
A method to build extended sequence context models of point

mutations and indels

Jörn Bethune1,*, April Kleppe1,* and Søren Besenbacher1,2,#

1 Department of Molecular Medicine, Aarhus University, Denmark
2 Bioinformatics Research Centre, Aarhus University, Denmark
* Contributed equally
Corresponding author (besenbacher@clin.au.dk)

Abstract

The mutation rate of a specific position in the human genome depends on the sequence

context surrounding it. Modeling the mutation rate by estimating a rate for each possible

k-mer, however, only works for small values of k since the data becomes too sparse for

larger values of k. Here we propose a new method that solves this problem by grouping

similar k-mers using IUPAC patterns. We refer to the method as k-mer pattern partition and

have implemented it in a software package called kmerPaPa. We use a large set of human

de novo mutations to show that this new method leads to improved prediction of mutation

rates and makes it possible to create models using wider sequence contexts than previous

studies. Revealing that for some mutation types, the mutation rate of a position is

significantly affected by nucleotides that are up to four base pairs away. As the first method

of its kind, it does not only predict rates for point mutations but also indels. We have

additionally created a software package called Genovo that, given a k-mer pattern partition

model, predicts the expected number of synonymous, missense, and other functional

mutation types for each gene. Using this software, we show that the created mutation rate

models increase the statistical power to detect genes containing disease-causing variants

and to identify genes under strong constraint, e.g. haploinsufficient genes.

Introduction

The germline mutation process is the source of all genetic variation, including all adaptive

and deleterious variants. Understanding and modeling this process can be used to calibrate

variant calling1, infer demographic history2, infer patterns of genome evolution3, identify

sequences of clinical relevance for human diseases4, and to infer selective constraints of

genes5. The main factor determining the mutation rate of a given site in the human genome

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/2DaBN
https://paperpile.com/c/DbgNe1/VpPUM
https://paperpile.com/c/DbgNe1/FmD3t
https://paperpile.com/c/DbgNe1/Uk3TI
https://paperpile.com/c/DbgNe1/BPEOL
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

is the sequence context surrounding the position. For example, spontaneous deamination of

methylated cytosines results in ten times higher C-to-T rates at CpG sites6–9. Other factors

that affect the mutation rate - such as GC content, CpG islands, epigenetic modifications -

are associated with varied mutation rates depending on nucleotide context10 and thus cannot

be studied without taking sequence context into account.

In this article, we introduce a new method to estimate mutation rates based on nucleotide

context. Previous studies estimated such rates by assigning an independent rate to each

k-mer10,11 or using a logistic regression model with a dummy variable for each nucleotide at

each k-mer position12 and allowing interactions between at most four positions. Both these

strategies have been used to build models that predict mutation rates using 7-mer contexts

but become infeasible for longer contexts. Furthermore, these previous studies focused on

point mutations, and little effort has been given to estimating the position-specific rate of

germline indels. Neither Carlson et al.10 nor Aggarwala and Voight12 consider indels.

Samocha et al. calculate the rate of frame-shift indels per gene but do not model the indel

mutation probabilities at each site11. Instead, they estimate the rate of frame-shift indels in a

given gene by assuming that the rate of such variants is proportional to the rate of nonsense

mutations. While some correlation exists between the number of polymorphic nonsense

mutations and the number of polymorphic frame-shift indels, this correlation is primarily due

to selection and not mutation, which makes the effectiveness of that strategy doubtful. Since

frame-shift indels account for 44% of the LoF mutations in human genes5, making models

that can predict the rates of such mutations should be considered an important task.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/fjYvR+972tO+cpwYX+tfv7o
https://paperpile.com/c/DbgNe1/7YNsc
https://paperpile.com/c/DbgNe1/lQcfu+7YNsc
https://paperpile.com/c/DbgNe1/CIy3l
https://paperpile.com/c/DbgNe1/7YNsc
https://paperpile.com/c/DbgNe1/CIy3l
https://paperpile.com/c/DbgNe1/lQcfu
https://paperpile.com/c/DbgNe1/BPEOL
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1. Overview of k-mer pattern partitioning (kmerPaPa) model.
Input data consists of a list of observed mutations (here C→G mutations) and a bed file with

regions sufficiently covered by WGS data to detect mutations. From this, we calculate a

table with the number of times each possible k-mer is observed with the central base

mutated and unmutated. The k-mers are then grouped using a set of IUPAC patterns so that

each k-mer is matched by one and only one pattern. Out of the exponentially many possible

pattern partitions the one that minimizes the loss function is chosen.

Results

To overcome the problem that many k-mers will have few or zero observations if we use long

k-mers to predict the mutation rates, we propose a new method that we call k-mer Pattern

Partition (kmerPaPa). The main idea is that we partition the set of all k-mers by a set of

IUPAC patterns so that each k-mer is matched by one and only one of the IUPAC patterns in

the set. This partition should be done so that a pattern matches k-mers with similar mutation

probabilities. Fig. 1 shows an example of how the 16 possible 3-mers containing C→G

mutations can be partitioned using 10 patterns. An exact algorithm to calculate the pattern

partition that optimizes the loss function is presented in the methods section. The loss

function contains two regularizing hyperparameters c (complexity penalty), and 𝛼

(pseudocount), which are fitted using 2-fold cross-validation.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2. kmerPaPa performance on test data compared to predicting a rate per k-mer
All plots show predicted rates on training data (even-numbered chromosomes) on the x-axis

and observed rates on test data (odd-numbered chromosomes) on y-axis. First row (“all

k-mers”) show the rates for each k-mer. Second row (“kmerPaPa”) show the rate for each

k-mer pattern. The sizes of the points reflect the number of times the k-mer/pattern is

observed in the genome a) The predictions for point mutations for four different values of k.

b) The predictions for indels for 4 different values of k.

Testing prediction of point mutation probabilities.
To make models that only reflect the mutation rate and have as little bias from selection and

biased gene conversion as possible, we use observed de novo mutations as training input to

our model (see methods). To test the model, we first separate the data into a test and

training set, using the even-numbered chromosomes for training and the odd-numbered as

test data (see supplementary Fig. S1 for an overview of the data used in different analyses).

We then fit independent pattern partition models to each of the six mutation types (A→C,

A→G, A→T, C→A, C→G, C→T) for different values of k. We compared the performance of

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

kmerPaPa to a model that assigns a rate to each k-mer (called “all k-mers” in Figure 2). As

with kmerPaPa we also include a pseudocount in the “all k-mers” model and fit its value

using 2-fold cross-validation. Figure 2a shows the test out-of-sample performance of these

models for different values of k. For kmerPaPa, the joint Nagelkerke r^2 across the 6

mutation types keeps increasing as k increases. Whereas the alternative “all k-mers'' model

begins overfitting at 5-mers and performs poorly for larger values of k. The results reveal that

nucleotides situated more than three base pairs away can affect a position's mutation rate as

the 9-mer partition outperforms the 7-mer partition in four of the six different mutation types,

even though the 9-mer models tend to include fewer patterns (see supplementary Fig. S2).

Fig. 3. Counting k-mers for indels.
The exact positions of indels are often indeterminable based on the sequence data. To

handle this we enumerate all possible events creating the alternative sequence and select

one of them at random. We do this independently for each indel mutation. Unlike point

mutations, we count both the observed k-mer and its reverse complement. a) Deletion

example. For deletions where we consider both the k-mer around the start breakpoint and

the end breakpoint. The reverse complement of a deletion start k-mer is a deletion end

k-mer and vice versa. b) Insertion example.

Testing prediction of indel mutation probabilities
Besides point mutations, it is essential to consider insertions and deletions. We assign

mutation probabilities to indels by looking at the k-mers around the breakpoints - one for

insertions and two for deletion (start and end). However, unlike point mutations, it is often

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

impossible to precisely determine the position of an indel. Usually, more than one possible

mutation event could have changed the reference sequence to the alternative sequence. If,

for instance, “CAG” is changed to “CAAG,” it is impossible to know whether the DNA break

and base insertion happened between C and A or between A and G. We handle this

uncertainty by enumerating all the possible positions and randomly selecting one of them for

each observed event (Figure 3). We evaluate the performance of the predicted indel rates

using the same test/train split as we used for point mutations (Figure 2b). Both for all-kmers

and kmerPaPa the out-of-sample performance increases with increased k. But the

kmerPaPa model outperforms the all-kmers model for all values of k.

After validating that the extended k-mer models built by kmerPaPa give good results on an

independent test set, we trained new kmerPaPa models on the whole data set. The following

sections use these models to investigate the sequence contexts that increase mutation

rates, find genes harboring disease-causing variants, and quantify the intolerance to

mutations of human genes.

Identification of patterns with unusually high or low mutation rates.
An advantage of a k-mer pattern partition compared to a regression model is the direct

interpretability of the output. By ordering the output patterns based on their mutation rate, we

can directly observe patterns with extreme mutation rates. Figure 4 shows the relative

mutation rate of each of the patterns for each of the mutation types (blue points) and the rate

of each 3-mer (red points). For most mutation types the range of the predicted mutation

types using k-mer patterns is an order of magnitude larger than those predicted by 3-mers.

Many of the patterns with high point mutation probabilities match the patterns previously

reported by Carlson et al.10 and Aggarwala and Voight12. For instance, the top pattern for

A→G mutations “YYCAATG” match the CCAAT motif reported by Carlson et al.10 and the

YCAATB pattern reported by Aggarwala and Voight12.

Previous studies have reported that polymerase slippage at short tandem repeats is

responsible for 75% of indels13. It is thus not a surprise that many of the indel patterns we

observe contain repeated sequences. For insertions, we observe the highest mutation rate

for (T)n and (A)n mononucleotide repeats followed by (G)n and (C)n repeats. For the

deletions, the top patterns correspond to (AG)n and (CT)n di-nucleotide repeats. After these,

we observe a high deletion rate of the middle two (underlined) bases in the palindromic

sequence: CACATGTG. This sequence has not previously been described as a mutation

hotspot and the reason behind its high deletion rate is unknown. One possible explanation is

that the palindromic sequence can form a hairpin structure. DNA hairpins are known to

cause transient polymerase stalling, which leads to indel formation, whereas other

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/7YNsc
https://paperpile.com/c/DbgNe1/CIy3l
https://paperpile.com/c/ZYpHtK/3RRt
https://paperpile.com/c/DbgNe1/7YNsc
https://paperpile.com/c/ZYpHtK/KYfR
https://paperpile.com/c/DbgNe1/CIy3l
https://paperpile.com/c/DbgNe1/eaLLc
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

alternative DNA structures (e.g. G4) cause persistent polymerase stalling and result in point

mutations14.

Fig. 4. The relative mutation rate for each of the patterns in the kmerPaPa models.
The blue points show the rate for the kmerPaPa patterns, the red points show the rate for

each 3-mer. The dashed vertical line corresponds to the average mutation rate for the

mutation type and the mutation rate values on the x-axis are relative to this average and on

a log-scale. The size of the points reflect the number of genomic sites that match the pattern.

Detection of genes where de novo mutations cause disease.
Genes in which germline mutations cause disease can be found by looking for genes with

surprisingly many de novo mutations in afflicted children. The k-mer pattern partitions we

have created can be used to calculate how many mutations of a specific functional category

(synonymous, missense, etc.) to expect in a given gene.

We have created a software tool - Genovo - to enumerate all the possible variants of a

specific functional category and look up their mutation rates. Given a list of observed

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/g4JSw
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

mutations, Genovo can then calculate p-values by sampling from the Poisson-Binomial

distribution given by this list of rates. This functionality is similar to that provided by the tool

denovolyzeR15, so we compare our results to this tool.

As a first test, we compare the genic mutation rate predicted by Genovo and denovolyzeR to

the number of segregating variants in each gene. First, we look at the number of rare (MAF

<1%) synonymous variants for each gene in the gnomAD database, where we observe a

better correlation with the synonymous rate per gene estimated by Genovo (r=0.977) than by

denovolyzeR (r=0.958) (Fig. 5a). Most of the variation in the number of synonymous variants

per gene can be explained purely by the genes' length. But if we look at the rate per site and

divide both the observed number and the predicted rate by the length of the coding

sequence, we still observe high correlations (r=0.699 for Genovo and r=0.679 for

denovolyzeR) (Fig. 5b). For nonsynonymous variants, we expect smaller correlations since

differences in selective pressure between genes greatly influence these. For all classes, we

observe better correlations with the rates predicted by Genovo than those predicted by

denovolyzeR.

Fig 5. Correlation between the predicted genic rate for a mutation type and the
number of segregating variants of that type. a) Pearson correlation coefficient between

the observed number of mutations per gene and the expected number using Genovo and

denovolyzeR. b) Pearson correlation coefficient between the observed number of mutations

per coding position and the expected number per coding position for each gene using

Genovo and denovolyzeR.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/tfH25
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Secondly, we want to compare the statistical power of Genovo and denovolyzeR when it

comes to identifying disease-causing genes. To do this, we look at 4293 trios from the

Deciphering Developmental Disorders consortium16 and divide the set of trios into an equally

sized test and train data set. 350 genes contain at least one loss-of-function(LoF) mutation in

the test data set. 45 of these show significant LoF enrichment after Bonferroni correction

according to Genovo, and 33 of these are significant in the test data set. Running

denovolyzeR yields 34 significant genes in the train set, 24 of which are significant in the test

set. This means that Genovo has a higher validation rate in the independent test data set

(73.3% compared to 70.6%) even though it identified a larger number of significant genes in

the training data set.

Quantifying genic tolerance to Loss of Function mutations
The ability to predict the number of expected mutations in a gene is not only relevant for

finding genes where a specific cohort has an enriched number of functional mutations. We

can also use it to find genes that contain fewer segregating variants than expected because

deleterious variants have been purged from the population by selection. The types of

variants that are most likely to be deleterious are those that we expect to completely

inactivate a gene, such as stop-gain, essential splice, and frameshift variants. The observed

number of such loss-of-function (LoF) variants for a gene divided by the expected number

predicted by our mutation rate model - the LoF O/E ratio - provides an estimate of

evolutionary constraint. If a gene has a LoF O/E ratios around one it indicates that it is

evolving neutrally and that no substantial fitness cost is associated with losing the gene. In

contrast, haploinsufficient genes where two functional alleles are essential for survival will

have LoF O/E ratios at or close to zero. We have calculated this ratio for each gene using

the observed mutations from gnomADv2 and compared them to the ratios reported for each

gene by gnomAD. Looking at genes predicted to be haploinsufficient by ClinGen17 we

observe that 55.5 percent of the genes have a Genovo O/E ratio in the first decile compared

to 47 percent for O/E ratio calculated by gnomAD (see Fig. 6a). If we instead of the LoF O/E

ratio use the upper bound of the 90 confidence interval of the ratio (LOEUF) as suggested by

Karczewski et al5 we see similar results (see Fig. 6b). We also compared Genovo and

gnomAD using two lists of essential genes used in the gnomAD article5 and obtained similar

results (see supplementary Fig. S4). If we look at the ability to classify whether a gene is

haploinsufficient we get significantly higher AUC values using Genovo (p-value: 2.42 e-153,

See Fig. 6c).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/aFNvL
https://paperpile.com/c/DbgNe1/7XQhX
https://paperpile.com/c/DbgNe1/BPEOL
https://paperpile.com/c/DbgNe1/BPEOL
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig 6. Inferring constraint of haploinsufficient genes. a) Comparison of

observed/expected ratio for loss of function variants (LoF O/E ratio) inferred by Genovo and

gnomAD (blue and orange, respectively). X-axis depicts LoF O/E ratios sorted into deciles,

whereas the y-axis depicts the percentage of genes in each decile. b) Comparison of

categorisation by LOEUF scores inferred by Genovo - and LOEUF score by gnomAD. X-axis

depict LOEUF scores sorted into deciles, whereas the y-axis depicts the percentage of

genes in each decile. c) Receiver Operating Characteristic (ROC) curve comparing the

ability to predict whether a gene is annotated as haploinsufficient using LOEUF scores from

gnomAD and Genovo.

Discussion

The k-mer pattern partition method introduced in this manuscript makes it possible to build

robust models of the germline mutation process using k-mers. We have demonstrated the

method by building models for each of the six point mutation types as well as short insertions

and deletions using de novo mutations as input. The results show that the out-of-sample

error decreases as k increases proving that even nucleotides four bp away from a given

position are informative about its mutation probability. An advantage of the pattern partition

models is their interpretability, with overrepresented patterns readily available not requiring

any further analysis of the created models. The k-mer pattern partition approach is general

and could, in principle, also be used to solve other problems where the input is small

position-specific k-mers. The main shortcoming of the method in its current form is that the

presented dynamic programming algorithm is exponential in running time which makes it

infeasible to use for k-mers longer than nine bases. A possible improvement to alleviate this

problem would be to consider heuristic algorithms that could quickly find a good (but not

necessarily optimal) solution and thus enable analyses with larger k’s.

The predictive models created using kmerPaPa are not only robust, they have the added

benefit that they are easily interpretable. The method can be seen as a dimensionality

reduction method that reduces the high dimensional k-mer space to a lower dimension

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

space where each dimension is represented by a IUPAC pattern. This set of patterns with

associated mutation rates makes it very easy to see the general differences between the

high mutation rate k-mers and low mutation rate k-mers. Other methods have previously

been used to create models of point mutation rates based on sequence context but it is

novel that we in this study also create robust models of indel mutation rates based on

sequence context. To do that, we had to overcome the problem that the exact position of an

indel often is indeterminable. We do this by enumerating all the possible positions and

randomly choosing one of them for each indel. Future studies that train indel kmerPaPa

models using larger input data sets and further examine the resulting patterns can hopefully

increase our understanding of the indel mutation process.

Besides the k-mer pattern method implemented in the kmerPaPa software, we also present

a tool called Genovo that can calculate the expected number of mutations with a specific

functional consequence in a gene. Furthermore, Genovo can also calculate p-values for

whether a gene contains significantly more observed mutations of a particular functional

category than expected. This functionality can be used to find genes with causative de novo

mutations in disorders such as autism and developmental disorders. We have compared

Genovo to denovolyzeR, which contains similar functionality. Trying to predict the number of

synonymous mutations in each gene reported in gnomAD we see that we do slightly better

than denovolyzeR. Our ability to predict the number of frameshift mutations in a gene is,

however, much better than denovolyzeR. This reflects that we train independent mutation

rate models for insertions and deletions whereas denovolyzeR calculates the expected

number of indel variants by assuming a correlation with the number of point mutations.

Unlike denovolyzeR, which is based on a specific reference genome (hg19) and gene

annotation, Genovo is more general and can calculate expectations and p-values for any

reference genome and gene annotation. This allows users to use the newest reference

genome and gene annotation at any time and makes it possible to use kmerPaPa and

Genovo to analyze enrichment or depletion of functional mutational categories in other

species.

In conclusion, we have created a new robust method for predicting mutation probabilities

based on sequence context for both point mutations and indels. Furthermore, we have

developed a flexible software tool that makes it easy to use the created mutation rate models

to find genes where de novo mutations cause disease or to measure the evolutionary

constraint on genes.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Definition of k-mer pattern partition:
A k-mer pattern partition is a set of IUPAC-encoded nucleotide patterns that partitions a set

of k-mers so that each k-mer is matched by one and only one of the IUPAC patterns in the

set. To find a pattern partition that groups k-mers with similar mutation rates as well as

possible while not overfitting the data, we select the partition P= {p1, …, pl} that optimizes the

following loss function:

Where Mi and Ui are the number of mutated and unmutated positions that match the i’th

pattern (pi), and c is a regularizing complexity penalty. And ri is the rate estimate for sites that

match the i’th pattern regularized to be closer to the mean mutation rate, 𝜇, using a pseudo

count, 𝛼:

The two regularizing hyperparameters c, and 𝛼 and fitted using cross-validation.

Calculating the optimal pattern partition
Starting with the most general pattern, we can create any possible pattern partition by:

1. Picking a position in the pattern.

2. Splitting the IUPAC code at that position into two subcodes that form a partition (we

call such a split a two-partition).

3. Possibly repeating these steps on each of the two sub-patterns.

Table 1 shows all the possible two-partitions for each IUPAC code.

IUPAC code Set Two-partitions

S {C,G} (C,G)

W {A,T} (A,T)

R {A,G} (A,G)

Y {C,T} (C,T)

K {G,T} (G,T)

M {A,C} (A,C)

B {C,G,T} (C,G), (G,Y), (T,S)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

D {A,G,T} (A,K), (G,W), (T,R)

H {A,C,T} (A,Y), (C,W), (T,M)

V {A,C,G} (A,S), (C,R), (G,M)

N {A,C,G,T} (A,B), (C,D), (G,H), (T,V), (R,Y), (S,W), (K,M)

Table 1 The definition of all IUPAC characters and the list of all possible two-partitions for

each IUPAC character.

Since all pattern partitions can be created using the strategy above, we can find the minimal

loss for the pattern, p, using the following recursion formula:

Using this formula, we compute the optimal partitions bottom-up using dynamic

programming so that the optimal partition for a given pattern is never calculated more than

once. This algorithm's running time and memory usage are proportional to the number of

possible patterns - and thus exponential in k. Our python implementation, speeded up using

numba18 for just-in-time compilation, can calculate the optimal 9-mer pattern partition for

C→T mutations in ~4 hours (given 𝛼 and c). If we wanted to calculate the optimal 11-mer, we

would, however, need to multiply this with 15^2 = 225, so that is not feasible using this

algorithm. To find the optimal 𝛼 and c we do cross-validation over a grid and this means that

we need to calculate the optimal pattern for each fold and each 𝛼 and c combination. This

grid search is, however, easy to parallelize since each parameter combination can be run

separately on different machines.

De Novo Mutations and covered regions
To train kmerPaPa models, we use de novo mutations from 6 different WGS studies of

parent-offspring trios19–24. Together these studies include 379330 autosomal point mutations

from 7206 trios. Four of the six studies also report indel mutations (39877 autosomal

variants). Studies mapped to hg19 were first lifted to hg38.

Detection of de novo mutations requires strict filters and usually, there will be a substantial

fraction of the genome where de novo mutations cannot be called due to insufficient

coverage or low complexity sequence. We do not know the exact genomic regions where a

mutation could have been called in each of the six studies. To deal with this, we have chosen

a conservative set of regions - the strict callable mask from the 1000 genomes project25 -

and assume that mutations could have been called in this subset of the genome in all of the

studies. Because we want to infer a genome-wide mutation model, we further exclude the

C→G enriched regions described by deCODE26 since these are known to have mutation

patterns that differ substantially from the average. After removing the C→G enriched regions

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/wlMjm
https://paperpile.com/c/DbgNe1/U95su+1eFkg+96Jpi+nyVfm+4VDzH+dlH8R
https://paperpile.com/c/DbgNe1/20BNQ
https://paperpile.com/c/DbgNe1/KXsnZ
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

from the 1000g callable, the callable regions contain 1754 million autosomal sites and after

discarding all mutations that fall outside these regions, we are left with 249437 autosomal

SNVs and 22331 autosomal indels.

We use the program kmer_counter (https://github.com/BesenbacherLab/kmer_counter) to

calculate the k-mer counts used as input kmerPaPa. As explained in the results section we

first test the kmerPaPa method by using the even-numbered chromosomes as training data

and the odd-numbered chromosomes as test data. Afterwards, we train models using

mutations on all chromosomes (see Supplementary Fig. S1). Besides training indel models

using all insertions and all deletions as presented in Fig. 4 we also train separate models for

indels that are a multiple of 3 and indels that are not a multiple of 3. These models are used

as input for the Genovo software to allow it to calculate separate probabilities for frame-shift

and in-frame indels.

Genovo
From a list of observed mutations the Genovo software can determine the number of 1)

synonymous, 2) missense, 3) nonsense, 4) start-codon disruption, 5) stop-codon disruption,

6) canonical splice site disruption 7) inframe indel and 8) frame-shift indel events in each

transcript. Furthermore, the software takes the genomic sequence of every transcript and

enumerates all possible point mutations. For each possible point mutation, it determines the

type of point mutation and its probability derived from our kmerPaPa models. The possible

mutations of each mutation type are tallied up to calculate the expected number of point

mutations of each mutation type. In addition, the possible mutations and their probabilities

are used to calculate a Poisson-binomial distribution of mutation events for every transcript,

because each possible mutation event has a different probability to occur. We then sample

from this distribution to calculate the p-value for the number of observed mutations of each

mutation type and to calculate the confidence interval around the number of expected

mutations (see Supplementary Fig. S3.)

Scaling mutation rates.
The mutation rates output by kmer-PaPa corresponds to the number of mutations expected

in the number of individuals that we have data from. To turn these estimates into rates per

generation we multiply all SNV rates with a factor so that the average mutation rate becomes

1.28×10-8 26. And we scale indel rates to have an average rate per site of 0.68×10-9 27.

In Genovo these mutation rates should then be scaled to reflect the number of generations

that the observed mutations correspond to. To avoid that some mutations get probabilities

above one for data sets with many samples we use the following formula to scale the rate

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://github.com/BesenbacherLab/kmer_counter
https://paperpile.com/c/DbgNe1/KXsnZ
https://paperpile.com/c/DbgNe1/EBjAC
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

per base per generation, r, to get the probability that this mutation has occurred in ngen

observed generations:

For the gnomAD analysis where we do not have de novo mutations from a certain number of

trios but segregating variants accumulated over an unknown number of generations, we set

ngen so that the number of expected synonymous mutations fit the observed number of

synonymous mutations in the whole exome.

Correction for coverage
Coverage bias in exome sequencing data results in fewer sequenced individuals for some

transcripts compared to others in the gnomADv2 data. This means that the expected number

of mutations predicted by Genovo will be too high for genes that have low coverage. To

correct for this we fit a lowess curve using the statsmodels package 28 in python, to a scatter

plot with synonymous observed/expected values (y-axis) vs. the number of called samples

(x-values) for each transcript (see Supplementary Fig. S5). The number of called samples

for a transcript was estimated as the average AN (from the gnomAD2 vcf file) over all

variants in the transcript. In the lowess-function, we used 0.05 as the fraction of the data

used when estimating each y-value. Based on this inference, we made a cut-off where we

only kept transcripts that have an average AN value above 50000. For each transcript, we

then divided the expected variant count with the corresponding lowess estimate for all

variant classes to get a coverage corrected expectation.

Running Genovo
To produce the expected variant count for each transcript we ran Genovo using hg19 and

gencode v. 19 (same as used for gnomADv2) using a scaling factor of 2.2×10-7 . Then we

applied the coverage correction as described above. For the comparison with denovolyzeR

shown in fig. 5 we used the VEP annotations provided in “gnomad.exomes.r2.1.1.sites.vcf“

to get the observed number of variants in each functional class.

Of the 4293 trios in the DDD data set 3664 contain at least one exome mutation. When

splitting the data into test and training data sets we put half of the 3664 individuals with a

mutation in each group. When calculating p-values using Genovo we did it using 10 million

random samples from the null model. For both Genovo and denovolyzeR we do bonferroni

correction of the training set p-values based on the number of genes that have at least one

observed LoF mutation in the training data (350 genes). For each gene we only test the

transcript used by denovolyzeR when running Genovo.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/zmYCC
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Calculation of Genovo LOEUF score
When calculating the "loss-of-function observed/expected upper bound fraction” (LOEUF

score) 5 from the output of the Genovo software we do it by dividing the number observed

LoF variants by the lower bound of the 90% confidence interval of the expected number of

LoF variants. Like the other expected values this lower bound used in the denominator had

also been adjusted for coverage differences between transcripts as described above in the

section Correction for coverage. As there were many transcripts with zero observed

mutations, we furthermore added a pseudo score of 0.5 to all values of observed and

expected LoF.

gnomAD and Genovo comparison
We used the pre-calculated LoF O/E ratios and LOEUF scores provided in the publicly

available data provided by the gnomAD consortium

(gnomad.v2.1.1.lof_metrics.by_transcript.txt.bgz) to compare O/E ratios and LOEUF scores

between gnomAD and Genovo. We made sure that we compared transcripts that we had

data for in both gnomAD and Genovo datasets. Thereafter, we split the transcripts into

deciles and inferred how many transcripts were found in each decile. We did this for each

model - gnomAD or Genovo - and visually compared the two for three different groups of

genes that were : essentiality of genes inferred by two lists (mouse gene knockout

experiments and cellular inactivation assays) and haploinsufficient genes. We used the

same curated gene lists that were used in used in the gnomAD paper5 downloaded from

https://github.com/macarthur-lab/gene_lists; haploinsufficient genes according to ClinGen

Dosage Sensitivity Map (as of Sep 13 2018)17, genes deemed essential in mouse29–31, genes

deemed essential in human32, and genes deemed essential and non-essential in human by

CRISPR screening33.

We conducted the ROC AUC analysis by using the sklearn.metrics.roc_curve function from

the scikit-learn module34 in python. For each of the AUC scores yielded for each prediction

score (gnomAD or Genovo), we also conducted a DeLong test35 to infer whether the AUC

scores were significantly different. To conduct this test we used python code adapted from

https://github.com/Netflix/vmaf/.

Data Availability

All input de novo mutation data sets used as input are publicly available. Two of them can be

found as supplementary tables in the articles reporting them19,20. Two are available using

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/BPEOL
https://paperpile.com/c/DbgNe1/BPEOL
https://github.com/macarthur-lab/gene_lists
https://paperpile.com/c/DbgNe1/7XQhX
https://paperpile.com/c/DbgNe1/dYZGK+PHhfZ+BQNUA
https://paperpile.com/c/DbgNe1/MAbUk
https://paperpile.com/c/DbgNe1/nS3cM
https://paperpile.com/c/DbgNe1/0rYJN
https://paperpile.com/c/DbgNe1/4DLnx
https://github.com/Netflix/vmaf/
https://paperpile.com/c/DbgNe1/U95su+1eFkg
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

links to external files provided in the articles21,24. The last two data sets22,23 can be

downloaded from denovoDB36.

The kmerPaPa models trained on even-numbered chromosomes are available in

Supplementary table 4. The kmerPaPa models trained on all chromosomes are available in

Supplementary table 5. These models formatted as input files to Genovo can furthermore be

found at https://github.com/BesenbacherLab/Genovo_Input. The predicted number of

variants in each functional type for each gencode v19 transcript used for the gnomAD

comparison are in Supplementary. table 6.

Code Availability

kmerPaPa can be installed from https://pypi.org/project/kmerpapa/ and the source code is

available at https://github.com/BesenbacherLab/kmerPaPa.

Genovo can be installed from https://crates.io/crates/genovo and the source code is

available at https://github.com/BesenbacherLab/genovo.

kmer_counter can be installed from https://pypi.org/project/kmer-counter/ and the source

code is available at https://github.com/BesenbacherLab/kmer_counter.

Author Contributions

SB designed and implemented the kmerPaPa software. JB designed and implemented the

Genovo software. SB ran the kmerPaPa software to produce mutation rate models and the

Genovo software to produce predicted rates per mutation type per transcript. AK performed

coverage correction and the gnomAD comparison analysis. SB and AK wrote the

manuscript. All authors reviewed and approved the final manuscript.

Acknowledgements

This work was funded by a Sapere Aude - Starting Grant (no. 4181-00490) from the

Independent Research Fund Denmark.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://paperpile.com/c/DbgNe1/96Jpi+dlH8R
https://paperpile.com/c/DbgNe1/4VDzH+nyVfm
https://paperpile.com/c/DbgNe1/euPTV
https://github.com/BesenbacherLab/Genovo_Input
https://pypi.org/project/kmerpapa/
https://github.com/BesenbacherLab/kmerPaPa
https://crates.io/crates/genovo
https://github.com/BesenbacherLab/genovo
https://pypi.org/project/kmer-counter/
https://github.com/BesenbacherLab/kmer_counter
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

1. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping

and population genetical parameter estimation from sequencing data. Bioinformatics 27,

2987–2993 (2011).

2. Li, H. & Durbin, R. Inference of human population history from individual whole-genome

sequences. Nature 475, 493–496 (2011).

3. Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res.

15, 1566–1575 (2005).

4. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in

human disease. Nature 508, 469–476 (2014).

5. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in

141,456 humans. Nature 581, 434–443 (2020).

6. Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian

genomes. Nat. Rev. Genet. 12, 756–766 (2011).

7. Ehrlich, M. & Wang, R. Y. 5-Methylcytosine in eukaryotic DNA. Science 212, 1350–1357

(1981).

8. Rideout, W. M., 3rd, Coetzee, G. A., Olumi, A. F. & Jones, P. A. 5-Methylcytosine as an

endogenous mutagen in the human LDL receptor and p53 genes. Science 249,

1288–1290 (1990).

9. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease

risk. Nature 488, 471–475 (2012).

10. Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation rate

heterogeneity in humans. Nat. Commun. 9, 3753 (2018).

11. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human

disease. Nat. Genet. 46, 944–950 (2014).

12. Aggarwala, V. & Voight, B. F. An expanded sequence context model broadly explains

variability in polymorphism levels across the human genome. Nat. Genet. 48, 349–355

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

http://paperpile.com/b/DbgNe1/2DaBN
http://paperpile.com/b/DbgNe1/2DaBN
http://paperpile.com/b/DbgNe1/2DaBN
http://paperpile.com/b/DbgNe1/VpPUM
http://paperpile.com/b/DbgNe1/VpPUM
http://paperpile.com/b/DbgNe1/FmD3t
http://paperpile.com/b/DbgNe1/FmD3t
http://paperpile.com/b/DbgNe1/Uk3TI
http://paperpile.com/b/DbgNe1/Uk3TI
http://paperpile.com/b/DbgNe1/BPEOL
http://paperpile.com/b/DbgNe1/BPEOL
http://paperpile.com/b/DbgNe1/fjYvR
http://paperpile.com/b/DbgNe1/fjYvR
http://paperpile.com/b/DbgNe1/972tO
http://paperpile.com/b/DbgNe1/972tO
http://paperpile.com/b/DbgNe1/cpwYX
http://paperpile.com/b/DbgNe1/cpwYX
http://paperpile.com/b/DbgNe1/cpwYX
http://paperpile.com/b/DbgNe1/tfv7o
http://paperpile.com/b/DbgNe1/tfv7o
http://paperpile.com/b/DbgNe1/7YNsc
http://paperpile.com/b/DbgNe1/7YNsc
http://paperpile.com/b/DbgNe1/lQcfu
http://paperpile.com/b/DbgNe1/lQcfu
http://paperpile.com/b/DbgNe1/CIy3l
http://paperpile.com/b/DbgNe1/CIy3l
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

(2016).

13. Montgomery, S. B. et al. The origin, evolution, and functional impact of short

insertion-deletion variants identified in 179 human genomes. Genome Res. 23, 749–761

(2013).

14. Murat, P., Guilbaud, G. & Sale, J. E. DNA polymerase stalling at structured DNA

constrains the expansion of short tandem repeats. Genome Biol. 21, 209 (2020).

15. Ware, J. S., Samocha, K. E., Homsy, J. & Daly, M. J. Interpreting de novo Variation in

Human Disease Using denovolyzeR. Curr. Protoc. Hum. Genet. 87, 7.25.1–7.25.15

(2015).

16. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo

mutations in developmental disorders. Nature 542, 433–438 (2017).

17. Rehm, H. L. et al. ClinGen--the Clinical Genome Resource. N. Engl. J. Med. 372,

2235–2242 (2015).

18. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler. in

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC 1–6

(Association for Computing Machinery, 2015).

19. Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a

sequence-level genetic map. Science 363, (2019).

20. Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat.

Genet. 48, 935–939 (2016).

21. Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in

humans. Nat. Genet. 47, 822–826 (2015).

22. Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate

genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

23. Turner, T. N. et al. Genomic Patterns of De Novo Mutation in Simplex Autism. Cell 171,

710–722.e12 (2017).

24. Sasani, T. A. et al. Large, three-generation human families reveal post-zygotic

mosaicism and variability in germline mutation accumulation. Elife 8, (2019).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

http://paperpile.com/b/DbgNe1/CIy3l
http://paperpile.com/b/DbgNe1/eaLLc
http://paperpile.com/b/DbgNe1/eaLLc
http://paperpile.com/b/DbgNe1/eaLLc
http://paperpile.com/b/DbgNe1/g4JSw
http://paperpile.com/b/DbgNe1/g4JSw
http://paperpile.com/b/DbgNe1/tfH25
http://paperpile.com/b/DbgNe1/tfH25
http://paperpile.com/b/DbgNe1/tfH25
http://paperpile.com/b/DbgNe1/aFNvL
http://paperpile.com/b/DbgNe1/aFNvL
http://paperpile.com/b/DbgNe1/7XQhX
http://paperpile.com/b/DbgNe1/7XQhX
http://paperpile.com/b/DbgNe1/wlMjm
http://paperpile.com/b/DbgNe1/wlMjm
http://paperpile.com/b/DbgNe1/wlMjm
http://paperpile.com/b/DbgNe1/U95su
http://paperpile.com/b/DbgNe1/U95su
http://paperpile.com/b/DbgNe1/1eFkg
http://paperpile.com/b/DbgNe1/1eFkg
http://paperpile.com/b/DbgNe1/96Jpi
http://paperpile.com/b/DbgNe1/96Jpi
http://paperpile.com/b/DbgNe1/nyVfm
http://paperpile.com/b/DbgNe1/nyVfm
http://paperpile.com/b/DbgNe1/4VDzH
http://paperpile.com/b/DbgNe1/4VDzH
http://paperpile.com/b/DbgNe1/dlH8R
http://paperpile.com/b/DbgNe1/dlH8R
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

25. 1000 Genomes Project Consortium et al. A global reference for human genetic

variation. Nature 526, 68–74 (2015).

26. Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548

trios from Iceland. Nature 549, 519–522 (2017).

27. Kloosterman, W. P. et al. Characteristics of de novo structural changes in the human

genome. Genome Res. 25, 792–801 (2015).

28. Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with

python. in Proceedings of the 9th Python in Science Conference (SciPy, 2010).

doi:10.25080/majora-92bf1922-011.

29. Blake, J. A. et al. The Mouse Genome Database (MGD): premier model organism

resource for mammalian genomics and genetics. Nucleic Acids Res. 39, D842–8 (2011).

30. Georgi, B., Voight, B. F. & Bućan, M. From mouse to human: evolutionary genomics

analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484 (2013).

31. Liu, X., Jian, X. & Boerwinkle, E. dbNSFP v2.0: a database of human non-synonymous

SNVs and their functional predictions and annotations. Hum. Mutat. 34, E2393–402

(2013).

32. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in

genomic perturbation screens: gold standards for human functional genomics. Mol.

Syst. Biol. 10, 733 (2014).

33. Hart, T. et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout

Screens. G3 7, 2719–2727 (2017).

34. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830 (2011).

35. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two

or more correlated receiver operating characteristic curves: a nonparametric approach.

Biometrics 44, 837–845 (1988).

36. Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids

Res. 45, D804–D811 (2017).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

http://paperpile.com/b/DbgNe1/20BNQ
http://paperpile.com/b/DbgNe1/20BNQ
http://paperpile.com/b/DbgNe1/KXsnZ
http://paperpile.com/b/DbgNe1/KXsnZ
http://paperpile.com/b/DbgNe1/EBjAC
http://paperpile.com/b/DbgNe1/EBjAC
http://paperpile.com/b/DbgNe1/zmYCC
http://paperpile.com/b/DbgNe1/zmYCC
http://paperpile.com/b/DbgNe1/zmYCC
http://dx.doi.org/10.25080/majora-92bf1922-011
http://paperpile.com/b/DbgNe1/zmYCC
http://paperpile.com/b/DbgNe1/dYZGK
http://paperpile.com/b/DbgNe1/dYZGK
http://paperpile.com/b/DbgNe1/PHhfZ
http://paperpile.com/b/DbgNe1/PHhfZ
http://paperpile.com/b/DbgNe1/BQNUA
http://paperpile.com/b/DbgNe1/BQNUA
http://paperpile.com/b/DbgNe1/BQNUA
http://paperpile.com/b/DbgNe1/MAbUk
http://paperpile.com/b/DbgNe1/MAbUk
http://paperpile.com/b/DbgNe1/MAbUk
http://paperpile.com/b/DbgNe1/nS3cM
http://paperpile.com/b/DbgNe1/nS3cM
http://paperpile.com/b/DbgNe1/0rYJN
http://paperpile.com/b/DbgNe1/0rYJN
http://paperpile.com/b/DbgNe1/4DLnx
http://paperpile.com/b/DbgNe1/4DLnx
http://paperpile.com/b/DbgNe1/4DLnx
http://paperpile.com/b/DbgNe1/euPTV
http://paperpile.com/b/DbgNe1/euPTV
https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figures

Supplementary Fig. S1. Overview of the data used in different analyses.

Supplementary Fig. S2. Nagelkerke r2 on test data for different values of k. For longer

k-mers that “all k-mers” models overfit resulting in worse r2 values on the test data. This is

not the case for the kmerPaPa models.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Fig. S3. Calculating the null distribution for the number of expected
LoF mutations in a gene. Genovo considers all possible mutations in a gene and calculates

their functional consequence. For a given mutation type (fx. LoF) it will then calculate a list of

the probabilities for all possible mutations of this type. Genovo then samples from this list to

create the null distribution that is used to calculate the p-values.

Supplementary Fig. S4. Results from LOEUF analysis. In the first column we observe

essential and non-essential genes. The green and blue lines depict the percentage of

essential genes for Genovo and gnomAD, respectively. The red and yellow lines display

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

distribution of non-essential genes for Genovo and gnomAD, respectively. The second

column depicts essential knock-out genes for mice, and the third column depicts

haploinsufficient genes. Panel a displays LoF observed/expected ratio, panel b depicts

LOEUF score as inferred by gnomAD and Genovo.

Supplementary Fig. S5. Coverage Correction. Smoothed lowess values (blue line) based

from synonymous observed/expected mutation data, over coverage (beige data). ‘Fraction’

is a number between 0 and 1, which represents the fraction of the data used when

estimating each y-value.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Study Trios Autosomal
point
mutations

Autosomal
indels

Reference
Genome

Halldorsson et al. 2019 2977 194687 13367 hg38

Goldmann et al. 2016 816 35748 0 hg19

Francioli et al. 2015 258 11016 0 hg19

Sasani et al. 2019 471 26794 1892 hg19

Yuen et al. 2017 1652 104948 16582 hg19

Turner et al. 2017 1032 109433 8036 hg19

Supplementary Table 1. Data sets with de novo mutations used as input to kmerPaPa.

Decile % gnomAD % Genovo

1 47.0 55.5

2 21.6 17.9

3 10.8 8.9

4 6.7 4.1

5 3.7 2.3

6 3.3 2.3

7 1.6 3.6

8 2.5 2.9

9 2.0 1.6

10 0.7 0.9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Table 2. Percentage of haploinsufficient genes in each decile. Deciles
clustered by Observed/Expected (O/E) ratio of Loss Of Function (LoF) mutations
observed in haploinsufficient genes. Low numbered deciles (e.g. decile 1,2 or 3) contain

the lowest O/E of LoF scores, whereas high numbered deciles contain higher O/E of LoF

scores. These are the values plotted in Fig 6a.

Decile % gnomAD % Genovo

1 43.6 55.6

2 16.8 17.0

3 11.7 8.9

4 6.5 4.8

5 4.7 2.4

6 4.9 2.1

7 3.5 3.6

8 3.1 2.3

9 3.4 0.9

10 1.8 2.3

Supplementary Table 3. Percentage of haploinsufficient genes in each LOEUF decile.
Low numbered deciles (e.g. decile 1,2,3 …) contain genes with the lowest LOEUF scores,

whereas high numbered deciles contain higher LOEUF scores. These are the values plotted

in Fig 6b.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471476doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.471476
http://creativecommons.org/licenses/by-nc-nd/4.0/

