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Abstract 

The role of telomeres in sustained tumor growth is well understood. However, mechanisms of 

how telomeres might impact the tumor microenvironment (TME) are not clear. Upon examining 

tumor associated macrophages (TAMs) in 94 hormone-negative (triple-negative) breast cancer 

(TNBC) cases we found infiltration of TAMs to be telomere sensitive: Tumors with relatively 

short telomeres had higher abundance of TAM and vice versa. This observation was replicated 

across TNBC clinical tissue, patient-derived organoids, tumor xenografts and cancer cells with 

long/short telomeres. Mechanistically, we demonstrate that non-telomeric binding of TRF2, a 

telomere-repeat-binding-factor; at the interleukin receptor IL1R1 promoter directly activates 

IL1R1 through recruitment of the histone-acetyl-transferase p300 and consequent H3K27 

acetylation. Interleukin-1signaling could be induced in TRF2-high cells through ligands IL1A/B, 

but not TNFα, and abrogated by the receptor antagonist IL1RA, supporting specificity of the 

TRF2-IL1R1axis. TRF2 binding at the IL1R1 promoter was mediated by G-quadruplex motifs 

and was sensitive to telomere length – thereby establishing telomere-length-dependent 

regulation of IL1R1 and IL1-mediated TAM infiltration in cancers. Our results reveal a heretofore 

unknown function of telomeres in interleukin signaling and anti- tumor immune response, 

through non-telomeric TRF2. Therefore, we propose telomere length as a novel biomarker 

underlying patient-specific response to cancer immunotherapy. 
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Introduction 

Shortening of telomeres with ageing contributes to compromised immune response (Goronzy et 

al., 2006; Hodes et al., 2002; Pawelec et al., 2014; Sansoni et al., 2008; Weng, 2012). However, 

although the role of telomeres in cancer stands well-established as a hallmark (Aviv et al., 2017; 

Hanahan and Weinberg, 2000), whether and how telomeres influence immune response in 

cancer is poorly understood. 

Immune response to tumor cells assist in cancer prognosis and intervention (Chew et al., 2012; 

Hanahan and Weinberg, 2011; Wang et al., 2017). Major advances in understanding show how 

infiltration of immune cells including tumor-infiltrating-lymphocytes (TIL), tumor-associated-

macrophages (TAM), natural-killer and dendritic cells impact tumor progression (Fares et al., 

2019; H et al., 2018; Wang et al., 2017). TAMs - typically M2 macrophage-like - play a dominant 

role in promoting immune-suppressive tumor-microenvironment (TME) through the secretion of 

anti-inflammatory cytokines like IL4 and IL13 (Burkholder et al., 2014) (H et al., 2018) (Cassetta 

et al., 2016; SD et al., 2020). Poor prognosis in triple-negative-breast cancers (TNBC) has been 

frequently associated with TAMs. Multiple reports show TAMs, predominantly M2-like, to be the 

most abundant monocytic immune cells in TNBC and implicate their role in invasiveness and 

aggressive tumor growth (Jeong et al., 2019; Medrek et al., 2012; Oner et al., 2020) (Burkholder 

et al., 2014; Mantovani and Locati, 2013; Shun et al., 2005; Yuan et al., 2014)  

However, the mechanistic role of telomeres in cancer cells influence TAM remains poorly 

studied. Two observations point towards a potential role, First, the differential expression of 

immunity-related genes was noted depending on telomere length (Hirashima et al., 2013a) 

(Lopez-Doriga et al., 2018). Second, telomerase (the key enzyme responsible for telomere 

maintenance)  and ALT (alternative lengthening of telomeres) were found to influence TAM 

markers like CD163 in glioblastoma (Hung et al., 2016) suggesting potential molecular links 

between immune-suppressive TAMs and cancer-cell telomeres.  

 

 

Recently we showed telomeres influence expression of genes remote from telomeres and 

spread across the genome (Mukherjee et al., 2018). This was through the non-telomeric binding 

of TRF2 in gene promoters in a fashion that depended on telomere length. That is, relatively 

long telomeres sequestered more TRF2 limiting non-telomeric binding and vice-versa called the 

telomere-sequestration-partition (TSP) model (Vinayagamurthy et al., 2020); independent of the 
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telomere-positioning-effect (TPE) known to alter expression of sub-telomeric genes (up to 10 

Mb; (Robin et al., 2014). Analysis of transcriptomes from 31 cancer types revealed a large 

number of ‘telomere-sensitive’ genes distributed far from telomeres throughout the genome 

(Barthel et al., 2017a), consistent with the TSP model. Interestingly, among the top 500 genes 

that altered with telomere elongation the predominant category was immune response; on 

further analysis of this we noted ‘macrophage inhibitory factor’-genes to be most enriched 

among the telomere-length-sensitive genes (Supplementary Figure 1A). 

Here, with these in mind, we investigated how telomere length might influence TAM in TNBC. 

Results show about a third of the TNBC tumors we studied had relatively long telomeres (>6 kb 

in 32 out of 94 cases) and lower TAM compared to tumors with shorter telomeres (<3.5 kb in 38 

cases). This is supported by experiments using TNBC-patient-derived organoids, mouse-

xenografts and cancer cells. Mechanistically, we show that non-telomeric binding of TRF2 

directly activates the Interleukin-1-receptor IL1R1 in a telomere-sensitive way in cancer cells. 

Resulting activation of IL-1 signaling, through NFKappaB (p65)-phosphorylation, was causal for 

TAM abundance within the TME. Together these implicate telomere-dependent 

immunosuppression in TNBC. 

 

Results 

Tumors with longer telomeres have reduced immune-suppressive macrophage 

We initially analyzed telomere length of 94 TNBC tumor tissue samples (Supplementary Table 

1) using a reported qRT-PCR based assay (Cawthon, 2002; O’Callaghan et al., 2008). For 

reference previously characterized telomere length of HT1080 cells (~4.5 kb) was used 

(Cristofari and Lingner, 2006; Kahl et al., 2020; Mukherjee et al., 2018). Median telomere length 

of the 94 TNBC tumors was ~4 kb (0.73-fold of HT1080 cells); tumors with telomeres <50% of 

the median were designated as TNBC with short telomeres (TNBC-ST) and once with >50% of 

the median length (as TNBC with long telomeres (TNBC-LT) for this study (Supplementary 

Figure 1B).    

Nine TNBC-ST and nine TNBC-LT tumors were selected and telomere lengths confirmed using  

flow-cytometry (FACS) with labeled telomeric PNA probes as reported earlier (Baerlocher et al., 

2002; Mukherjee et al., 2018). As expected, the mean telomere length of TNBC-LT was 

significantly higher than TNBC-ST tumors (Figure 1A); the RNA template of telomerase (TERC), 
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but not the catalytic human telomerase subunit (hTERT), was significantly higher in TNBC-LT 

(Supplementary Figure 1C). We screened the 18 TNBC (ST and LT) tumor samples for M2-type 

tumor-infiltrating macrophages (TAMs) by analyzing the relative proportions of cells expressing 

well-established markers CD11b (monocyte-derived cells) and CD206 (M2-specific TAMs)  

using FACS as reported earlier ((Cassetta et al., 2016; Cho et al., 2018; Jaynes et al., 2020). 

TNBC with relatively long telomeres had lower TAM (TNBC-LT: mean 1.78%, range: 0.18 – 

5.41%; TNBC-ST: mean 7.34%, range: 3.76-16.80%; Figure 1B). Consistent with this key TAM 

marker CD206 expression was relatively reduced in TNBC-LT compared to TNBC-ST tumors 

(Supplementary Figure 1D).  

Tumor organoids were made from five TNBC-ST and five TNBC-LT clinical tissue; designated 

as triple-negative-breast-organoid TNBO-ST and TNBO-LT for short or long telomeres 

respectively. First, following organoid formation the telomere length in each case was quantified 

by FACS confirming relatively long telomeres in TNBO-LT than TNBO-ST (Figure 1C); both 

hTERT and TERC was higher in organoids with longer telomeres (Supplementary Figure 1E). 

To test TAM infiltration vis-à-vis telomere length in the organoids we derived M2-type 

macrophages from THP1 cells (Methods; confirmed by CD206 (specific marker for M2-type 

macrophage; Supplementary Figure 1F) that were labeled with a red-tracker dye (Methods) 

before co-incubating with each of the five TNBO-ST or five TNBO-LT. Infiltration of M2 

macrophage within organoids following 12 hours of incubation was quantified by FACS. TNBO-

ST had on average 8.56% infiltration (range: 6.54-10.9%) whereas in case of TNBO-LT this was 

3.14% (range: 0.99-4.88%). Together this demonstrates that infiltration of TAM was significantly 

reduced in case of tumors with relatively long telomeres (Figure 1D). 

Further we sought to study tumor xenografts in NOD-SCID mice for TAM infiltration (based on 

earlier reports that used NOD-SCID mice to study xenograft TAM (Chittezhath et al., 2014a; Li 

et al., 2020)) using cancer cells with either long or short telomeres. We resorted to previously 

reported and well-characterized cancer cells with short/long telomeres in cell-isogenic 

backgrounds: fibrosarcoma HT1080 and its corresponding long-telomere HT1080-LT cells 

(made by induced expression of hTERT and TERC RNA) with ~2 to 2.5-fold increase in mean 

telomere length ((Cristofari and Lingner, 2006); Supplementary Figure 1G, Supplementary 

Figure 1H).  

Xenograft tumors were grown and extracted from five mice for each case HT1080 or HT1080-

LT cells and telomere length assessed independently. HT1080-LT had significantly higher 
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proportion of cells with relatively long telomeres compared to HT1080 derived xenograft tumors 

(Figure 1E); both hTERT and TERC were higher in the HT1080-LT tumors (Supplementary 

Figure 1I).  CD11b+CD206+ cells were analyzed to quantify TAM infiltration in the tumor 

xenografts. For HT1080 we observed 5.21% TAM infiltration whereas this decreased 

to 1.67% in case of xenografts from HT1080-LT cells (Figure 1F). Consistent with this, 

expression of TAM-specific markers CD163 and CD206 were relatively low in LT xenografts 

(Supplementary Figure 1J); F4/80+ cells representing the total macrophage lineage in mice 

(Cassetta et al., 2016) did not change significantly in long vs short-telomere xenografts, 

Supplementary Figure 1K). Together these showed the TAM infiltration was significantly 

reduced in long vis-à-vis short telomeres, consistent with our observations from clinical tissue 

and organoids. 

 

Telomere-dependent interleukin-1 signaling impacts immune-suppressive TAM in tumors 

To understand altered TAM in short/long telomeres we checked key cytokines implicated in 

breast cancer TAM such as IL1 and associated receptors (Chittezhath et al., 2014b; Elliott and 

Sutterwala, 2016; Vasilyev et al., 2015; Yuan et al., 2014); pro-inflammatory cytokines: IL2, IL6, 

IL8 and TNF (Kovaleva et al., 2016; Yuan et al., 2014); and, anti-inflammatory cytokines IL10, 

IL4 and IL13 (Kaplanov et al., 2019; Medrek et al., 2012).  

Pro-inflammatory cytokines IL2, IL6, IL8 remained largely unaltered in clinical 

tissue/organoid/xenografts except TNF- (relatively enhanced in TNBC-LT, reduced in 

organoids TNBO-LT, and did not alter significantly in the xenografts (Supplementary Figure 

1L)). Although anti-inflammatory cytokines IL10, IL4 and IL13 were not consistent across clinical 

tissue/organoids/xenografts, we noted at least one of the three cytokines was reduced in long 

compared to short telomere cases, supporting relatively low anti-inflammatory M2-type 

macrophages in long-telomere cancers (Supplementary Figure 1L).  

IL1B and IL1R1 levels, on the other hand, were significantly low in case of cancers with 

relatively long telomeres. Notably, this was consistent across clinical tissue, organoids and 

xenografts (Supplementary Figure 1L). Consistent with this IL1R1 levels, quantified by FACS 

from each of the five HT1080/HT1080-LT xenograft tumors independently, was lower in LT 

xenografts (Supplementary Figure 1M); IL1A was relatively high in TNBC-LT than ST, but did 

not change in organoids/xenografts (Supplementary Figure 1L). 
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To test altered IL1 signaling in long vis-à-vis short telomere TNBC we used organoids. Secreted 

IL1B (measured using ELISA) in the supernatant media was significantly low in TNBO-LT 

compared to TNBO-ST (Figure 1G). This was consistent with relatively reduced IL1R1 levels in 

TNBO-LT than TNBO-ST (Supplementary Figure 1L) supporting reports showing that IL1B 

secretion was dependent on IL1R1 levels in the tumor cells (Lappano et al., 2020) . 

The IL1R1 receptor antagonist IL1RA was used to directly asses the role of IL1R1/IL1B on 

macrophage infiltration in the TNBC organoids. Labeled M2-type macrophages (described 

above) when co-incubated with organoids in presence of the IL1RA (Methods) resulted in >50% 

reduction in macrophage infiltration (independently in both TNBO-ST/LT (Figure 1H)). 

Accordingly, analysis of IL1 signaling and TAM-specific markers using publicly transcriptomes 

from 817 TNBC patients (G et al., 2015) showed positive correlation: cancers with low/high 

expression of both IL1R1 and IL1B also had low/high expression of TAM-specific markers 

CD163 and CD206 respectively (Supplementary Figure 1N). Together these demonstrate that 

attenuated IL1 signaling due to relatively low IL1R1 levels result in low M2-type macrophage in 

TNBC with long vis-à-vis short telomeres.  

 

Non-telomeric TRF2 binding at the IL1 receptor R1 promoter is telomere-dependent  

We focused on understanding whether and how telomeres might affect IL1 signaling using the 

well-characterized short/long-telomere cancer cells: HT1080 or the corresponding long-telomere 

HT1080-LT cells (Cristofari and Lingner, 2006; Mukherjee et al., 2018). The expression of IL1R1 

and pro-inflammatory cytokines like IL6 and IL8 was found to be relatively low in HT0180 cells 

with longer telomeres (Supplementary Figure 2A). 

Of note are three recent findings by us: First, non-telomeric binding of the telomere-repeat-

binding-factor (TRF2) was sensitive to the telomere length of cancer cells.  Second, this resulted 

in telomere-sensitive expression of genes that were located remote from telomeres (Mukherjee 

et al., 2018). And, third, TRF2 ChIP-seq (chromatin immunoprecipitation-sequencing) in HT1080 

cells revealed bound TRF2 in promoters throughout the genome (Mukherjee et al., 2019a). 

Extending our previous findings, in the current study we found that TRF2 ChIP-seq reads were 

enriched ~200 bp upstream of TSS (transcription start site) on the IL1R1 promoter 

(Supplementary Figure 2B). TRF2 ChIP followed by qPCR spanning +200 to -1000 bp of the 

IL1R1 promoter confirmed TRF2 binding in vivo in HT1080 xenograft tumors (independently in 
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five tumors; Figure 2A) and HT1080 cells (Figure 2A). Telomeric occupancy of TRF2 was used 

as a positive control; IL1R1 3’UTR and a region 20 KB upstream of TSS were used as negative 

controls for ChIP.  

Next, we asked if TRF2 binding at the IL1R1 promoter was dependent on the telomere length. 

TRF2-ChIP using cells obtained from xenograft tumors in mouse with either HT1080-LT or 

HT1080 cells (three in each case) revealed TRF2 occupancy on the IL1R1 promoter was 

significantly reduced in the proximal promoter (-200 to -400 bp) in HT1080-LT relative to 

HT1080 xenografts (Figure 2A); +/-controls used as described above (Figure 2B, 

Supplementary Figure 2C). ChIP using HT1080 and HT1080-LT cells supported this: cells with 

relatively long telomeres had reduced TRF2 occupancy at the IL1R1 promoter (Figure 2B, 

Supplementary Figure 2D).  

IL1R1 was significantly reduced in HT1080-LT relative to HT1080 cells (western blot, FACS and 

IF; Figure 2C-E). Consistent with this, both expression and secretion of IL1B was relatively low 

in HT1080-LT compared to HT1080 cells (Figure 2F).  

To further test telomere length-dependent TRF2 occupancy at the IL1R1 promoter in a isogenic 

controlled background, we used hTERT-inducible HT1080 cells (Methods) to gradually increase 

telomere length by ~50% over 12 days (induction saturates beyond 12 days (Figure 2G, 

Supplementary Figure 2E-F). TRF2 occupancy at the IL1R1 promoter gradually reduced over 

12 days following hTERT induction with corresponding increase in telomere length (Figure 2H); 

telomeric occupancy of TRF2 shown positive control (Supplementary Figure 2G). Further in 

these cells IL1R1 expression gradually decreased with telomere elongation over 12 days 

(Figure 2I) consistent with our observation in HT1080/HT1080-LT cells (Figure 2A-C). IL1R1 

promoter TRF2 occupancy remained unaltered following day-1 of induction indicating this to be 

independent of hTERT expression. 

For orthogonal confirmation, an alternative telomere elongation model was made from triple-

negative MDAMB-231 breast cancer cells using G-rich-telomere-repeat (GTR) oligonucleotides 

based on earlier reports (Methods; (Mukherjee et al., 2018; Wright et al., 1996)). This resulted in 

MDAMB-231 cells with ~1.8-2-fold increase in telomere length (Supplementary Figure 2H) 

henceforth called MDAMB-231-LT (long telomere) cells. TRF2 occupancy at the IL1R1 promoter 

(Figure 2J, Supplementary Figure 2I); IL1R1 expression (Figure 2K); and, secreted IL1B was 

significantly reduced (Supplementary Figure 2J) in cells with relatively long telomeres.  
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TRF2 transcriptionally activates IL1R1 through direct promoter binding 

We sought to directly test the role of TRF2 in IL1R1 regulation. TRF2 induction (by Flag-TRF2 

or doxycycline (dox) treatment of dox-inducible-TRF2 cells) showed distinct increase in IL1R1 

mRNA and protein expression (quantified by FACS); while TRF2 silencing reduced IL1R1 in 

HT1080 cells (Figure 3A-E, Supplementary Figure 3A-B). Further, HT1080 cells co-stained with 

the surface marker CD44 showed that the elevated levels of the IL1R1 receptor in TRF2-high 

cells migrated, as expected, to the cell surface (Figure 3D).  

IL1R1 promoter activity was induced/repressed on TRF2 expression/silencing respectively 

(luciferase reporter with -1500 bp TSS of IL1R1 was used (Methods); Figure 3F-G). Flag-TRF2 

full length, or without the B domain (delB), or M-domain (delM) necessary for DNA binding 

(Baker et al., 2009; Bilaud et al., 1997; Mukherjee et al., 2019a; Pedroso et al., 2009; Purohit et 

al., 2018) showed occupancy of the TRF2 DNA binding mutants was compromised at the IL1R1 

promoter (Figure 3H and Supplementary Figure 3C); consistent with this IL1R1 promoter activity 

was markedly reduced in case of the TRF2 delB or delM mutants relative to full-length TRF2 

(Figure 3I). Therefore, we can conclude that TRF2 directly binds to the promoter of IL1R1 and 

activates IL1R1 transcription. 

TRF2-mediated activation of IL1R1 was further tested in MDAMB-231 breast cancer 

(Supplementary Figure 3E-G) and normal MRC5 fibroblasts and HEK293T cells: in all the cell 

types TRF2 occupancy on the IL1R1 promoter (Supplementary Figure 3H) as well as TRF2-

mediated upregulation of IL1R1 was clearly evident (Supplementary Figure 3I).  

 

G-quadruplex secondary DNA structure necessary for TRF2 binding to the IL1R1 

promoter 

We recently reported TRF2 association with promoter G-quadruplex (G4) structures throughout 

the genome, including the hTERT promoter where hTERT regulation was directly dependent on 

TRF2-G4 interaction (Mukherjee et al., 2019a; Shalu Sharma et al., 2021). Therefore, on noting 

two potential G4 motifs within the TRF2-binding region of the IL1R1 promoter (Supplementary 

Figure 3J) we further investigated this. Circular dichroism (CD) experiments confirmed the 

promoter G4s adopted parallel motifs (+peak ~260 nm, -peak ~240 nm; Figure 3J); and, when 
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two guanine nucleotides in the G4-stem regions necessary for G4 stability were modified (G˃T) 

the G4-specific CD signatures were substantially reduced (Figure 3J) supporting the formation 

of stable G4s in solution. ChIP using the BG4 antibody (reported for binding to intracellular G4s 

(Biffi et al., 2013; Hänsel-Hertsch et al., 2016) showed BG4 enrichment was maximum ~200 bp 

upstream of TSS on the IL1R1 promoter (Figure 3K). We next made the G˃T substitutions that 

destabilized the G4s within the luciferase reporter (Supplementary Figure 3K) and found that the 

TRF2-dependent IL1R1 promoter activity was compromised in case of both G˃T modifications 

(Figure 3L). Further, based on above we reasoned TRF2-G4 dependent transcription of IL1R1 

would be sensitive to the well-established intracellular G4-binding ligand 360A (Granotier et al., 

2005). TRF2-mediated induction of IL1R1 promoter activity, expression and protein levels were 

significantly reduced in presence of 360A (Figure 3M-O and Supplementary Figure 3L).  

To test this further we artificially inserted a IL1R1 luciferase reporter cassette (comprising -1500 

bp upstream of the TSS) at the CCR5 safe-harbor locus in HEK293T cells using CRISPR 

(Methods). TRF2 binding at the inserted promoter and TRF2-dependent induction of promoter 

activity from the artificially inserted IL1R1 promoter-reporter was clearly observed (Figure 3P-

Q). To test the dependence of TRF2 binding and TRF2-mediated regulation on promoter G4 we 

engineered the G>T base substitutions that destabilize the G4s within the inserted promoter 

cassette. Both, TRF2-dependent IL1R1 promoter activity (Figure 3Q) and TRF2 occupancy at 

the inserted promoter was reduced in case of the substitutions; whereas, as expected, telomeric 

TRF2 occupancy remained unchanged (Figure 3R). Together, these support the role of 

promoter G4 in regulation of IL1R1 by TRF2. 

 

TRF2 enhances enrichment of H3K27ac and the histone acetyl transferase p300 on the 

IL1R1 promoter 

To mechanistically understand TRF2-mediated transcription we screened activation (H3K4me3 

and H3K27ac) and repressive (H3K27me3, H3K9me3) histone marks at the IL1R1 promoter on 

induction of TRF2 (using TRF2-inducible HT1080 cells; Methods). Interestingly the H3K27ac 

mark was notably enhanced (Supplementary Figure 4A). Therefore, we checked the H3K27ac 

mark on the IL1R1 promoter in TRF2 upregulated or silenced conditions in HT1080 and 

MDAMB-231 cells. In case of both the cell types H3K27ac mark on the IL1R1 promoter 

increased or was reduced on TRF2 expression or silencing, respectively (Figure 4A).  
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Since our findings suggested the role of TRF2 in activation of IL1R1 through enhanced histone 

H3K27 acetylation at the IL1R1 promoter we looked for a potential histone acetyl transferase 

(HAT). Preliminary ENCODE analysis showed that the canonical HATs p300/CBP (Roth et al., 

2003) were enriched on the IL1R1 promoter in multiple cell lines (Supplementary Figure 4B). 

We found enriched p300 occupancy within the 200-400 bp upstream promoter of IL1R1 in 

TRF2-up conditions, which was markedly reduced when TRF2 was down regulated, in both 

HT1080 and MDAMB-231 cells (Figure 4B). Furthermore, occupancy of CBP and acetylated-

p300/CBP (activated HAT state) was enriched at the IL1R1 promoter in TRF2 induced 

conditions in HT1080 cells (Figure 4C-D). Together these showed the role of TRF2 directly or 

indirectly in recruitment and acetylation of p300/CBP, resulting in enriched H3K27 acetylation at 

the IL1R1 promoter. 

Moreover, TRF2 and p300 were reported to physically associate at the telomeres (YR and IK, 

2013). Here we performed TRF2-pulldown (co-IP) and found that p300-TRF2 association 

(Figure 4E) and TRF2-mediated stabilization of p300 in HT1080 cells was evident 

(Supplementary Figure 4C-D); TRF1 was used as positive control for the co-IP experiment.  

Cycloheximide-mediated translational block in HT1080 cells showed that p300 levels in TRF2 

induced cells was higher and this was independent of the protein degradation machinery 

(Supplementary Figure 4 D). 

p300, CBP, ac-p300/CBP and H3K27ac was relatively reduced on the IL1R1 promoter in 

HT1080-LT compared to HT1080 cells with shorter telomeres (Figure 4 F) consistent with lower 

TRF2 occupancy at the IL1R1 promoter in LT cells shown earlier (Figure 2E-F). Interestingly, 

while p300 occupancy was reduced at the IL1R1 promoter we noted relatively more p300 levels 

in HT1080-LT cells (Supplementary Figure 4 E-F). This further supported the role of TRF2 in 

recruitment of p300 to the IL1R1 promoter. 

To investigate any direct role of TRF2 in p300 recruitment we screened Flag-TRF2 mutants 

(K176R, K179R and K190R deficient in TRF2 interaction with cofactors, and K293R required for 

TRF2 acetylation (Diala et al., 2013; Huda et al., 2009; Mitchell and Zhu, 2014; Mitchell et al., 

2009; YR and IK, 2013) for altered induction of IL1R1 (Supplementary Figure 4G-I). Induction of 

TRF2-K293R showed notably compromised activation of IL1R1 (Figure 4G) and significantly 

reduced p300 and ac-p300/CBP recruitment on the IL1R1 promoter in HT1080 cells (Figure 

4H). However, binding of the TRF2-K293R at the IL1R1 promoter remained similar to wild-type 

TRF2 suggesting that the impaired activity was due to reduced p300 recruitment in presence of 
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TRF2-K293R(Figure 4H). This was further ascertained by vitro histone-acetyl-transfer assays 

using purified p300, histone H3 and acetyl-coA (substrate for the acetyl group) with or without 

recombinant TRF2. Transfer of the acetyl group to histone H3 was enhanced in presence of 

TRF2 relative to p300 only (Figure 4I). Together, these support direct role of TRF2 in 

recruitment and HAT activity of p300 resulting in H3K27 acetylation at the IL1R1 promoter. 

 

Cancer cells with higher TRF2 are sensitive to IL1 mediated p65 (NFKappaB) activation 

 

Primarily ligands IL1A/B via receptors IL1R1/R2 induce IL1 signaling through NFKappaB 

(p65/RELA)-Ser536 phosphorylation. This, in turn, induces expression of IL1B - the ligand that 

activates IL1 signaling - along with other inflammatory genes including IL6, IL8, TNF  (Figure 

5A; (A et al., 2010; K and K, 1994; Liu et al., 2017). In addition, p65-Ser536 phosphorylation can 

be induced through the TNF receptor in a IL1-independent pathway (Akiyama et al., 2003) 

(Figure 5A). 

To test TRF2 function in IL1 signaling, we first checked for p65-Ser536 phosphorylation up to 12 

hrs following stimulation with IL1A/B in presence/absence of TRF2 in HT1080. TRF2-induced 

cells had relatively enhanced p65-Ser536 phosphorylation that sustained over a longer duration 

compared to uninduced cells, whereas p65 levels remained relatively unaltered (Figure 5B); this 

was further supported by similar increase in phosphorylated I-KappaB, which is necessary for 

p65-Ser536 phosphorylation (Teo et al., 2010a). Similarly, in MDAMB231 cells also we found 

TRF2 induction resulted in enhanced and sustained p65-Ser536 phosphorylation relative to 

uninduced cells (Figure 5C).  

We reasoned that in cells with longer telomeres IL1 signaling would be affected due to low 

TRF2 binding at IL1R1 promoter, and resultant reduced potential of TRF2-mediated activation 

of IL1R1. In case of HT1080-LT cells p65-Ser536 phosphorylation, following IL1B-mediated 

stimulation, showed a notably delayed response (detectable with 30 min, versus 3 hr, in 

HT10180 and HT1080-LT, respectively; Figure 5D). This was consistent with reduced 

expression of p65 targets IL6, IL8, TNF and IL1B (Supplementary Figure 2A), and lower 

secretion of IL1B in HT1080-LT cells relative to HT1080 cells (Figure 2F). 

Next, we checked for p65 activation by IL1A, IL1B or TNF on TRF2 downregulation. While 

TRF2 silencing affected IL1A or IL1B-mediated p65 activation as observed from p65-Ser536 
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phosphorylation, TNF-mediated activation remained relatively unaffected (Supplementary 

Figure 5A). Consistent with this in cells with TRF2 silencing the p65 targets IL6, IL8 and 

TNFwere relatively reduced in response to IL1A or IL1B stimulation, but not TNF, supporting 

the role of TRF2 in IL1-depenent signaling specifically (Figure 5E).  

To test specificity, we further investigated the role of the receptor IL1R1 in TRF2-mediated 

activation of p65. Reasoning that the receptor antagonist IL1RA would impede signaling through 

IL1R1, but not the TNF receptor, TRF2-high HT1080 cells were stimulated with either IL1A or 

IL1B in presence/absence of IL1RA. IL1A or IL1B-mediated activation of IL6, IL8 and TNF in 

TRF2-high condition was rescued in presence of IL1RA, but not in case of TNF treatment 

(Figure 5F). Furthermore, on administering different doses (5, 10 or 20 ng/ml) of IL1RA, 

expression of IL6, IL8, and TNF were repressed in a dose-dependent way (Supplementary 

Figure 5B). As expected from induced IL1 signaling, secreted IL1B was enhanced in HT1080 

with relatively high TRF2 (Supplementary Figure 5C).  Together, these demonstrate the direct 

role of TRF2 in upregulation of IL1R1 and induction of IL1 signaling, resulting in increased 

secretion of IL1B. 

  

TRF2 mediated IL1R1 activation is important for TAM infiltration in cancer cells 

Enhanced IL1 signaling was reported to induce infiltration of M2-type macrophage in breast and 

other cancers (Chittezhath et al., 2014b; Oner et al., 2020). Here, because of TRF2-mediated 

induction of IL1 signaling we asked if TRF2 affected TAM infiltration in tumor cells. HT1080 cells 

with doxycycline-inducible-TRF2 were used to make tumor xenografts in NOD-SCID mice. Intra-

tumor TRF2 was stimulated by oral administration of doxycycline when tumors were ~100 mm3 

in size on average (Methods). After three weeks tumors were retrieved, TRF2 induction and 

consequently elevated IL1R1 in each of the five doxycycline-treated (TRF2-induced) xenograft 

tumors was confirmed by FACS (Figure 6A-B) and mRNA expression (Supplementary Figure 

6A), relative to the five uninduced tumors.  

TAM (CD11bhighCD206high) was enhanced from ~5% to ~10% in TRF2-induced xenografts 

(Figure 6C). Accordingly, expression of TAM markers (CD163 and CD206; Supplementary 

Figure 6B) and p65 targets IL1B and TNF were enhanced in TRF2-induced tumors relative to 

the uninduced condition supporting activated IL1 signaling; however, IL6 decreased and IL8 

levels remained unchanged (Figure 6D). Pro-inflammatory markers that were checked showed 
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lower IL6 but higher IL1B and TNF in TRF2 induced tumors while the anti-inflammatory marker 

IL13 was found to be higher (Figure 6D).   

We further reasoned that the increase in M2-type macrophage would result in higher invasion 

potential of cells based on earlier work (Hu et al., 2015; M et al., 2016). An in-vitro co-culture 

assay to test this showed HT1080 cells with relatively high TRF2 had enhanced invasion 

potential in presence of M2-type macrophages (derived from THP1 cells) compared to 

uninduced cells (Supplementary Figure 6C). Together these support the role of TRF2 in 

enhanced presence of immune-suppressive TAM, through induced IL1 signaling, and are 

consistent with more aggressive proliferation reported in TRF2-high tumors (El Maï et al., 2014; 

Muñoz et al., 2006). 

 

Discussion 

Results herein show telomere length of tumor cells impact M2-type immune suppressive 

macrophage infiltration in breast cancer. Relatively long telomeres resulted in compromised IL1 

signaling due to reduced expression of IL1R1. Mechanistically, non-telomeric TRF2 directly 

activates IL1R1 through promoter binding; in case of tumors with relatively long telomeres TRF2 

binding at the IL1R1 promoter was markedly reduced, and therefore resulted in low IL1R1 and 

attenuated IL1 signaling. Because of compromised IL1 signaling in tumors with longer telomeres 

downstream canonical activation of p65 through Ser536 phosphorylation was negatively 

affected giving reduced induction and secretion of IL1-beta (Figure 6E). This impacted TAM 

presence negatively in tumors with relatively long telomeres consistent with earlier work 

suggesting the role of IL1-induction in TAM infiltration (Briukhovetska et al., 2021; Gelfo et al., 

2020; Guo et al., 2016). We tested these observations, and the underlying mechanisms, in 

different contexts comprising clinical tissue from TNBC, xenograft tumors in mouse, and ex-vivo 

in TNBC-patient-derived organoids and cancer cells. Together, these consistently showed how 

short/long telomeres affect anti-tumor immune suppression. 

Cancer cells tend to have predominantly short but maintained telomeres relative to 

corresponding normal cells (Harley, 1991; Maser and DePinho, 2002): Consistent with this most 

TNBC tissues we examined had lower telomere length than paired adjacent normal tissue 

(Supplementary Table 1) (Barthel et al., 2017a; Weischer et al., 2013). On comparing across 

TNBC we found about a third of the cases had relatively short telomeres (Artandi and DePinho, 
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2009; Aviv et al., 2017); ~30% of the cases had relatively long telomeres (>6 kb; Supplementary 

Figure 1B).  

We found that DNA secondary structure G4s present on the IL1R1 promoter are necessary for 

TRF2 binding. Perturbation of the G4s genetically by destabilizing base substitutions, or on 

using small molecules that bind to G4 inside cells resulted in reduced promoter TRF2 binding 

and IL1R1 expression. This is in agreement with our results showing G4-dependent non-

telomeric TRF2 binding throughout the genome, and how TRF2 recruitment to specific 

promoters leads to epigenetic histone modifications (Mukherjee et al., 2018, 2019b, 2019a). 

Further, we recently reported G4s at the human telomerase (hTERT) promoter are critical for 

binding of non-telomeric TRF2, which induced suppressive histone modifications through TRF2-

dependent engagement of the repressor complex REST, and repressed hTERT (Mukherjee et 

al., 2018, 2019b, 2019a; Shalu Sharma et al., 2021). We note here in the case of IL1R1, 

interestingly, TRF2 functions as an activator through p300-dependent H3K27 acetylation. 

Together these not only underscore the role of TRF2 as a G4-dependent transcription factor but 

also show TRF2-depedent gene activation/repression based on recruitment of distinct cofactors, 

implicating possible context-specific function of post-translationally modified non-telomeric 

TRF2, as has been reported in case of telomeric TRF2 (Huda et al., 2009; Mitchell and Zhu, 

2014; Mitchell et al., 2009; Rizzo et al., 2017; YR and IK, 2013). 

p300/CBP have been keenly studied in cancer epigenetics and specifically breast cancers (Iyer 

et al., 2004; Ramadan et al., 2021; Ring et al., 2020). Recent findings also show acetylated 

H3K27 enrichment at the telomeres through p300-dependent HAT activity (Cubiles et al., 2018); 

however role of TRF2 in p300 engagement or H3K27 acetylation at the telomeres was not 

investigated. Notably, here we found TRF2-dependent p300 recruitment, and HAT activity 

resulting in H3K27 acetylation at the IL1R1 promoter. Together, these support the role of non-

telomeric TRF2 as an activating transcription factor through p300 implicating a broader role of 

TRF2-p300-dependent histone modifications in cancer. Further these suggest the possibility of 

similar functions of telomeric TRF2 in H3K27 acetylation at the telomeres (Cubiles et al., 2018). 

TRF2 has been linked with cancer progression and immune response to cancer including 

blocking Natural Killer (NK) cells and promoting infiltration of Myeloid Derived immuno-

Suppressive Cells (MDSC) (Biroccio et al., 2013; Cherfils-Vicini et al., 2019) (Martínez and 

Blasco, 2011; Muñoz et al., 2006). Recently, another study showed correlation between TRF2 

levels and MDSC in melanoma cells (Ilié et al., 2021) However, the function of non-telomeric 
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TRF2 in either IL signaling, or in a telomere-sensitive role in immune suppression, has not been 

reported. It is of interest to note that other than TRF2, non-telomeric function of another 

shelterin protein RAP1 was reported, where RAP1 was found to directly interact with the 

NFKappaB complex (Ghosh and Tergaonkar, 2010; Teo et al., 2010b).  

Cancers with longer telomeres had consistently lower IL1-beta and IL1R1 expression across 

different models supporting compromised IL1 signaling. However, we noted that the expression 

of pro-inflammatory cytokines though overall more in case of long telomeres had model-specific 

outcomes (Figure 6F). In TNBC-LT and xenograft LT-tumors IL2 and IL6 were relatively more 

than ST; in TNBO-LT IL6, IL8 and TNF; while LT cancer cells in ex-vivo culture IL2 and TNF 

were higher. Higher TAM infiltration is typically associated with low pro-inflammatory cytokines 

(Chittezhath et al., 2014a; H et al., 2018; Oner et al., 2020), therefore, conversely, higher 

expression of pro-inflammatory cytokines in LT tumors is largely consistent with reduced TAM. 

Interestingly, it is possible that the TME (as in case of TNBC clinical tissue/xenografts) resulted 

in higher expression of pro-inflammatory cytokines in case of LT tumors compared to ex-vivo 

cells. Anti-inflammatory cytokines were lower in most LT cancers supporting reduced TAM, 

consistent with high anti-inflammatory cytokines in TAM infiltration (Hu et al., 2015). Further, 

RNA-seq in HT1080 and HT1080-LT cells (Methods) showed inflammatory genes, including IL1 

signaling-related ones, were largely downregulated in LT cells consistent with our observations 

(Supplementary Figure 7). 

Results from TNBC organoids here show that blocking IL1R1 using IL1RA specifically in 

macrophages was sufficient for restricting M2 infiltration (Figure 1H) suggesting that the IL1 

signaling within the tumor cell is important. However, particularly because macrophages are 

known to be rich source of IL1B (Carmi et al., 2009; Duque and Descoteaux, 2014; Mantovani 

et al., 2018), and given the model-specific changes noted by us, further experiments will be 

required to understand how telomeres influence paracrine/juxtacrine signaling mechanisms 

through immune cells. 

Although we observed a range of telomere lengths across cancers from different patients 

(Supplementary Figure 1B), as also observed by other groups (Londoño-Vallejo, 2004; Pellatt et 

al., 2013; Shen et al., 2007; Wentzensen et al., 2011; Willeit et al., 2010), it is broadly 

understood that most cancer tissues have short telomeres. On a wider perspective based on 

our results, and other reports suggesting immunomodulation in cancers with relatively short 

telomeres (Barthel et al., 2017b; Hirashima et al., 2013b), it is tempting to speculate the 
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possibility that short-telomere cancers might be ‘selectively’ better equipped to evade host 

immune cells.  

IL1 signaling in relation to inflammation in cancer has been extensively studied and 

consequently IL1B blockers and the receptor antagonist IL1RA are of clinical interest (F Balkwill, 

2001)(B Homey, 2002; Kaplanov et al., 2019; Lappano et al., 2020)(Chittezhath et al., 2014a). 

Further, the effect of altered cancer cell-IL1 signaling on M2-type TAM infiltration was reported 

in multiple cancer types (Chanmee et al., 2014; Hu et al., 2015). TAM infiltration has been 

consistently linked to tumor aggressiveness (Oner et al., 2020) and recent work on targeting 

(Lee et al., 2019; TL and I, 2011) and modifying TAMs from M2-like states to a more anti-

tumorigenic M1-like states (Jaynes et al., 2020) have shown promise as strategies for 

intervention in cancer. Our findings bring forth a heretofore not reported angle of IL1 regulation 

that is telomere-sensitive. These implicate new molecular links between telomeres and anti-

tumor immune suppression that might be significant in better understanding patient-specific 

response to cancer immunotherapy. 
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Supplementary Material and Methods: 

Cell lines, media and culture conditions 

HT1080 fibrosarcoma cell line was purchased from ATCC. HT1080-LT cells (Cristofari and 

Lingner, 2006) were a kind gift from Dr. J. Ligner. HT1080 and MRC5 (ATCC) cells and 

corresponding telomere elongated cells were maintained in Modified Eagle’s medium (MEM) 

supplemented with 10% Fetal Bovine Serum (FBS). MDAMB231 and HEK293T (NCCS, Pune) 

cells were maintained in DMEM-HG (Dulbecco’s Modified Eagle’s medium - High Glucose) with 

a supplement of 10% FBS. All THP1 cell line (gift from Dr Vivek Rao laboratory, IGIB, Delhi) and 

derivatives were maintained in RPMI with 10% FBS and 1X Anti-Anti (anti-biotic and anti-

mycotic from Thermofisher). 

All cultures were grown in incubators maintained at 37ºC with 5% CO2. 

Patient tissue 

Previously collected tumor tissues from the biorepository of Rajiv Gandhi Cancer Institute 

(RGCI&RC) and Research Center (Delhi) were used following approvals by the Institutional 

Human Ethics Committee (IGIB) and the Institutional Scientific Committee and the Institutional 

Review Board (IRB, RGCI&RC). Informed consent, consistent with the guidelines of the IRB, 

was obtained from all patients. Detailed clinical characteristics of patients are provided in 

Supplementary Table 1.  
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Organoid generation and culture: 

TNBC tissue was used to make tumor organoids using the following protocol- 

1. The fresh tissue was stored in 5 ml of Media 1 (Advanced DMEM F12 + 1X Glutamax + 

10mM HEPES + 1X AA). 

2. 1-3 mm3 tissue piece was cut, washed and minced in 10ml (Media 1). 

3. The minced tissue was digested overnight on shaker in Media 1 with 1-2mg/ml of 

collagenase. 

4. After overnight incubation the digested tissue was sequentially sheared using 1 ml pipette.  

5. After each shearing step, the suspension was strained using 100µm filter to retain tissue 

pieces. Thus entering in subsequent shearing step with approximately 10 ml Advanced DMEM 

F12. 

6. To this was added 2% FCS and centrifuged at 400 rcf. 

7. The pellet was resuspended in 10mg/ml cold cultrex growth factor reduced BME Type 2 and 

40µl drops of BME suspension was allowed to solidify on pre-warmed 24 well culture plates at 

37°C 5% CO2 for 30 min. 

8. Upon complete gelation 400 µl of BC organoid medium was added to each well and plates 

transferred to 37°C 5% CO2. 

Medium component Supplier 
Catalogue 
number 

Final concentration 

  
  

 
R-Spondin 3 R&D 3500-RS/CF  250 ng·ml-1 

Neuregulin 1 Peprotech 100-03 5 nM 

FGF 7 Peprotech 100-19 5 ng·ml-1 

FGF 10 Peprotech 100-26 20 ng·ml-1 

EGF Peprotech AF-100-15 5 ng·ml-1 a 

Noggin Peprotech 120-10C 100 ng·ml-1 

A83-01 Tocris 2939 500 nM 

Y-27632 Abmole Y-27632 5 mM 

SB202190 Sigma S7067 500 nM b 

B27 supplement Gibco 17504-44 1x 

N-Acetylcysteine Sigma A9165-5g 1.25 mM 

Nicotinamide Sigma N0636 5 mM 

GlutaMax 100x Invitrogen 12634-034 1x 

Hepes Invitrogen 15630-056 10 mM 

Penicillin/Streptomycin Invitrogen 15140-122 100 U·ml-1 / 100 mg·ml-1 

Primocin Invivogen Ant-pm-1 50 mg·ml-1 

Advanced DMEM/F12 Invitrogen 12634-034 1x 
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9. The media was changed every fourth day.  

10. The culture was grown for 10 days before passaging. 

II. Passaging Organoid Cultures 

1. Cultrex growth factor reduced BME Type 2 geltrex was thawed overnight on ice at 4 °C. 

2. Media was removed from the organoid wells and washed twice with PBS-EDTA. 

3. Foreach well of 24 well plate 300 µl of TrypLE was added and incubated at 37°C 5% CO2 for 

5 min. 

4. 600 µl of washing media (DMEM F12) was added and organoids were dissociated vigorously 

by pipetting.  

5.. Organoid solution was transferred to 15 ml falcon with 5 ml washing media and centrifuged 

at 1000rpm for 5 min to pellet organoids.  

6. Supernatant was carefully aspirated leaving behind 200ul media and 500ul of fresh media, 

mixed well gently and transferred to 1.5ml tube for centrifugation at 650*g for 5min at 4 °C . 

7. Supernatant was gently aspirated and resuspended in cold cultrex and 40ul drop/well was 

seed in a pre-warmed 24 well plate. 

8. Incubated for 30 min and add 400 µl of BC organoid medium. 

 

M2 macrophage generation from THP1 cells: 

THP1 cells (0.5 million cells in 1ml) were seeded in a 35 mm dish and treated with PMA (10 

ng/ml) for 24 hrs in RPMI complete media (+ 10% FBS). PMA was removed and cells were 

cultured for 48 hrs in RPMI to get semi-adherent M0 cells. Following this, cells were treated with 

IL4 (10 ng/ml) and IL13 (20 ng/ml) for 24 hrs in RPMI complete media. Cells were checked for 

expected morphological changes and trypsinzed for use as M2 macrophages. 

M2 macrophage infiltration assay in TNBC tumor organoids: 

M2 macrophages were labelled with Cell Tracker red dye (Thermoscientific) for 30 mins and the 

excess dye was washed off. 10000 labelled M2 macrophages in 20 ul 1X PBS were introduced 

in a 96 well with TNBC organoids in a dome with Supplement enriched media (200 µl). 12 hrs 

later, the media was washed off with 3 1X PBS washes and the organoid dome was extracted 

with 100 µl Tryple E and resuspended with 100 ul chilled 1X PBS. This cocktail was kept on ice 

for 5 mins and centrifuged at 1000g for 10 mins. The supernatant was discarded and the 

process was repeated once more.  
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The cells were resuspended in 500 ul chilled 1X PBS and subjected to Flow-cytometric analysis 

for scoring percentage of labelled (red) M2 macrophages. 

Vector constructs 

The pCMV6-myc-DDK(FLAG)-TRF2 vector (TRF2 WT) was procured from Origene 

(RC223601). The mutants delB and delM constructs used in the study have been previously 

reported(Hussain et al., 2017) and made through mutagenesis of the TRF2 WT construct. TRF2 

shRNA was procured from Origene (TL308880). Side-directed Mutagenesis was performed on 

the TRF2 WT plasmid to generate the PTM mutants. 

Transfections 

TRF2 wildtype (myc/DDK tag) or mutant mammalian expression vector pCMV6 was transfected 

into HT1080 /MDAMB231 cells that were 60 % confluent using Lipofectamine 2000 transfection 

reagent (following the manufacturers’ protocol). 2-4μg of plasmid was used for transfection in a 

35 mm well for each case. 

In case of TRF2 shRNA (Origene)/TERC shRNA (SantaCruz), 4μg of plasmid was used for 

transfection in a 35 mm well for each case and Fugene HD transfection reagent was used as 

per manufacturer’s protocol. Cells were then maintained in 1μg/ml of puromycin for stable 

shRNA maintenance. 

TRF2 silencing by siRNA: 

HT1080 cells were transfected with TRF2 siRNA oligonucleotides (synthesized from 

Eurogenetics Pvt. Limited)(Shalu Sharma et al., 2021) using lipofectamine 2000 (Invitrogen) 

transfection reagent according to manufacturer’s instructions. Silencing was checked after 48 hr 

of transfection. Pooled SCR siRNA was used as control. 

Luciferase assay: 

IL1R1 promoter (upto 1500 bp upstream of transcription start site) was cloned in PGL3 basic 

vector upstream of firefly luciferase construct. G4 motif disrupting mutations were introduced in 

the promoter construct by site directed mutagenesis. 

Plasmid (pGL4.73) containing a CMV promoter driving Renilla luciferase was co-transfected as 

transfection control for normalization.  After 48h, cells were harvested and luciferase activities of 

cell lysate were recorded by using a dual-luciferase reporter assay system (Promega). 

CCR5-IL1R1 promoter insert cells: 

IL1R1 promoter and downstream firefly luciferase ( and G4 mutant variant ) was inserted in 

HEK293T cells by using strategy previously standardized and reported for TERT promoter-

gaussia insertion in the same locus(Shalu Sharma et al., 2021). 
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HT1080 TRF2 and TERT inducible cells: 

TRF2 cDNA sequence was inserted into pENTR11 vector and the cassette was transferred into 

lentiviral plasmid pCW57.1 by gateway cloning. Following this viral particles were generated 

from HEK293T cells and the viral soup was used for transduction. Cells with insert were 

selected with 1μg/ml of puromycin and tested for TRF2 induction using varying doxycycline 

concentrations. 

Similarly TERT cDNA was amplified from a mammalian expression vector and inserted into 

pENTR11 vector. Subsequently, the same strategy was used to generate and test TERT 

inducible HT1080 cells. 

 

Xenograft tumor generation in NOD-SCID mice: 

The xenograft tumor generation experiments in NOD-SCID mice were performed by Vivo 

Biotech Private Limited (Telangana, India) following necessary regulatory approval from Animal 

Ethics Committee. 2.5 million cells (HT1080, HT1080-LT or HT1080-TRF2 inducible) were 

subcutaneously injected in healthy male mice (4-6 weeks old) and tumor growth was allowed. In 

case of TRF2 inducible HT1080 cells, tumors were allowed to grow to 100 mm3 before oral 

dosage of doxycycline (or placebo control) was started at 2 mg/kg of body weight of mice. Mice 

were sacrificed to obtain tumors when tumors reached an average volume of 600 mm3(± 100). 

 

Processing of tumor/xenograft tissue 
Approximately 10 milligram of tumor tissue was weighed and washed thrice with ice-cold 1X 

PBS- 1 ml (filtered). About 300 microlitres of PBS was left to submerge the tissue after the final 

wash. Using a sanitized razor blade, the tumor was cut into small pieces (the efficiency of the 

digestion is dependent on how well the tumor is minced; large pieces will not digest properly 

and may need extra digestion time).  The tumor soup was transferred into a 15 ml tube using a 

P1000 pipette (cut the top of the tip in order to be able to take all the tissue) and the volume was 

adjusted to 4 ml of 1X pre-chilled PBS. 80 µl of Liberase TL stock solution (Roche)was mixed 

using a vortex and incubate for 45 min at 37 °C under continuous rotation. The sample was 

checked visually; the cell suspension should look smooth (if the cell suspension still 

contains tissue fragments digest for an additional 15 min). To end the enzymatic digestion ,10 

ml PBS 1 % w/v BSA was added. The cells were filtered using a 100 µm cell strainer in a 50 ml 

tube and the volume adjusted to 20 ml with 1X PBS (pre-chilled). Cells were centrifuged for 7 

min at 500 g and 4 °C. The supernatant was discarded and the cells were re-suspended in 1 ml 

Serum-free media. Subsequently, cells were counted and volume made up to get a cell density 

of 1 million cells/ ml. Following this, cell suspension was used for ChIP, DNA/RNA isolation and 

flow-cytometry. 
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Antibodies 

Primary antibodies:  

TRF2 rabbit polyclonal (Novus NB110-57130)- ChIP, IP, WB 

TRF2 mouse monoclonal (Millipore 4A794)- Flow cytometry 

TRF1 mouse monoclonal (Novus NB110-68281)-WB 

IL1R1 rabbit polyclonal (abcam ab106278)- IF, Flow-Cytometry, WB 

DDK/FLAG mouse monoclonal (Sigma-F1804)- ChIP, WB 

BG4 recombinant antibody (Sigma Aldrich MABE917)- ChIP 

P300 (CST D2X6N) rabbit monoclonal- ChIP, IF, WB 

Ac-p300/CBP (CST 4771) rabbit monoclonal-ChIP,WB 

CBP (CST 7389) rabbit monoclonal- ChIP,WB 

P65(NFKB) (CST 8242) rabbit monoclonal- WB 

Ser536 P p65 NFKB (CST 3033) rabbit monoclonal- WB 

IKB (CST 4814) mouse monoclonal- WB 

p-IKB (CST 2589) rabbit monoclonal- WB 

Histone H3 rabbit polyclonal (Abcam ab1791)-ChIP 

H3K27ac rabbit polyclonal (Abcam ab4729)-ChIP 

H3K4me3 rabbit polyclonal (Abcam ab8580)- ChIP 

H3K27me3 rabbit monoclonal (Abcam ab192985)- ChIP 

H3K9me3 rabbit polyclonal (Abcam ab8898)- ChIP 

Beta-actin mouse monoclonal (Santacruz C4)-WB 

GAPDH mouse monoclonal (Santacruz 6C5)-WB 

CD11b Monoclonal Antibody (ICRF44), eBioscience™- Flow cytometry 

F4/80 Monoclonal Antibody (BM8), eBioscience™- Flow cytometry 

CD206 Monoclonal Antibody (MR5D3) Invitrogen- Flow cytometry 

Anti-Rabbit IgG/Anti-mouse IgG (Millipore) was used for isotype control. 
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Secondary antibodies:  

anti-Rabbit-HRP(CST), anti-Mouse-HRP(CST),mouse-ALP (sigma),rabbit-ALP(sigma) anti-

rabbit Alexa Fluor® 488, anti-mouse Alexa Fluor® 594 (Molecular Probes, Life Technologies). 

 

ChIP (Chromatin Immunoprecipitation) 

ChIP assays were performed as as previously reported by Mukherjee et 

al.,2018,2019(Mukherjee et al., 2018, 2019a).  Briefly, 3-5 million cells were fixed with ~1% 

formaldehyde for 10 min and lysed. Chromatin was sheared to an average size of ∼300-400 bp 

using the instrument Biorupter (from Diagenode). 10% of the sonicated fraction was processed 

as input using phenol–chloroform and ethanol precipitation. ChIP was performed for 

endogenous/ectopically expressed protein using 1:100 dilution (v/v) of the respective ChIP 

grade antibody incubated overnight at 4°C. Immune complexes were collected using Salmon 

sperm DNA-saturated Magnetic Dyna-beads (-50 μg per sample) and washed extensively. 

Immunoprecipitated DNA and Input fractions were isolated using Phenol-chloroform-

isoamylalcohol for phase separation and subsequent precipitation. ChIP DNA was quantified by 

Qubit HS ds DNA kit from Thermofisher. Quantified ChIP DNA samples were validated for target 

sites by qRT-PCR.  

 

Flow-cytometry: 

The procedure for Flow-cytometry was adapted from basic flow cytometry guidelines from CST 

and has been previously reported in Sharma et al,2021(Shalu Sharma et al., 2021). The cell 

suspension was fixed with 4% formaldehyde and permeabilized with 0.1% triton X (in 1XPBS) 

for nuclear proteins. Incubation of primary antibody (1:500 v/v in 1% BSA in 1X PBS) for 1 µg/ml 

antibody concentration for 2 hours at RT or at 4 degrees Celsius overnight, was followed by 

PBS wash ( 3 times) and fluorescently labelled secondary  antibody ( 1:1000 v/v) for 2hours at 

RT. Following this, cells were washed with 1X PBS (3 times) and re-suspended in 1XPBS for 

flow-cytometric analysis. 

For single channel analysis, histogram prolife (log scale) was generated in ungated sample-

SSC-FSC plots. For quadrant gating for double positive cells (two channels), biex- scale plots 

were used. 

Relative Telomeres length (RTL) by Flow-cytometry: 

The RTL value is calculated as the ratio between the telomere signal of each sample and the 

control cell with correction for the DNA index of G0/1 cells. This correction is done to normalize 

the telomere signal to the DNA content of the cells. The propidium iodide staining of DNA 

included in the Telomere PNA Kit/FITC procedure is under saturated and should not be used for 
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DNA content determination. The process has been previously standardized and reported 

(Mukherjee et al., 2018) 

 

Immunofluorescence microscopy: 

Adherent cells were seeded on coverslips and allowed to reach a confluency of ~ 70%. Cells 

were fixed using freshly prepared 4% Paraformaldehyde by incubating for 10 min at RT. Cells 

were permeabilized with 0.25% Triton™ X-100 (10 min at RT) and treated with blocking solution 

(5% BSA in PBS) for 2 hrs at RT. All the previously stated were followed by three consecutive 

washes with ice cold PBS for 5 mins. Post-blocking, cells treated with relevant antibodies (1:500 

for TRF2, 1:500 for IL1R1 and 1:1000 for CD44/p300) and incubated overnight at 4⁰C in a 

humid chamber. Post-incubation, cells were washed alternately with PBS and PBST three times 

and probed with secondary Ab (rabbit Alexa Fluor® 488(1:1000) / mouse Alexa Fluor® 594 

(1:1000)) for 2 hrs at RT. Cells were washed with PBS /PBST three times and mounted using 

Prolong® Gold anti-fade reagent containing DAPI. Images were taken on Leica TCS-SP8 

confocal microscope/ Cytiva delta vision microscope. Lasers of emission wavelength 405nm, 

488nm and 532 nm were used imaging for DAPI, Alexa Fluor® 488 secondary Ab and Alexa 

Fluor® 594 Ab respectively. Laser intensity was kept 20% for DAPI and 40-60% for Alexa 

Fluor® secondary antibodies. ImageJ (FIJI) software was used to calculate signal intensity 

(a.u.). 

Immunoprecipitation: 

Immunoprecipitation of proteins was performed using modified version of suggested IP protocol 

from CST. Cells were lysed using cell lysis buffer ((1X) 20 mM Tris (pH 7.5), 150 mM NaCl, 1 

mM EDTA, 1 mM,EGTA, 1% Triton X-100, 2X mPIC) and treated with relevant primary antibody 

(1: 100 v/v) overnight at 4 degrees Celsius or mock IgG on rotor. 50 µg of Dyanbeads (blocked 

with BSA-5% for 60 mins at RT) was added to the lysis soup and kept for 2 hrs in mild agitation. 

Dynabeads were magnetically separated and washed thrice (with 1X PBS with 0.1% Tween-

20). The beads were resuspended with 1X RIPA ( 50 µl) and 1X lamelli buffer. This was 

followed by denaturation at 95 degree Celsius for 10 mins and followed by western blot for 

specific proteins.  

 

Western blotting: 

For western blot analysis, protein lysates were prepared by suspending cell pellets in 1X RIPA 

(with 1x mammalian protease inhibitor cocktail). Protein was separated using 10%/12% SDS-

PAGE and transferred to polyvinylidenedifluoride membranes (Immobilon FL, Millipore). After 

blocking, the membrane was incubated with primary antibodies. Post incubation with primary 

antibodies (1:1000 v/v), the membrane was washed with 1X PBS and then incubated with 

appropriate secondary antibodies (1:2000 v/v). Following secondary antibody incubation, the 

membrane was washed with 1XPBS. The blot was finally developed using HRP substrate/BCP 

NBT and reagents from Millipore.  
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Invasion assay with HT1080 cells: 

HT1080 cells (50000 cells) were seeded in invasion chamber (BD Biosciences) in 200 µl MEM( 

serum free). In the bottom chamber, 700 µl of MEM (+10% FBS) was added with and without 

500 M2 macrophages. Invasion was checked after 36 hrs using CV staining as per 

manufacturer’s protocol. 

Real time PCR 

Total RNA was isolated according to manufacturer’s instructions using TRIzol® Reagent 

(Invitrogen, Life Technologies) .A relative transcript expression level for genes was measured 

by quantitative real-time PCR using a SYBR Green based method. Average fold changes was 

calculated by the difference in threshold cycles (Ct) between test and control samples. GAPDH / 

18S gene was used as internal control for normalizing the cDNA concentration of each sample.  

For telomere length assessment by qRT PCR, telomere specific primers and single copy 

number gene 36B4 for normalization  was used in PCR reactions with sample DNA using 

reported protocol(O’Callaghan et al., 2018). 

RT PCR primers used have been enlisted in Additional Supplementary table 1. 

RNA-seq analysis: 

Raw Illumina sequencing reads were checked for quality using FastQC (version 0.11.9) and 

adapter clipping and trimming using Trimmomatic (version 0.39) was done using default 

parameters. Trimmed reads were aligned to the human reference genome (GRCh38, 

GENCODE v36) with STAR aligner (version 2.7.8a). FeatureCounts (subread package version 

2.0.1) was utilized to quantify gene expression. Quality checks at each step were performed 

using the MultiQC tool (version 1.10.1). Differential gene expression analysis was done using 

the DESseq2 package (version 1.30.0) in R (version 4.0.3). The analysis was done after 

eliminating the effects of confounding variables such as batch and replicate using the 

appropriate design formulae. Gene expression was normalized using variant stabilizing 

transformation (vst) for the purposes of visualization. Genes with BH-adjusted p value < 0.05 

and absolute Log2 fold change greater than 1 (at least 100% fold change in either direction) 

were considered as significantly differentially expressed genes. 

IL1B ELISA:  

IL1B ELISA was performed using Human IL-1 beta/IL-1F2 DuoSet ELISA kit by R&D 

Biosystems Cat no-DY201. As per manufacturer’s protocol 96 well microplate was coated 

with100ul per well of freshly prepared Capture Antibody diluted 100 times in PBS without carrier 

protein. Thereafter the plate was sealed and incubated overnight at room temperature. 

Following day the capture antibody was aspirated after which each well was washed three times 

with 1X Wash Buffer (PBST). After the last wash, the remaining wash buffer was removed 
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carefully and completely by aspiration and blotting it against clean paper towels. The prepped, 

empty wells were blocked at room temperature for 1hr by adding 300 μL of Reagent Diluent 

(20% BSA in 1X PBST) to each well. Wash the wells as in the step above. Next we added the 

samples and standard protein of known increasing concentrations (100ul in volume) diluted in 

Reagent Diluent. The plates were then covered with an adhesive strip and incubated for 2 hours 

at room temperature. Post incubation, the wells were washed as above for plate preparation. 

Following the washes we added 100ul of freshly prepared Detection Antibody diluted 100 times 

in PBS.  The plate was covered and incubated for 2hrs at room temperature. Post incubation 

the wells were washed thrice as in the previous step. Finally for generating detectable signal we 

added 100 μL of Streptavidin-HRP to each well, covered the plate and incubated it in dark at 

room temperature for 20mins. Next the wells were washed thrice as in steps above. After 

aspirating the wells clean of any buffer we added 100ul of Substrate Solution to each well and 

incubated the plates again in dark at room temperature for 20minutes. Finally, 50ul of stop 

solution was added to each well and mixed well by gentle tapping. The signal was measured 

using a microplate reader set to 450 nm, 570 and 540nm. Perform wavelength correction by 

subtracting readings at 540 nm or 570 nm from the readings at 450 nm.  

HAT assay: 

Histone acetyl transferase (HAT) assay was performed as per manufacturers’ protocol from 

Active motif.  Mammalian TRF2 and p300 full length were commercially procured from origene 

and abcam respectively and used for the assay. 

Circular Dichroism 

Circular Dichroism profiles (220 nm to 300 nm) were obtained for representative G4 motifs 

identified within IL1R1 promoter and an overlap with TRF2 high confidence ChIP seqpeak. 

Circular Dichroism showed the formation of G4-motif with the unaltered sequence while mutated 

G4 sequence gave partial/complete disruption of the G4-motif under similar conditions (buffer 

used for G- quadruplex formation -10mM Na cacodylate and 100 mM KCl). The circular 

dichroism (CD) spectra were recorded on a Jasco-89spectropolarimeter equipped with a Peltier 

temperature controller. Experiments were carried out using a 1mm path-length cuvette over a 

wavelength range of 200-320 nm. Oligonucleotides were synthesized commercially from Sigma-

Aldrich.  2.5uMoligonucleotides were diluted in sodium cacodylate buffer (10 mM sodium 

cacodylate and 100 mM KCl, pH 7.4) and denatured by heating to 95ºC for 5 min and slowly 

cooled to 15ºC for several hours. The CD spectra reported here are representations of three 

averaged scans taken at 20ºC and are baseline corrected for signal contributions due to the 

buffer. 

Gene ontology and cBIO PORTAL ANALYSIS: 

Gene ontology analysis was done using gene list (Barthel et al., 2017b) using publicly available 

resource –The Gene Ontology Resource database (http://geneontology.org/). Fold enrichment, 

FDR values and p-values were calculated using PANTHER. Ontology plot was made using MS 

Excel multivariate plot. Immune related gene expression correlation was done using 

cBioPortal(https://www.cbioportal.org/) in the TCGA Breast Invasive carcinoma dataset. 
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Statistical Analysis: 

For all datasets with N> 5, Mann Whitney U test was performed using interface provided within 

GRAPHPAD PRISM software. For paired datasets, T Test was performed for significance. 

Median values and correlations were calculated using MS Excel functions. 
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Figure 1 
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Figure 1 – Cancers with long telomeres have relatively low tumor associated 

macrophages (TAM) and compromised IL1 signalling 

 

A. Relative telomere length of Triple Negative Breast Cancer (TNBC) samples estimated by 

Telomeric signal (FITC) using telomere–specific probes  in flow cytometry based assays: 

Mean telomeric  signal for nine TNBC-ST (short telomere) and nine TNBC-LT (long 

telomere) are shown. 

B. Percentage of TAM was estimated in TNBC samples using markers CD11b and CD206 

(CD11b+ CD206+ cells in top right quadrant). Percentage of  TAM in individual TNBC 

samples shown above top and  plotted for TNBC-ST and TNBC-LT. 

C. Relative telomere length of Triple negative breast tumor organoids (TNBO) derived from 

TNBC samples: five TNBO-ST (short telomere) and  five TNBO-LT (long telomere) was 

estimated by qRT-PCR (Methods).  

D. Labelled (red) M2 macrophages derived from THP1 cells (Methods) were incubated with 

TNBO in matrigel domes for 12 hours and infiltration of  M2 macrophages in the organoids 

was estimated as percentage of labelled (red) M2 macrophages . The percentage values 

for five TNBO-ST and five TNBO-LT samples plotted and also marked in top of each 

individual flow-cytometry plot where  red florescence signal  (FL3) is represented  along 

the x-axis in log scale. 

E. Relative telomere length of xenograft tumors generated from HT1080 fibrosarcoma cells 

and their long telomere counterpart cells HT1080-LT (long telomere) cells injected in 

NOD-SCID mice (N=5 in each case;  Methods) was estimated by flow cytometry.  

F. Percentage of  TAM in xenograft  tumors (HT1080 and HT1080-LT) using markers CD11b 

and CD206. The percentage values for  HT1080  and HT1080-LT tumors shown in the 

adjoining summary graph. 

G. Secreted IL1B (pg/ml) form TNBO-ST and TNBO-LT was estimated by ELISA using media 

supernatant form organoid culture (see methods) . 

H. Labelled(red) M2 macrophage assay  was performed in presence or absence of IL1RA 

(20 ng/ml) for a TNBO-ST and a TNBO-LT in three replicates respectively and the 

percentage values  for M2 infiltration was plotted. Red florescence (FL3) plotted along the 

y-axis in log scale for individual flow cytometry  plots  and  respective percentage  M2 

infiltration values marked on the top of the plots. 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001) 
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Figure 2 – IL1R1 expression is sensitive to telomere length and affected by TRF2 binding 

at the IL1R1 gene promoter 

 

A. Occupancy of TRF2 at the IL1R1 promoter was checked in xenograft tumors (N=5) and 

HT1080 cells by chromatin immunoprecipitation (ChIP) followed by qPCR. Primers 

spanning +200 bp from TSS (transcription start site) to -1000 bp  were used; regions 3’UTR 

and -20 Kb upstream of TSS used as negative control for TRF2 binding; fold change of 

occupancy was calculated over mock IgG after normalizing signal to 1% input.  

B. Occupancy of TRF2 at the IL1R1 promoter was lower in xenograft tumors  and HT1080-LT 

compared to HT1080 cells by ChIP followed by qPCR . 

C. IL1R1 protein levels in HT1080 and HT1080-LT cells by western blot; GAPDH was used as 

loading control. 

D. IL1R1 protein by immuno-flow cytometry in HT1080 and HT1080-LT cells with three 

independent replicates for each. IL1R1 expression was plotted along the X-axis in log 

scale. 

E. Expression of IL1R1 on cell surface by immunofluorescence microscopy in in HT1080 and 

HT1080-LT cells. Cells were stained with cell-mask red for visualization and DAPI for 

marking the cell nucleus. Average IL1R1 expression from 25 individual cells were plotted in 

the adjoining graph. 

F. Secreted IL1B (pg/ml) in supernatant media from HT1080 and HT1080-LT cells in two 

independent experiments. 

G. Relative telomere length by flow-cytometry based estimation of telomeric signal in HT1080 

cells following 0, 1, 6, 12 or 20 days of TERT induction (Methods). HT1080-LT was used as 

a positive control for enhanced telomere length in the assay. 

H. TRF2 occupancy on the IL1R1 promoter in HT1080 cells following 0, 1, 6 or 12 days of 

TERT induction (see methods) in ex-vivo culture using primers and normalizations as 

stated earlier in Figure  2A.  

I. IL1R1 mRNA expression (normalized to GAPDH) in HT1080 cells following  0, 1, 6 and 12 

days of TERT induction (see methods) in ex-vivo culture. 

J. TRF2 occupancy on the IL1R1 promoter in MDAMB231 cells and MDAMD231-LT (long 

telomere) cells  using primers and normalizations as stated earlier in Figure 2A.  

K. Expression for IL1R1 and other relevant cytokines: IL1A,IL1B, IL2,IL6,IL8 and TNF in 

MDAMB231 cells and MDAMD231-LT cells. GAPDH was used for normalization. 

 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs where N≥5. In case of independent repetitions of the same experiment , 

unpaired T test with Welsh’s correction was performed for significance (p values :  * ≤ 0.05, ** ≤ 

0.01, *** ≤ 0.001, **** ≤ 0.0001). Error bar correspond to standard error of mean from three 

independent experiments unless N is stated otherwise. 
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Figure 3 – TRF2 directly activates IL1R1 by binding to the promoter in a G-quadruplex-

dependent fashion 

 

 

A. IL1R1 expression was checked  by qRT PCR post over-expression of TRF2-flag construct or 

TRF2 silencing by siRNA  (see methods) transiently for 48 hrs. in HT1080 cells. 

B. IL1R1 protein expression was checked following over-expression of TRF2-flag construct for 48 

hrs in HT1080 cells. GAPDH was used as a loading control in the experiments. 

C. TRF2 was induced in stable-TRF2-inducible-HT1080 cells (see methods) by treatment with 2 

µg/ml or 4 µg/ml doxycycline in media for 48 hrs. TRF2 induction was checked by western blot 

and subsequently  IL1R1 expression was checked by western blot. GAPDH was used as a 

loading control in the experiments. 

D. IL1R1 levels on the cell surface was checked in control and TRF2 over-expressing HT1080 

cells. CD44 was used as a cell surface marker and nuclei were stained with DAPI; 25 individual 

cells were scored for IL1R1 expression in control and TRF2 over-expressing cells and plotted in 

the summary graph. 

E. IL1R1 in control and TRF2 induced HT1080 cells by flow-cytometry. TRF2 and IL1R1 was 

plotted along the x-axis in log scale for 20 thousand cells. 

F. IL1R1 promoter activity (see methods) in control (vector only) or transient TRF2-flag-expression 

for 48 hrs in HT1080 cells. 

G. IL1R1 promoter activity (see methods) in control (scrambled) or following TRF2-siRNA 

transfection for 48 hrs in HT1080 cells. 

H. TRF2 WT (flagged tag) or mutants delB and delM were transiently transfected in HT1080 cells 

and cells harvested after 48hrs were used for ChIP using antibody for flag-tag. Subsequently 

occupancy was checked on IL1R1 promoter by qRT PCR using primers as previously stated. 

I. IL1R1 promoter activity was checked (see methods) in control (vector only) along with TRF2-

flag, delB  and delM over-expressed conditions for 48 hrs in HT1080 cells. 

J. Circular dichroism profile (220-310 nm wavelength) of oligonucleotides (5 µM) bearing 

sequence of the G4 motifs (or base substituted mutants)  present in the IL1R1 promoter (within 

200 bp upstream of TSS) in solution.  

K. IL1R1 promoter occupancy  (fold enrichment over mock) was checked by qRT PCR following 

BG4 ChIP and overlaid with TRF2 occupancy (fold enrichment over IgG) in HT1080 cells. 

L. IL1R1 promoter activity was checked in control or on TRF2 over-expression (48 hrs) for the 

IL1R1 WT luciferase construct  or the G4 motif mutants A and B in HT1080 cells. 

M-O. IL1R1 promoter activity, mRNA and protein expression in control and TRF2 over-expressed 

condition (48 hrs post transfection) in presence or absence of the G4 binding ligand 360A (2 µM). 

P-R. IL1R1 promoter (with our without the G4 motif mutant B) along with downstream firefly 

luciferase was inserted at the CCR5 locus by CRISPR-cas9 gene editing in HEK293T cells (see 

methods). Firefly signal (promoter activity) was checked in IL1R1 WT or the G4 mutant inserts 

followed by TRF2 ChIP at the inserted promoter; TRF2 ChIP at telomeres was used as positive 

control. 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs where N≥5. In case of independent repetitions of the same experiment , unpaired 

T test with Welsh’s correction was performed for significance (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 

0.001, **** ≤ 0.0001). Error bar correspond to standard error of mean from three independent 

experiments unless N is stated otherwise. 
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Figure 4 – TRF2 recruits p300 histone acetyl transferase to the IL1R1 promoter 

 

 

A. H3K27ac occupancy (normalized to total H3) over 1% input was checked on the IL1R1 

promoter in HT1080 and MDAMB231 cells  in TRF2 high (cDNA) or low (shRNA) conditions. 

B. p300 occupancy on the IL1R1 promoter in HT1080 and MDAMB231 cells  in TRF2 high (cDNA) 

and low (shRNA) conditions. 

C-D. CBP and ac-p300/CBP occupancy on the IL1R1 promoter in HT1080 cells in control or TRF2-

induced conditions. 

E. Immunoprecipitation (IP) in HT1080 cells using TRF2 antibody probed for p300, acp300/CBP, 

TRF2 or TRF1 (positive control) in input, TRF2 IP fraction or mock IP fraction. 

F. Occupancy on the IL1R1 promoter in HT1080 and HT1080-LT cells for p300, CBP and 

acp300/CBP. H3K27ac occupancy (normalized to total H3) over 1% input on the IL1R1 promoter in 

the respective cell lines. 

G. IL1R1 protein by immunofluorescence in HT1080 cells following transient over-expression of 

TRF2 WT-flag and the mutant TRF2-293R-flag (48 hrs post transfection).  

F. acp300/CBP, p300 and flag-tag occupancy on the IL1R1 promoter in HT1080 cells  in control and 

cells transiently over-expressing TRF2 WT-flag or the mutant TRF2-293R-flag (48 hrs post 

transfection).  

I. Histone acetyl transferase (HAT) assay was performed (see methods) using histone H3/H4 as a 

substrate for full length p300 in presence or absence of purified mammalian TRF2. 

  

 

All protein ChIPs, other than histones, were normalized to 1% input and fold-change shown over 

respective IgGs. Statistical significance has been calculated using Mann-Whitney’s  non-parametric 

test  for individual  graphs where N≥5. In case of independent repetitions of the same experiment , 

unpaired T test with Welsh’s correction was performed for significance (p values :  * ≤ 0.05, ** ≤ 

0.01, *** ≤ 0.001, **** ≤ 0.0001). Error bar correspond to standard error of mean from three 

independent experiments unless N is stated otherwise 
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Figure 5  – TRF2 affects NFKappaB signaling through activation of IL1R1  

 

A. Scheme showing the IL1 pathway (cognate receptors and ligands) that leads to NFKappaB 

(p65/RELA) activation via sub-cellular intermediates. 

B-D. IL1B treatment (10 ng/ml) in HT1080 and MDAMB231 cells led to higher NFKappaB activation 

in cells with high TRF2. Activation of NFKappaB signaling was confirmed through Ser536 

phosphorylation of NFKappaB (normalized to total NFKappaB) up to 12 hours following IL1B 

stimulation in HT1080 (B) and MDAMB231 (C) cells; further, phospho-inhibitory-Kappa-B (p-IKB in  

(B)) and  NFkappaB activation in HT1080 versus HT1080-LT cells following IL1B stimulation (D) 

was consistent with TRF2-dependent activation of IL1R1. 

E. NFKappaB downstream targets –IL6, IL8 and TNF were checked in HT1080 cells post IL1A, 

IL1B and TNF A treatment (10 ng/ml respectively) for 24 hrs in control (scrambled siRNA) or 

TRF2 low (TRF2 siRNA  mediated knockdown) conditions respectively. 

F. NFKappaB downstream targets –IL6, IL8 and TNF were checked in HT1080 cells post IL1B  

treatment  (10 ng/ml) for 24 hrs in control or TRF2 over-expressed conditions in 

presence/absence of IL1 receptor antagonist (IL1RA; 20 ng/ml). 

 

 

 

In case of independent repetitions of the same experiment , unpaired T test with Welsh’s correction 

was performed for significance (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001). Error bar 

correspond to standard error of mean from three independent experiments unless N is stated 

otherwise. 
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Figure 6  – TRF2 mediated activation of IL1R1 results in higher TAM in TNBC tumors 

 

A-B. TRF2 and  IL1R1 levels in xenograft tumors in NOD SCID mice (see methods; control and 

TRF2 induced HT1080 cells; N=6)  was assessed by immuno-flow cytometry and  fluorescence 

signal for TRF2 and IL1R1 was plotted in the x-axis in log scale. Mean fluorescence signal from 

individual tumors in control and TRF2 induced tumors have been plotted in adjoining graphs. 

C. Percentage of  TAM was estimated in xenograft  tumors (HT1080 control  and HT1080- TRF2 

induced) using markers CD11b and CD206. The percentage values HT1080 control  and HT1080- 

TRF2 induced  tumors were plotted in the adjoining summary graph. 

D. mRNA expression for key cytokines- IL1A,IL1B, IL2,IL6,IL8 , TNF, IL10,IL4 and IL13  were 

checked in xenograft  tumors (HT1080 control  and HT1080- TRF2 induced); 18S was used for 

normalization. 

E. Scheme depicting relatively low infiltration of TAM in tumors with longer telomeres vis-à-vis 

tumors with short telomeres. Reduced non-telomeric TRF2 binding at the IL1R1 promoter in tumors 

with long telomeres, and consequent low IL1R1 activation, attenuated p65-mediated IL1-beta and 

macrophage infiltration. Figure created with BioRender. Com. 

 

F. Heat map summarizing mRNA expression of key cytokines across the model systems used in the 

study: TNBC tissue, TNBC derived organoids, xenograft tumors and ex-vivo cells in relation to 

telomere length. Fold change of gene expression (long/short telomeres) color coded as per the 

reference legend along y-axis. 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001) 
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Supplementary Figure 1A 

Supplementary Figure 1 

Supplementary Figure  1A:  

Gene Ontology analysis of top 500 telomere elongation correlated genes curated across 31 cancer 

types  (see methods). Top 10 hits for ‘biological processes’ represented in descending order of 

enrichment. Respective Fold enrichments shown by individual bars (Y-axis – top); the false 

discovery rate (FDR) shown by blue line. 

Fold enrichment 

False Discovery Rate (FDR) 

GO Biological Process 
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Supplementary Figure 1B 

Supplementary Figure 1C 
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Supplementary Figure  1B:   

Relative telomere length of Triple Negative Breast Cancer (TNBC) samples (N=94) by qRT PCR based 

method wherein signal from telomere specific primers was normalized to single copy number gene 36B4 

for individual samples. All samples were  run along with HT1080 DNA in the same PCR experiment  and 

telomeric signal from HT1080 was used as a reference (telomere length ~4.5 Kb) to which all TNBC 

samples were compared. The median telomere length shown by red bar; samples >50% of median were 

designated as long and <50% of median as short telomere samples (indicated by dotted line).  

Supplementary Figure  1C:   

 

mRNA expression of hTERT and TERC in six TNBC samples (long or short telomeres) normalized to the 

18S gene in respective samples. Statistical significance was calculated using Mann-Whitney’s  non-parametric 

test (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001) 
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Supplementary Figure 1D 

Supplementary Figure 1E 
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Supplementary Figure  1D:   

 

mRNA expression of M2 macrophage marker CD206 in six TNBC samples (long or short telomeres)  

normalized to the 18S gene in respective cases. Statistical significance was calculated using Mann-

Whitney’s  non-parametric test (p values:  * ≤ 0.05). 
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Supplementary Figure  1E:   

 

mRNA expression of hTERT and TERC in  five TNBC  organoids  (long or short telomeres) normalized to 

18S gene in respective cases. Statistical significance was calculated using Mann-Whitney’s  non-

parametric test (p values :  * ≤ 0.05, ** ≤ 0.01). 
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Supplementary Figure  1G-H:   

 
mRNA expression of hTERT and TERC in  HT1080 and HT1080-LT cells (normalized to GAPDH) and relative 

telomere length was assessed by flow-cytometry analysis of telomeric signal (FITC) plotted along x-axis in log 

scale. Statistical significance was calculated using t-Test with Welch's correction (p values :  * ≤ 0.05, ** ≤ 0.01, 

*** ≤ 0.001, **** ≤ 0.0001) 

 

Supplementary Figure  1F:   

CD206 expression was checked by immuno-flow cytometry in THP1 cells and macrophages 

differentiated from THP1 cells into M0 and M2 types (see methods) and plotted along X-axis in log scale .  

Bright-field  images at 10X magnification for each cell stage shown in right panel.  
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Supplementary Figure 1I Supplementary Figure 1J 
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Supplementary Figure  1I-J:   

 

mRNA expression of hTERT and TERC (normalized to 18S) in xenograft tumors in NOD-SCID mice 

injected with HT1080 and HT1080-LT cells. Similarly, mouse M2 markers CD163 and CD206 were 

checked in the xenograft tumors using human 18S for normalization. Statistical significance was 

calculated using Mann-Whitney’s  non-parametric test (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 

0.0001) 
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Supplementary Figure 1K 

Supplementary Figure 1K: 

Percentage of  F4/80 positive cells was estimated in xenograft  tumors from HT1080 or HT1080-LT 

cells  in top right quadrant. The percentage values for  HT1080  and HT1080-LT tumors shown in 

summary graph – right bottom.  
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Supplementary Figure  1M 

Supplementary Figure  1L:   

 
mRNA expression of IL1R1 and other key cytokines: IL1A, IL1B, IL2, IL6, IL8, TNF, IL10, IL4 and IL13 in long or 

short telomere cancer cells in TNBC tissue, TNBC derived organoids and xenograft tumors from HT1080 or 

HT1080-LT cells; the 18S gene was used for normalization in respective cases. 

Statistical significance was calculated using Mann-Whitney’s  non-parametric test (p values:  * ≤ 0.05, ** ≤ 0.01, 

*** ≤ 0.001, **** ≤ 0.0001) 

 

Supplementary Figure  1M:   

IL1R1 expression by immuno-flow cytometry in xenograft tumors from NOD-SCID mice injected with 

HT1080 or HT1080-LT cells (see methods) and plotted along X-axis in log scale.   
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Supplementary Figure 1N 

Supplementary Figure  1N: 

 

Correlation of IL1R1/L1B with 

CD163/CD206  from publicly available 

breast cancer  microarray dataset of 817 

TNBC patients (cBIOPORTAL; see 

methods).  
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Supplementary Figure 2 
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Supplementary Figure 2A 

TRF2 ChIP Seq reads on the 1L1R1 promoter 

Supplementary Figure 2B 

Supplementary Figure  2A:   

 
mRNA expression for IL1R1 and other key cytokines: IL1A, IL1B, IL2, IL6, IL8, TNF, IL10, IL4 and IL13 in long or 

short telomere HT1080 or HT1080-LT cells. GAPDH was used for normalization. 

Statistical significance was calculated using t-Test  with Welch’s correction (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 

0.001, **** ≤ 0.0001) 

 

Supplementary Figure  2B:   

 

Mapped reads on the IL1R1 promoter for TRF2 ChIP-seq (Mukherjee et al, 2019) in HT1080 cells  

(replicate 1 and 2) and respective  inputs  for  normalization; plotted using  publicly available software 

IGV (Integrated Genomics viewer)  with sequence alignment files. 
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Supplementary Figure 2C 
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Supplementary Figure 2D 
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Supplementary Figure  2C-D:   

 

TRF2 occupancy at telomeres following TRF2 ChIP in xenograft tumors (C) and ex-vivo cells in HT1080 

or HT1080-LT cells (D). 
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Supplementary Figure  2E-F:   

 
hTERT mRNA expression in TERT-inducible HT1080 cells (see methods) with different concentrations of 

doxycycline (E)  and at different days of induction (F). GAPDH was used for  normalization. 

Supplementary Figure  2G:   

 

TRF2 occupancy at telomeres following TRF2 ChIP in TERT-inducible HT1080 cells at different number 

of days of induction. 
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Supplementary Figure  2 H-J:   

Relative telomere length by qRT-PCR (H); TRF2 occupancy at telomeres following TRF2 ChIP (I); and, secreted 

IL1B (ng/ml) (J) in  MDAMB 231 or  MDAMD231-LT cells in two independent experiments. Statistical significance 

using t-Test  with Welch’s correction (p values : * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001) 
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TRF2 ChIP-seq peak 

chr2:102686361-102686875 
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CCTCCTTAAGTGAAAAATCTGTGAGGAGTTTTC

TATCTTTCTAAGTCTTTGTGGCACACTTATCACA

TGCATAGTACTATTTCTCAAGTTACCCAGGCAC

ACACAGATGTATGGCTTTCAGGAAGCCATACAT

CTGTGTAGCTCTGAGGCCCAGCCTTGTTCAACA

CTTCACTCAGAAGAATTGCTGGCCTGATGACCA

ACAATAATTGTCAACAACTTAAAACTTCATTGAC

GGCTCCTAAAAAAAATCAGTGTGCATGTGTGTG
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CATATCAAAA – 3’ 
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Supplementary Figure 3  

 

A-C. TRF2 knockdown in HT1080 cells using TRF2-specific shRNA (A) and previously reported 

siRNA (B) following 48 hrs of transfection. Over-expression of TRF2 WT (flag-tag) and DNA-binding 

mutants, delB and delM  in HT1080 cells following 48 hrs of transfection (C). 

D. TRF2 knockdown in MDAMB231 cells using TRF2 specific shRNA  post 48 hrs of transfection. 

E. IL1R1 mRNA expression in MDAMB231 cells post transfection of TRF2 WT cDNA (over-

expression)  and TRF2 shRNA  (silencing) for 48 hrs. GAPDH was used as a normalizing control. 

F-G. IL1R1 protein expression in MDAMB231 cells post TRF2 over-expression  for 48 hrs   by  

western blot (F) and immuno-flow cytometry (G). 

H. TRF2 occupancy on the IL1R1 promoter in HT1080, MDAMB231, HEK293T and MRC5 

immortalized cells by Chromatin immunoprecipitation (ChIP) followed by qPCR. Primers spanning 

+200 to -1000 bp of TSS  were used to check for TRF2 enrichment on the gene promoter. 3’UTR 

and -20 Kb upstream of TSS used as negative control for TRF2 binding;  fold-change of occupancy 

was calculated over mock IgG after normalizing signal to 1% input.  

I. IL1R1 mRNA expression in HEK293T and MRC5 immortalized cells post transfection of TRF2 WT 

cDNA (over-expression) for 48 hrs. GAPDH was used as normalizing control. 

J-K. G4 motifs (A and B) shown on the IL1R1 promoter upstream of TSS and G4 disrupting 

mutations marked on the motifs.  

L. IL1R1 mRNA expression (normalized to GAPDH) in HT1080 cells following treatment with 

different concentrations of the G4 binding ligand 360A. 

 

 

For assessment of statistical significance of independent repetitions of the same experiment , 

unpaired T test with Welsh’s correction was performed for significance (p values :  * ≤ 0.05, ** ≤ 

0.01, *** ≤ 0.001, **** ≤ 0.0001). Error bar correspond to standard error of mean from three 

independent experiments unless N is stated otherwise. 
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Supplementary Figure 4 

 

A. Enrichment of histone marks H3K27ac, H3K4me3, H3K27me3, H3K9me3 (normalized to total 

H3) on the IL1R1 promoter in HT1080 cells in TRF2 high (induced) condition and corresponding 

control cells. 

B. ENCODE curated transcription factors/histone remodelers on the IL1R1 proximal promoter (up 

to 1500 bp from TSS) across seven cell lines was plotted using UCSC genome browser hg19 

human genome assembly. P300 marked in red box for the two sites of enrichment. 

C. TRF2 WT or DNA binding mutants, delB or delM were transiently over-expressed in HT1080 

cells in TRF2-silenced background; expression of TRF2 and respective mutants (probed by anti-flag 

antibody) and p300. GAPDH as used as  loading control. 

D. p300 levels in control and TRF2 induced condition following cycloheximide treatment at 0, 12 

and 24 hrs. 

E. p300, IL1R1 and TRF2 protein levels in HT1080 or HT1080-LT cells; GAPDH used as loading 

control. 

F. Immunofluorescence microscopy for p300 in HT1080 or HT1080-LT cells. Mean p300 signal for 

25 individual cells plotted in graph below. 

G-I. TRF2 PTM mutants (K176R, K179R, K190R, K293R) and TRF2 WT transiently expressed and 

confirmed by TRF2 western (G); mRNA expression (normalized to GAPDH) (H) and protein levels 

for IL1R1 (I) in HT1080 cells after 48 hrs; GAPDH used as loading control in the western blots. 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs where N≥5 . For assessment of statistical significance of independent repetitions 

of the same experiment , unpaired T test with Welsh’s correction was performed for significance (p 

values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001). Error bar correspond to standard error of 

mean from three independent experiments unless N is stated otherwise. 
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Supplementary Figure 5A 
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Supplementary Figure  5 

 

A. HT1080 cells transiently transfected with TRF2 siRNA or scrambled control siRNA and treated 

with IL1A, IL1B or TNF-alpha (10 ng/ml respectively) after 48 hrs of transfection. IL1R1, TRF2, 

p65-Ser536 phosphorylation, total p65  and GAPDH (as loading control) probed by western blot 

following 3 hours of cytokine treatment. 

B. p65 downstream targets: IL6, IL8 and TNF in HT1080 cells following treatment with IL1RA  

treatment  (5,10 or 20 ng/ml) for 24 hrs. GAPDH was used as for normalization. 

C. Secreted IL1B (pg/ml) in control or stable TRF2-expressing HT1080 cells in two independent 

replicates. 
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Supplementary Figure  6 

Supplementary Figure 6A 

Supplementary Figure 6B 
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Supplementary Figure  6 

 

A. mRNA expression of IL1R1 in xenograft  tumors (HT1080 control  or HT1080-TRF2 induced); 

human 18S was used for normalization. 

B.  mRNA expression of mouse M2 macrophage markers CD163 and  CD206 in xenograft  tumors 

(HT1080 control  or HT1080-TRF2 induced); human 18S was used for normalization. 

C. Invasion assay in HT1080 control or TRF2-induced cells in presence/absence of THP1-derived 

M2 macrophages. Invaded HT1080 cells were stained for crystal violet stain for visualization. 

 

Statistical significance has been calculated using Mann-Whitney’s  non-parametric test  for 

individual  graphs (p values :  * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001) 
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Supplementary Figure 7 

Supplementary Figure  7 

 

Volcano plot for expressed genes in RNA-seq performed in HT1080 or HT1080-LT cells where the x-axis 

has log-2 fold change for genes and the y-axis represented in log-10 values for adjusted p values. Out of 

the 4315 differentially expressed genes, 2079 were upregulated in HT1080-LT cells (left). Gene set 

enrichment analysis on selected key IL1 signalling related (pro and anti-inflammatory) genes and key pro 

and anti inflammatory cytokines (right). Color key represents fold enrichment. 
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