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Abstract 19 

Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to 20 
comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to 21 
translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we 22 
propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) 23 
that leads to improved power and ability to prioritize putative causal variants relative to conventional 24 
GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily 25 
applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple 26 
GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations 27 
and two applications: (1) analysis of 1,403 binary phenotypes from the UK Biobank data in 408,961 28 
samples of European ancestry, and (2) a meta-analysis for Alzheimer’s disease (AD) comprising nine 29 
overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies. The UK Biobank 30 
analysis demonstrates superior performance of the proposed method compared to conventional GWAS in 31 
both statistical power (2.05-fold more discoveries) and localization of putative causal variants at each locus 32 
(46% less proxy variants due to linkage disequilibrium). The AD meta-analysis identified 55 risk loci 33 
(including 31 new loci) with ~70% of the proximal genes at these loci showing suggestive signal in 34 
downstream single-cell transcriptomic analyses. Our results demonstrate that GhostKnockoff can identify 35 
putatively functional variants with weaker statistical effects that are missed by conventional association 36 
tests.  37 

 38 
  39 
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Introduction 1 

Recent advances in genome sequencing technologies and improvement in genotype imputation accuracy 2 
enable large-scale genetic studies with hundreds of thousands of samples and tens of millions of variants. 3 
The ultimate goal of such studies is to provide a credible set of putative causal variants that could lead to 4 
novel targets for the development of genomic-driven medicine. However, our ability to identify causal 5 
genetic variants and to translate genetic discoveries into mechanistic insights and drug targets remains 6 
limited at this point1. Conventional genome-wide association studies (GWAS) are based on marginal 7 
association models that regress an outcome of interest on a single genetic variant at a time, using Bonferroni 8 
correction for the number of independent tests to control the family-wise error rate (FWER). Although this 9 
approach based on marginal test statistics has successfully discovered many disease associated variants, its 10 
statistical power can be suboptimal, and it often identifies proxy variants that are only correlated with the 11 
true causal variants2.  12 

Multiple lines of genetic research suggest that small effect risk loci that currently lie below the genome-13 
wide significance threshold even in large GWAS can be informative to understand complex phenotypes. 14 
First, the widely used polygenic models for complex phenotypes are based on the idea that heritability can 15 
be explained by a large number of loci, each with small or infinitesimal effects3,4. Second, because of the 16 
polygenic nature of complex traits, inclusion of loci of small effects improves the predictive power of 17 
polygenic risk scores (PRS) for many traits5. Third, although the effect sizes of such loci are small in 18 
populations, they can still provide important biological insights. In particular, their effect on molecular 19 
phenotypes can be large and they can lead to effective drug targets (e.g. statins)6. However, small effect 20 
loci are difficult to distinguish from noisy loci, especially with suboptimal marginal association tests 21 
commonly used in GWAS. In this paper, we propose a novel method to improve the statistical power of 22 
GWAS and its ability to prioritize putative causal variants at a locus using summary statistics. 23 

The proposed method is based on knockoff inference, a recently proposed statistical framework for variable 24 
selection in high-dimensional settings7,8. Unlike marginal association testing in GWAS, the knockoff-based 25 
inference performs genome-wide conditional tests that account for linkage disequilibrium (LD) thereby 26 
reducing false positive findings due to LD confounding. It provides rigorous control of the false discovery 27 
rate (FDR), i.e. the expected proportion of discoveries which correspond to truly null hypotheses. The idea 28 
of the knockoff-based inference is to generate synthetic, noisy copies (knockoffs) of the original genetic 29 
variants that resemble the true variants in terms of preserving correlations but are conditionally independent 30 
of the disease phenotype given the original variants. The knockoffs serve as negative controls for the 31 
conditional tests to select significant genetic risk loci and to attenuate the confounding effect of LD. Unlike 32 
the conventional Benjamini-Hochberg procedure that does not account for LD, the knockoff framework 33 
appropriately accounts for arbitrary correlations among the conditional tests while guaranteeing control of 34 
the FDR9.  35 

Several knockoff-based methods have already been proposed for genetic studies including Candès et al. 36 
(2018)7, Sesia et al. (2019)10, Sesia et al. (2020)11, He et al. (2021)12 and Sesia et al. (2021)13. They showed 37 
that controlling FDR can be more powerful to identify causal variants with weaker effect sizes relative to 38 
conventional GWAS, under the assumption of a polygenic model. In particular, they demonstrated that the 39 
variants identified by the knockoff inference are more likely to be the causal ones. Despite these appealing 40 
features, individual level data needed for the knockoff generation are often not available in large meta-41 
analyses GWAS; instead, summary statistics that do not contain individual identifiable information are 42 
usually available. Furthermore, the high computational and memory cost needed to generate individual data 43 
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knockoffs represents a major bottleneck to achieve its full potential. Finally, unlike for the traditional 1 
GWAS, there is currently a lack of standardized, efficient pipelines to facilitate the application of knockoff-2 
based inference to genetic studies. The main and significant contribution of the proposed method is to allow 3 
efficient knockoff-based inference using freely available GWAS summary statistics for enhanced locus 4 
discovery and genome-wide prioritization of causal variants. Methodologically, we show that for the 5 
conventional score test in genetic association studies, one can directly generate the knockoff feature 6 
importance score per variant without the need to generate individual-level knockoffs for hundreds of 7 
thousands of samples. 8 

Specifically, we develop a method, GhostKnockoff, to perform knockoff-based inference without 9 
generating any individual-level knockoff variants. The method requires only summary statistics (i.e., Z-10 
scores) from conventional GWAS while retaining the useful features of knockoff-based inference. The 11 
method additionally allows meta-analysis of studies with arbitrary sample overlap. We demonstrate its 12 
performance in empirical simulations and two applications: (1) analysis of 1,403 individual binary 13 
phenotypes from UK Biobank data on 408,961 samples with European ancestry; (2) meta-analysis study of 14 
Alzheimer’s disease (AD) aggregating five genome-wide association studies, three whole-exome 15 
sequencing studies and one whole-genome sequencing study. These analyses demonstrate the superior 16 
performance of the proposed method compared to conventional GWAS, in both statistical power and ability 17 
to localize putative causal variants at each locus. Additional discoveries made by the proposed method are 18 
further supported by functional enrichment analyses and single-cell transcriptomic analyses. The method is 19 
computationally efficient and required only 0.45 hours on ten central processing units (CPU) to analyze 20 
genome-wide summary statistics from the nine AD studies. The software implementation is freely available. 21 

Results 22 

Summary statistics based multiple knockoff inference 23 

We assume a study population of ! independent individuals and " genetic variants. Let #! =	&'"#, … , '"$* 24 
be a vector of covariates, +! = &,"#, … , ,"%* be a vector of genotypes for the --th individual, and ." be the 25 
phenotype with conditional mean /"  given #! and +!. A commonly used statistical model for modeling 26 
genetic association is the generalized linear model: 27 

0(/") = 	3& +	5
'#! +	6

'+!, 28 

where 0(/) = / for a continuous trait, and 0(/) = logit(/) for a binary trait. Without loss of generality, 29 
we assume that both phenotype and genotype are centered and standardized to have mean 0 and variance 1. 30 
If there are covariates involved, < can be centered at the conditional mean given the covariates. The per-31 
sample score statistic can be written as +!'.". The Z-scores aggregating all samples can be written 32 

=()*+, =
1

√!
+'<. 33 

where + is a ! × " genotype matrix; < = (." , … , .-)
. . Typical knockoff-based inference contains four 34 

main steps: (1) generate one or multiple knockoffs per variant and per sample; (2) calculate the feature 35 
importance score for both original and knockoff variants, e.g. square of a Z-score, =()*+,/  and the knockoff 36 
counterpart =B()*+,0 ; (3) calculate the feature statistic by contrasting the feature importance scores for the 37 
original and knockoff variants; (4) implement the knockoff filter procedure to select significant variants 38 
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with FDR control7. Although the Z-scores above are derived from a generalized linear model, it is worth 1 
noting that knockoff inference holds without the explicit model assumption.  2 

The knockoff generation in step (1) is the most computationally intensive step. The main contribution of 3 
this paper is to show that for this particular form of feature importance score (e.g., the conventional score 4 
test as in genetic association studies), one can directly generate the knockoff feature importance score per 5 
variant without the need to generate individual-level knockoffs for hundreds of thousands of samples. Our 6 
method takes simple Z-scores as input and retains many useful features of knockoff-based inference, except 7 
for the flexibility to incorporate more sophisticated (non-linear) machine learning algorithms.  8 

For a multiple-knockoff-based inference where each genetic variant is paired with C knockoffs, we show 9 
that the knockoff counterpart for =()*+, can be directly generated by  10 

=B()*+, = 	D=()*+, + E, with	E~I(J, K), 11 

where =B()*+, = &=B()*+,
1 *

23134
 is a "C dimensional vector and each =B()*+,		1  is a " dimensional vector of 12 

Z-scores corresponding to the L -th group of knockoffs; D  and K  are "C × "  and "C × "C  matrices 13 
respectively obtained by solving a convex optimization problem (see Methods section). Note that the 14 
matrices D and K	are derived from the LD structure of the variants, which can be estimated by means of an 15 
external reference panel when individual-level data are not available. Intuitively, D can be viewed as a 16 
“projection matrix” that maps each Z-score from a marginal test to a Z-score that quantifies indirect effects 17 
through other variants due to linkage disequilibrium. Therefore, the contrast between =()*+, and =B()*+, can 18 
prioritize causal variants that have a direct effect on the outcome of interest. This way, the Z-scores for 19 
knockoff variants can be efficiently obtained by “projecting” and sampling from a multivariate normal 20 
distribution. We show that the knockoff Z-scores generated by this approach are equivalent in distribution 21 
to those calculated based on individual-level knockoffs, thus enjoying all the desirable properties thereof.    22 

We can then calculate the feature importance score as the element-wise square of Z-scores: M = =()*+,
/ ,23 

M1 = &=B()*+,
1 *

0 and define a N-statistic that quantifies the magnitude of effect on the outcome as 24 

O = PM −median
#3637

M1W X'8 9:;
!"#"$

'% . 25 

Variants with N > Z	are selected, where Z is the threshold calculated by the knockoff filter. Specifically, 26 
we select those variants where the original feature has higher importance score than that of any of the C 27 
knockoffs, and the gap with the median knockoff importance score is above the threshold Z 12,14 . 28 
Equivalently, a [ -value as in the Benjamini-Hochberg procedure can be computed for each variant. 29 
Selecting variants with [ ≤ 3 will ensure genome-wide FDR≤ 3. We present the workflow in Figure 1. 30 

We note that this N-statistic is different from the knockoff statistics in the original model-X knockoff 31 
paper7. Instead, it is a function of the exact knockoff statistics that obey the “flip sign” property in the 32 
context of multiple knockoff inference. We use it as a convenient and intuitive representation of the 33 
magnitude of association. We present the exact knockoff statistics that obey the “flip sign” property and 34 
the corresponding knockoff filter in the Methods section.  35 

GhostKnockoff was derived for a particular form of Z-score described above. In practice, we may obtain 36 
p-values from different statistical models (e.g. linear model, logistic model, mixed model etc., with different 37 
covariate adjustments) and from different tests (e.g. Wald’s test, likelihood ratio test, score test etc.). In 38 
such cases, we can apply GhostKnockoff to Z-scores obtained by an inverse normal transformation of p-39 
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 5 

values multiplied by the direction of effect, i.e., sign × Φ<#(pvalue/2). In simulations, we have observed 1 
that the FDR control remained robust as long as the p-values were computed using tests with valid type I 2 
error rate. For example, for studies with related samples, the p-values can be computed using a mixed model 3 
that accounts for sample relatedness, such as GMMAT15, SAIGE16 and fastGWA-GLMM17. We further 4 
discuss the robustness of GhostKnockoff in the Discussion section.  5 

Meta-analysis of possibly overlapping studies  6 

Suppose Z-scores from d independent studies with sample sizes !#, … , != are available. We denote them 7 
as =2,()*+,, … , =?,()*+,; e = !# +⋯+ != is the total number of samples including possible duplicates. In 8 
general, the meta-analysis Z-score can be written as a weighted sum of individual study Z-scores 9 

=()*+, =gh@=A,()*+,
@

,		 10 

where h@  is the weight assigned to the i -th study18,19. The choice h@ = j!@/e  corresponds to a 11 
conventional meta-analysis Z-score weighted by sample size. Studies with overlapping samples are 12 
common in meta-analyses of genetic data, therefore we consider a weighting scheme that accounts for 13 
possible sample overlap and that maximizes the power of the meta-analysis. Intuitively, the optimal weights 14 
will up-weight those studies with higher independent contribution and down-weight the studies that largely 15 
overlap with others. In the Methods section, we show that the optimal weights h@ are given by solving 16 

L-!-L-kl	 g h"hBmno. p"B
#3",B3=

, qrstlmu	un	gh@j!@ = 1
@

, h@ ≥ 0,	 17 

where mno. p"B quantifies the study correlations due to sample overlap. We propose a method based on the 18 
knockoff framework to estimate mno. p"B (see Methods section). Note that, for case-control studies, !@ can 19 

be replaced by 4/ y #

-&,()*+
+

#

-&,(,-./,0
z to better account for case-control imbalance18. 20 

Our proposal for meta-analysis of possibly overlapping studies via knockoffs is to mimic a pooled mega-21 
analysis, by revising the knockoff generation to account for the possibility of duplicated samples. We first 22 
consider a scenario where all studies in the meta-analysis are homogeneous and have a shared LD structure. 23 
In the meta-analysis setting we compute the knockoff Z-scores as 24 

=B()*+, =gh@ ∗ &D=A,()*+, + |EA*
@

, 	EA ∼ I(J, K)	independently	for	all	i, 25 

where 26 

| = Å1 +
C

CD+11
−

CD+11
C
,
CD+11
C

=
∑ F&

2
&

∑ F3F4GHI.K34!"3,4"5
; 27 

mno. p"B  quantifies the correlation between studies -  and t ; {h@}#3@3=  are the solution of the above 28 
quadratic optimization problem. Note that | ≥ 1 can be thought of as a “dependency factor” that accounts 29 
for sample overlap; meta-analysis of independent studies corresponds to | = 1, when mno. p"B = 0, - ≠ t 30 
and subsequently eÖLMM = e. We present the details in the Methods section. 31 

Next, we consider a more general scenario where there are Ü groups of studies with different LD structures 32 
across groups (e.g. each group could be of a different ancestry). We assume that each group á includes dN 33 
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 6 

(homogenous) possibly overlapping studies with sample sizes !N@ and Z-scores =OA,()*+,; !N = ∑ !N@@ . In 1 
the Methods section, we show that the overall Z-score and its knockoff counterpart can be computed as 2 

=()*+, =
1

√e
g j!N ∗ =O,()*+,
#3N3P

, =B()*+, =
1

√e
g j!N ∗ =BO,()*+,,
#3N3P

 3 

where for the 	á -th group  =O,()*+, = ∑ hN@=OA,()*+,@ ; =BO,()*+, =		∑ hN@ ∗ &DO=OA,()*+, + |NEOA*@  with 4 
EOA ∼ I(J, KO) independently for all á  and i ; DO  and 	KO  can be obtained by solving the same convex 5 
optimization problem in Methods section, using the LD structure of the corresponding group. Intuitively, 6 
we perform the knockoff generation for each group separately, and then aggregate the group Z-scores to 7 
compute an overall Z-score and its knockoff.  8 

Computational efficiency 9 

GhostKnockoff is computationally efficient. Empirically, it only required 1.15 hours on average with ten 10 
CPUs to analyze a phenotype from the UK Biobank, and 0.45 hours to meta-analyze the nine AD genetic 11 
studies (discussed later). This is significantly faster than the existing knockoff methods that require 12 
individual level data, which can take several days as reported in Sesia et al. (2020)11 and He et al. (2021)12. 13 
Note that both the HMM method and the SCIT method for individual level knockoff generation has a model 14 
complexity â(!"). By comparison, directly generating knockoff Z-scores as in GhostKnockoff has a model 15 
complexity â("). A primary gain of computational efficiency is from using a reference panel to pre-16 
compute required matrices (D and K as described above) for generating knockoff Z-scores; D and K are 17 
pre-computed using the correlation (LD) structure estimated from a reference panel. Moreover, the random 18 
Gaussian term E can be pre-sampled given K. Therefore, the generation of knockoff Z-scores for a new 19 
study only involves few steps of simple matrix multiplications. For scenarios where we have Z-scores from 20 
multiple phenotypes or from multiple studies that share the same LD structure, the same pre-calculated 21 
matrices can be simultaneously applied. For new studies where the Z-scores are not readily available, there 22 
are many new advances in computing variant-level Z-scores and p-values efficiently for biobank scale data. 23 
The proposed method can leverage other analytical tools that efficiently compute variant-level Z-scores. 24 

Power and FDR simulations 25 

We performed simulations to empirically evaluate the performance of GhostKnockoff, which include: 1) 26 
comparing knockoff inference based on summary statistics vs. knockoff inference based on individual level 27 
data; 2) evaluating the proposed method that accounts for sample overlap; 3) comparing multiple-knockoff 28 
inference vs. single knockoff inference; 4) comparing knockoff inference vs. conventional marginal 29 
association tests in terms of the prioritization of causal variants. Note that the power comparisons between 30 
knockoff FDR control and usual FWER control in a genome-wide setting have been extensively studied by 31 
Sesia et al. (2020) and He et al. (2021), and therefore we did not focus on these existing comparisons in this 32 
paper. Instead, our simulation study focuses on method comparison in a local region. We simulated genetic 33 
data directly using whole genome sequencing (WGS) data from the Alzheimer’s Disease Sequencing 34 
Project (ADSP). The ADSP WGS data (NG00067.v5) are jointly called by the ADSP consortium following 35 
the SNP/Indel Variant Calling Pipeline and data management tool (VCPA)20. We restricted the sampling to 36 
individuals with >80% European ancestry (estimated by SNPWeights v2.1 using reference populations 37 
from the 1000 Genomes Consortium21,22). For each replicate, we randomly drew individuals for two 38 
overlapping studies with 2,500 individuals per study and 2,000 genetic variants randomly selected from a 39 
1Mb region near the APOE region (chr19:44,909,011-45,912,650; hg38). We then restricted the simulation 40 
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studies to variants with minor allele counts > 25 and to variants that are not tightly linked. We considered 1 
three levels of sample overlap: 0% (independent), 25% (moderate) and 50% (high), with 0%, 25% and 50% 2 
samples in each study being present in the other study. Details on the simulation studies can be found in the 3 
Methods section. 4 

First, we compare GhostKnockoff (GhostKnockoff-S and GhostKnockoff-M, where S or M represents 5 
single and multiple knockoff (five knockoff copies per variant), respectively) with the second-order 6 
knockoff generator proposed by Candès et al. that requires individual-level data (IndividualData Knockoff-7 
S). We also extend the second-order knockoff generator to the multiple knockoff setting and include it in 8 
the comparison (IndividualData Knockoff-M). The methods that require individual level data were applied 9 
to an oracle pooled dataset that only contains unique samples. For a fair comparison, all methods are based 10 
on the same feature importance scores, i.e. the squared Z-scores from a marginal score test for association. 11 
We present the results in Figure 2 (A-F). As shown, all methods have valid FDR control. In terms of power, 12 
the proposed methods based on summary statistics (GhostKnockoff-M/S) have consistent power as methods 13 
that require individual level data (IndividualData Knockoff-M/S). The results also hold when there is 14 
25%/50% sample overlap. When there is sample overlap, the power of GhostKnockoff-M/S becomes 15 
slightly lower than IndividualData Knockoff-M/S. A likely explanation is that the study correlation in this 16 
simulation setting is over-estimated and, subsequently, the proposed method becomes slightly conservative. 17 
In real data applications, we will use genome-wide Z-scores to estimate the sample correlation, which 18 
should be more accurate. This simulation study also confirms the higher power of multiple knockoff 19 
inference (GhostKnockoff-M) relative to single knockoff inference (GhostKnockoff-S) at low target FDR 20 
(e.g. 0.05/0.10) and in the scenario with small number of causal variants (10 in our setting) as previously 21 
shown14. This is because the detection threshold of the knockoff filter (the necessary number of independent 22 
signals ≈ #

7×R:STUR	VWX
, where C  is the number of knockoff copies per variant) is lower for multiple 23 

knockoffs compared to single knockoff. The power of multiple knockoff inference will be eventually 24 
comparable to single knockoff inference at high target FDR or in a genome-wide analyses of polygenic 25 
traits as shown in He et al. (2021)12.  26 

Second, we compare GhostKnockoff-M (target FDR=0.1) with conventional marginal tests used in GWAS, 27 
adjusted by Bonferroni correction for FWER control (IndividualData marginal test-Bonferroni; target 28 
FWER=0.05) or Benjamini-Hochberg procedure for FDR control (IndividualData marginal test- 29 
Benjamini-Hochberg; target FDR=0.1). We show results for the setting with 25% sample overlap. Since 30 
the FDR control is more liberal than the FWER control, we focus on the prioritization of causal variants in 31 
this simulation study. For each replicate, we calculate the proportion of identified variants being causal (1-32 
FDR) for each method. We observed that the causal proportion for GhostKnockoff-M is substantially higher 33 
than for conventional marginal tests, because GhostKnockoff-M performs a conditional test, and therefore 34 
can properly account for LD (Figure 2G-2H). Furthermore, the causal proportion using the Benjamini-35 
Hochberg procedure is lower than that using the Bonferroni correction. Since the Benjamini-Hochberg 36 
procedure assumes positive dependence among tests, it may fail to control FDR under more complex LD 37 
structure, which might result in increased false positive rates. Therefore the conventional marginal testing 38 
with Benjamini-Hochberg adjustment does not provide a valid approach for GWAS.  39 

Finally, we compare multiple knockoff inference (GhostKnockoff-M) with single knockoff inference 40 
(GhostKnockoff-S) in terms of the randomness due to sampling knockoff copies, referred to as stability of 41 
knockoff inference. We show results for the setting with 25% sample overlap. We fixed the genotype data 42 
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 8 

and phenotype data, and repeatedly performed knockoff inference. For each replicate, we computed the W-1 
statistic for each variant. Then we calculated the standard deviation of the W-statistics per variant to 2 
quantify the variation due to sampling knockoffs. The multiple knockoff procedure shows less randomness 3 
due to sampling knockoffs compared to single knockoff inference (Figure 2I-2J).  4 

We have also performed additional comparisons with other existing knockoff generators that require 5 
individual level data, including the knockoff generator for Hidden Markov Models (HMMs) proposed by 6 
Sesia et al. (2019) with number of states S=50, and the sequential knockoff generator proposed by He et al. 7 
(2021). We observed similar results as in the comparison with the second-order knockoff generator above 8 
(Supplementary Figure 1). In Supplementary Figure 2, we present an empirical evaluation of the 9 
robustness to study specific rare variants, where 10%/20% rare variants (minor allele frequency<0.01) are 10 
randomly set to be unobserved in each cohort. We observed that the method remains valid, but requires 11 
slight modifications as described in the Methods Section. 12 

Phenome-wide analysis of UK Biobank data 13 

We applied GhostKnockoff separately to each of the 1,403 binary phenotypes from the UK Biobank data 14 
with 408,961 white British participants (European ancestry). In this analysis, GhostKnockoff reduces to a 15 
knockoff inference based on summary statistics from a single study. We aim to evaluate the performance 16 
of GhostKnockoff relative to a GWAS analysis. The Z-scores were calculated using SAIGE, a method that 17 
controls for case-control imbalance and sample relatedness16. GhostKnockoff was applied to each 18 
phenotype separately to select associated genetic variants at FDR 0.1. We used LD matrices estimated using 19 
the high coverage whole-genome sequencing data of the expanded 1000 Genomes Project23. Due to the 20 
relatively small sample size of the 1000 Genomes Project (503 individuals of European ancestry) used to 21 
estimate the LD matrices, we restrict the analyses to common and low-frequency variants with minor allele 22 
frequency >1%. For each phenotype, we count the number of independent associated loci, i.e. loci more 23 
than 200kb away from each other. Additionally, within each locus, we are interested in prioritizing the 24 
small number of putative causal variants, therefore we count the number of genetic variants passing the 25 
FDR 0.1 threshold. We compare GhostKnockoff results and results from conventional GWAS using SAIGE 26 
(with p-value threshold 5 × 10<Y) in terms of the number of identified independent loci (statistical power) 27 
and the number of identified variants per locus (Figure 3).  28 

GhostKnockoff identifies generally more loci per disease phenotype (2.05-fold more discoveries on average, 29 
Figure 3A, 3C) relative to GWAS. This is not surprising given that we identify significant variants at a 30 
more liberal threshold of FDR 0.1. More interesting, GhostKnockoff identifies less genetic variants within 31 
each locus (46% less variants on averages after accounting for LD, Figure 3B- 3C), even though FDR 32 
control is more liberal than the FWER control. These results are consistent with simulation results showing 33 
that GhostKnockoff is more powerful and can prioritize variants that are more likely to be causal. We 34 
additionally present the results stratified by phecode category (phecodes are grouped into different 35 
categories as in SAIGE) in Figure 3D-3E16. Again, we observed that the proposed method consistently 36 
outperformed conventional GWAS across disease categories. 37 

To evaluate the functional effect of the identified variants, we performed functional enrichment analysis 38 
using 19 functional scores included in regBase24, including: CADD25, DANN26, FATHMM-MKL27, 39 
FunSeq228, Eigen29, Eigen_PC29, GenoCanyon30, FIRE31, ReMM32, LINSIGHT33, fitCons34, FATHMM-40 
XF35, CScape36, CDTS37, DVAR38, FitCons239, ncER40, Orion41 and PAFA42. All scores are on the Phred 41 
scale. We partitioned the identified variants into three sets: 1. Variants identified by conventional GWAS 42 
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only; 2. GWAS discoveries that overlap with knockoff inference; 3. Additional discoveries made by 1 
knockoff inference. Each identified variant was MAF matched with 10 randomly selected background 2 
variants on the same chromosome. For each major disease category, we calculated the ratio between the 3 
average functional score of variants in a set and the average functional score of background variants. A 4 
ratio higher than one indicates enriched functional effects of the identified variants. We present the results 5 
in Figure 3F.  6 

We observed that the additional discoveries made by knockoff inference are significantly enriched in higher 7 
functional scores of FunSeq2, Eigen_PC, GenoCanyon, FIRE, ReMM, LINSIGHT, fitCons, DVAR, 8 
fitCons2, and PAFA (p-values with one-sample t-test are shown in Supplementary Figure 3). Note that 9 
most of these functional annotation scores were proposed to predict regulatory effects of noncoding variants. 10 
This is expected given that most variants identified by GWAS and knockoff inference are in non-coding 11 
regions. Interestingly, PAFA, which prioritizes non-coding variants associated with complex diseases, 12 
shows the highest enrichment. These results illustrate that the additional discoveries made by knockoff 13 
inference, though weaker in terms of effect sizes, have putative regulatory effects on traits. 14 

Meta-analysis of Alzheimer’s disease genetics 15 

We applied GhostKnockoff to aggregate summary statistics from nine overlapping large-scale array-based 16 
genome-wide association studies, and whole-exome/-genome sequencing studies. Specifically, the studies 17 
include: 1. The genome-wide survival association study performed on 14,406 AD case samples and 25,849 18 
control samples by Huang et al. 201743; 2. The genome-wide meta-analysis of clinically diagnosed AD and 19 
AD-by-proxy (71,880 cases, 383,378 controls) by Jansen et al. 201944; 3. The genome-wide meta-analysis 20 
of clinically diagnosed AD (21,982 cases, 41,944 controls) by Kunkle et al. 201945; 4. The genome-wide 21 
meta-analysis by Schwartzentruber et al. 202146, aggregating Kunkle et al. 2019 and UK Biobank based on 22 
a proxy AD phenotype; 5. In-house genome-wide associations study of 15,209 cases and 14,452 controls 23 
aggregating 27 cohorts across 39 SNP array data sets, imputed using the TOPMed reference panels47; 6-7. 24 
Two whole-exome sequencing analyses of data from The Alzheimer’s Disease Sequencing Project (ADSP) 25 
by Bis et al. 201948 (5740 cases, 5096 controls), and Le Guen et al. 202149 (6008 cases, 5119 controls); 8. 26 
In-house whole-exome sequencing analysis of ADSP (6155 cases, 5418 controls); 9. In-house whole-27 
genome sequencing analysis of the 2021 ADSP release50 (3584 cases, 2949 controls). All studies focused 28 
on individuals with European ancestry. Similar to the UK Biobank analysis, we restrict the analyses to 29 
common and low-frequency variants with minor allele frequency >1%.   30 

We present the estimated study correlations mno. p"B 	in Figure 4A, and the estimated optimal weights in 31 
Figure 4B. The correlation results are consistent with our knowledge of overlap and other factors, such as  32 
differences in phenotype definition, analysis strategies (e.g. statistical model), and quality control, that can 33 
affect the correlations between these studies (see more details in Supplementary Materials). Similarly, 34 
the weighting scheme up-weighted studies that are large in size and carry independent information, and 35 
down-weighted studies that largely overlap with others. In the Supplementary Materials, we discuss the 36 
consistency between the estimated study correlations and similarities in the design of these studies.  37 

We present the results of the meta-analyses of the nine studies in Figure 4C. We define a locus as new if it 38 
is at least 200kb away from any associations reported in the latest AD meta-analyses including Jansen et al. 39 
(2019), Kunkle et al. (2019) and Schwartzentruber et al. (2021). Our analysis identified in total 55 loci 40 
significant at FDR 0.1, 24 of which were previously reported in Jansen et al. (2019), Kunkle et al. (2019) 41 
and Schwartzentruber et al. (2021). Hence, we identified 31 new loci.  The increased number of discoveries 42 
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is likely due to the integration of all available summary statistics from different studies, and the improved 1 
power of the proposed method compared to conventional GWAS due to FDR control, consistent with our 2 
findings in simulations and the UK Biobank analyses. Table 1 summarizes the 31 new loci. The 24 3 
identified loci that were previously reported are shown in the Supplementary Table 1.  4 

The results show that most of the new associations exhibit suggestive signals in individual studies, and most 5 
identified loci, including existing and new ones, have the same direction of effects across all studies, except 6 
very few loci where one dataset has an opposite direction of effect, although not significant, relative to other 7 
studies. Several new genes are worth mentioning. For example, LRPPRC (leucine-rich pentatricopeptide 8 
repeat motif containing protein) and APP (Amyloid beta precursor protein) have support for their possible 9 
involvement in AD from multiple studies51. Furthermore, Hosp et al. (2015) identified LRPPRC as a 10 
preferential interactor of APP carrying the so-called Swedish mutation (APPsw), which causes early-onset 11 
AD52. Among the new genes, TREM1, CYP3A7, SIGLEC11, IL34, RBCK1, C16orf92, WWOX are within 12 
1MB of novel loci reported in recent studies by Wightman et. al. (2021)53 and Bellenguez et al. (2020)54. 13 
The results based on sample size weighted combination as opposed to the proposed optimal weights are in 14 
Supplementary Figure 4. 15 

Single-cell transcriptomics differential expression analyses validate proximal AD genes 16 

For the proximal genes (nearest genes to the lead variant) corresponding to the 55 loci in Figure 4, we 17 
performed differentially expressed gene (DEG) analyses using single-cell RNA sequencing data 18 
(scRNAseq) from 143,793 single-nucleus transcriptomes from 17 hippocampus (8 controls and 9 AD cases) 19 
and 8 cortex samples (4 controls and 4 AD cases)55. We performed the DEG analysis stratified by 14 cell 20 
types, spanning major brain cell types (e.g., neurons, astrocytes, microglia) and cell types that reside in the 21 
vascular, perivascular, and meningeal compartments, including endothelial cells, pericytes and smooth 22 
muscle cells, fibroblasts, perivascular macrophages and T cells. We adjusted for age, batch, cellular 23 
detection rate, and for within-sample correlation by including sample dummy variables as covariates. We 24 
used this fixed effect model instead of a random effect model because the number of clusters is small 25 
relative to the total number of cells. Among the 55 proximal genes, 41 had expression measurements in the 26 
scRNAseq dataset, with 20/41 corresponding to new loci identified by GhostKnockoff. We considered p-27 
value threshold 0.05 for suggestive signals and a more stringent Bonferroni correction 0.05/41 = 0.0012 for 28 
significant signals (more details on the analyses are available in the Methods section).  29 

We show the scRNAseq results (-log10(p-value) vs. log2 fold change) in Figure 5A, and their 30 
corresponding significance in GWAS studies in Table 1. Overall, we observed a consistently higher 31 
proportion of differentially expressed genes for the proximal genes compared to all other 23496 genes that 32 
are observed in the scRNAseq data (background genes), across the 14 cell types (Figure 5B). Specifically, 33 
we found that 28/41 (68.29%) genes exhibit suggestive signal (p<0.05) in at least one cell type, a 34 
significantly higher proportion compared with the background genes (41.72%; " = 7.2 × 10<Z by Fisher’s 35 
exact test; Figure 5C). Among the 20 genes at the new loci identified by GhostKnockoff, 14/20 (70%) 36 
exhibit suggestive signals (p<0.05), similar to the proportion for the proximal genes that were previously 37 
reported (14/21; 66.67%). We also observed that the DEG signals are more pronounced for the genes 38 
identified by GhostKnockoff compared to background genes (Figure 5D; p-values are generally smaller), 39 
showing a strong enrichment of DEG signals for the proximal genes that reside in the loci identified by 40 
GhostKnockoff.  41 
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To further study the joint effect of the 41 proximal genes identified by GWAS, we fit both linear and 1 
nonlinear models to assess the classification accuracy to distinguish cells from AD patients from healthy 2 
control cells. The scRNA-seq data of the Hippocampus region were divided into training, validation, and 3 
test datasets based on the cohort samples, with 5 AD (23,525 cells) and 4 healthy controls (23,186 cells) in 4 
the training dataset, 1 AD (7,454 ells) and 1 healthy control (6,948 cells) in the validation dataset, and 3 5 
AD (15,707 cells) and 3 healthy controls (18,366 cells) in the test dataset. For each group of proximal genes 6 
(all 41 genes; 21 known genes; 20 new genes), we trained a nonlinear model using AdaBoost with a decision 7 
tree classifier and a linear model using logistic regression. We present the receiver operating characteristic 8 
(ROC) curves and area under the curve in Figure 5E. We observed that the identified new genes have 9 
comparable classification accuracy as the previously reported genes for both linear (0.592 vs. 0.598) and 10 
non-linear models (0.638 vs. 0.632) on the test data. The highest AUC (0.665) is achieved by combining 11 
both previously reported genes and new genes using a non-linear model. These results illustrate that 12 
GhostKnockoff can identify potentially weaker signals that are missed by conventional association tests but 13 
with similar functional effects as previously identified signals.  14 

Discussion 15 

We have proposed GhostKnockoff to perform knockoff-based inference without generating any individual-16 
level knockoff variants. GhostKnockoff can be applied to commonly available summary statistics from 17 
conventional GWAS to improve the power to identify additional, potentially weaker, associations and to 18 
prioritize the causal variants at each locus. Additionally, GhostKnockoff can be applied to meta-analysis of 19 
possibly overlapping studies. In applications to phenome-wide analyses of UK Biobank data and a meta-20 
analysis of Alzheimer’s disease studies, we identified loci that were missed by conventional marginal 21 
association tests with improved precision. The additional discoveries are supported by functional 22 
enrichment analyses and single-cell transcriptomic analyses. These results demonstrate the improved 23 
performance of GhostKnockoff in distinguishing small effect loci that are potentially functional from noisy 24 
background genome.  25 

As with fine-mapping studies, using in-sample LD information is best56. When this is unavailable, the LD 26 
structure can be estimated from an external reference panel. Mismatch between the LD in the target cohort 27 
and the reference panel can increase the FDR. In our empirical studies and real data analyses, we found that 28 
the LD structure estimated from the appropriate population in the 1000 Genome data is a reasonably good 29 
approximation for common and low-frequency variants (MAF≥ 1%). The effect of LD misspecification is 30 
local, and therefore may affect more the ability to prioritize the causal variants at each locus, and less so 31 
the genome-wide locus discovery. For lower frequency variants, larger reference panels, such as the 32 
TOPMed, gnomAD and Pan UKBB, are needed to estimate the LD structure57–59.  33 

Another limitation of the current method is the practical aspect on how to deal with highly correlated 34 
variants. Although the knockoff method helps to prioritize causal variants over associations due to LD, it 35 
is difficult or impossible to distinguish causal genetic variants from highly correlated variants. The presence 36 
of tightly linked variants can diminish the power to identify the causal ones. The current implementation 37 
applied a hierarchical clustering of genetic variants prior to the analysis and then randomly selected one 38 
variant in each cluster. Although this strategy ensures that each variant has a representative variant included 39 
in the analysis, the statistical power can be suboptimal when the underlying causal variant is not selected. 40 
Alternatively, the group knockoff filter which  groups variants and thus requires exchangeability at the 41 
group rather than variant level can be used60,61. It would be of interest to incorporate group knockoffs into 42 
GhostKnockoff for improved power. 43 
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We note that GhostKnockoff was derived for a particular form of Z-score, where both features and 1 
outcomes are standardized with mean zero and standard deviation one, and samples within each study are 2 
assumed independent. In practice available Z-scores can be based on different statistical models (e.g. linear 3 
model, logistic model, mixed model etc., with different covariate adjustments) and different tests (e.g. 4 
Wald’s test, likelihood ratio test, score test etc.). Using empirical simulation studies, we observed that 5 
GhostKnockoff is robust to such variations (Figure 2). Intuitively, the Z-scores from different analytical 6 
procedures share very similar joint distribution, with a similar marginal distribution and correlations mainly 7 
determined by LD. The proposed generation of knockoff Z-scores derived based on a particular form of Z-8 
score #

√-
+'< provides a reasonable approximation and therefore the empirical FDR is under control. 9 

However, the theoretical justification of the robustness of GhostKnockoff remains unclear and it will be 10 
important to study in the future.   11 
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Figure 1. Overview of GhostKnockoff. We present the workflow of GhostKnockoff compared to conventional GWAS and 1 
knockoff inference based on same marginal test statistics using individual level data. A. Conventional GWAS. B. Knockoff 2 
inference using individual level data. We present the approach based on marginal test statistics. C. The proposed GhostKnockoff 3 
using Z-scores from conventional GWAS as input. 4 

  5 
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Figure 2: Empirical simulation studies for power, FDR and stability. Two cohorts are randomly sampled from the same 1 
population. A-F. Power and FDR based on 1000 replicates for different types of traits (quantitative and dichotomous) and different 2 
levels of sample overlap (0%/25%/50%), with different target FDR varying from 0 to 0.2. GhostKnockoff-M/S: the proposed 3 
multiple/single knockoff method based on the meta-analysis of Z-scores calculated separately from each individual cohort. 4 
IndividualData Knockoff-M/S: knockoff inference based on individual level data. G-H. Prioritization of causal variants. I-J. 5 
Stability of knockoff inference, with 25% overlap and 20% unobserved variants per study. The stability is quantified as the standard 6 
deviation of feature statistics across 1000 replicates due to randomly sampling knockoffs for a given dataset. 7 

 8 
  9 
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Figure 3: Phenome-wide Analysis of 1,403 binary phenotypes from UK biobank data with 408,961 white British participants 1 
with European ancestry. A-B. Comparison between conventional GWAS and GhostKnockoff. C. Summary of A and B. For each 2 
phenotype, we calculated the ratio between the total number of identified loci/ the average number of proxy variants per shared 3 
locus by GhostKnockoff and by conventional GWAS. Panel C presents the average ratio (as in A. and B.) across 1,403 phenotypes. 4 
The standard error is calculated as 6789:8;:	:=>?87?@9	@A	7B=	;87?@

C7@78D	9EFG=;	@A	HB=9@7IH=6	JK
. D. Distribution of the number of identified loci. We present boxplot 5 

for each disease category. E. For loci identified by both conventional GWAS and the proposed method, we present the number of 6 
identified per locus. For visualization purposes, we present the results for disease phenotypes with ≥ 5 loci identified by either 7 
conventional GWAS or the proposed multiple knockoff inference for panels D and E. F. Functional score of variants identified by 8 
GhostKnockoff compared to that of genome-wide background variants. Each data point in the boxplot corresponds to the average 9 
score of one disease category.  10 

 11 
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Figure 4: Meta-analysis of Alzheimer’s disease studies. A. Study correlations estimated using the proposed method. For each 1 
study, we present sequencing technology, sample size and number of variants. B. Optimal combination of studies estimated using 2 
the proposed method. Each bar presents the weight per study in percentage, i.e. weight per study divided by the summation of all 3 
weights. C. We present the Manhattan plot of W statistics (truncated at 100 for clear visualization) from GhostKnockoff with target 4 
FDR at 0.10. The results are based on the optimal weights combining the nine studies. Loci previously reported by Jansen et al. 5 
(2019), Kunkle et al. (2019), Schwartzentruber et al. (2021) are shown in black; new discoveries are shown in red (FDR=0.10). 6 
Variant density is shown at the bottom of Manhattan plot (number of variants per 1Mb).  7 

 8 
  9 
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Figure 5: Single cell RNAseq data (n=143793) analysis of the identified proximal AD genes. A. Differentially expressed genes 1 
(DEG) analysis, comparing Alzheimer’s disease cases (AD) with healthy controls. Each dot represents a gene. Colors represent 2 
different cell types. OPC: Oligodendrocyte progenitor cell. The black dashed line corresponds to p-value cutoff 0.05; the grey 3 
dashed line corresponds to p-value cutoff 0.05/43 (number of candidate genes). For visualization purposes, -log10(p) values are 4 
capped at 15 and abs(log2(fold change)) values are capped at 1.0. Positive log2 fold change corresponds to higher expression level 5 
in AD. B. Proportion of suggestive genes stratified by cell types. C. Proportion of suggestive genes in at least one cell type. P-6 
values are calculated with Fisher’s exact test. D. Enrichment analysis of DEG p-values relative to background genes. E. 7 
Classification of cell source with linear and non-linear methods.  8 

 9 
 10 
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Table 1. New loci associated with Alzheimer’s disease. We report new loci identified by GhostKnockoff at FDR=0.10. For each locus, we present the representative variant with 1 
the largest W-statistic and the nearest gene within +-1Mb. The physical positions of each variant are given in build hg38. The minor allele frequencies (MAF) are based on 1000 2 
Genome EUR samples. The last column reports scRNAseq p-values that are based on the minimum p-value of 14 cell types. 3 

Variant Proximal Gene MAF q 
Jansen 
et al. 

Kunkle 
et al. 

Schwar
tzentru
ber et 

al. 

Bis et 
al. 

WES 

In-
house 

ADGC 

In-
house 
ADSP 
WES 

In-
house 
ADSP 
WGS 

LeGua
n et al. 
WES 

Huang 
et al. 

Direction of 
effects 

scRNA
seq 

DEG 
minP 

1:155419060:A:T POU5F1P4 0.024 0.0448 1.1E-04 3.3E-03 2.2E-04 NA 4.9E-01 NA 6.8E-01 NA 1.1E-02 +++0+0+0+ NA 

1:178992361:C:T FAM20B 0.028 0.0477 1.1E-03 4.0E-02 4.0E-05 NA 7.1E-01 NA 9.8E-01 NA 3.8E-02 +++0-0+0+ 2.0E-01 

2:16163568:G:T GACAT3 0.071 0.0586 3.6E-04 9.1E-04 8.5E-04 NA 3.4E-01 NA 1.6E-01 NA 9.2E-01 +++0+0+0+ 2.8E-01 

2:44026309:T:C LRPPRC 0.026 0.0302 1.4E-04 6.0E-02 3.9E-04 NA 2.4E-02 NA 2.7E-04 NA 2.2E-01 ---0-0-0- 9.6E-05 

4:45333059:T:C GNPDA2 0.239 0.0531 1.1E-02 3.4E-04 3.1E-05 NA 1.1E-03 NA 4.6E-02 NA 3.7E-03 ---0-0-0- 4.4E-02 

4:72505187:G:A ADAMTS3 0.288 0.0690 4.4E-04 1.5E-02 5.0E-04 NA 2.0E-01 NA 6.5E-01 NA 1.2E-01 ---0-0-0- 2.1E-01 

4:73233462:A:G ANKRD17 0.027 0.0928 1.8E-05 1.7E-01 2.2E-02 NA 5.7E-01 NA 8.5E-01 NA 3.4E-01 ---0+0-0- 2.1E-09 

5:87002714:C:T MIR4280 0.191 0.0250 2.1E-06 1.7E-02 4.5E-05 NA 1.7E-06 NA 9.4E-03 NA 3.7E-03 +++0+0+0+ NA 

6:22291730:T:C PRL 0.233 0.0765 8.9E-07 4.7E-01 3.7E-06 NA 7.9E-01 NA 4.0E-01 NA 6.7E-01 +++0+0-0+ NA 

6:41258521:C:T TREM1 0.398 0.0914 2.1E-04 3.6E-02 2.8E-06 NA 2.0E-03 NA 7.2E-02 NA 1.3E-01 +++0+0+0+ 1.1E-02 

6:84401409:G:A LINC01611 0.211 0.0709 1.6E-03 6.2E-03 1.6E-02 NA 5.2E-02 NA 1.7E-02 NA 1.2E-04 ---0-0-0- 3.9E-04 

7:99706348:T:C CYP3A7 0.111 0.0531 3.5E-03 3.3E-03 2.7E-05 NA 9.2E-04 NA 3.0E-01 NA 7.5E-01 ---0-0-0+ NA 

10:29966853:G:A JCAD 0.016 0.0154 2.0E-04 4.1E-02 5.2E-06 NA 1.9E-01 NA 6.3E-01 NA NA +++0+0+00 1.6E-06 

14:23008384:G:A C14orf93 0.135 0.0770 3.2E-06 2.5E-01 2.0E-03 NA 7.0E-01 NA 2.5E-01 NA 2.6E-01 +++0+0+0+ 3.5E-02 

15:98515483:C:T FAM169B 0.379 0.0876 8.9E-04 1.3E-02 6.1E-05 NA 3.0E-04 NA 1.2E-03 NA 7.1E-02 ---0-0-0- 5.3E-04 

16:17478817:T:C XYLT1 0.221 0.0444 7.8E-04 1.3E-02 5.8E-04 NA 6.2E-01 NA 6.5E-01 NA 3.7E-03 +++0+0+0+ 9.5E-06 

16:30028857:C:G C16orf92 0.465 0.0321 2.0E-05 6.6E-03 2.7E-04 NA 5.5E-04 NA 9.3E-02 NA 1.3E-01 ---0-0-0- NA 

16:70258841:T:C AARS1 0.203 0.0331 1.8E-03 4.6E-03 7.3E-04 NA 3.5E-01 NA 7.3E-01 NA 7.5E-04 ---0-0+0- NA 

16:70633901:A:G IL34 0.356 0.0545 1.3E-06 2.3E-01 9.7E-04 NA 2.3E-01 NA 6.2E-01 NA 9.3E-02 +++0+0-0+ 5.4E-08 

16:78702250:A:G WWOX 0.027 0.0914 2.3E-05 7.9E-05 6.7E-03 NA 1.9E-01 NA 8.6E-01 NA 3.8E-04 +++0+0+0+ 2.5E-18 

17:388402:T:C LOC105371430 0.420 0.0471 1.2E-03 1.3E-01 1.5E-04 NA 5.5E-01 NA 9.1E-01 NA 1.2E-02 +++0+0+0+ NA 

17:44375697:A:C ITGA2B 0.389 0.0507 6.9E-04 1.3E-02 1.3E-04 1.2E-02 5.3E-01 7.0E-02 4.8E-01 8.7E-02 3.7E-01 +++++++++ 1.6E-01 

 4 
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Table 1 (continued). New loci associated with Alzheimer’s disease. We report new loci identified by GhostKnockoff at FDR=0.10. For each locus, we present the representative 1 
variant with the largest W-statistic and the nearest gene within +-1Mb. The physical positions of each variant are given in build hg38. The minor allele frequencies (MAF) are based 2 
on 1000 Genome EUR samples. The last column reports scRNAseq p-values that are based on the minimum p-value of 14 cell types. 3 

Variant Proximal Gene MAF q 
Jansen 
et al. 

Kunkle 
et al. 

Schwar
tzentru
ber et 

al. 

Bis et 
al. 

WES 

In-
house 

ADGC 

In-
house 
ADSP 
WES 

In-
house 
ADSP 
WGS 

LeGua
n et al. 
WES 

Huang 
et al. 

Direction of 
effects 

scRNA
seq 

DEG 
minP 

17:60239372:C:T SCARNA20 0.199 0.0492 1.3E-03 4.4E-03 2.1E-03 NA 9.7E-01 NA 1.7E-01 NA 8.8E-03 +++0-0+0+ NA 

17:61326836:G:A LOC101927855 0.011 0.0541 7.6E-04 1.3E-02 8.8E-06 NA 2.8E-01 NA 8.7E-01 NA NA ---0+0-00 NA 

17:73384739:C:T SDK2 0.204 0.0420 8.5E-04 1.4E-03 1.7E-04 NA 3.1E-02 NA 9.5E-01 NA 8.0E-02 ---0-0+0- 6.4E-02 

19:43694225:G:A IRGC 0.042 0.0403 2.2E-05 2.0E-01 2.2E-06 NA 2.9E-01 NA 5.1E-01 NA 2.7E-01 +++0+0+0+ NA 

19:49950060:C:T SIGLEC11 0.240 0.0565 1.1E-04 7.8E-03 5.9E-07 NA 4.2E-03 1.7E-02 4.0E-01 NA 3.5E-01 +++0+++0+ NA 

19:54303579:C:G LILRA5 0.305 0.0830 2.1E-03 2.0E-02 7.9E-04 NA 1.1E-03 NA 3.1E-03 NA 4.0E-02 ---0-0-0- 4.6E-01 

20:411639:C:T RBCK1 0.103 0.0527 5.4E-05 9.4E-02 6.4E-05 NA 2.3E-01 NA 5.2E-01 NA 3.4E-01 +++0+0+0+ 1.5E-03 

21:26161943:T:C APP 0.371 0.0252 4.2E-07 1.2E-03 1.0E-07 NA 6.3E-04 NA NA NA 1.1E-01 +++0+000+ 3.2E-16 

22:21587626:C:T UBE2L3 0.182 0.0866 6.0E-03 3.9E-04 2.2E-04 NA 3.0E-04 NA 2.3E-01 NA 4.8E-01 ---0-0-0- 4.5E-02 

 4 

  5 
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Methods 1 

Knockoff-based inference using summary statistics 2 

Our meta-analysis method is based on the second-order knockoff generator, which was initially developed 3 
for Gaussian distribution and then shown to remain empirically robust to certain deviations if the estimated 4 
second-order moments are sufficiently close to those of the underlying distribution.  5 

The proposed knockoff-based inference using summary statistics attempts to mimic the inference based on 6 
individual-level data. For single-knockoff, we show in Supplementary Materials that the two methods are 7 
equivalent if we directly generate 8 

!"!"#$% = $!!"#$% + &, with	& ∼ .(0, 1), 9 

$ = 34 − 67&'8, 1 = 26 − 67&'6, 10 

where 4  is a : × :  identity matrix; 7  is the correlation matrix of <(  that characterizes the linkage 11 
disequilibrium; 6 = diag(@), … , @*)  is a diagonal matrix obtained by solving the following convex 12 
optimization problem: 13 

minimize	FG1 − @+G

*

+,)

 14 

subject	to	 O
27 − 6 ≽ 0,

@+ ≥ 0,			1 ≤ T ≤ :. 15 

This way, we can directly simulate the knockoff Z-scores from a multivariate normal distribution. For a 16 
given dataset, the knockoff Z-scores will follow the same distribution as those calculated based on 17 
generating individual-level knockoffs. Therefore, the summary statistics-based knockoff generation retains 18 
the properties of knockoff-based inference.  19 

Extension to multiple knockoffs 20 

Here we extend the single-knockoff approach to the case with multiple knockoffs where the original feature 21 
and multiple knockoffs are simultaneously exchangeable12,62. We show in Supplementary Materials that 22 
the multiple-knockoffs counterpart for a Z-score can be directly generated by 23 

!"!"#$% = $!!"#$% + &, with	& ∼ .(0, 1), 24 

$ = V
4 − 67&'

…
4 − 67&'

W , 1 = X

Y Y − 6 … Y −6
Y −6 Y … Y −6
… … … …

Y −6 Y −6 … Y

Z	, 25 

where !"!"#$% is a :[-dimensional vector; 4 is a : × : identity matrix; 7 is the correlation matrix of <( that 26 
characterizes the linkage disequilibrium; Y = 26 −67&'6 ; 6 = diag(@), … , @*)  is a diagonal matrix 27 
given by solving the following convex optimization problem:  28 

minimize	FG1 − @+G
+

 29 
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subject	to	 \
[ + 1
[

7 − 6 ≽ 0,

@+ ≥ 0,			1 ≤ T ≤ :.
 1 

Knockoff filter to define the threshold ] and Q-value for FDR control 2 

After the knockoff Z-scores are generated, we calculate the feature importance score as the element-wise 3 
square of Z-scores,  4 

^ = !!"#$%- , ^. = 3!"!"#$%. 8
/ 5 

and the knockoff statistics 6 

_+ = arg	max
01213

b+
2, c+ = b+

(0) −median
)1213

b+
(2) 7 

where d indicates the d-th knockoff. For the T-th variant, _+ denote the index of the original (denoted as 8 
0) or the knockoff feature that has the largest importance score; c+ denotes the difference between the largest 9 
importance score and the median of the remaining importance scores; b+

(2) is corresponding to the order 10 
statistics with b+

(0) ≥ ⋯ ≥ b+
(2). _ and c obey the a property similar to the “flip-sign” property in the single 11 

knockoff scenario12,62. In the multiple knockoff scenario, _+ plays a role as the sign, and c+ quantifies the 12 
magnitude that is invariant to swapping. Subsequently, we define a f-statistic to quantify the magnitude 13 
of effect on the outcome as 14 

g = h^ −median
)1213

^.i j67 89:!"#"$6% . 15 

Variants with f > c	are selected, where c is the threshold calculated by the knockoff filter. We define the 16 
threshold for the knockoff filter as 17 

c = min \l > 0:	

1
[ +

1
[#o_+ ≥ 1, c+ ≥ lp

#{_+ = 0, c+ ≥ l}
≤ st. 18 

In addition, we define the Q-value for a variant with statistics _ = 0 and c as 19 

s = min
;1<

1
[ +

1
[#o_+ ≥ 1, c+ ≥ lp

#{_+ = 0, c+ ≥ l}
, 20 

where 
!
$=

!
$#?@&7),<&7;B

#{@&,0,<&7;}
 is an estimate of the proportion of false discoveries if we are to select all variants 21 

with feature statistic _+ = 0, c+ ≥ l, which is the knockoff estimate of FDR. For variants with _ ≠ 0, we 22 
define s =1 and they will never be selected. Selecting variants with f > c where c is calculated at target 23 
FDR= v is equivalent to selecting variants with s ≤ v. 24 

Meta-analysis of independent studies via knockoffs 25 

Suppose Z-scores from w  independent studies with sample sizes x), … , xE  are available, denoted as 26 
!',!"#$%, … , !F,!"#$%. We define the meta-analysis Z-score as 27 
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!!"#$% =
1

√z
F{xG ∗ !H,!"#$%
G

=
1

√z
F}H
G

, 1 

where z = ∑ xGG  is the total number of samples; }H is the score test statistic for the �-th study. Note that 2 
the meta-analysis Z-score is also a summation of sample score statistics, where the correlation structures 3 
across different studies are assumed to be the same. Following the same derivation for a single study, we 4 
can generate the knockoff feature importance by 5 

!"!"#$% =
1

√z
F{xG ∗ 3$!H,!"#$% + &H8
G

=
1

√z
$F{xG ∗ !H,!"#$%

G

+
1

√z
F{xG ∗ &H
G

, 6 

where	&H ∼ .(0, 1)	independently	for	all	k. 7 

Given independence between studies, )
√J
∑ {xG ∗ &HG  still follows the normal distribution .(0, 1) . 8 

Therefore, the knockoff feature importance statistic at meta-analysis level can be equivalently generated as 9 

!"!"#$% = $!!"#$% + &, where	& ∼ .(0, 1). 10 

The same knockoff filter procedure as before can be applied in this setting. 11 

Meta-analysis of possibly overlapping studies via knockoffs 12 

The principle for meta-analysis of overlapping studies is to mimic a pooled mega-analysis where the 13 
knockoff generation should be revised to account for the presence of possibly duplicated samples. One 14 
sufficient condition for a valid knockoff inference is that for a sample that is present in more than one study 15 
its knockoff version for different studies should be identical instead of being independently generated for 16 
each study. 17 

Let zKLLKM; be the effective number of samples, i.e. the total number of unique samples; z be the total 18 
number of records (including duplicates); Ö), … , ÖJ'((')* be the number of occurrences for each unique 19 
sample, z = Ö) +⋯+ ÖJ'((')*. The feature importance score is then defined as  20 

!!"#$% =
1

√z
F}H
G

=
1

√z
F ÖN ∗ <(

6ÜN
)1N1J'((')*

 21 

Since <"(|<(~<($6 + â(6 with â(~.(0, 1), 22 

!"!"#$% =
1

√z
F}äH
G

=
1

√z
F ÖN ∗ 3$<(

6ÜN + â(ÜN8
)1N1J'((')*

. 23 

As â(’s are independent for all ã, in distribution it is equivalent to generate 24 

!"!"#$% =
1

√z
$F}H

G

+å
∑ ÖN

-ÜN
-

)1N1J'((')*
z

& ≈
1

√z
$F}H

G

+å
∑ ÖN

-
)1N1J'((')*

z
	& = $!!"#$% + é&, 25 

where &~.(0, 1). The approximation “≈” is because 
∑ P+

,Q+
,!"+"-'((')*

J'((')*
 is an approximation of è3ÖN-ÜN-8 =26 

è3ÖN
-8è3ÜN

-8 = è3ÖN
-8 since ÜN has mean 0 and variance 1, and ÖN and ÜN are independent. Then è3ÖN-8 can 27 
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be approximated by 
∑ P+

,!"+"-'((')*
J'((')*

; and we define é = ê
∑ P+

,!"+"-'((')*
J , which can be thought of as a 1 

“dependency” factor that accounts for sample overlapping. When Ö) = ⋯ = ÖJ'((')* = 1 , we have 2 
zKLLKM; = z and é = 1, i.e. the scenario with independent studies. It is worth noting that our derivation is 3 
based on the following two assumptions: first, different studies are combined by using weights proportional 4 
to {xG/z; second, each data point can be observed in different studies with the same probability.  5 

Calculation of the dependency factor é 6 

The number of duplicates per sample is typically unknown. We propose an approximation of é as 7 

é = å
∑ ÖN

-
)1N1J'((')*

z
= å

zKLLKM;
z

∗
∑ ÖN

-
)1N1J'((')*
zKLLKM;

	 = å
zKLLKM;
z

∗ ÖR-ííí	 8 

Under the assumption that the z −zKLLKM; duplicates are randomly distributed, ÖN follows a distribution 9 

1 + ì îz − zKLLKM; ,
)

J'((')*
ï , where ì(∙)  denotes a binomial distribution with z −zKLLKM;  trials and 10 

success probability )
J'((')*

. Thus  11 

ÖR-ííí 	≈ è3ÖN
-8 = óòô(ÖN) + è(ÖN)- =

3z − zKLLKM;83zKLLKM; − 18

zKLLKM;
- + ö

z
zKLLKM;

õ
-

. 12 

Since z is sufficiently large, 13 

é = ê
J

J'((')*
+ î

J
J'((')*

− 1ïh
J'((')*

J −
)
Ji ≈ ê1 +

J
J'((')*

−
J'((')*

J . 14 

Study correlations and effective sample size 15 

We propose a technique based on the proposed knockoff framework to identify study correlations due to 16 
sample overlap. The method requires GWAS summary statistics only and it naturally accounts for LD. 17 
Specifically, we first calculate the study correlation matrix 18 

úùû. } = ü†ô3!',!"#$% − $!',!"#$%, … , !F,!"#$% − $!F,!"#$%8 19 

where !H,!"#$% − $!H,!"#$% = 67&'!H,!"#$%, which is the expected difference between the original Z-score 20 
and the knockoff Z-score. It quantifies the putative causal effect adjusting for nearby correlated variants. 21 
Under the null hypothesis that genetic variants are independent of the outcome of interest, the correlation 22 
between two independent studies is expected to be 0. Thus non-zero off-diagonal elements of ü†ô. ° 23 
quantifiy the sample overlap. We note that this approach is conceptually similar to LD score regression 24 
(https://www.nature.com/articles/s41588-018-0311-9#Sec10). However, LD score regression aims to 25 
estimate the genetic correlation and adjust for the bias due to sample overlap, while the proposed method 26 
directly estimates the correlation due to sample overlap. In practice, we use variants with |Z-score|≤1.96 to 27 
calculate úùû. } to remove the correlation due to polygenic effects. 28 

We then estimate zKLLKM; in a similar way as when estimating effective sample sizes in association studies 29 
with sample relatedness63. We calculate effective sample size as 30 
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z¢KLLKM; = z ∗
J

∑ ST+T&MUV.X+&!"+,&"/
, 1 

where xN  is the sample size of the ã-th study. For example, z¢KLLKM; = z if all studies are independent; 2 
z¢KLLKM; = z/w if all studies are identical. J

∑ ST+T&MUV.X+&!"+,&"/
 is the ratio of the variance of ∑ }HG  ignoring 3 

sample overlap over that accounting for sample overlap. Thus, we propose an approximation of é as 4 

é ≈ ê1 +
J

JY'((')*
−

JY'((')*
J ,

JY'((')*
J =

J
∑ ST+T&MUV.X+&!"+,&"/

. 5 

Connection with existing meta-analysis methods that allow overlapping samples 6 

A common approach in meta-analysis is to sum Z-scores and weight them properly based on sample sizes, 7 
i.e.  8 

£ZMUVK =
)
√J
∑ {xG ∗ £G,ZMUVKG . 18,19 9 

When the Z-scores are independent, £ZMUVK  follows z(0,1) under the null hypothesis. When there are 10 
overlapping samples, the variance is no longer 1. Instead, 11 

óòô(£ZMUVK) =
1
z

F {xNx+ü†ó3£N,ZMUVK , £+,ZMUVK8
)1N,+1E

. 12 

óòô(£ZMUVK) > 1 when there are overlapping studies and can be used to compute an effective sample size. 13 
Specifically, the £ZMUVK should be reduced to 14 

£ZMUVK[ = ê
J'((
J ∗

)
√J
∑ {xG ∗ £G,ZMUVKG ,  15 

where 16 

zKLL =
z

óòô(£ZMUVK)
= z ∗

z

∑ {xNx+ü†ó3£N,ZMUVK , £+,ZMUVK8)1N,+1E
. 17 

ü†ó3£N,ZMUVK , £+,ZMUVK8 quantifies the sample overlap between studies ã and T, and can be estimated using 18 
genome-wide Z-scores. Note that individual Z-scores are normalized, therefore ü†ó3£N,ZMUVK , £+,ZMUVK8 =19 
ü†ô3£N,ZMUVK , £+,ZMUVK8. As discussed above, in the proposed approach, we estimate it using the knockoff 20 
method that accounts for LD. 21 

Meta-analysis of overlapping studies with heterogeneous LD structure 22 

Suppose there are § groups (e.g. different ancestries) with different LD structure 7', … , 7\, and each group 23 
includes w] overlapping studies with sample size x]G and Z-scores !^H,!"#$%; x] = ∑ x]GG . We assume that 24 
each group contains studies with the same LD structure. The overall Z-score is computed as 25 

!!"#$% =
1

√z
F{x]G ∗ !^H,!"#$%
],G

=
1

√z
F{x] ∗ !^,!"#$%
]

, 26 

where the Z-score for each group is !^,!"#$% =
)
ST0

∑ {x]G ∗ !^H,!"#$%G . Let jKLLKM;,] be the index of unique 27 

samples corresponding to the •-th group, and z] be its size. The knockoff Z-score can be obtained as 28 
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!"!"#$% =
1

√z
F ÖN ∗ <"(

6ÜN
)1N1J'((')*

=
1

√z
F F ÖN ∗ 3$^<(

6ÜN + â(^ÜN8,
N∈`'((')*,0)1]1a

 1 

where â(^ ∼ .(0, 1^)  independently for all ã  and • . Note that ∑ ÖNÜNâ(^N∈`'((')*,0  still follows a normal 2 

distribution ê∑ ÖN
-ÜN

-
N∈`'((')*,0 ∙ .(0, 1^), and in distribution 3 

!"!"#$% =
1

√z
F {z] ∗ $^!^,!"#$%
)1]1a

+
1

√z
F {z] ∗ å

∑ ÖN
-ÜN

-
N∈`'((')*,0

z]
	&^

)1]1a

4 

=
1

√z
F {z] ∗ 3$^!^,!"#$% + é] 	&^8
)1]1a

≔
1

√z
F {z] ∗ !"^,!"#$%
)1]1a

, 5 

where &^~.(0, 1^)  independently for all •. Thus, the knockoff Z-score can be generated by 6 

!"!"#$% =
)
√J
∑ {z] ∗ !"^,!"#$%)1]1a , 7 

which means that it can be generated by the weighted summation of the knockoff Z-scores generated for 8 
each individual group.  9 

Meta-analysis with optimal weights 10 

When meta-analyzing studies with overlapping samples, we would like to down-weight studies that are 11 
largely overlapping with others. In general, the proposed meta-analysis approach can be written as 12 

!!"#$% = ∑ ßG!H,!"#$%G = ∑ ßG{xG ∗
)

ST1
!H,!"#$%G . 13 

Assuming that the effect sizes per variant from different studies are the same, )
ST1

!H,!"#$% is entry-wise in 14 

the same order of ® where ® is constant that quantifies the marginal association under the alternative 15 
hypothesis. We aim to maximize 16 

!!"#$%
©™(!!"#$%)

=
∑ ßG!H,!"#$%G

{∑ ßNß+ü†ô. °N+)1N,+1E
~

∑ ßG{xGG

{∑ ßNß+ü†ô. °N+)1N,+1E
∗ ® 17 

which is equivalent to 18 

dãxãdã´¨	 F ßNß+ü†ô. °N+
)1N,+1E

, @≠ÆT¨ül	l†	FßG{xG = 1
G

, ßG ≥ 0. 19 

We note that this is similar to the optimal weights proposed by Lin and Sullivan (2009), except for the 20 
additional constraint ßG ≥ 0  19. With the proposed weights, we revise the calculation above of the 21 
dependency factor as 22 

é = å1 +
z

z¢KLL
−
z¢KLL
z

,
z¢KLL
z

=
∑ ßG

-
G

∑ ßNß+ü†ô. °N+)1N,+1E
. 23 

It is worth noting that the form of é was derived for weights êT1
J . Theoretically, the exact form of é should 24 

be further revised to reflect the change in weights, which can be complicated to compute in practice. Here 25 
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we use this form as an approximation, and we found that it empirically controls FDR very well in the 1 
presence of sample overlap. 2 

Practical strategy for study specific rare variants 3 

Another possible and often overlooked complication in meta-analyses of genetic studies is the unequal 4 
coverage of variants across studies due to different genotyping platforms and/or different imputation panels 5 
for individual studies, which results in the presence of “study-specific” rare variants (MAF<0.01) that are 6 
measured in only some of the studies. One suboptimal solution is to only include variants measured across 7 
all studies. Alternatively, to maximize the power of genetic discovery, all variants may be included in the 8 
meta-analyses. In the presence of study specific rare variants, we propose to calculate the overall Z-score 9 
and its knockoff counterpart as 10 

!!"#$% =FßG ∗ YH!H,!"#$%
G

, !"!"#$%~FßG ∗ YH3$!H,!"#$% + é&H8
G

, 11 

where YH is a diagonal matrix with üG+ = 1 if the T-th variant is observed in study � and üG+ = 0 otherwise; 12 
&H~.(0, 1) independently for all �. Intuitively, we generate modified knockoff Z-scores $!H,!"#$% + é&H 13 
for each study and combine them as one meta-analysis knockoff Z-score. When a variant is not measured 14 
in a study, we propose coding both its Z-score and knockoff Z-score for that study as 0. This way the study 15 
does not contribute to the meta-analysis Z-score/knockoff Z-score. It is worth noting that knockoff inference 16 
is scale-free because the feature selection is based on a contrast between !!"#$% and !"!"#$%. Therefore, it 17 
does not require rescaling  !!"#$% and !"!"#$% to account for the reduced variation due to study-specific 18 
variants.  19 

Practical strategy for tightly linked variants 20 

Although the knockoff method helps to prioritize causal variants over associations due to LD, it is difficult 21 
or impossible to distinguish causal genetic variants from highly correlated variants. The presence of tightly 22 
linked variants can diminish the power to identify the causal ones. We applied a hierarchical clustering of 23 
genetic variants prior to the analysis, where variants in the same cluster have a pair-wise correlation ≥ 0.75. 24 
Then we restricted the analysis to one randomly selected representative variant in each cluster. This ensures 25 
that each genetic variant in the genome has a highly correlated representative to be included in the analysis 26 
and the analysis is unbiased. On average (based on the nine AD studies), we observed that 37.9% variants 27 
can be matched with the 1000 Genome reference panel for the proposed GhostKnockoff analysis after this 28 
pruning procedure. That is, on average, each variant represents 2.64 variants in the same cluster. 29 

Empirical power and FDR simulations 30 

For each replicate, we first generated two overlapping studies (2,500 individuals per study) with genetic 31 
data on 2,000 common and rare genetic variants randomly selected from a 1Mb region near the APOE 32 
region (chr19:44909011-45912650; hg38) in the ADSP study. We then restricted the simulations to variants 33 
with minor allele counts >25 to ensure stable calculation of summary statistics (e.g. p-values). Since the 34 
simulations here focus on method comparison to identify relevant clusters of tightly linked variants, we 35 
simplify the simulation design by keeping one representative variant from each tightly linked cluster. 36 
Specifically, we applied hierarchical clustering such that no two clusters have cross-correlations above a 37 
threshold value of 0.75 and then randomly choose one representative variant from each cluster to be 38 
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included in the simulation study. To simulate multiple causal variants, we randomly set 10 variants in the 1 
1Mb region to be causal, with a positive effect on the quantitative/dichotomous trait as follows: 2 

Quantitative trait: ÜN = ±N) + ≤)≥N,) +⋯+ ≤)0≥N,)0 + ¥N
b , 3 

Dichotomous trait: µ(∂N) = ≤0 + ±N) + ±N- + ≤)≥N,) +⋯+ ≤)0≥N,)0, 4 

where ±N)~z(0,1), ¥N
b~z(0,3), ±N-~z(0,1) and they are all independent; ±N) is the observed covariate 5 

that is adjusted in the analysis; ¥N
b and ±N- reflect variation due to unobserved covariates; (≥N,), … , ≥N,)0) 6 

are selected risk variants; µ(∏) = log(
c

)&c)		and ∂N is the conditional mean of ÜN 	; for dichotomous trait, ≤0 7 
is chosen such that the prevalence is 10%. We set the effect ≤+ =

d
S-2&	()&2&)

, where d+ is the MAF for the 8 

T-th variant. We define ò such that the variance due to the risk variants, ≤)-óòô(µ)) + ⋯+ ≤)0
- óòô(µ)0), 9 

is 1. We applied the proposed methods to the region as described before to analyze single variants. For each 10 
replicate, the empirical power is defined as the proportion of detected variants among all causal variants; 11 
the empirical FDR is defined as the proportion of non-causal variants among all detected variants. We 12 
simulated 1000 replicates and calculated the average empirical power and FDR.  13 

Data Availability 14 

The manuscript used summary statistics from existing studies from the UK Biobank available at 15 
https://pheweb.org/UKB-SAIGE/. The summary statistics from each GWAS for Alzheimer’s disease can 16 
be found at https://www.niagads.org/datasets. The single cell RNASeq data for the candidate genes is 17 
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163577.  18 

Code Availability 19 

We have implemented GhostKnockoff in a computationally efficient R package that can be accessed at 20 
https://cran.r-project.org/web/packages/GhostKnockoff/. The results of our analysis of UK Biobank and 21 
AD genetics can be downloaded at: zihuaihelab.github.io.  22 
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Supplementary Materials 1 

Proof of single/multiple knockoffs based inference using summary statistics 2 

Assume the original variables have been normalized to have mean 0 and variance 1. For single knockoff, 3 
given individual-level data, we generate knockoffs <"  by the conditional distribution given the original 4 
genetic variants: 5 

<"(|<(~.3<($6, 18, 6 

$ = 34 − 67&'8, 1 = 26 − 67&'6, 7 

where 4  is a : × :  identity matrix; 7  is the correlation matrix of <(  that characterizes the linkage 8 
disequilibrium; 6 = Öãòµ(@), … , @*)  is a diagonal matrix given by solving the following convex 9 
optimization problem: 10 

dãxãdã´¨	FG1 − @+G
+

 11 

@≠ÆT¨ül	l†	 O
27 − 6 ≽ 0,

@+ ≥ 0,			1 ≤ T ≤ :. 12 

The per-sample score statistic (original and knockoff) can be written as 13 

<(
6ÜN , <"(

6ÜN ≔ 	$<(
6ÜN +π(

6ÜN , 14 

where π( = 3∫N), … , ∫N*8~z(0, 1) is a vector of random variables that follows a multivariate normal 15 
distribution with mean 0 covariance 1. The score test statistic for original and knockoff variables are  16 

} = <6ª, }ä = <"6ª = $<6ª +º6ª, 17 

where <, <", Ω, º are all x × : matrix stacking corresponding per-sample vectors; ª = (Ü), … , ÜT)f. Since 18 
the rows of º follows i.i.d multivariate normal distribution .(0, 1), equivalently, we can write 19 

}ä = 	$} + åF ÜN
-

g

(,'
∙ & 20 

where &	is a random vector following multivariate normal distribution .(0, 1). Then 21 

!"!"#$%|<, ª~.h$!!"#$%,
∑ Q+

,2
345
T ∙ 1i. 22 

Assuming ÜN has been centered at the conditional mean given the covariates and scaled with variance 1, 23 
under the null hypothesis (æ0:	ø = 0) as x → ∞ 24 

∑ ÜN
-g

(,'
x

→ 1	in	probablity. 25 

Therefore, asymptotically, we can directly generate the score statistic for knockoff variables as  26 

!"!"#$%|<, ª~.($!!"#$%, 1). 27 

For multiple knockoffs, we can generate multiple knockoffs <" = 3<"('), … , <"(h)8 by the conditional 28 
distribution given the original genetic variants: 29 
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<"(|<(~.3<($6, 18, 1 

$ = V
4 − 67&'

…
4 − 67&'

W , 1 = X

Y Y − 6 … Y −6
Y −6 Y … Y −6
… … … …

Y −6 Y −6 … Y

Z	, 2 

where 4  is a : × :  identity matrix; 7  is the correlation matrix of <(  that characterizes the linkage 3 
disequilibrium; Y = 26 −67&'6 ; 6 = diag(@), … , @*)  is a diagonal matrix given by solving the 4 
following convex optimization problem: 5 

minimize	FG1 − @+G
+

 6 

subject	to	 \
[ + 1
[

7 − 6 ≽ 0

@+ ≥ 0,			1 ≤ T ≤ :
 7 

Following similar derivations as for single knockoff, the score test statistic can be written as 8 

} = <6ª, }ä = <"6ª|<, ª~.($}, îF ÜN
-

g

(,'
ï ∙ 1), 9 

where now }ä = 3}ä(')6, … , }ä(h)68
6
 is a : ×[ dimensional vector of knockoff score test statistics. 10 

Asymptotically, we can still directly generate the test statistic for knockoff variables by 	11 

!!"#$% =
1

√x
}, !"!"#$%|<, ª~.($!!"#$%, 1). 12 

The above derivation is based on hypothetically constructing model-X knockoffs. The advantage of the 13 
model-X framework mainly lies in the following two perspectives: first, it does not impose any constraints 14 
on the dimension, implying that the method can still provide valid inference even when the dimension is 15 
much larger than the sample size, which is particularly useful for analysis of GWAS/whole genome 16 
sequencing data; second, it does not make any assumption on the model for the conditional distribution of 17 
the outcome given genetic variables, i.e., the method can be applied to both continuous and binary traits.  18 
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Consistency between the estimated study correlations and similarities in the design of the considered 1 
Alzheimer’s disease studies.  2 

The estimated study correlations ü†ô. °N+ 	 (Figure 4A) are consistent with our knowledge of overlap and 3 
other factors, such as differences in phenotype definition, analysis strategies (e.g. statistical model), and 4 
quality control, that can affect the correlations between these studies. For example, Kunkle et al. (2019) 5 
and Schwartzentruber et al. (2021) are highly correlated partly because the latter study is a meta-analysis 6 
that includes summary statistics from Kunkle et al. (2019). The three WES studies (Bis et al. (2019), Le 7 
Guen et al. (2021) and our in-house ADSP whole-exome sequencing analysis) are all based on the ADSP 8 
cohorts with different preprocessing steps, therefore they appear highly correlated to each other. Some 9 
weaker correlations are observed for studies that use different phenotype definitions. For example, Huang 10 
et al. (2017) is weakly correlated with other major AD GWAS because the authors performed a time-to-11 
event survival analysis; the correlation between Le Guen et al. (2021) and Bis et al. (2019) is weaker than 12 
that between our in-house ADSP WES analysis and Bis et al. (2019), because Le Guen et al. (2021) used a 13 
new age-informed AD phenotype instead of clinical AD.  14 

  15 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471440doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471440
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Supplementary Figure 1: Empirical simulation studies for power and FDR to compare different knockoff generators. Two 1 
cohorts are randomly sampled from the same population. The panels show power and FDR based on 1000 replicates for different 2 
types of traits (quantitative and dichotomous) and different levels of sample overlap (0%/25%/50%), with different target FDR 3 
varying from 0 to 0.2. All methods are based on single knockoff for a fair comparison. GhostKnockoff-S: the proposed single 4 
knockoff method based on the meta-analysis of Z-scores calculated separately from each individual cohort. SummaryStat knockoff-5 
S: the proposed single knockoff method based on Z-scores from the pooled data; HMM/SCIP/SecondOrder knockoff-S: existing 6 
knockoff generators based on individual level data; We additionally present HMM knockoff+Lasso-S, which corresponds to the 7 
KnockoffZoom method proposed by Sesia et al. (2020) at single variant resolution. 8 
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Supplementary Figure 2: Empirical simulation studies for power and FDR in the presence of study specific variants. Two 1 
cohorts are randomly sampled from the same population with 25% sample overlap. The panels show power and FDR based on 2 
1000 replicates for different types of traits (quantitative and dichotomous), and different levels of unobserved variants per study 3 
(0%/10%/20%), with different target FDR varying from 0 to 0.2. GhostKnockoff-M/S: the proposed multiple/single knockoff 4 
method based on the meta-analysis of Z-scores calculated separately from each individual cohort. IndividualData Knockoff-M/S: 5 
the multiple/single knockoff inference based on applying SecondOrder knockoff generator to pooled individual level data. All 6 
methods are based on the same definition of feature importance score. 7 
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Supplementary Figure 3: Functional enrichment analysis. Functional scores of variants identified by different methods are 1 
compared using one-sided t-tests.  Overlap: GWAS discoveries that overlap with knockoff inference.  2 
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Supplementary Figure 4: Meta-analysis of Alzheimer’s disease studies. We present the Manhattan plot of W statistics (truncated 1 
at 100 for clear visualization) from GhostKnockoff with target FDR at 0.10. The results are based on the sample size weights 2 
combining the nine studies. Loci previously reported by Jansen et al. (2019), Kunkle et al. (2019), Schwartzentruber et al. (2021) 3 
are shown in black; new discoveries are shown in red (FDR=0.10). Variant density is shown at the bottom of Manhattan plot 4 
(number of variants per 1Mb).  5 
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Supplementary Table 1. Known loci associated with Alzheimer’s disease. We report known loci identified by GhostKnockoff at FDR=0.10. For each locus, we present the 1 
representative variant with the largest W-statistic and the nearest gene within +-1Mb. The physical positions of each variant are given in build hg38.  2 

Variant Proximal Gene MAF q 
Jansen 
et al. 

Kunkle 
et al. 

Schwart
zentrube

r et al. 

Bis et al. 
WES 

In-house 
ADGC 

In-house 
ADSP 
WES 

In-house 
ADSP 
WGS 

LeGuan 
et al. 
WES 

Huang 
et al. 

Direction of 
effects 

scRNAseq 
DEG 
minP 

1:161185602:G:A ADAMTS4 0.242 0.0035 1.9E-10 2.4E-02 4.3E-08 NA 7.9E-02 NA 1.5E-02 NA 3.3E-01 +++0+0+0+ 6.6E-55 

2:127135234:C:T BIN1 0.380 0.0007 1.3E-29 4.1E-28 1.1E-54 NA 2.2E-27 NA 3.9E-11 NA 4.5E-07 +++0+0+0+ 6.2E-08 

4:11026080:T:C CLNK 0.282 0.0056 4.2E-09 5.7E-05 8.1E-11 NA 4.2E-05 NA 3.2E-02 NA 8.5E-03 ---0-0-0- 3.7E-01 

6:32637301:A:G HLA-DQA1 0.050 0.0007 1.1E-09 2.7E-05 2.5E-14 NA NA NA NA NA 2.0E-01 ---00000+ 1.7E-01 

6:40783137:A:T LOC101929555 0.014 0.0059 3.7E-05 1.4E-05 4.4E-08 NA 3.0E-03 NA 4.3E-02 NA NA +++0+0+00 NA 

6:47479305:T:A CD2AP 0.251 0.0027 9.2E-09 1.9E-07 1.0E-09 NA 1.5E-07 NA 2.3E-02 NA 6.0E-02 +++0+0+0+ 1.0E-04 

8:27598736:T:C CLU 0.405 0.0012 1.1E-17 6.0E-16 2.9E-24 NA 9.0E-07 NA 1.4E-01 NA 1.8E-04 +++0+0+0+ 1.2E-07 

10:11678621:C:T ECHDC3 0.349 0.0293 7.5E-08 8.7E-06 1.6E-10 NA 4.2E-08 NA 1.3E-02 NA 4.8E-04 +++0+0+0+ 2.7E-01 

11:47440232:A:G RAPSN 0.374 0.0134 1.8E-06 1.2E-07 1.1E-09 NA 1.0E-02 NA 2.9E-02 NA 1.4E-02 +++0+0+0+ 1.7E-01 

11:60212842:C:G MIR6503 0.401 0.0007 2.1E-13 3.0E-15 5.6E-18 NA 2.4E-09 NA 1.7E-03 NA 4.1E-02 ---0-0-0- NA 

11:86089237:G:A PICALM 0.349 0.0012 2.1E-17 1.0E-14 2.5E-25 NA 7.0E-08 NA 2.7E-03 NA 4.5E-11 +++0+0+0+ 1.9E-07 

14:52710264:A:C PSMC6 0.114 0.0321 2.0E-05 2.6E-04 1.4E-08 NA 2.4E-02 NA NA NA 2.0E-03 +++0+000+ 1.2E-03 

14:92469490:G:A SLC24A4 0.230 0.0062 2.2E-09 1.4E-06 5.4E-10 NA 2.6E-03 NA 3.5E-03 NA 2.4E-02 ---0-0-0- 1.5E-02 

15:58889786:G:A SLTM 0.255 0.0209 2.7E-07 1.0E-02 7.3E-06 NA 3.3E-03 NA 1.2E-01 NA 3.9E-03 +++0+0+0+ 7.1E-04 

15:63277703:C:T APH1B 0.135 0.0159 3.4E-08 2.4E-04 1.1E-08 1.4E-02 9.9E-03 3.3E-01 4.0E-02 1.1E-01 2.3E-01 +++++++++ 1.9E-02 

16:31121341:G:A KAT8 0.296 0.0035 3.8E-08 7.6E-03 6.3E-09 NA 4.1E-03 NA 1.3E-01 NA 2.0E-02 ---0-0-0- 1.6E-01 

17:5166622:G:A USP6 0.115 0.0501 8.8E-07 3.5E-03 1.3E-06 NA 1.9E-01 NA 2.8E-02 NA 7.6E-02 +++0+0+0+ 1.7E-01 

17:49391824:G:A LOC102724596 0.427 0.0025 1.7E-07 1.0E-02 5.1E-05 NA 4.2E-02 NA 9.3E-01 NA 2.5E-02 ---0-0+0- NA 

17:58320645:C:G TSPOAP1-AS1 0.448 0.0209 2.6E-08 8.5E-06 3.3E-05 NA 2.0E-03 NA 6.6E-02 NA 6.0E-01 ---0-0-0- 1.3E-02 

17:63482562:C:T ACE 0.388 0.0017 3.9E-07 3.9E-04 1.5E-07 5.4E-02 8.7E-05 3.7E-02 1.4E-02 7.5E-03 6.3E-03 +++++++++ 1.2E-02 

19:1046077:C:T ABCA7 0.116 0.0025 2.6E-07 1.4E-03 7.9E-11 NA 3.9E-03 NA 5.1E-02 NA 6.3E-01 +++0+0+0+ 1.1E-02 

19:44908684:T:C APOE 0.154 0.0007 0.0E+00 0.0E+00 0.0E+00 NA NA NA NA NA 2.6E-131 +++00000+ 2.0E-16 

19:51224706:C:A CD33 0.310 0.0025 5.2E-09 3.6E-07 1.3E-08 NA 1.7E-04 NA 7.1E-05 NA 6.8E-04 ---0-0-0- 2.0E-01 

20:56443204:T:C CASS4 0.080 0.0059 2.6E-08 9.3E-06 1.8E-08 NA 1.1E-06 NA 1.9E-02 NA 8.6E-04 ---0-0-0- 1.3E-14 
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