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Abstract: Learning engages a high-dimensional neuronal population space spanning 1 

multiple brain regions. We identified a low-dimensional signature associated with 2 

operant conditioning, a ubiquitous form of learning in which animals learn from the 3 

consequences of behavior. Using single-neuron resolution voltage imaging, we 4 

identified two low-dimensional motor modules in the neuronal population underlying 5 

Aplysia feeding. Our findings point to a temporal shift in module recruitment as the 6 

primary signature of operant learning. 7 
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Main Text:  1 

Understanding neuronal population activity spanning multiple brain regions has 2 

emerged as central to understanding brain functions. The strategy of building low-3 

dimensional representations of high-dimensional population activity offers insights into 4 

the generation of behavior1–3, learning1,4,5, and other functions6,7. However, monitoring 5 

activity in a substantial proportion of the population is only feasible in a few systems 6 

(e.g., 1,3). Therefore, it remains unknown whether it is possible to identify a low-7 

dimensional “learning signature” associated with operant conditioning (OC), a 8 

ubiquitous form of learning in which an animal learns from the consequences of its 9 

behavior. 10 

We addressed this question by leveraging advantages of the well characterized 11 

feeding behavior of Aplysia, which exhibits OC8,9. The feeding circuit in the buccal 12 

ganglia, including some loci of nonsynaptic and synaptic plasticity engaged by OC, has 13 

been characterized10-13. Isolated ganglia continue to generate buccal motor patterns 14 

(BMPs) (Fig. 1), and activity in a substantial proportion of the BMP-generating circuit 15 

can be monitored using voltage-sensitive dye (VSD) imaging14,15. We combined VSD 16 

imaging with an in vitro analogue of OC16 to examine reconfiguration of population 17 

activity induced by learning. 18 
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 1 

Fig. 1 | In vitro analogue of operant conditioning. a, Schematic of isolated ganglia for 2 

simultaneous extracellular electrophysiology and VSD imaging. b, Example BMP. c, Timeline 3 

and training paradigm. d, e, Examples of nerve activity before and after contingent (d) or yoked 4 

training (e). f, Contingently trained preparations had a greater increase in the rate of iBMPs 5 

compared to yoked preparations (Wilcoxon signed-rank test, P = 0.03, W = -26, N = 7; medians: 6 

contingent = 0.27, yoked = 0.10 BMPs/min). g, No significant difference was observed for other 7 

patterns (P = 0.94, W = -2, N = 7; medians: contingent = 0.10, yoked = 0.07 BMPs/min). BMP 8 

rates were pretest-subtracted. Individual datums represent preparations. Box plots show median 9 

(line), quartiles (box) and range (whiskers). 10 
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We used extracellular suction electrodes in buccal nerves 1–3 (Bn1–3) and the 1 

radula nerve (Rn) (Fig. 1a–b) to record BMPs before and after OC (Fig. 1c–e). Direct 2 

stimulation of the dopamine-rich esophageal nerve 2 (En2), which acts as a reward, 3 

was made contingent upon ingestion-like BMPs (iBMPs). Each contingent preparation 4 

was paired with a yoked control that received identical stimuli irrespective of its own 5 

BMP occurrences (Fig. 1c). Consistent with previous studies, conditioning specifically 6 

increased the rate of iBMPs compared to yoked controls, but did not change the rate of 7 

other, non-iBMP patterns (Fig. 1f–g). 8 

To gain insight into the effects of OC on high-dimensional population dynamics, OC 9 

was combined with population-wide, single-neuron resolution VSD imaging (Fig. 2). We 10 

monitored ~100 neurons per preparation. About one-third exhibited activity (Fig. 2a–c). 11 

Many neurons displayed correlated phasic firing, similar to previous studies14,15. 12 

 13 
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Fig. 2 | VSD imaging captures changes in primary features of population activity. a, Z-1 

scored light intensities of neurons (left, black) and average waveform of detected action 2 

potentials (right). Red vertical lines indicate spike times. Neurons that had at least 5 spikes 3 

during the 120-s recording period are displayed (34 out of 92 neurons). b, Imaged ganglion. 4 

Numbers correspond to neuron IDs of the cells in panels a and c. c, Localized changes in light 5 

intensity during action potentials. Each panel displays the average change in intensity from 6 

baseline to peak across all detected spikes in the cell. Neuron ID shown on top left of each 7 

panel. d, Contingent training led to higher pairwise correlation across the population than yoked 8 

training (P = 0.03, W = -26, N = 7; medians: contingent = -0.04, yoked = -0.07). e, No significant 9 

difference was observed in overall firing rate across the population (P = 0.81, W = -4, N = 7; 10 

medians: contingent = 0.15, yoked = 0.13). Data were pretest subtracted. Individual datums 11 

represent preparations. Box plots show median (line), quartiles (box) and range (whiskers). 12 

As a first step toward characterizing population-level features of operant reward 13 

learning, we examined overall changes in pairwise firing correlation and firing rate. We 14 

computed the mean firing correlation across all pairs of neurons within each 15 

preparation, and asked whether this correlation matrix differed between contingently-16 

trained and yoked-control preparations. Contingently trained neuronal populations were 17 

significantly more correlated than those with yoked training (Fig. 2d) without a clear 18 

difference in overall firing rate (Fig. 2e). Thus, a distinctive feature of operant reward 19 

learning was enhanced coincident firing among units, rather than altered level of 20 

activity.  21 

The high dimensionality of the neuronal population space hinders further intuitive 22 

interpretation. Consequently, we asked whether there is a low-dimensional subspace 23 

that captures most of the dynamics, using the dimensionality reduction approach non-24 
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negative matrix factorization (NNMF)17. For each preparation, NNMF extracted two 1 

modules from the high-dimensional population activity (Fig. 3a, Extended Data Fig. 1c). 2 

Each module is defined by: 1) a set of weights or contributions from each neuron, which 3 

represents the subset of neurons participating in the module, and 2) a magnitude or 4 

level of recruitment of the module at each point in time. Neuron participation in the 5 

modules was sparse and largely non-overlapping. Together, these modules explained 6 

74.9 ± 1.8% of the power in the data, suggesting they captured most of the population 7 

dynamics while reducing the dimensionality to two.  8 
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1 

Fig. 3 | Contingent training advances recruitment of the retraction, but not the 2 

protraction, motor module. a, Example NNMF of population activity into two modules. Area 3 

plots (top) show module recruitment over two 120-s recording periods. Stem plots (right) 4 

indicate the module contributions by each neuron. Heat maps (bottom) show activity. Neurons 5 
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are sorted by the difference between contributions to each module. b, Example of module 1 

recruitment (top) during a sequence of BMPs. BMP phases (middle) were labeled based on 2 

nerve recordings (bottom). c, Correlation between module recruitment and BMP phases across 3 

animals. Modules formed two clear clusters—one correlated with retraction, and the other with 4 

protraction. d, Module recruitment before (black) and after (red) contingent training, shown over 5 

the course of a BMP normalized for phase duration. Dashed lines represent transition between 6 

protraction and retraction phases. Lines and shading represent mean and standard error. e, 7 

Same as panel d, but for yoked preparations. f, Temporal shift following training. Recruitment of 8 

the retraction module was significantly advanced (P = 0.02, W = 28, N = 7; medians: contingent 9 

= -0.03, yoked = -0.01). No significant difference was observed for the protraction module (P = 10 

0.81, N = 7). g, Change in magnitude of peak module recruitment was not statistically significant 11 

for either retraction (P = 0.30, N = 7) or protraction (P = 0.81, N = 7) modules. Individual datums 12 

represent preparations. Box plots show median (line), quartiles (box) and range (whiskers). 13 

Given that NNMF can decompose behavior18, we asked whether the modules 14 

corresponded to specific aspects of BMPs. BMPs consist of two main phases—15 

protraction followed by retraction. Although neither phase timing nor nerve activity were 16 

used to obtain the modules, module recruitment overlapped with either protraction or 17 

retraction (Fig. 3b). Indeed, each module across all preparations was correlated with the 18 

timing of one phase and anti-correlated with the other, forming two clusters (Fig. 3c). 19 

Modules were also highly consistent across preparations (Extended Data Fig. 1). These 20 

findings suggested the observed population dynamics reflected recruitment of neurons 21 

participating in a retraction and a protraction motor module for each animal. 22 

Next, we asked whether a low-dimensional signature for operant reward learning 23 

was apparent in these motor modules by examining recruitment during BMPs before 24 

and after contingent or yoked training (Fig. 3d–e). The peak recruitment of the retraction 25 
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module was significantly advanced in contingent preparations compared to yoked 1 

controls. In contrast, no significant difference in timing was observed for the protraction 2 

module (Fig. 3f). Interestingly, there was no difference between groups in the peak 3 

recruitment magnitude of either the retraction or protraction modules (Fig. 3g). These 4 

findings suggest the most prominent feature of OC was a change in the relative timing, 5 

but not the level, of population activity. Furthermore, that change was specific to a 6 

particular subset of neurons within the population (those participating in the retraction 7 

module). 8 

Many neurons in the ganglia have been uniquely identified and characterized in 9 

previous studies (e.g., 11,19). Thus, one can ask which neurons are consistently part of 10 

the cells modulated by OC across animals. Population-wide imaging does not provide 11 

information on features typically used to identify neurons, such as synaptic and intrinsic 12 

properties. We therefore examined the overall localization of neurons contributing to the 13 

retraction and protraction modules, and compared this distribution to previously 14 

characterized neurons (Extended Data Fig. 2). Neurons that strongly contributed to the 15 

retraction module were typically localized to the top-left quadrant, whereas neurons 16 

contributing to the protraction module tended to be localized more centrally and broadly 17 

(Extended Data Fig. 2a). Neurons contributing to both modules stretched from medial to 18 

lateral, but neurons contributing to the retraction module were more ventral (Extended 19 

Data Fig. 2b). Localization of both modules was consistent with previously described 20 

neurons known to be active during either retraction or protraction (Extended Data Fig. 21 

2c). In addition, the region with the most consistent and strong contributions to the 22 

retraction module appeared to coincide with the ventral region where several retraction 23 

motor neurons are located (e.g., B3, B6, B7, B9, B10, B39, B43, B44). Determining the 24 
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extent to which biophysical changes in these neurons are responsible for the shift will 1 

require extensive electrophysiological studies focusing on them and on cells that could 2 

affect their activity, but that were likely not part of the retraction module due to their 3 

localization (e.g., B51, B64). Why is activity modified specifically in the retraction 4 

module? All outcome-based learning systems must address the credit assignment 5 

problem. That is, following an outcome such as a reward, which neurons or synapses 6 

should be modified and to what extent? Temporal contiguity is a primary mechanism of 7 

credit assignment20–23. In our training, reward immediately followed retraction 8 

termination. Furthermore, the retraction module tended to display peak recruitment 9 

toward the end of the retraction phase. Therefore, the specific effect of OC on the 10 

retraction module may be explained by the shorter interval between activity and reward 11 

compared to neurons in the protraction module. 12 

Previous studies in vertebrates and invertebrates have similarly found that neuronal 13 

activity patterns underlying behavior lie within a low-dimensional subspace of the 14 

population space1–3. However, identifying a low-dimensional signature of OC has been 15 

challenging, in part because the number of cells from which one can record is 16 

commonly orders of magnitude smaller than the relevant population space. The isolated 17 

ganglia preparation allowed recording from a large proportion of the population, while 18 

removing variability due to sensory stimuli—the only stimulus was the reward. 19 

Therefore, we observed the direct effect of the association between fictive behavior and 20 

reward on the dynamics of the relevant neuronal population.  21 

One possibility is that a learning signature could be found in changes to the low-22 

dimensional subspace itself. However, primate studies suggest this subspace is 23 

resistant to change and imposes important constraints on learning-induced 24 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471434doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471434


 

12 
 

changes5,24,25. Accordingly, we found that neuronal activity before and after learning 1 

was consistently captured by a low-dimensional subspace, comprising protraction and 2 

retraction modules. The learning signature was not a change in the subspace, but rather 3 

in the relative timing of the trajectory within the subspace. Given the importance of 4 

timing actions for behavior production, learning may commonly act primarily by 5 

modifying neuronal module timing. Our findings can help guide characterization of 6 

learning signatures in systems with many more degrees of freedom, for which it may 7 

only be possible to record a small fraction of the relevant neuronal population. 8 

Methods 9 

Experimental subjects and preparations. Aplysia californica were obtained either 10 

from the National Resource for Aplysia of the University of Miami (Miami, FL) or from 11 

South Coast Bio-Marine LLC (San Pedro, CA). Animals (25–50 g) were kept in aerated 12 

artificial seawater tanks, and fed seaweed three times a week. Prior to each experiment, 13 

animals were food deprived for 3–5 days. A small piece of seaweed was used to test 14 

the animals’ motivation and feeding behavior prior to dissection. Animals were injected 15 

with a volume of isotonic MgCl2 equal in milliliters to 50% of the animals’ mass in grams. 16 

The buccal mass with buccal ganglia attached was isolated from the animal and placed 17 

in a Sylgard-coated chamber containing artificial seawater with a high concentration of 18 

divalent cations (HiDi-ASW; 210 mM NaCl, 10 mM KCl, 33 mM CaCl2, 145 mM MgCl2, 19 

20 mM MgSO4, 10 mM HEPES, pH adjusted to 7.5 with NaOH). HiDi-ASW was used to 20 

reduce activity and muscle contractions during dissection. Buccal ganglia with buccal 21 

nerves were excised from the buccal mass and pinned down. The sheath of connective 22 

tissue around the ganglia was kept intact. Bipolar suction electrodes for recording and 23 
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stimulation were positioned on each nerve (see below). HiDi-ASW was substituted with 1 

normal artificial seawater (ASW; 450 mM NaCl, 10 mM KCl, 10 mM CaCl2, 30 mM 2 

MgCl2, 20 mM MgSO4, 10 mM HEPES, pH adjusted to 7.5 with NaOH) prior to 3 

recording. Preparations were maintained at 15 °C throughout the experiment. 4 

Voltage-sensitive dye (VSD) imaging. Isolated buccal ganglia were stained for 7 min 5 

with 0.2 mg/ml of the absorbance VSD RH-155 (TRC Canada) in ASW. After staining, 6 

the solution was swapped for a lower concentration of RH-155 in ASW (0.01 mg/ml), 7 

which was kept for the remainder of the experiment. Using a Gilson Minipuls 3 8 

peristaltic pump, the solution was continuously cycled through a Warner Instruments 9 

SC-20 inline cooler/heater under control of a Warner Instruments CL-100 temperature 10 

controller, which maintained the preparation at 15 °C. Imaging data was acquired by a 11 

Deep Well NeuroCMOS 128×128 camera (RedShirtImaging, SciMeasure) sampled at 1 12 

kHz. The camera was fitted to an Olympus BX50WI microscope equipped with an 13 

Olympus 20× 0.95 NA XLUMPlanFL water immersion objective lens. The preparation 14 

was illuminated with a 150 W, 24 V Osram halogen light bulb powered by a Kepco ATE 15 

75-8M power supply. Before reaching the preparation, light passed through a Brightline 16 

710/40 nm bandpass filter. 17 

 Most neurons in the buccal ganglia are bilaterally symmetric, somata are located 18 

at the surface of the ganglia, and more neurons can be observed caudally than rostrally. 19 

Therefore, the number of recorded cells was maximized by imaging the caudal surface 20 

of the left hemiganglion, which accounts for about a quarter of the total surface area of 21 

the buccal ganglia. Each preparation was imaged for two 120 s periods, one before and 22 

one after either contingent or yoked training (see below).  23 
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Extracellular electrophysiology. In a typical ingestion, the animal’s food-grasping 1 

radula is first protracted while open, and subsequently retracted back while closed 2 

around food. This biphasic protraction-retraction sequence can also be observed in the 3 

activity of nerves that control the feeding apparatus, both in intact animals26 and isolated 4 

ganglia16,27. Bipolar suction electrodes were used to monitor nerve activity associated 5 

with buccal motor patterns (BMPs). Nerve signals were amplified by A-M Systems 6 

model 1700 differential AC amplifiers, and digitized by Axon Instruments Digidata 7 

1322A at 20 kHz. The following nerves were recorded: the left and right buccal nerves 2 8 

and 3 (Bn2 and Bn3); right buccal nerve 1 (Bn1); left radula nerve (Rn); and left 9 

esophageal nerve 2 (En2). Electrical stimulation of En2, which acts as reinforcement, 10 

consisted of a 6 s train of 0.5 ms pulses at 10 Hz. Stimulation was manually triggered by 11 

the experimenter using a WPI Pulsemaster A300, and delivered by a WPI 850A 12 

stimulus isolator. Stimulus intensity was calibrated for each preparation by gradually 13 

increasing the intensity of a lower rate tonic stimulus (2 Hz, 0.5 ms) until a complete 14 

BMP was elicited. The efficacy of the regular 6 s stimulus was then confirmed after a 15 

brief rest. This procedure was devised to obtain a physiological threshold for En2 16 

stimulation while minimizing the amount of stimulation prior to training. 17 

In vitro operant conditioning. After the En2 threshold was determined, experiments 18 

followed the timeline depicted in Fig. 1c. Preparations were allowed to rest for 40 min. 19 

Preparations that did not emit any spontaneous BMPs during this rest period were 20 

allowed to rest for an additional 20 min. The pretest period of 30 min was then initiated. 21 

To avoid a potential ceiling effect, and to ensure that preparations had a baseline rate of 22 

BMPs that was sufficient for training, preparations were discarded if they displayed <3 23 

or >10 BMPs during the first two thirds of the pretest. All criteria were identical across 24 
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groups. During the last third of the pretest, preparations were imaged for 120 s. If during 1 

this time no BMPs occurred, additional attempts were made to image during BMP 2 

generation. If no BMP could be captured before the end of the pretest, the preparation 3 

was discarded. After the pretest, a 30 min training period ensued. For contingent 4 

preparations, occurrence of an iBMP was followed by stimulation of En2. Any BMP 5 

elicited by En2 stimulation (i.e., initiated within 20 s after the offset of the stimuli train) 6 

was not reinforced. For each yoked preparation, En2 stimuli were identical to those 7 

received by its paired contingent preparation, irrespective of the BMPs emitted by the 8 

yoked preparation itself. Thus, yoked preparations controlled for any time-dependent or 9 

nonassociative effects. Preparations that had <3 effective En2 stimuli during training 10 

were discarded. An En2 stimulus was considered effective (for either contingent or 11 

yoked preparations) only if it clearly elicited at least one BMP. Upon conclusion of 12 

training, a 30 min posttest was performed. As in the pretest, preparations were imaged 13 

for 120 s during the last third of the posttest. 14 

BMP identification. During training, BMPs were manually classified by the 15 

experimenter in real time. For data analysis, BMPs were automatically identified and 16 

classified using custom MATLAB code. In both cases, the same criteria were used. 17 

Activity in Bn1 was used as an indicator of the timing of each BMP phase. Bn1 is 18 

particularly informative because it is active during protraction, inactive during retraction, 19 

and active again upon retraction termination. A BMP was identified when three criteria 20 

were met: (1) a burst of large-unit activity lasting at least 3 s occurred in Bn1; (2) the 21 

Bn1 burst was followed by a burst of large-unit activity in at least one of the two Bn3s; 22 

(3) at least one burst of large-unit Rn activity occurred during either the Bn1 burst 23 

(protraction) or the subsequent Bn1 suppression (retraction). Large-unit activity was 24 
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defined as all activity with amplitude above a voltage threshold for each nerve, which 1 

was set independently for each experiment. The threshold for Bn1 was set to include all 2 

units that were consistently active during protraction and inactive during retraction. The 3 

Bn3 threshold was set to include only the largest units, which correspond to B4, a 4 

neuron known to be active at the onset of retraction. Similar to previous studies28,29, the 5 

Rn threshold was set to include units larger than baseline activity (i.e., activity occurring 6 

outside of BMPs). Thresholds were adjusted as necessary to ensure that the algorithm 7 

captured all BMPs occurring during the pretest, training, and posttest recordings for 8 

each preparation. Bursts were defined as at least 3 spikes with interspike intervals ≤4 s. 9 

BMPs were classified as ingestion-like (i.e., iBMPs) if ≥50% of the Rn burst duration 10 

occurred during the retraction phase16,28. 11 

Raw VSD data processing. VSD data were processed in a similar manner to that 12 

described elsewhere15. Briefly, regions of interest were drawn around the soma of each 13 

neuron, and the light intensity was averaged across pixels within the region for each 14 

time point. Traces for each cell were taken as the change in light intensity relative to 15 

baseline (i.e., ΔI/I), where baseline was defined as an average of the first 10 frames 16 

after shutter opening. Traces were filtered using MATLAB’s elliptic filter (n = 2, Rp = 0.1, 17 

Rs = 40, Wp = [0.02 0.2]). 18 

Denoising. Principal component analysis (PCA) was used to isolate and remove 19 

correlated noise, such as that associated with movement. PCA extracts a set of 20 

components from the data that can be ordered by the amount of variance-covariance in 21 

the data explained by each component. If some components consist primarily of noise, 22 

the data can be reconstructed without those components to improve signal-to-noise 23 

ratio. At the millisecond timescale, most of the correlation between the traces of 24 
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individual neurons was due to noise that affected many neurons simultaneously, such 1 

as tissue movement, vibrations, and fluctuations in illumination. This was the case 2 

because the amplitude of RH-155 signals is very small (i.e., in the order of 1×10-4 ΔI/I), 3 

and, importantly, because action potentials in Aplysia are not correlated at the 4 

millisecond scale during spontaneous BMP generation. Note that this is different from 5 

the correlation between firing rates examined throughout this paper, which is on the 6 

scale of seconds. Thus, we performed PCA on the z-scored traces from all neurons in a 7 

preparation, removed the top n components accounting for most of the correlation 8 

between traces, and reconstructed the data. The number of components to remove was 9 

determined by performing reconstructions with n ranging from 0 to all components, and 10 

selecting the most de-correlated reconstruction. We validated this procedure by adding 11 

artificial action potentials of varying amplitudes to a test data set, performing the full 12 

range of reconstructions, and attempting to detect the artificially added action potentials 13 

using the algorithm described below. The test data were a set of 100 traces from a real 14 

preparation. Because a substantial proportion of the added spikes were buried in real 15 

noise, they served as a realistic test of signal improvement by denoising. Consistent 16 

with visual inspection of signal quality, the most de-correlated reconstructions led to the 17 

highest true positive rates. 18 

Spike detection. Spikes were detected in a neuron when a downward deflection in the 19 

VSD trace exceeded five times an estimate of the standard deviation of the noise. This 20 

estimate was given by 21 

𝜎
𝑚𝑒𝑑𝑖𝑎𝑛 |𝑥|

𝑏
 22 
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where 𝑥 is the trace of the neuron, and  𝑏 0.6745 is the constant for the relationship 1 

between the median absolute deviation estimator and the standard deviation 𝜎  for 2 

Gaussian distributions30–32. A re-arm window of 10 ms was used to prevent a single 3 

action potential from being counted more than once. This simple threshold method 4 

yielded comparable true positive rates as did a more sophisticated spike detection 5 

algorithm33 in a test data set to which artificial action potentials of varying amplitudes 6 

were added. 7 

Non-negative matrix factorization (NNMF). NNMF is a dimensionality reduction 8 

approach that optimizes an approximation of the data matrix 𝑋 from a pre-determined 9 

number of components 𝑘, given non-negativity constraints (for a detailed overview, see 10 

17). NNMF is well-suited to identify a low-dimensional signature of learning in the Aplysia 11 

feeding circuit for at least three reasons. First, NNMF has been used to identify groups 12 

of neurons participating in memory34. Second, NNMF has successfully decomposed 13 

behaviors into their motor module building blocks18. Third, the assumptions and 14 

constraints adopted by NNMF are compatible with neuronal activity data17. For the 15 

activity of a neuronal population over time, NNMF can be described by  16 

𝑋 𝑊 𝐻 𝐸  17 

where 𝑋  is the activity of 𝑛 neurons over 𝑡 time points, 𝑊  is a matrix of the 18 

contributions of each of the 𝑛 neurons to each of the 𝑘 components, 𝐻  is a matrix of 19 

the magnitude of each of the 𝑘 components at each time point 𝑡, and 𝐸  is the 20 

approximation error or residual term that NNMF minimizes. Note that these 𝑘 21 

components are referred to as modules throughout this manuscript. 22 
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NNMF was performed using the seqNMF MATLAB package developed by 1 

Mackevicius et al.35 with L = 1, λ = 0, and otherwise default parameters. This set of 2 

parameters corresponds to standard NNMF using multiplicative update rules first 3 

introduced by Lee and Seung37. Six repetitions were performed for each run to ensure 4 

that the algorithm consistently converged to the same modules. Given consistent 5 

convergence, an arbitrary repetition was ultimately selected. 6 

 Prior to NNMF, data were temporally smoothed by convolving the spike train of 7 

each neuron with a Gaussian. Because a difference in pairwise correlations was 8 

observed when spikes were binned with 1 s bins (Fig. 2d), the Gaussian was set to 9 

have a standard deviation of 1 s. This smoothing is compatible with the duration of 10 

BMPs as well as in vivo feeding behaviors, which usually unfold over the course of tens 11 

of seconds. After smoothing, pretest and posttest data were concatenated. This held the 12 

contribution matrix 𝑊 constant between pretest and posttest, allowing for definition of 13 

identical components (i.e., modules) before and after training. Thus, we were able to 14 

compare the time course of recruitment of the same modules before and after training.  15 

Given that overall BMP duration and the duration of each phase vary from 16 

pattern to pattern, comparing component recruitment during BMP generation required 17 

normalizing these durations. This normalization was performed by using linear 18 

interpolation to resample component recruitment during each phase of each BMP to a 19 

standard of 180 time points. Finally, this resampled time course of module recruitment 20 

was averaged across BMPs to obtain a mean pretest and a mean posttest time course 21 

for each preparation. The timing and magnitude of the peaks of these average time 22 

courses were then compared (Fig. 3d–g). Furthermore, the average time courses during 23 
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the pretest (i.e., before any training) were used to examine the consistency of modules 1 

across preparations (Extended Data Fig. 1). 2 

A critical factor in NNMF and other dimensionality reduction techniques is 3 

selection of the number of modules k used to approximate the data. Various strategies 4 

have been used to make this selection6,17,34. Examples include using heuristic solutions 5 

(such as a simple threshold on the approximation error or variance-covariance 6 

explained by the reconstruction), or using estimates of the tradeoff between information 7 

loss and model complexity (e.g., Akaike’s or Bayesian information criteria), among 8 

others. Here, priority was given to ensuring that modules were behaviorally relevant and 9 

consistent across animals, thereby allowing for direct comparisons of the effects of 10 

learning on module recruitment. We assessed this cross-animal consistency by 11 

computing the correlation between the average pretest time course of module 12 

recruitment during a normalized BMP across preparations (Extended Data Fig. 1a–b). 13 

We performed a series of factorizations with 𝑘 ranging from one to ten, each repeated 14 

six times. For each repetition, a matching algorithm sorted modules into 𝑘 clusters by 15 

matching modules in the order of their correlations across preparations. Within 16 

preparation matches were disallowed, and each module was only allowed to match with 17 

one other module per preparation. Note that this is distinct from the hierarchical 18 

clustering in Extended Data Fig. 1b, which has no such limitations. This matching 19 

algorithm ensured that each preparation had exactly one module in each of the 𝑘 20 

clusters. An overall mean correlation among matched modules was computed for each 21 

NNMF run as the final consistency metric (Extended Data Fig. 1c).  22 

The number of modules 𝑘 2 was selected because it yielded the most 23 

consistent modules across preparations, and because it did so while explaining most 24 
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(74.9 ± 1.8%) of the total power in the data. Explained power is a metric of how well a 1 

factorization approximates the original data, analogous to the concept of explained 2 

variance-covariance in PCA. The explained power was computed as in Mackevicius et 3 

al.36, that is 4 

∑ 𝑋 ∑ 𝑋 𝑋
∑ 𝑋

 5 

where 𝑋 is the original data, 𝑋 is the data reconstruction, and ∑ 𝑋  denotes 6 

∑ ∑ 𝑥 . 7 

 Hierarchical clustering (Extended Data Fig. 1b) was performed with MATLAB’s 8 

linkage function using the average method. Briefly, the function starts with single-9 

module clusters and progressively forms larger clusters by grouping the most similar 10 

(i.e., most correlated) clusters, until a single cluster encompasses all modules. Once a 11 

module is assigned to a cluster, the module is no longer individually compared to 12 

others; rather, a comparison is made between the entire clusters. The dissimilarity 13 

between two clusters is equal to the mean dissimilarity among all possible pairs of 14 

modules between the two clusters.  15 

Spatial distribution of motor modules. To allow for comparisons of module 16 

localization across animals, all preparations were aligned to a reference ganglion 17 

(preparation A in Extended Data Fig. 2a). A regression of the pixel coordinates of the 18 

largest neurons (i.e., the upper quartile for size) was used to approximate the 19 

orientation and offset of each ganglion15. 20 

Statistical hypothesis testing. All hypothesis tests were performed on SigmaPlot 12. 21 

Normality was not assumed and two-tailed Wilcoxon signed-rank tests were used to 22 
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perform paired comparisons in Figs. 1f–g, 2d–e and 3f–g. Alpha was set to 0.05. Data 1 

analyses were performed while blinded to the training history of each preparation. 2 
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