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Abstract

Binding sites are concave surfaces on proteins that bind to small molecules called ligands. Types of
molecules that bind to the protein determine its biological function. Meanwhile, the binding process
between small molecules and the protein is also crucial to various biological functionalities. Therefore,
identifying and classifying such binding sites would enormously contribute to biomedical applications
such as drug repurposing. Deep learning is a modern artificial intelligence technology. It utilizes deep
neural networks to handle complex tasks such as image classification and language translation. Previous
work has proven the capability of deep learning models handle binding sites wherein the binding sites are
represented as pixels or voxels. Graph neural networks (GNNs) are deep learning models that operate on
graphs. GNNs are promising for handling binding sites related tasks - provided there is an adequate
graph representation to model the binding sties. In this communication, we describe a GNN-based
computational method, GraphSite, that utilizes a novel graph representation of ligand-binding sites. A
state-of-the-art GNN model is trained to capture the intrinsic characteristics of these binding sites and
classify them. Our model generalizes well to unseen data and achieves test accuracy of 81.28% on
classifying 14 binding site classes.
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1 Introduction 1

Interactions of proteins with other molecules like peptides, neurotransmitters, nucleic acids, hormones, 2

metabolites, and other proteins have vital part in understanding the biological functions. Proteins are 3

basic building blocks and responsible for carrying out all biological functions in cellular environment. So, 4

identification of interaction between proteins and small molecules is crucial to understand how proteins 5

regulate different functions in a living cell [2]. The ligand binding site (also referred to as pocket) is a 6

groove or cavity in a protein where the small molecules or ligands can bind through interactions with 7

amino acids at that site [27]. Identification of off-targets binding can help scientists to repurpose the 8

existing drugs to cure some rare orphan diseases for which we do not have functional drugs available. So, 9

binding site prediction approaches can be used to find cures for rare diseases [10]. Therefore, binding site 10

prediction in structural biology is vitally important in the field of drug discovery and it can help predict 11

the novel drug targets. There are several available algorithms which can identify the ligand binding sites 12

on target protein structures such as eFindSite [7], Fpocket [20], and FTSite [25] etc. Besides that, the 13

ligand binding on protein depends on numerous factors of binding site. So, there are various methods 14

which account these factors such as conformational dynamics [1], druggability [16] and amino acid 15

compositions [31] of binding sites on target proteins. However, all these methods do not account for the 16

classification of binding sites depending on types of ligands. 17

Deep learning is an emerging machine learning technique. Deep learning-based models employ various 18

styles of multi-layer artificial neural networks to learn from data and make predictions. Deep learning 19

has achieved significant progress in computer vision applications such as object detection [13], face 20

recognition [28], and human pose estimation [35]. One of the keys to the success of those applications is 21

the convolutional neural network (CNN), which can learn hierarchical latent features from Euclidean 22

data (2D- and 3D images) by utilizing local trainable filters [3]. Such methodologies in computer vision 23

have inspired new works in structural biology in recent years. DeepDrug3D [26] achieves state-of-the-art 24

binding site classification performance by representing the binding sites as 3D images and deploying a 25

3D-CNN. DeeplyTough [30], which uses similar pocket representation as DeepDrug3D, implements 26

pocket-matching. DeepSite [15] is a binding site predictor that also forms similar 3D representations of 27

pockets by computing atomic-based pharmacophoric properties for each voxel. Other than 3D 28

representations, BionoiNet [29] projects pockets to 2D images that encode chemical properties, and a 29

2D-CNN is trained to perform classification. 30

Graph neural network (GNN) is another category of deep learning model that operates on graphs 31

which are non-Euclidean data. Over the recent years, GNNs have demonstrated encouraging 32

performance on applications such as text classification [12, 18] and traffic prediction [22]. As for the field 33

of chemistry and biochemistry, GNNs are proven to be promising for a variety of applications including 34

predicting quantum property of an organic molecule [9], generating molecular fingerprints [5], predicting 35

protein interface [8], and predicting drug-target interaction [23]. These works are based on the idea that 36

molecular structures can be naturally interpreted as graphs. A typical example is the Lewis structure of 37

molecules where the atoms are treated as nodes and the chemical bonds are the undirected edges that 38

connect nodes. 39

In this communication, we describe a framework based on GNN to classify ligand-binding sites. A 40

novel graph representation of binding sites is developed and a GNN classifier is then trained to classify a 41

pocket dataset of 14 classes. Comparing with the methods that convert pockets to Euclidean data, the 42

process of converting to graphs is fast and lossless. So, the graphs can be generated on-the-fly and the 43

users only need to provide standard text files as input. Our implementation achieves state-of-the-art 44

performance and the followed case studies show that our model learns the underlying pattern of different 45

kinds of binding pockets. 46
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Figure 1. Molecular structure and graph representation of a binding site. (A) The residues that interact
with the ligand of pocket 5x06F00. (B) The graph representation of 4 residues in A. Any atom pair that
has distance less than or equal to 4.5 Å is connected

2 Materials and Methods 47

2.1 Graph representation of biding sites 48

The pockets are transformed to graphs as the input of the classifier. The nodes of the graph are the 49

atoms, and an undirected edge is formed between two atoms if the distance between them is less than or 50

equal to 4.5 Å. We crafted 11 node features, 7 of them are spatial features, and the other 4 features are 51

chemical features. The spatial features are used to define the shape of the binding pocket, which are the 52

Cartesian coordinates (x, y, z) of the atoms, the spherical coordinates (r, theta, gamma) of the atoms, 53

and the solvent accessible surface area (SASA). We adopt the chemical features described in Bionoi [6], 54

which are charge, hydrophobicity, binding probability and sequence entropy. Fig 1 illustrates part of the 55

graph representation of a binding pocket. As can be seen in Fig 1B, each atom is connected to all the 56

neighboring atoms withing the radius of 4.5 Å. To distinguish the chemical bond-edges from the others, 57

we set the number of chemical bonds as the edge attribute. The edges with no chemical bonds have 0 as 58

their attributes and the edges on aromatic rings have 1.5 as their attributes. 59

2.2 Graph neural network 60

With the graph representation of the binding pockets, the binding site classification problem essentially 61

becomes a graph classification problem. A general graph classification framework that uses GNN can be 62

divided into three stages: message passing, graph readout, and classification. In addition to these three 63

stages, our model utilizes jumping knowledge connections [37] to let the model select information for 64

each node from different layers. Fig 2 illustrates the overall architecture of the GraphSite classifier. As 65

can be seen in Fig 2, the main body of the classifier is an embedding network which contains the 66

message passing layers, the jumping knowledge connections, and a global pooling layer which performs 67

the graph readout. The node features of input graph are updated by the message passing layers. The 68

outputs of all layers are processed by a max pooling layer that performs a feature-wise max pooling; the 69

intuition behind this it to let the model to learn the proper number of layers for each individual node; 70

this technology is known as the jumping knowledge [37]. The max pooling layer is followed by a global 71
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Figure 2. The architecture of GraphSite classifier. (A) The input graph of a binding site. (B) A neural
network that computes the weight of message using the edge attribute as input. (C) The message passing
layers with Jumping Knowledge connections. (D) The global pooling layer which is the Set2Set model.
(E) The fully connected layers that generate classification results.

pooling layer, which reduces the dimension of node feature from n× d to d where n is the number of 72

nodes and d is dimension of the node feature. The output of the global pooling layer is a fixed-size 73

vector, and it is followed by fully connected layers to generate the final classification results. 74

2.2.1 Message passing 75

The message passing layers of GNNs update the node features by propagating information along edges. 76

From the perspective of each node, the information of its neighborhood is aggregated, and the updated 77

node features can reveal informative local patterns. As described in [41], most of the message passing 78

layers fall into the general form of neighborhood aggregation: 79

x
(k)
i = λ

(
x
(k−1)
i , aggrj∈N (i)ϕ

(
x
(k−1)
i , x

(k−1)
j , eij

))
, (1)

where ϕ is a differentiable function that generates the message, aggr is a permutation-invariant function 80

(such as sum or max) that aggregates the messages, and λ is a differentiable function such as a 81

multi-layer perceptron (MLP). x
(k)
i is the output node feature of node i of layer k, x

(k)
j represents its 82

neighbor nodes, and eij is the edge attribute. To exploit both node features and edge feature of the 83

binding site graph, we develop a message passing layer which also falls into the general form described by 84

Equation 1, which is called neural weighted message (NWM): 85

x
(k)
i = hθ

(1 + ϵ) · x(k−1)
i +

∑
j∈N (i)

hω (eij) · x(k−1)
j

 , (2)

where hω is an MLP that takes the edge attribute as input and outputs a scaler as the weight of the 86

message, which is simply node feature j; ϵ is learnable scalar; hθ is another MLP that updates the 87

aggregated information. Note that the edge attributes are not updated during training, and they are the 88

same for all the layers. Fig 2B demonstrates an example of NWM: hω takes the edge attribute e12 as 89

input, generating a12 as the weight of message propagating from node 2 to node 1. 90

The NWM message passing rule can be regarded as an extension of the graph isomorphism network 91

(GIN) [36]. GIN is an expressive message passing model that is as powerful as the Weisfeiler-Lehman test 92

in distinguishing graph structures; we replace its sum aggregator with sum of weighted messages where 93

the weights are generated by a neural network hω. From another perspective, the NWM layer belongs to 94

the Message Passing Neural Network (MPNN) family [9]. The gated graph neural network (GG-NN) is 95

an MPNN family member and its message is formed by Aeijx
(k)
j , where Aeij is a square transformation 96
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matrix generated by an MLP which takes the edge attribute eij as input; if we put a restriction on the 97

matrix Aeij
, such that it is a diagonal matrix and all elements on the diagonal are equal, the GG-NN 98

module becomes NWM. In fact, the neural message of GG-NN was one of our first design choices. In our 99

experiments, we found that regularizing GG-NN to NWM could help mitigate overfitting and NWM is 100

more computationally efficient. Therefore, we take NMM as our final design choice. 101

Finally, inspired by the idea that multiple aggregators can improve the expressiveness of GNNs [4], 102

we extend a single-channel NWM layer described by Equation 2 to a multi-channel NWM layer by 103

concatenating the outputs of multiple aggregators: 104

x
(k)
i = hθ

concatc∈Channels

(1 + ϵc) · x(k−1)
i +

∑
j∈N (i)

hωc (eij) · x(k−1)
j

 , (3)

where each pair of ϵc and hωc represents an aggregator learned as channel c, and C denotes the set of 105

channels. The aggregated node features are concatenated in their last dimension such that the 106

concatenated node features have the shape of n by d× |C| where d is the dimension of node feature. 107

Accordingly, the update neural network hθ now also acts as a reduction function that reduces the size of 108

node feature from d× |C| to d. Intuitively, the concatenation of multiple aggregators is analogous to 109

using multiple filters in CNN: each aggregator corresponds to a filter, and the concatenated output 110

corresponds to the output feature maps in a convolution layer in CNN. 111

2.2.2 Graph readout 112

The graph readout function reduces the size of graph to one node. This function should regard the 113

features of the nodes as a set, because there is no order among the nodes. i.e., the graph readout 114

function should be permutation invariant. The Set2Set [34] model is a global pooling function to perform 115

graph readout. Set2Set can generate fixed-sized embeddings for sets with various sizes, and it bears the 116

property of permutation invariance. It computes the global representation of the set by leveraging the 117

attention mechanism. Basically, a Long short-term memory (LSTM) [14] neural network recurrently 118

updates a global hidden state of the input set; during the recurrent process, the global hidden state is 119

used to compute the attention associated with each element in the set, and these attentions are in turn 120

used to update the global hidden state. After several such steps, the global graph representation is 121

formed by concatenating the global hidden state generated by the LSTM and the weighted sum of the 122

elements in the set. 123

2.2.3 Loss function 124

Instead of the cross-entropy loss, the focal loss [24] is used instead. As will be described in later section, 125

the dataset has imbalanced classes. Some classes such as ATP have much more data points than others. 126

Therefore, most of the data in a mini batch will come from these major classes and the cross-entropy loss 127

will be dominated by them. To mitigate this problem, the focal loss adds a damping factor (1− pt)
γ
to 128

the cross-entropy loss: 129

FL (pt) = − (1− pt)
γ
log (pt), (4)

where pt is the predicted probability generated by the Softmax, and γ ≥ 0 is a tunable hyper-parameter. 130

With this damping factor, the dominating confident predictions with high probabilities will be suppressed 131

and the predictions with low probabilities will have higher weights. As a result, the dominated minority 132

classes with low probabilities will have higher weights, and the problem of imbalanced classes is improved. 133

2.3 Dataset 134

The dataset is generated by clustering the pockets according to their Tanimoto coefficients of the ligands, 135

because similar ligands bind to similar pockets. Note that identical pockets are removed from the 136

dataset. During our experiments, we found that some of the pocket clusters generated by this algorithm 137
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Class Label
0 ATP
1 Heme
2 Carbohydrate
3 Benzene ring
4 Chlorophyll
5 Lipid
6 Essential amino/citric/tartaric acid
7 S-adenosyl-L-homocysteine
8 CoenzymeA
9 Pyridoxal phosphate
10 Benzoic acid
11 Flavin mononucleotide
12 Morpholine ring
13 Phosphate

Table 1. The 14 labels of binding sites in the dataset.

are highly similar. We manually identified the type of ligands that bind to each class and found that due 138

to the large Tanimoto distance threshold in clustering, pockets from the same family are divided into 139

different clusters. For example, as illustrated in Fig 4, cluster 0 and cluster 9 are ATP-like pockets, and 140

cluster 3 and cluster 8 are both glucopyranose-related pockets. As a result, 30 largest clusters are 141

selected, and they are merged into 14 classes. The labels of the 14 classes are shown in Table 1. 142

3 Results and discussions 143

In this section, we first discuss the classification performance of GraphSite classifier along with the 144

baseline methods; then some interesting cases from the misclassified binding pockets are selected as case 145

studies. Finally, we test our model on unseen data which are uploaded to PDB after the curation of our 146

dataset. 147

3.1 Classification performance 148

Two GNN-based methods are evaluated: GraphSite and GIN. GIN uses a sum aggregator, so the edge 149

attributes are ignored. The purpose of having GIN as a baseline is to demonstrate the improvement of 150

NWM which utilizes edge attributes. The configurations of GraphSite and GIN are identical except the 151

architecture of GNN layers. Both models are trained with the Adam [17] optimizer for 200 epochs and 152

identical learning rate schedulers are used to half the learning rate at plateau. 25 experiments are 153

conducted for each model. In each experiment, each class is randomly divided into a training set and a 154

testing set with different random seeds. After training, the medium accuracies among the 25 experiments 155

on test set are used to evaluate the classification performance. In addition, docking and pocket matching 156

are also tested on the same classification task. We select SMINA [19], which is based on Auto-dock 157

Vina [32] as the docking tool. As for pocket matching, G-LoSA [21] is selected. Since there is no training 158

required for docking and pocket matching, the accuracies over the entire dataset are reported. For 159

docking, a label ligand is chosen manually for each class. For each prediction, the docking score of the 160

pocket is evaluated against all 14 label ligands, and the predicted class is the ligand with best docking 161

score. Pocket matching is conducted in a similar way: a label pocket is chosen for each class, and the 162

predicted class is the label pocket that has best matching score with the pocket to predict. Table 2 163

shows the classification performance. As shown in Table 2, GraphSite achieves the best overall 164

classification accuracy of 81.28%, along with a weighted F1-score of 81.66%. The accuracy is of GIN is 165

75.09%, and its weighted F1-score is 74.35%. The accuracy gain of 6.59% comes from replacing the GNN 166

layers of GIN into multi-channel NWM layers. On the other hand, docking and pocket matching are not 167
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Model Accuracy
Weighted
precision

Weighted
recall

Weighted
F1-score

Graphsite classifier 81.28% 82.33% 81.28% 81.66%
GIN classifier 75.09% 74.26% 75.09% 74.35%
SMINA 16.71% 43.45% 16.71% 16.10%
G-LoSA 14.76% 34.41% 14.76% 15.89%

Table 2. Classification performance.

working. The reasons can be multifold. First, using one fixed ligand/pocket for each class will decrease 168

the classification performance because they are not necessarily the “golden answer” for each particular 169

pocket. Second, the amount of computation required for docking and pocket matching makes it 170

impractical to run these algorithms exhaustively to maximize the classification accuracy. 171

Figure 3. Confusion matrix of the classification result of GraphSite on the test set

Fig 3 illustrates the confusion matrix on the test set of our model. As can be seen in Fig 3, each 172
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number on the diagonal is a recall of a class; most of the classes are classified well except class 12 and 173

class 13. Class 12 contains morpholine rings, 17% of morpholine rings are misclassified as ATP, and 21% 174

of morpholine rings are misclassified as carbohydrates. Class 13 contains phosphate pockets, 26% of 175

which are misclassified as essential amino acids. The first reason for this is that the support of these two 176

classes in the dataset is low: only 1.77% binding pockets are morpholine rings and only 1.61% binding 177

pockets are phosphate. During training, more gradients will be generated for the majority classes and 178

the model will learn more from the majority classes; applying the Focal Loss only mitigate this problem 179

but cannot fix it completely. The second reason is that, in some of the cases, the binding moiety of the 180

ligand is similar to other types of ligands. For example, the binding moiety of some morpholine rings are 181

highly similar to ATP and carbohydrates. Therefore, the model is in fact making correct predictions 182

about the binding pockets for these cases. 183

4 Future work 184

Embedding 
network

Embedding
network

Contrastive
loss

Graph embeddings

Figure 4. The Siamese-GraphSite architecture. This architecture takes a pair a of graph data as input
and it is optimized according to the contrastive loss such that graphs come from the same class are close
to each other and graphs from different classes are pushed away from each other.

The performance of Graphsite classifier indictates that the features of ligand-binding pockets are 185

extracted effectively from their graph representations. So, it is possible to extend the settings in this 186

project into other deep learning applications, such as metric learning and generative modeling. In the 187

next chapter, we describe a generative model based on Graphsite for drug discovery. Here, we explore a 188

metric learning model with a Siamese architecture [11] based on Graphsite. After training, the Siamese 189

network can generate embeddings of binding pockets for visualization and other machine learning 190

applications. As can be seen in Fig 4, the embedding network described previously takes a pair of graphs 191

as input and generate two graph embeddings; these embeddings are input of the contrastive loss [11]: 192

L (W, y,x1,x2) =
1

2
(1− y) (dW )

2
+

1

2
(y) (max (0,m− dW ))

2
, (5)

where y is the label of a graph pair that 0 means a similar pair and 1 means a dissimilar pair; x1 and x2 193

are the input graph pair, W parameterizes the embedding network, dW is the Euclidean distance 194

between the graph embeddings, and m > 0 is a margin such that a pair contributes to the loss only if 195

their distance is within this margin. Intuitively, the contrastive loss is trying to train a model such that 196
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Figure 5. t-SNE visualization of embeddings of selected clusters generated by the Siamese-GraphSite
model.

the embeddings from the same class are close to each other in the Euclidean space, and far away from 197

each other if they belong to different classes. Since the model is optimized to manipulate the embeddings 198

in the Euclidean space, the embeddings are ideal for distance-based applications such as t-SNE [33] 199

visualization and k-nearest neighbors. Figure 5 shows the t-SNE visulization of 8 classes from the 200

dataset. As can be seen, similar pockets are clustered together, and dissimilar pockets are separated 201

away from each other, which indicates that the graph Siamese model has learned effective embeddings 202

for the binding pockets. However, as the number of classes increases, the performance of the model 203

decreases significantly in our experiment. We list improving the performance of this metric learning 204

model as one of the future works of Graphsite. 205

5 Conclusion 206

In this communication, we describe GraphSite, a method to classify ligand-binding sites by modeling 207

ligand-binding sites as graphs and utilizing a GNN as the classifier. The trained model is able to capture 208

informative features of binding pockets, yielding state-of-the-art classification performance. The case 209

studies show that GraphSite successfully classified the binding sites independently of their ligands. Our 210

model is able to make meaningful prediction despite the noise in the dataset caused by the discrepancy 211
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between the ligand and its binding moiety. There are several potential ways to improve or extend 212

GraphSite. First, compiling larger datasets with more classes will help training a more power model. 213

Second, exploring more meaningful node features of the binding site graph may also improve the 214

classification performance. Third, GraphSite can be extended to other deep learning-based applications 215

that involve binding sites. For example, it is possible to train a graph autoencoder to generate latent 216

embeddings of binding sites. Another potential application is to build a model to predict drug-target 217

interactions where the GNN layers of GraphSite can be used as the feature extractor of binding sites. 218

6 Supporting Information 219

• Graphsite is open-sourced and available at https://github.com/shiwentao00/Graphsite. 220

• The classifier implementation is open-sourced and available at 221

https://github.com/shiwentao00/Graphsite-classifier. 222
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