against, sex, age and PhIP-Seq plate in order to identify covariates of interest. 728 

To associate individual enrichment profiles to available phenotypes, we performed a logistic 729 

regression on the presence/absence of antibody-bound peptides using the phenotype of 730 

interest, PhIP-Seq plate, age and sex as covariates on 1,437 baseline participants. We 731 

controlled the FDR at 0.05 using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 732 

1995). 733 

5. Genetic analyses 734 

Genotyping and imputation 735 

Genome-wide genotyping data was generated as described in (Tigchelaar et al., 2015). 736 

Genotype data processing is described in (Zhernakova et al., 2018). Briefly, microarray data 737 

were generated on CytoSNP and ImmunoSNP platforms and processed on the Michigan 738 

Imputation Server (Das et al., 2016). Haplotype phasing was carried using SHAPEIT and 739 

imputation using the HRC version R1 as reference (Consortium and the Haplotype Reference 740 

Consortium, 2016). 741 
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Genetic preprocessing 742 

We used GenotypeHarmonizer (Deelen et al., 2014) for imputation (minimum posterior 743 

probability of 0.4), call rate (minimal call rate of 95% of samples), Hardy-Weinberg equilibrium 744 

(minimal P-value allowed of 1x10-6) and SNP ambiguity filtering. We then computed identity by 745 

descent among samples using PLINK v1.9 (Purcell et al., 2007) on linkage disequilibrium (LD)–746 

pruned genotypes (window size 50 Kb, variance inflation threshold 5 and maximum R2 between 747 

variants 0.2). We estimated identity by descendant between all samples using PLINK and 748 

randomly selected a sample from the pairs with a PI_hat value > 0.2, which resulted in the 749 

removal of 14 samples from subsequent analysis (total of 1,255 available samples). 750 

Heritability and genetic correlation 751 

GCTA (Yang et al., 2011) was used to compute a genomic relationship matrix (GRM) using 752 

genotyped SNPs with a minor allele frequency (MAF) of at least 0.05. The GRM was used to 753 

estimate antibody-bound peptide heritability using a linear mixed model between unrelated 754 

individuals (GREML approach) (Yang et al., 2010) while controlling for age, sex and PhIP-Seq 755 

plate. Similarly, genetic correlations between peptides were estimated using GCTA (Lee et al., 756 

2012). 757 

Genome-wide association 758 

For each of the available antibody-bound peptides, we conducted an association analysis 759 

between genotypes (MAF > 0.05) and presence/absence profile. PLINK v1.9 (Purcell et al., 760 

2007) logistic mode was run while controlling for age and sex and using the genotype in an 761 

additive model. This analysis was reproduced in a recessive model between 49.1 and 49.3 Mb 762 

in chromosome 19. 763 
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Genetic meta-analysis 764 

A second study using the same PhIP-Seq library panel and protocol has been conducted in an 765 

IBD cohort from the Netherlands (Imhann et al., 2019; Bourgonje et al. under prep). Genotyping 766 

information is available for this cohort and was previously described in (Hu et al., 2021). The 767 

same quality control steps and analysis methods have been used as described above, while the 768 

disease subtype (Crohn's disease or ulcerative colitis) was also added as an extra covariate in 769 

the logistic regression. 770 

Summary statistics from both the LLD and 1000IBD cohorts were meta-analyzed using 771 

METAL (Willer et al., 2010). We performed a P-value–based fixed-effects meta-analysis. A 772 

study-wide significance threshold was estimated by dividing the genome-wide significance 773 

threshold of 5x10-8 by the number of independent peptides included in the GWAS. The number 774 

of PCs needed to reach 90% of antibody-bound peptide repertoire variability in LLD was used 775 

as a number of independent tests (708), obtaining a study-wide threshold of 5.67x10-11. For 776 

each peptide’s summary statistics we extracted genome-wide significant associations (p<5x10-8) 777 

for clumping. We clumped variants in windows of 1,000 Kb if they had a minimal R2 (computed 778 

from LLD genotypes) of at least 0.1 using PLINK. Leading variants of each clump were then 779 

annotated using the Ensembl Variant Effect Predictor and the grCh37 human build (McLaren et 780 

al., 2016). LD between our identified leading variants and other publicly reported variants was 781 

estimated in the CEU population from the 1,000 genomes using the LDlink webtool (Alexander 782 

and Machiela, 2020; Machiela and Chanock, 2015). 783 

HLA imputation and association 784 

The chromosome 6 region with 25–34 Mb that contains the MHC genes was extracted. 785 

Imputation of the HLA region, including HLA alleles, polymorphic amino acids, SNP variants and 786 

indels, was then performed using SNP2HLA (v2) with the Type 1 Diabetes Genetics Consortium 787 

(T1DGC) reference panel (2,767 unrelated European descent individuals) HLA Reference Panel 788 
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(Jia et al., 2013). Next, we combined both imputed and genotyped SNPs, HLA alleles and 789 

amino acid variants, resulting in a total of 8,926 variants. Variants with MAF < 0.05 and 790 

imputation quality score (INFO) < 0.5 were removed before association. 791 

HLA to peptide association was performed using linear models in 1,175 participants, 792 

while controlling for age, sex, PhIP-Seq plate and disease subtypes (Crohn’s disease/ulcerative 793 

colitis, only specific to IBD cohort). Summary statistics from both datasets were further meta-794 

analyzed using a fixed-effects model in PLINK v1.9. The statistical significance threshold was 795 

determined by dividing the usual P-value 0.05 threshold level by the number of independent 796 

features tested (66 PCs were needed to reach 90% of HLA feature variability in LLD, while 708 797 

PCs were needed to capture 90% of the peptide variability, resulting in 46,728 independent 798 

tests), resulting in a threshold of 1x10-6. FDR was estimated using the Benjamini-Hochberg 799 

method (Benjamini and Hochberg, 1995). 800 

Modeling of peptide presentation in HLA complexes 801 

To explore whether HLA–peptide associations potentially point to HLA-II ability to display a 802 

specific peptide, we performed computational modeling of the complex–peptide interaction. 803 

The protein sequences of DR3, DR4, DR14, DR15 and DQ2 were obtained from the IPD-804 

IMGT/HLA database (Robinson et al., 2020) and aligned against the entire Protein Data Bank 805 

database using pBLAST. Protein structures displaying a 100% of amino acid identity with the 806 

HLA-II database sequences were chosen to build the peptide binding modes. Those structures 807 

correspond to the HLA complexes DR3:7N19, DR4:1D5M, DR14:6ATF, DR15:1YMM, DQ2:6PX6 808 

and DQ8:2NNA. Proteins other than HLA-II, water molecules and heteroatoms were removed 809 

from the structures prior to modeling. The NetMHCIIpan-4.0 (Reynisson et al., 2020a) server was 810 

then used to predict peptide binding to the corresponding associated HLA alleles: DRB1*1501 for 811 

Lactobacillus phage LfeInf; DRB1*0301, DQA1*0501-DQB1*0201 and DRB1*1401 for 812 

Streptococcus agalactiae C5a peptidase; and DRB1*0401 and DQA1*03-DQB1*0302 for Human 813 
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mastadenovirus minor core protein. The DRB1*1401 for Streptococcus agalactiae C5a peptidase 814 

was selected as a no binding negative control for these experiments. Following the identification 815 

of the peptide core by NetMHCIIpan-4.0, the protein structures and identified peptide core were 816 

submitted to HPEPDOCK Server for peptide–protein molecular docking (Zhou et al., 2018). In 817 

brief, cleaned protein structures were used as receptors, and the peptide core sequence was 818 

used to generate 100 different conformers and a global sampling of binding orientations into the 819 

peptide binding domain of HLA-II receptors. Following docking, the peptide-HLA-II complexes 820 

with the highest complementarity were selected for receptor–peptide refinement in the HADDOCK 821 

Refinement Interface (Dominguez et al., 2003). Finally, the peptide-HLA complexes were 822 

analyzed for the formation of molecular interactions and binding energy using PLIP (Adasme et 823 

al., 2021) and PRODIGY (Honorato et al., 2021; Vangone and Bonvin, 2015). 824 

6. Metagenomic analyses 825 

Metagenomic sequencing 826 

Metagenomic collection and sequencing has previously been detailed in (Zhernakova et al., 827 

2016). In brief, participants collected and stored in the freezer their fecal samples directly at 828 

home. Fecal samples were collected on dry ice and transferred to the laboratory. Aliquots were 829 

stored at -80°C until further processing. The allPrep DNA/RNA Mini Kit (Qiagen; cat. 80204) 830 

was used for DNA isolation. DNA was sent to the Broad Institute (Cambridge, Massachusetts, 831 

USA) where library preparation and shotgun metagenomic sequencing were performed on 832 

Illumina HiSeq. 833 

Metagenomic processing 834 

Low-quality reads were discarded by the sequencing facility. Reads aligning to the human 835 

genome or to Illumina sequencing adapters were removed using default parameters using the 836 

KneadData pipeline (version 0.39). In short, this software uses Trimmomatic (Bolger et al., 837 
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2014) for adapter removal and quality trimming of reads and Bowtie2 (Langmead and Salzberg, 838 

2012) for mapping and removal of reads mapped against the human genome (hg19). Taxonomy 839 

abundance estimation was then performed using MetaPhlan3 and default parameters (Beghini 840 

et al., 2021). Next, microbial relative abundance was transformed using additive log-ratios on 841 

the relative abundance table (adding ½ of minimal non-zero relative abundance to each cell in 842 

the table), with species geometric mean as denominator (center-log ratio). Bacteria not present 843 

in at least 10% of samples were discarded. 844 

Microbiome-peptide association analysis 845 

Co-occurrence between fecal microbiota and blood antibody–bound peptides was assessed 846 

using logistic regression analysis, while adjusting for the effects of age, sex and PhIP-Seq plate 847 

in 1,051 participants. In total, we analyzed the relation between 284 bacteria and 2,815 848 

antibodies. Each antibody-bound peptide was modeled in generalized linear models as a 849 

response variable in a model including age, sex, PhIP-Seq plate and transformed bacterial 850 

abundance as predictors. 851 

Microbiome meta-analysis 852 

To increase the statistical power to detect associations between gut microbiota and blood 853 

antibodies, we combined the results of our cohort with the results derived from the 1000IBD 854 

cohort (n = 137, blood and fecal samples collected with <1 year difference) by performing a 855 

meta-analysis. We filtered out peptides not seen in at least 10 samples in both IBD and LLD 856 

cohorts. Heterogeneity coefficients (I2 and Cochran’s Q) were estimated per association. Meta-857 

analysis was conducted by pooling summary statistics for both cohorts and under random and 858 

fixed-effects assumptions using the meta R package (v4.19-0) (Schwarzer and Others, 2007). 859 

FDR was estimated (Benjamini and Hochberg, 1995) from the resulting associations.  860 
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Supplementary Material 900 

Supplementary table 1: Antibody-bound peptide general information. 1.1 Information from 901 

2,815 analyzed peptides, including: database source, amino acid sequence, source protein 902 

name, source taxonomy, heritability estimate (H2), co-occurrence module belonging and 903 

consistency (after 4 years). 1.2 Left table. Summary of peptides belonging to each of the 22 904 

modules with at least 10 peptides. Right table. General overview of the co-occurrence modules, 905 

their category, (1) same taxonomy, (2) ortholog protein, (3) unrelated taxonomy and structure, 906 

and the correlation of their eigengenes (PBonferroni<0.05) 1.3 LLD phenotypes, exploratory 907 

statistics.  908 

Supplementary table 2. Association analyses summary statistics. 2.1 Antibody-bound peptide 909 

among sample dissimilarity (Jaccard) analysis of variability, summary statistics (PERMANOVA, 910 

2,000 permutations). 2.2 GWAS meta-analysis summary statistics (P < 5x10-8). 2.3 HLA 911 

associations meta-analysis summary statistics (PBonferroni < 0.05). 2.4 Microbiome taxonomic 912 

abundance associations summary statistics (P < 1x10-3). 2.5 Phenotype associations summary 913 

statistics (FDR < 0.05). 914 
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Supplementary Figure 1. A. Antibody-bound peptide PCA after removal of 90 peptides 917 

belonging to CMV. B. Density of 2,815 antibody-bound peptide time consistency (same 918 

presence status in baseline as in follow-up) in 322 participants after 4 years. C. Correlation plot 919 

of highly heritable peptides (H2 ≥ 0.5). Lower triangle shows genetic correlation coefficient 920 

estimates. Upper triangle shows presence/absence Pearson’s correlation coefficients. Dot size 921 

and color indicate the strength of the correlation. 922 
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Supplementary Figure 2. Peptide motif deconvolution map of A. DR15 and B. DQ8 and DR4 925 

(amino acids code: negatively charged: red; positively charged: blue, polar uncharged: green, 926 

and hydrophobic: black) compared with the A. Lactococcus phage (YP_009222335.1 927 

hypothetical protein LfeInf_097) and B. Human mastadenovirus minor core protein. Peptide 928 

cores and percentage of elution score (%Rank_EL: strong binding ≤ 2.0, weak binding 2.0–10.0, 929 

no binding > 10) predicted by NetMHCIIpan-4.0 (Reynisson et al., 2020a) are shown. Predicted 930 

binding mode, polar molecular interactions (dashes, hydrogen bonds: green, salt bridges: 931 

yellow), binding energy and dissociation constant (Kd) of the Streptococcus agalactiae C5a 932 

peptidase peptide core (red cartoon and sticks) into HLA-II receptors (chain A in green and 933 

chain B in blue). 934 
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