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Abstract 11 

Amidst global environmental changes, predicting species responses to future environments is a 12 

critical challenge for preserving biodiversity and associated human benefits. We explored the 13 

original idea that coral competitive performances, the ability of corals to preempt ecological 14 

space on the reef through territorial warfare, serve as indicators of species’ ecological niches and 15 

environmental windows, and therefore, responses to future environments. Our surveys indicated 16 

that coral performances varied with taxonomic-identity, size, and position along environmental 17 

gradients, highlighting complex interplays between life-history, warfare-strategy, and niche 18 

segregation. Our results forewarn that growing alterations of coastal environments may trigger 19 

shifts in coral dominance, with decline of major reef-building taxa like acroporids, and 20 

underscore the importance of restraining human impacts for coastal resilience. Our empirical 21 

approach untangles the complexity of species’ battle-like interactions and can help identify 22 

winners and losers in various communities caught in the interplay between ecological niches, 23 

environmental windows, and global changes. 24 

 25 
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Introduction 28 

Predicting how global environmental changes will affect species performances in the 29 

future is crucial to anticipating biodiversity declines and defining sustainable management. 30 

However, large uncertainties blur current predictions of ecosystem trajectory in future 31 

environments [1,2]. Finding effective metrics of species responses to changing environments is 32 

key, particularly for vulnerable ecosystems in need of rapid intervention, and in developing and 33 

island nations where high reliance on natural resources exacerbates socio-ecosystem 34 

vulnerability [3–5]. This is particularly true with coral reefs, which support prolific marine life 35 

and coastal livelihoods yet stand at the frontline of declining ecosystems due to rapidly altering 36 

coastal environments [1,6–9]. Reef degradation from growing coastal development, pollution, 37 

fishing, and climate change predominantly involves a gradual decline in coral abundance, 38 

composition, and size, with the progressive loss of vulnerable species, particularly at sensitive 39 

life-stages, altering key ecosystem functions [7,10–13]. Recent demographic modeling 40 

approaches allow characterizing these dynamics on reefs with fine-scale monitoring data [2,14–41 

16]. However, only a few eminent sites, representing an infinitesimal proportion of reefs, benefit 42 

from the necessary level of scientific knowledge, leaving out most coral reef ecosystems from 43 

such quantitative diagnosis.  44 

As an alternative to using demographic modeling, we hypothesize that coral competitive 45 

performances, the ability of corals to preempt space on the reef substrate through territorial 46 

warfare, could be used as a proxy of species ecological success in different environments. 47 

Competition for space and other limiting vital resources is a key process shaping ecological 48 

communities in coral reefs, notorious for biodiversity and biotic interactions, and where 49 

competition warfare can drive community shifts and ecosystem collapse in altered environments 50 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471466
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

[17–19]. We stipulate that differences in competitive performances across environments can 51 

provide insights on species ecological niches, optimal environmental windows and, therefore, 52 

potential response to future conditions.  53 

On reefs, direct competition for space is ubiquitous where neighboring organisms grow 54 

into physical contact, species inevitably engaging in warfare for survival and ecological 55 

dominance. On the front line (a.k.a. the battle-zone), corals have the capacity to invade opponent 56 

territories by killing enemy living tissues in their vicinity. This battle predominantly takes two 57 

forms with either smothering by growing over (a.k.a. overgrowth) or disintegrating using 58 

specialized nematocyst-rich attack tentacles (a.k.a. overreach), or a combination of the two 59 

(figure 1). In theory, the magnitude of killing varies with fixed characteristics of species life 60 

history such as attack mechanism, strength, and reach [14,20–24], but also with additional 61 

processes that vary in time, space, and across life-stages such as growth rates and metabolic 62 

states of corals [25–29]. As such, while a clear hierarchy of competitive dominance among coral 63 

species can be established in a given environment, competitive outcomes in fact appear spatio-64 

temporally dynamic [30–34], and are therefore expected to differ in the future with changing reef 65 

environments. Because corals are slow growing, habitat-forming species at the foundation of reef 66 

ecosystems, even small differences in species abilities to preempt reef space can have strong 67 

implications for reef ecosystem structure and functions, and associated services to society. 68 

 We used observations of coral competitive interactions across the south-western reef 69 

system of New Caledonia as indicators of the capacity of coral species to prevail in different 70 

environments. The island nation is surrounded by large extents of biodiverse coral reefs, 71 

characterized by diverse habitats distributed along pronounced coast-to-ocean gradients 72 

associated with natural environmental variability amplified by human impacts [35,36] (figure 73 
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S1). The near shore is most exposed to terrigenous inputs of freshwater, nutrient, and sediment, 74 

as well as anthropogenic impacts such as pollution and fishing, and undergoes higher 75 

environmental variation with seasons and weather conditions [37–40]. Moving towards the 76 

ocean, marked increases in water quality and diminishing human pressure is observed. Portions 77 

of the reefs are classified as UNESCO World Heritage site due to their outstanding character for 78 

global coral reef conservation. Zonation in the relative abundance of coral species along the 79 

coast-to-ocean gradient indicates some degree of niche segregation among dominant taxa [36]. 80 

However, the ecological mechanisms underlying such spatial patterns largely remain to be 81 

comprehended. Because coral species are expected to occupy delimited ecological niches 82 

distinguished by environmental preferences [7,29,41], we tested whether the spatial distribution 83 

of ecological windows would be reflected in coral competitive outcomes. In general, a deeper 84 

understanding of coral competition can help a better characterization of coral life-strategies, 85 

which at this stage predominantly relies on qualitative assumptions of species competitive 86 

abilities based on taxonomic traits and demographic performances [28,42]. A better 87 

understanding of coral competition can also inform on the ecological processes underlying 88 

species coexistence and the exceptional biodiversity of coral reefs. We illuminate our findings 89 

with analogies to warfare theory and lessons from human history to untangle the complexity of 90 

coral competitive interactions, and discuss implications for coral performances in changing reef 91 

environments. 92 

 93 

Methods 94 

 We evaluated coral competitive performances by inspecting natural occurrences of direct 95 

physical interactions among corals, as well as with other sessile benthic species (figure S2). 96 
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Surveys were performed on 20 sites distributed along pronounced cross-shelf environmental 97 

gradients (figure S1), and over a five-month period to capture seasonal variability with a shift 98 

from the warm (January) to the cold (June) season (decreasing water temperature, 27-23°C). For 99 

each interaction haphazardly encountered, the taxonomic identities, morphotypes, and three-100 

dimensional size (length, width, and height) of each organism (the focal coral plus all its direct 101 

competitors) were recorded, along with the contact perimeter characterizing the battle zone, and 102 

overreach and overgrowth distances as short- and long-term metrics of competitive outcomes 103 

(figure 1). Because coral demographic performances in survival, growth, and reproduction vary 104 

with size [28,43], changes in coral abilities to defend their territories were related to species 105 

fitness (i.e. chances of ecological success). We focused specifically on direct competition for 106 

space (a.k.a. territorial war), leaving aside indirect competition for light, food, and other 107 

resources. 108 

As competitive interactions regularly consisted of bilateral attacks, net overreach and 109 

overgrowth performances were calculated as the difference between the observed maximum 110 

conquered and ceded distances along the frontline. These measurements of net performances 111 

differ from most studies on competition, which typically characterize species interactions as a 112 

simplistic binomial (win or loss) or trinomial (win or loss or standoff) outcome (e.g. [23,24,31–113 

33]). Further characteristics of the interaction and environment that could also potentially 114 

influence competitive outcomes, such as distance to the coastal city Noumea, water depth, 115 

competitor abundance, total competing perimeter, and differences in height among competitors, 116 

were also recorded (figure 1I, table S1). 117 

Because coral performances were expected to be influenced by various ecological factors 118 

acting at different scales and that in concert shape species responses (figure 1I), we used 119 
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generalized additive models to characterize changes in competitive outcome as a function of 120 

different candidate ecological descriptors (table S1) in a non-linear, multi-dimensional account 121 

[44]. Model parametrization was designed to capture a set of common ecological processes 122 

regulating coral performances, such as size- and density-dependence (e.g. covariates Coral-size 123 

and Competitor-abundance), as well as taxonomic deviations in such processes (e.g. interaction 124 

Coral-size × Coral-taxon) to account for evolutionary differences among species [28]. The 125 

degree of non-linearity of model terms was optimized based on semi-parametric spline-126 

penalization (see [28,45] for details), and non-significant model terms were sequentially 127 

excluded during the model selection process [44] (figures S3 and S4). Among the multitude of 128 

possible models resulting from combinations of the explanatory variables, the models best 129 

describing competitive outcomes were identified using Akaike information criteria, a measure of 130 

trade-off between model performance and complexity [46]. The final models (tables S2 and S3) 131 

explained variability in coral competitive performances at 66.6% in terms of net overreach and 132 

79.0% in terms of net overgrowth (figures S3 and S4). This is relatively high compared to 133 

previous attempts (e.g. [23,24,32]) and considering the many additional biological and 134 

environmental factors that may influence competitive outcome between two living organisms 135 

(genotype, age, health, metabolic state, disturbance history, etc.), suggesting that our models 136 

accounted for key ecological gradients influencing coral competitive performances in our study 137 

system. Restricting data to the most abundant taxa resulted in similar patterns (figures S5 and 138 

S6), confirming the prevalence of the identified mechanisms among dominant species.  139 

A total of 1073 competitive interactions were recorded encompassing 41 taxa and 8 140 

morphotypes (table S1). All surveys were performed by the same observer using SCUBA, 141 

occasionally assisted by another diver. Analyses and graphing were coded in R statistical 142 
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software complemented by the mgcv package [44]. Over-dispersed variables were log-143 

transformed, and model residuals were systematically checked for normality and 144 

homoscedasticity. 145 

 146 

Results and Discussion 147 

Identifying drivers of coral competitive performance 148 

Of the 1073 coral competitive interactions inspected, 84.3% (905) involved traces of 149 

tentacle deployment along the frontline, out of which 7.4% (67, or 6.2% of all interactions) were 150 

bilateral. In 8.9% (6) of these bilateral overreach attacks, net space intrusions were tied between 151 

competitors (i.e. net overreach = 0). Similarly, 69.8% (749) of all interactions involved 152 

overgrowth, out of which 2.0% (15, or 1.4% of all interactions) were bilateral. In 13.3% (2) of 153 

these bilateral overgrowth attacks, net space invasions were tied between competitors (i.e. net 154 

overgrowth = 0). Only 0.5% (5) of all interactions were characterized as standoffs for both 155 

overgrowth and overreach, demonstrating the complementary nature of these two metrics to 156 

assess competitive wars among corals. 157 

Coral competitive performances varied with attributes relative to individuals, 158 

interactions, and environments, highlighting the interactive importance of biological and 159 

environmental factors in defining competitive outcomes. Overgrowth and overreach 160 

performances were both contingent on taxonomic identity, morphology, size, competitor 161 

abundance, and shelf-position, whereas perimeter of contact and height differences only 162 

influenced overgrowth, and day of year only overreach (tables S2 and S3). As a metric of short-163 

term competitive interactions, overreach reflects recently deployed battle strategies such as 164 

spontaneous attack-tentacle developments into opponent territories, brief skirmishes along the 165 
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frontline that were seasonally variable in several taxa (figure 2C) and may reveal transitory in 166 

long-running competitive battles [22,25,30,32,34]. In contrast, as a more integrated measure of 167 

competitive interactions over time, overgrowth accounts for additional ecological mechanisms 168 

that prevail across successive battles in war strategy. This includes the capacity to sustain siege 169 

and lead large battlefields, sometimes for long times and simultaneously on multiple fronts 170 

(figure 1), performances that rely heavily on resource provisions and differed across taxa. 171 

 172 

Individual-level attributes 173 

Coral overgrowth and overreach performances differed among taxa as expected for 174 

species exhibiting contrasting life history traits, with differences in growth form and rate, in 175 

tentacle size and reach, etc. [23,34,42]. Yet, contrasting responses to ecological gradients 176 

provided deeper insights into distinct life-strategies as reflected by different patterns of 177 

competitive performance across life-stages, as well as contrasting susceptibilities to 178 

environmental variation as reflected by segregated environmental optima. Larger corals 179 

generally exhibited higher net overgrowth, though many taxa deviated from a common size-180 

dependent pattern in overgrowth and overreach (figures 2A and 3A). While evidence of size-181 

dependent variability in coral competitive performance is not new [25,26], our comparative study 182 

indicates maximum competitive capacities occur at different stages among species, suggesting 183 

differences in size-specific investments in competition. Some taxa showed higher overgrowth 184 

and overreach at small sizes, potentially in a strategy to secure enough space early on, until 185 

reaching a size-refuge that guarantees survival and investment in other demographic processes 186 

such as reproduction [28,33,43]. This was the case for Porites, in which competitive 187 

performances declined with colony size (-0.3 cm in net overreach and -1.5 cm in net overgrowth 188 
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across the size-range), with an inflection point at a size of ~15 cm diameter (figures 2A and 3A). 189 

Other taxa performed better at intermediate or larger sizes, which corresponds with higher ability 190 

in allocating large energetic resources to competitive battles. A marked positive effect of colony 191 

size was detected in mean overreach of Merulina (+14 cm across the size-range), Montastrea 192 

(+12 cm), and the soft-coral Sarcophyton (+7 cm), as well as in mean overgrowth of Goniastrea 193 

(+11 cm), Hydnophora (+9 cm), Merulina (+10 cm), and the soft-coral Nephthea (+70 cm). The 194 

latter taxon reveals being a particularly fierce competitor of reef-building corals with an 195 

unmatched ability to overgrow them (figure 3A) [21]. 196 

 197 

Interaction-level attributes 198 

Coral competitive outcomes were influenced by several characteristics of species 199 

interactions, namely competitor abundance (a.k.a. number of enemies), contact perimeter (a.k.a. 200 

battlefield stretch), and height difference among competitors (a.k.a. unequal battlegrounds). 201 

Competitor abundance was associated with changes in overreach performances of four coral taxa 202 

(figure 2B), and generally influenced size-specific overgrowth, with larger corals showing higher 203 

capacities in leading multi-front wars (figure 3B). Larger battlefields were associated with higher 204 

overgrowth in some taxa, such as Millepora and Montipora (+2 cm in net overgrowth), showing 205 

high capacities in waging large-scale competitive endeavors to the detriment of others such as 206 

Porites, in which a threshold in the capacity to hold space against competitors was observed (-10 207 

cm in net overgrowth, with again a size-threshold at ~15 cm diameter, figure 3B). Overall, 208 

extended battlefield perimeters were associated with higher overgrowth performance in 209 

encrusting and columnar species and decreasing in branching and massive taxa, reflecting 210 

evolutionary differences in competitive abilities among morphological groups [24,42]. 211 
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 212 

Environmental attributes 213 

Battlefield environments also influenced coral competitive performances as reflected by 214 

the effects of shelf position, depth, and time, revealing differing environmental preferences 215 

among taxa (tables S2 and S3). Cross-shelf variability in coral performances was detected in five 216 

taxa, among which peak overgrowth and/or overreach performances were spatially segregated. 217 

Pocillopora showed higher net overreach (+1 cm) near the coast, whereas Acropora (+0.6 cm) 218 

and Favia (+4 cm) peaked in mid-lagoon, Porites exhibited highest overgrowth (+2.0 cm) 219 

towards the barrier-reef, and Echinopora showed contrasting spatial patterns between 220 

overgrowth and overreach metrics (figures 2C and 3C). Similarly, overreach performances 221 

varied seasonally in six taxa with a marked temporal segregation (figure 2C). Acropora (+0.4 222 

cm) and Montipora (+0.2 cm) showed higher performance in warm season, Pocillopora (+0.7 223 

cm) in cool season, Isopora (+1.5 cm) and Porites (+0.3 cm) during the inter-season, whereas 224 

Galaxea (+3.5 cm) peaked in each season. While the spatial differences in competitive 225 

performances among taxa confirm contrasting environmental optima along the coast-to-ocean 226 

gradient, the temporal patterns identified may reflect differences in environmental preferences 227 

per se (e.g. differing temperature optima) or different timings of investments in other 228 

demographic processes such as growth and reproduction (i.e. differing temporal windows). 229 

Indeed, territorial wars as well as growth and reproduction are energetically costly processes, and 230 

some corals may show temporal tradeoffs in their investment in these endeavors [22,26,28,32]. 231 

For example, in New Caledonia as in the neighboring Great Barrier Reef, acroporids including 232 

Acropora and Montipora reproduce at the onset of the warm season following a 6-month period 233 

of gametogenesis, whereas other species such as Pocillopora reproduce throughout the year [47–234 
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50]. In addition, portions of the temporal trends identified may be attributable to response to 235 

external stimuli, which may explain the higher overreach observed in Porites during the inter-236 

season between the performance peaks of acroporids and Pocillopora, and conversely high 237 

overreach in Galaxea during both seasons potentially as retaliation to attacks from these 238 

dominant taxa [32,36]. 239 

 240 

Species baseline attributes 241 

When the effects of ecological gradients were isolated, species with encrusting and 242 

massive morphologies were associated with higher overreach (figure 2A), whereas encrusting, 243 

columnar, and foliaceous species exhibited higher overgrowth (figure 3A). These differences 244 

may reflect differing evolutionary pathways among species. In contrast to other growth forms 245 

that enable refuging via vertical ascension, encrusting species are fully exposed to competition 246 

and their survival relies fundamentally on their capacity to preempt space on a two-dimensional 247 

substrate [14,22,33]. Similarly, several coral species with massive growth forms exhibit large 248 

polyps able to rebuff competitors on longer distances by developing long-range tentacles (figure 249 

1) [20,23,24,34]. A maximum overreach distance of 5.7 cm performed by a massive Galaxea on 250 

a branching Pocillopora was recorded in this study, and the three massive taxa Euphyllia, 251 

Lobophyllia, and Montastrea exhibited high baseline overreach (figure 2A). Noticeably, marked 252 

negative effects of competitors on coral overreach and overgrowth were only detected from hard- 253 

and soft- corals, whereas interactions with ascidians, sponges, and algae were characterized 254 

solely by positive deviations from the average patterns (figures 2A and 3A). This suggests a less 255 

substantial effect of chemical wars alone as employed by these later taxa, compared to additional 256 
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uses of physical wars involving tentacle-attacks as deployed by cnidarians, in direct competitive 257 

interactions [27,51,52]. 258 

 259 

Comprehending coral competitive interactions 260 

Our study shows that coral competitive performances are governed by a complex 261 

interplay between who is involved and how, where, and when the interactions occur, with 262 

outcomes in terms of net overreach and overgrowth that are largely predictable (figures 2 and 3). 263 

Species baseline performances associated with inherited taxonomic traits (e.g. tentacle reach) are 264 

modulated by a set of ecological gradients related to intrinsic characteristics of organisms (e.g. 265 

size, evolutionary life-strategy) as well as extrinsic features of their interactions and 266 

environments that vary in time and space (e.g. competitor abundance, contact perimeter, 267 

seasonality). The mechanisms governing coral competitive performances are therefore 268 

fundamentally analogous to those prevailing in human warfare where concerted military power 269 

(weapon abundance, deadliness, and reach), war strategy (attack, defense, skirmish tactics), 270 

battle characteristics (stretch of battlefronts, duration of conflicts, number of enemies and allies), 271 

and battlefield features (battleground evenness, weather conditions) influence outcomes [53,54]. 272 

Notorious instances when battle characteristics and environmental condition influenced war 273 

outcome and sealed the fate of human history include the deleterious effects of multi-front wars 274 

for Napoleon’s endeavor to expand the French empire across Europe between 1805 and 1815 275 

[55], and the contribution of wintery weather conditions to Hitler’s army’s defeat at the Soviet 276 

frontline in 1941 [56]. Another historical example relates to the Battle of Agincourt in 1415, a 277 

turn in the Hundred Years' War for the dominion of France and England, where muddy terrain 278 
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following rainfall severely handicapped the heavily armored knights of the numerically superior 279 

French army to the advantage of Henri V [57]. 280 

 281 

Niche segregations and implications in changing environments 282 

The contrasted responses of coral taxa as identified across multiple ecological gradients 283 

provide new insights into the variety of mechanisms underlying niche segregation in biodiverse 284 

species assemblages. Indeed, the diversity of ecological windows occupied by species is 285 

reflected in the contrasting environmental preferences revealed by differing performances in time 286 

and space, as well as the divergent evolutionary pathways as indicated by different responses to 287 

individual and interaction level attributes (figure 4). These differences may explain how the 288 

species coexist as a result of distinct demographic life-strategies, environmental heterogeneity, 289 

and competitive interactions, resulting in the exceptional biodiversity observed on reefs 290 

[17,23,28,42]. Nevertheless, several key coral taxa were sensitive to environmental variability as 291 

reflected by distance to the coast and seasonality, indicating that their competitive success, and 292 

perhaps overall fitness, may be affected by alterations of coastal environments. Our findings 293 

suggest that warmer oceanic conditions, similar to those presently observed in summer, may 294 

advantage higher competitive performances of acroporids to the detriment of pocilloporids, 295 

although further anthropization of coastal habitats, currently restricted to the coastline, benefits 296 

pocilloporids over acroporids (figure 4). In New Caledonia and globally, acroporids contribute 297 

exceptionally to coral reef structural complexity, biodiversity, and calcification [13,36,58–60]. 298 

Despite high capabilities to dominate reefs in peri-optimal environments, acroporids are 299 

particularly sensitive to environmental stressors such as warming and declining water quality, 300 

with community shifts from acroporid dominance to pocilloporids or poritids often observed in 301 
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sub-optimal conditions [7,10,11,29,41]. Widespread acroporid declines have been associated 302 

with reef environment degradation in various regions including the Caribbean, Persian Gulf, 303 

Great Barrier Reef, and French Polynesia [12,15,16,61]. In contrast to other regions where 304 

acroporids appear to face their upper temperature limits [11,29], our study suggests acroporid 305 

performances may actually increase in a warmer climate in the sub-tropical reef system of New 306 

Caledonia where few large-scale bleaching events have been recorded. Nevertheless, restraining 307 

anthropization of coastal environments appears key to preserving near-shore acroporid 308 

populations and their unique contributions to reef accretion and resilience. 309 

 310 

Conclusions 311 

As global changes increasingly alter coastal marine environments, some ecosystems are 312 

inexorably expected to collapse while others may transform to new community compositions, 313 

structures, and functions, changes that remain hard to predict [1,3,4,11,]. Nevertheless, present 314 

trajectories of coastal degradation indicate future reef environments may increasingly resemble 315 

those found near dense human concentrations today [6–8]. Our study suggests that such 316 

anthropization results in lower abilities of some major coral taxa in preempting reef space via 317 

direct competition. Because corals are slow growing habitat-forming species at the basis of reef 318 

ecosystems, such differences in competitive performances may result in extirpations of 319 

vulnerable populations, with implications for reef ecosystem biodiversity and services to society. 320 

Overall, competitive performance appears as an effective, widespread, and accessible 321 

indicator of species performances across ecological gradients. It can help identify the biological 322 

and environmental constraints underlying ecological niches and environmental windows that 323 

define species distributions, coexistence, and therefore biodiversity patterns. Given the many 324 
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ecological pathways that link species performances to their environment, we encourage similar 325 

quantitative investigations to further understanding of determinants of species interactions at the 326 

interplay between evolutionary traits, life-strategies, and global changes, and implications for the 327 

dynamics of ecosystems in a changing environment. 328 
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Figures 496 

              497 

 498 

Figure 1. Photographs illustrating encountered coral competitive interactions (A-H), and 499 

schematic (I) indicating how they were characterized by taking into account a set of factors 500 
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relating to individual organisms (beige), interactions (green), and environments (blue). By 501 

quantifying the dead-zones left by sweeper attack-tentacles on opponent coral skeletons in the 502 

aftermath of competitive battles, overreach distances (white arrows) reflect short-term 503 

competitive outcomes resulting from recently deployed assaults (hours to months preceding 504 

observations). In contrast, given the slow growth of corals, overgrowth distances (yellow arrows) 505 

often integrate competitive interactions over several years. See appendix 1 for further 506 

information, and figure S2 for visualizations of the raw data.  507 
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        509 

 510 

Figure 2. Changes in coral competitive performance as measured by net overreach distance 511 

along multiple ecological gradients. Plots illustrate partial contributions of different covariables 512 

to variation in net overreach of focal corals (mean ± standard error). Covariables are organized 513 

by scale, characterizing which organisms are involved (A, individuals), and how (B, interactions) 514 

and where/when (C, environments) the interactions occur. Covariables measured on focal corals 515 

are displayed in green (e.g. a positive effect of focal coral diameter on focal coral performance) 516 

and those on competing organisms in red (e.g. a negative effect of competitor diameter on focal 517 
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coral performance). Taxonomic and morphologic baselines identify differences in performance 518 

among species and growth-forms once the effects of other ecological gradients are accounted for. 519 

Three-dimensional plot illustrates the interactive effects of two ecological gradients on the 520 

response of all species, while other plots indicate deviations specific to some taxa and growth 521 

forms. Note differences in axes ranges. Texts in grey distinguish non hard-coral species (CCA 522 

for crustose coralline algae). Only significant effects are illustrated (table S2). 523 

    524 
  525 
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 528 

Figure 3. Changes in coral competitive performance as measured by net overgrowth distance 529 

along multiple ecological gradients. Plots illustrate partial contributions of different covariables 530 

to variation in net overgrowth of focal corals (mean ± standard error). Covariables are organized 531 

by scale, characterizing which organisms are involved (A, individuals), and how (B, interactions) 532 

and where/when (C, environments) the interactions occur. Covariables measured on focal corals 533 

are displayed in green (e.g. a positive effect of focal coral diameter on focal coral performance) 534 

and those on competing organisms in red (e.g. a negative effect of competitor diameter on focal 535 
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coral performance). Taxonomic and morphologic baselines identify differences in performance 536 

among species and growth-forms once the effects of other ecological gradients are accounted for. 537 

Three-dimensional plots illustrate the interactive effects of two ecological gradients on the 538 

response of all species, while other plots indicate deviations specific to some taxa and growth 539 

forms. Note differences in axes ranges. Texts in grey distinguish non hard-coral species (CCA 540 

for crustose coralline algae). Only significant effects are illustrated (table S3).  541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471466
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

   542 
 543 

 544 

Figure 4. Multi-dimensional niche segregation among the four major reef-building coral taxa as 545 

revealed by variability in their competitive performances. The response patterns (summarized 546 

from figures 2 and 3) indicate segregation in time and space (different environmental 547 

preferences) as well as in life-strategies (different optimal sizes and warfare capacities). 548 
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