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ABSTRACT

Fetal brain diffusion magnetic resonance images are often acquired with a lower through-plane
than in-plane resolution. This anisotropy is often overcome by classical upsampling methods
such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm
using an autoencoder neural network to enhance the through-plane resolution by leveraging a
large amount of data. Our framework, which can also be used for slice outliers replacement,
overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns
of the developing Human Connectome Project. The evaluation was performed on both the
original diffusion-weighted signal and on the estimated diffusion tensor maps. A byproduct of our
autoencoder was its ability to act as a denoiser. The network was able to generalize to fetal data
with different levels of motion and we qualitatively showed its consistency, hence supporting the
relevance of pre-term datasets to improve the processing of fetal brain images.
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1 INTRODUCTION

The formation and maturation of the white matter is at its highest rate during the fetal stage of human
brain development. To have more insight into this critical period, in utero brain imaging techniques offer a
unique opportunity. Diffusion weighted magnetic resonance imaging (DW-MRI) is a well-established tool
to reconstruct in vivo and non-invasively the white matter tracts in the brain (Basser and Pierpaoli, 2011;
Johansen-Berg and Behrens, 2013). Fetal DW-MRI, in particular, could characterize early developmental
trajectories in brain connections and microstructure (Bui et al., 2006; Huang et al., 2009; Huang and Vasung,
2014; Jakab et al., 2015). Hence, fetal DW-MRI has been of significant interest for the past years where
studies (Righini et al., 2003; Kasprian et al., 2008; Khan et al., 2019) have provided analysis using diffusion
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tensor imaging (DTI) by computing diffusion scalar maps - such as fractional anisotropy (FA) or mean
diffusivity (MD) - using a limited number of gradient directions. A recent work focused on reconstructing
fiber Orientation Distribution Functions (fODF) (Deprez et al., 2019) using higher quality datasets and rich
information including several gradient directions (32 and 80), and higher b-values (750 and 1000 s/mm2)
and signal-to-noise ratio (SNR) (3 Tesla magnetic field strength). Additionally, the datasets were acquired
in a controlled and uniform research setting with healthy volunteers, which can hardly be reproduced in the
clinical environment.

Albeit promising results, acquiring high quality data remains a main obstacle in the field of fetal brain
imaging. Firstly, unpredictable and uncontrollable fetal motion is a major challenge. To overcome this
problem, fast echo-planar imaging (EPI) sequences are typically used to freeze intra-slice motion. However,
intra- and inter-volume motion still has to be addressed in the post-processing steps using sophisticated
slice-to-volume registration (SVR) (Kim et al., 2010; Fogtmann et al., 2013; Marami et al., 2016). Moreover,
EPI sequences generate severe non-linear distortions that need adapted distortion correction algorithms
(Kuklisova-Murgasova et al., 2017). Additionally, the resulting images display low SNR due to at least
three factors: the inherently small size of the fetal brain, the surrounding maternal structures and amniotic
fluid, and the increased distance to the coils. In order to compensate for the low SNR in EPI sequences,
series with thick voxels (i.e. low through-plane resolution) are often acquired. Finally, to shorten the
acquisition time, small b-values (b = 400� 700s/mm2) and a low number of gradient directions (10-15)
(Kasprian et al., 2008; Khan et al., 2019) are commonly used in fetal imaging, which in turn will result in a
low angular resolution.

Clinical protocols typically acquire several anisotropic orthogonal series of 2D thick slices to cope with
high motion and low SNR. Then, super-resolution reconstruction techniques that have been originally
developed for structural T2-weighted images (Rousseau et al., 2006; Gholipour et al., 2010; Kuklisova-
Murgasova et al., 2012; Tourbier et al., 2015; Kainz et al., 2015; Ebner et al., 2020) by combining different
3D low resolution volumes, have also been successfully applied in 4D fetal functional (Taymourtash et al.,
2021) and diffusion MRI contexts (Fogtmann et al., 2013; Deprez et al., 2019). Still, despite these two
pioneer works, super-resolution DW-MRI from multiple volumes has been barely explored in vivo. In fact,
the limited scanning time to minimize maternal discomfort hampers the acquisition of several orthogonal
series, resulting in a trade-off between the number of gradient directions and orthogonal series. Thus,
DW-MRI fetal brain protocols are not standardized from one center to another (Table S1 in Supplementary
Material) and more experiments have to be conducted in this area to design optimal sequences (Kebiri
et al., 2021a,b).

Nevertheless, fetal DW-MRI resolution enhancement could also benefit from single image super-
resolution approaches, i.e. either within each DW-MRI 3D volume separately or using the whole 4D
volume including all diffusion measurements. In fact, it has been demonstrated that a linear or cubic
interpolation of the raw signal enhances the resulting scalar maps and tractography (Dyrby et al., 2014). In
practice, this is typically performed either at the signal level or at DTI scalar maps (Jakab et al., 2017).
We believe that single volume and multiple volumes super-resolution can also be performed together, i.e.
where the output of the former is given as the input of the later. This aggregation could potentially lead to a
better motion correction and hence to a more accurate final high resolution volume.

Several studies have proposed single image super-resolution enhancement methods for DW-MRI but,
to the best of our knowledge, none of them has been applied neither to anisotropic datasets nor to the
developing brain. In Coupé et al. (2013), the authors utilized a non-local patch-based approach in an
inverse problem paradigm to improve the resolution of adult brain DW-MRI volumes using a non diffusion
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weighted image (b = 0s/mm2) prior. Although this approach yielded competitive results, it was built upon
a sophisticated pipeline which made it not extensively used. The first machine learning study (Alexander
et al., 2017) have used shallow learning algorithms to learn the mapping between diffusion tensor maps
of a downsampled high resolution image and the maps of the original image. Recently, deep learning
models which can implicitly learn relevant features from training data were used to perform single image
super-resolution with a convolutional neural network (Elsaid and Wu, 2019; Dong et al., 2015) and a
customized U-Net (Chatterjee et al., 2021; Ronneberger et al., 2015). Both approaches produced promising
results in a supervised learning scheme. Supervision needs however large high quality datasets that are
scarce for the perinatal brain for the reasons enumerated above.

The specific challenge of fetal DW-MRI is 3-5 mm acquired slice thickness, with only a few repetition
available. Hence our main objective is to focus on through-plane DW-MRI resolution enhancement. This
would be valuable not only for native anisotropic volumes but also for outlier slice recovery. In fact, motion-
corrupted slices in DW-MRI are either discarded, which results in a loss of information, or replaced using
interpolation (Niethammer et al., 2007; Chang et al., 2005; Andersson et al., 2016). We approached this
problem from an image synthesis point of view using unsupervised learning networks such as autoencoders
(AEs), as demonstrated in cardiac T2-weighted MRI (Sander et al., 2021) and recent works in DW-MRI
(Chung et al., 2021). Here we present a framework with autoencoders that are neural networks learning in
an unsupervised way to encode efficient data representations and can behave as generative models if this
representation is structured enough. By accurately encoding DW-MRI slices in a low-dimensional latent
space, we were able to successfully generate new slices that accurately correspond to in-between ”missing”
slices. In contrast to the above referred supervised learning approaches, this method is scale agnostic, i.e.
the enhancement scale factor can be set a posteriori to the network training.

Realistically increasing the through-plane resolution would potentially help the clinicians to better assess
whether the anterior and posterior commissures are present in cases with complete agenesis of the corpus
callosum (Jakab et al., 2015). It can reduce partial volume effects and thus contribute to the depiction of
more accurate white matter properties in the developing brain.

In this work, we present the first unsupervised through-plane resolution enhancement for perinatal brain
DW-MRI. We leverage the high quality dataset of the developing Human Connectome Project (dHCP)
where we train and quantitatively validate on pre-term newborns that are anatomically close to fetal subjects.
We finally demonstrate the performance of our approach in fetal brains.

2 MATERIALS AND METHODS

2.1 Data

2.1.1 Pre-term dHCP data

We selected all the 31 pre-term newborns of 37 gestational weeks (GW) or less at the time of scan
(range: [29.3,37.0], mean: 35.5, median: 35.7) from the dHCP dataset (Bastiani et al., 2019) (subject IDs in
Table S2 of Supplementary Material). Acquisitions were performed using a 3T Philips Achieva scanner
(32-channel neonatal head-coil) with a monopolar spin-echo EPI Stejksal-Tanner sequence (�=42.5ms,
�=14ms, TR=3800ms, TE=90ms). The spatial resolution was 1.17x1.17x1.5 mm3 with a field of view
of 128x128x64 voxels. The dataset was acquired with a multi-shell sequence using four b-values (b
2 {0, 400, 1000, 2600}s/mm2) with 300 volumes but we have only extracted the 88 volumes corresponding
to b = 1000s/mm2 (b1000) as a compromise of high contrast-to-noise ratio (CNR), i.e. b1000 has a higher
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CNR than b400 and b2600 (Bastiani et al., 2019), and proximity to the b = 700s/mm2 that is typically used
in clinical settings for fetal DW-MRI. Brain masks and region/tissue labels segmented using a pipeline based
on Draw-EM algorithm (Makropoulos et al., 2018, 2014) were available in the corresponding anatomical
dataset. All the images were already corrected for inter-slice motion and distortion (susceptibility, eddy
currents and motion).

2.1.2 Fetal data

Fetal acquisitions were performed at 1.5T (MR450, GE Healthcare, Milwaukee, WI, USA) in the
University Children’s Hospital Zürich (KISPI) using a single-shot EPI sequence (TE=63 ms, TR=2200
ms) at b = 700s/mm2 (b700). The acquisition time was approximately 1.3 minutes per 4D volume. The
in-plane resolution was 1x1mm2, the slice thickness 4-5mm and the field of view 256x256x14�22 voxels.
Three axial series and a coronal one were acquired for each subject. Brain masks were manually generated
for the b0 (b = 0s/mm2) of each acquisition and automatically propagated to the diffusion-weighted
volumes. Between 8 and 18 T2-weighted images were also acquired for each subject where corresponding
brain masks were automatically generated using an in-house deep learning based method using transfer
learning from Salehi et al. (2018). Manual refinements were needed for a few cases at the brain boundaries.

2.1.3 Fetal data processing

We selected three subjects with high quality imaging and without motion artefacts (24, 29 and 35 GW)
and three subjects with a varying degree of motion (23, 24 and 27 GW). Figure 1 illustrates a DW-MRI
volume of a motion-free case (29 GW). By performing quality control, we discarded highly corrupted
volumes due to motion resulting in severe signal drops in two moving subjects and very low SNR volumes
in one motion-free subject (Table S3 in Supplementary Material shows the discarded volumes for each
subject). All the subjects were pre-processed for noise, bias field inhomogeneities and distortions using the
Nipype framework (Gorgolewski et al., 2011). The denoising was performed using a Principal Component
Analysis based method (Veraart et al., 2016), followed by an N4 bias-field inhomogeneity correction
(Tustison et al., 2010). Distortion was corrected using an in-house implementation of a state-of-the-art
algorithm for fetal brain (Kuklisova-Murgasova et al., 2017) consisting in rigid registration (Avants et al.,
2009) of a structural T2-weighted image to the b0 image, followed by a non-linear registration (Avants
et al., 2009) in the phase-encoding direction of the b0 to the same T2-weighted image. The transformation
was then applied to the diffusion-weighted volumes. A block matching algorithm for symmetric global
registration was also performed for two subjects with motion (NiftyReg, Modat et al., 2014). The b0 image
of the first axial series was selected as a reference to which we subsequently registered the remaining
volumes, i.e. the non b0 images from the first axial and all volumes from the two others. Gradient directions
were rotated accordingly.

2.2 Model

2.2.1 Architecture

Our network architecture, similarly to Sander et al. (2021), is composed of four blocks in the encoder and
four in the decoder (Figure 2). Each block in the encoder consists of two layers made of 3x3 convolutions
followed by a batch normalization (Ioffe and Szegedy, 2015) and an Exponential Linear Unit non-linearity.

The number of feature maps is doubled from 32 after each layer and the resulting feature maps are
average-pooled. We further added two layers of two 3x3 convolutions in which the feature maps of the
last layer was used as the latent-space of the autoencoder. The decoder uses the same architecture as the
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Figure 1. Illustration of the three orientations of a DW-MRI volume from a still fetal subject (29 GW) and
pre-term newborn of the same gestational age.

encoder but by conversely halving the number of feature maps and upsampling after each block using
nearest neighbor interpolation. At the final layer a 1x1 convolution using sigmoid function is applied to
output the predicted image. The number of network parameters is 6,098,689.

2.2.2 Training and optimization

In the TensorFlow framework (Abadi et al., 2016), we have trained our network solely on b0 images,
using an 8-fold nested cross validation where we trained and validated on 27 subjects and tested on four.
The proportion of the validation data was set to 15% of the training set. The training/validation set contains
25,920 slices of a 128x128 field of view, totalling 424,673,280 voxels. Our network was trained in an
unsupervised manner by feeding normalized 2D axial slices that are encoded as feature maps in the latent
space. The number of feature maps, and hence the dimensionality of the latent space, was optimized
(optimal value to 32) using Keras-Tuner (Chollet et al., 2015). The batch size and the learning rate were
additionally optimized and set to 32 and 5e-5, respectively. The network was trained for 200 epochs
using Adam optimizer (Kingma and Ba, 2014) with the default parameters �1 = 0.5, �2 = 0.999, and the
network corresponding to the epoch with the minimal validation loss was then selected. Network code and
checkpoint example can be found in our Github repository 1.

2.2.3 Inference

The network trained on b0 images was used for the inference of b0 and b1000 volumes. Two slices were
encoded in the latent space and their N ”in-between” slice(s) (N=1,2 in our experiments) were predicted
using weighted averages of the latent codes of the two slices. An example on pre-term b1000 data for a
weight of 0.5 is shown in Figure 2 (Testing). Similarly, the same b0 network was also used to increase the
through-plane resolution of fetal b0 and b700 volumes. Finally, since the network outputs were normalized
between 0 and 1, histogram normalization to the weighted average of the input images was performed.

1 www.github.com/Medical-Image-Analysis-Laboratory/Perinatal SR Autoencoder
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Figure 2. Illustration of the network architecture (top): Each box is a multi-channel feature maps. The
number of channels is denoted on top of each box. The violet box represents the latent space of the
autoencoder (BN: Batch Normalization. ELU: Exponential Linear Unit). An illustration of how we
generated middle slice(s) is shown in the bottom panel (Testing), for the case of an equal slice weighting
(w=0.5) and b1000.

2.3 Experiments and evaluation

2.3.1 Pre-term newborns

Our network was separately tested on b0 images and the 88 volumes of b1000 using an 8-fold cross
validation where seven folds contain four subjects and one fold contains three subjects. We removed N
intermediate slices (N=[1,2]) from the testing set volumes in an alternating order and used the (weighted)
average latent space feature maps of the to-be adjacent slices to encode the N missing slice(s) using the
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autoencoder (Figure 2, Testing). The resulting latent representation was then decoded to predict the N slices
in the voxel space, which were compared to the previously removed N slices, i.e. the ground truth (GT).
The same N slices were also generated using three baseline approaches: trilinear, tricubic and B-spline of
5th order interpolations (using Tournier et al. (2012); Avants et al. (2009)) for comparison. We denote them
respectively for removing one or two slices: Linear-1, Cubic-1, Spline -1 and Linear-2, Cubic-2, Spline-2.

Latent space validation - We have compared the latent space representations between different gradient
directions of all possible pairs from the 88 volumes of the b1000 4D volume.

Robustness to noise - We have added different low levels of Rician noise (Gudbjartsson and Patz,
1995) to the original signal as follows: for each pixel with a current intensity S

clean

, the new intensity
S
noisy

=
q

(S
clean

+GN1)2 +GN2
2 where GN1 and GN2 are random numbers sampled from a Gaussian

distribution with zero mean and a standard deviation of S
clean

(b = 0)/SNR
out

, and SNR
out

is the desired
SNR we aim to simulate. Three SNR of {27, 25, 23} and {20, 16, 13} were simulated for b0 and b1000
respectively. We have used higher noise levels for b1000 to better simulate the inherently lower SNR in
this configuration.

Scalar maps - By merging the b0 and b1000 using the autoencoder enhancement, we reconstructed
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) from
DTI using Dipy (Garyfallidis et al., 2014) separately for AE-1 or AE-2, i.e. where we respectively remove
one (N=1) or two slices (N=2). We further subdivided the computation in specific brain regions (cortical
gray matter, white matter, corpus callosum and brainstem as provided by the dHCP). Region labels were
upsampled and manually refined to match the super-resoluted/interpolated volumes. We performed similar
computation of the diffusion maps generated using the trilinear, tricubic and B-spline interpolated signals.

2.3.2 Fetal

For each subject and each 3D volume (b0 or DW-MRI), we generated one or two middle slices using
autoencoder enhancement, hence increasing the physical resolution from 1x1x4-5mm3 to 1x1x2-2.5mm3

and 1x1x1.33-1.67mm3 respectively. We then generated whole-brain DTI maps (FA, MD, AD and RD) and
show the colored FA. Splenium and genu structures of the corpus callosum were additionally segmented on
FA maps for subjects in which these structures were visible. The mean FA and MD were reported for these
regions for original and autoencoder enhanced volumes.

2.3.3 Quantitative evaluation

Raw diffusion signal - We computed the voxel-wise error between the raw signal synthesized by the
autoencoder and the GT using the mean squared error (MSE) and the peak signal-to-noise ratio (PSNR).
We compared the autoencoder performance with the three baseline approaches: trilinear, tricubic and
B-spline of 5th order interpolations.

Latent space validation - We have computed the average squared Euclidian voxel-wise distance between
slices of all 3D b1000 volume pairs. This was performed both at the input space and at the latent space
representation.

Robustness to noise - We computed with respect to the GT signal the error of the signal with noise, and
the output of the autoencoder using the signal with noise as input. We compared the results using MSE
separately for b0 and b1000.

Scalar maps - We computed the voxel-wise error between the diffusion tensor maps reconstructed with
the GT and the one by merging the b0 and b1000 using the autoencoder enhancement. We computed
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Figure 3. Average pair-wise slice distance between gradient direction volumes in input space (left) and
latent space (right).

the error separately using either AE-1 or AE-2. We used the MSE and the PSNR as metrics and the
same diffusion maps generated using the trilinear, tricubic and B-spline interpolated signal as a baseline.
Moreover, we qualitatively compare colored FA generated using the best baseline method, autoencoder and
the GT.

3 RESULTS

3.1 Pre-term newborns

First, we inspected the latent space and how the 88 DW-MRI volumes are encoded with respect to each
other. We can notice in Figure 3 (right panel) that as two b-vectors’ angle approaches orthogonality (90�)
the difference between the latent representations of their corresponding volumes increases. Conversely the
difference decreases the more the angle tends towards 0� or 180�. Although the pattern is more pronounced
in the input space (Figure 3, left panel), this trend is a fulfilled necessary condition to the generation of
coherent representations of the input data by our network.

Moreover, our network that was exclusively trained on b0 images, was able to generalize to b1000. In
fact the signal similarity between b0 and DW images was also used in Coupé et al. (2013) in an inverse
problem paradigm in which a b0 prior was incorporated to reconstruct b700 volumes.

Figure 4 illustrates qualitative results and absolute errors for N=1 with respect to the GT (right) between
the best interpolation baseline (trilinear, left) and the autoencoder enhancement (middle) for b1000. We
overall saw from these representative examples, higher absolute intensities in the Linear-1 configuration
than in the AE-1. However, ventricles are less visible when using autoencoder. We hypothesize this is
because of their higher intensity in b0 images on which the network was trained.

The average MSE with respect to original DW-MRI signal within the whole brain is shown in Figure 5
for both the autoencoder enhanced volume and the baseline methods (trilinear, tricubic and B-spline), for
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Figure 4. Illustration of the error difference in b1000 with respect to the ground truth (GT) for the best
baseline method (trilinear, left) and autoencoder (AE, middle) enhancement.

the configurations where one (Method-1) or two (Method-2) slices were removed. The first observation
was the expected higher error for the configuration where two slices are removed (N=2), independently of
the method used. Additionally, the autoencoder enhancement clearly outperformed the baseline methods in
all configurations (paired Wilcoxon signed-rank test p<1.24e-09). Particularly, the more slices we remove
the higher the gap between the baseline interpolation methods and the autoencoder enhancement. For b0,
the MSE gain was around 0.0005 for N=1 and 0.0015 for N=2 between the autoencoder and the average
baseline method (Spline-1 v.s. AE-1 and Linear-2 v.s AE-2). For b1000, the gain between AE-1 and
Cubic-1 was 0.0007, respectively 0.0015 between AE-2 and Cubic-2.

The overperformance of the autoencoder is also shown overall to the DTI maps, where MD, AD and RD
were better approximated when compared to the best baseline method (linear interpolation), particularly
in the configuration where two slices were removed (Figure 6). However, the FA showed the opposite
trend especially for the configuration where one slice was removed (AE-1 v.s. Linear-1). However, FA
for white matter-like structures (’WM’, corpus callosum and brainstem) showed higher performance with
the autoencoder as depicted for each structure in Figure 7. In fact, by plotting colored FA for these two
configurations we observed that the autoencoder generates tracts that were consistent with the GT. For
instance, autoencoder enhancement showed higher frequency details around the superficial WM area
(Figure 8, top row) and removed artefacts between the internal capsules better than the linear method
(Figure 8, bottom row). However, in some cases, the baseline method better depicted tracts such as in the
corpus callosum (Figure 8, middle row). Figure 9 shows similar comparisons for MD in different brain
regions between the baseline method (Linear), the autoencoder and the GT. Overall, quantitatively, for
structures in the case where two slices were removed, the autoencoder enhancement outperformed the best
baseline method in 15 out of 16 configurations (Figure 7). However, it is not always the case when one
slice is removed such as in the AD of the brainstem.

Figure 10 shows how our autoencoder was robust to reasonable amounts of noise. In fact, simply encoding
and decoding the noisy input generates a slice that was closer to the GT than the noisy slice, as depicted for
different levels of noise for both b0 and b1000.
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Figure 5. Mean squared error (MSE) between the three baseline methods (linear, cubic and B-spline 5th

order) and autoencoder (AE) enhancement both for b0 (left) and b1000 (right). Two configurations were
assessed: either N=1, i.e. removing one slice and interpolate/synthesize it (Linear-1, Cubic-1, Spline-1,
AE-1) or N=2, i.e. the same approach with two slices (Linear-2, Cubic-2, Spline-2, AE-2). The autoencoder
has a significantly lower MSE when compared to each respective best baseline method (paired Wilcoxon
signed-rank test p<1.24e-09).

3.2 Fetuses

Figure 11 illustrates inter-volume motion between five diffusion-weighted volumes where we notice a
severe signal drop in the seventh direction (discarded volume).

The autoencoder trained on pre-term b0 images was able to coherently enhance fetal acquisitions both at
b0 and DW-MRI volumes at b700. The network was able to learn low-level features that could generalize
over anatomy, contrast and b-values. Corresponding FA and colored FA for a still subject (35 GW) are
illustrated in Figure 12 (top) where we clearly see the coherence of the two synthesized images as we go
from one original slice to the next one. In fact, both the corpus callosum and the internal/external capsules
follow a smooth transition between the two slices. Similarly, Figure 12 (bottom) exhibits MD and FA for a
moving subject (24 GW) where we also notice, particularly for the MD, the smooth transition between the
originally adjacent slices. FA and MD for the remaining subjects are shown in Figure S1 in Supplementary
Material.

The splenium and genu of corpus callosum were only sufficiently visible in the three late GW subjects
(27, 29 and 35 GW) subjects. Figure 13 shows quantitative results for FA and MD in the two structures.
Both maps fall into the range of reported values in the literature (Wilson et al., 2021) for the respective
gestational age, for original and autoencoder enhanced volumes.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471406
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kebiri et al. dMRI super-resolution in developing brain

Figure 6. MSE and PSNR between the best baseline (Linear) and the autoencoder (AE) enhancement for
whole-brain diffusion tensor maps, when removing and synthesizing/interpolating one or two slices.

4 DISCUSSION

In this work we have shown that (1) autoencoders can be used for through-plane super-resolution in
diffusion MRI, (2) training on b0 images can generalize to gradient diffusion volumes of different contrasts
and (3) as a proof of concept, training on pre-term anatomy can generalize to fetal images.

In fact, we have demonstrated how autoencoders can realistically enhance the resolution of DW-MRI
perinatal brain images. We have compared it to conventionally used methods such as trilinear, tricubic
and B-spline interpolations both qualitatively and quantitatively for pre-term newborns of the dHCP
database. Resolution enhancement was performed at the diffusion signal level and the downstream benefits
propagated to the DTI maps.

Additionally, our network that was solely trained on non-diffusion weighted images (b0) was able to
generalize to a b1000 contrast. In fact, the most intuitive approach is to infer b1000 images using a network
trained on b1000. We have indeed tried but the network did not converge for the majority of the folds.
This might be due to the high variability of b1000 images across directions and their inherently low SNR.
However, in the one fold that the network converged, it slightly underperformed the network that was
trained on b0 only, on both b1000 pre-term and b700 fetal images. Moreover, being b-value independent
is a desirable property since different b-values are used in different centers, in particular for clinical fetal
imaging (400, 500, 600, 700 s/mm2) (Fogtmann et al., 2013; Jakab et al., 2015, 2017; Marami et al., 2017;
Deprez et al., 2019). In fact, the same b0 network trained on pre-term data was generalized to b700 fetal
images where we qualitatively show its advantage, hence supporting the utility of pre-term data for fetal
imaging such as in Karimi et al. (2021), where they have used pre-term colored FA and DW-MRI fetal
scans to successfully predict fetal colored FA using a convolutional neural network. Furthermore, FA and
MD of the corpus callosum which were generated using the autoencoder enhanced volumes are in the range
of values provided by a recent work (Wilson et al., 2021). This a necessary but non sufficient condition for
the validity of our framework in fetal data.
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Figure 7. Mean squared error (MSE) with respect to the GT of the best baseline method (Linear) and the
autoencoder (AE) enhancement in the different brain structures (Cortical Gray Matter (GM), White Matter
(WM), Brainstem and Corpus Callosum) for each diffusion tensor map (FA, MD, AD and RD) for one slice
removal (N=1) and two slices removal (N=2). Comparing the DTI maps of the merged brain region labels,
we found that the AE-2 outperforms other conventional methods for MD, RD and AD. (Paired Wilcoxon
signed-rank test: ** p<0.0073 - * p<0.051)

Notably, our trained network was able to reduce the noise from the data by learning the main features
across images for different noise levels. This can be explained by two points. First, our autoencoder
was exposed to different low levels of noise (as the dHCP data was already denoised) and hence the
encoded features of the latent space are ought to be noise independent. Secondly, generative autoencoders
intrinsically yield high SNR outputs due to the desired smoothness property of the latent space (Berthelot
et al., 2018).

The proposed framework could be applied to correct for anisotropic voxel sizes and can be used for slice
outliers recovery in case of extreme motion artefacts for example. In fact, the artificially removed middle
slices in our experiments can represent corrupted slices that may need to be discarded or replaced using
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Figure 8. Qualitative comparison of colored FA in the one slice removed configuration for the best baseline
interpolation method, i.e. Linear-1 (left), autoencoder enhancement AE-1 (middle) and GT (right). The red
frame area highlight to a region where the linear interpolation shows a more accurate result.

interpolation (Niethammer et al., 2007; Chang et al., 2005; Andersson et al., 2016). Our autoencoder can
hence be used to recover these damaged slices using neighboring ones.

The power of our method compared to conventional interpolations resides in two points. Firstly, the
amount of data used to predict/interpolate the middle slice. While only two slices will be used in traditional
interpolation approaches, our method will in addition take advantage of the thousands of slices to which
the network has been exposed and from which the important features have been learned (without any
supervision) in the training phase. Secondly, based on the manifold hypothesis, our method performs
interpolations in the learned encoding space, which is closer to the intrinsic dimensionality of the data
(Chollet, 2017), and hence all samples from that space will be closer to the true distribution of the data
compared to a naive interpolation in the pixel/voxel space.

Although our network performed quantitatively better than conventional interpolation methods in pre-
term subjects, its output is usually smoother and hence exhibits less details. This is a well-known limitation
of generative autoencoders, such as variational autoencoders, and the consequence of the desirable property
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Figure 9. Qualitative comparison of mean diffusivity (MD) in the one slice removed configuration for the
best baseline interpolation method, i.e. Linear-1 (left), autoencoder enhancement AE-1 (middle) and GT
(right).

of making the latent space smooth (Berthelot et al., 2018). Generative Adversarial Networks (Goodfellow
et al., 2014) can be an interesting alternative to overcome this issue. However, they have other drawbacks
as being more unstable and less straightforward to train (Mescheder et al., 2018) than autoencoders.

In this work, qualitative results only were provided on fetal DW-MRI. We are limited by the lack of
ground truth in this domain, hence our results are a proof of concept. The future release of the fetal dHCP
dataset will be very valuable to further develop our framework and proceed to its quantitative assessment
for fetal DW-MRI.

In future work, we want to add random Rician noise in the training phase to increase the network
robustness and predictive power. We also want to extend the autoencoding to the angular domain by using
spherical harmonics decomposition for each 4D voxel, and hence enhancing both spatial and angular
resolutions (Ma and Cui, 2021).

Although unsupervised learning via autoencoders has been recently used in DW-MRI to cluster individuals
based on their microstructural properties (Chamberland et al., 2021; Rokem, 2021)), this is to the best of
our knowledge, the first unsupervised learning study for super-resolution enhancement in DW-MRI using
autoencoders.

As diffusion fetal imaging suffers from low through-plane resolution, super-resolution using autoencoders
is an appealing method to artificially but realistically overcome this caveat. This can help depict more
precise diffusion properties through different models such as DTI or ODFs and potentially increase the
detectability of fiber tracts that are relevant for the assessment of certain neurodevelopmental disorders
(Jakab et al., 2017).
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Figure 10. MSE between noisy images and the GT v.s. encoded-decoded noisy images and the GT.
SNR out is the desired SNR of the output in the Rician noise formula (Subsection 2.3.1). We notice the
robustness of the autoencoder to growing levels of noise both for b0 images (left) and b1000 images (right).

Figure 11. Illustration of inter-volume motion in five different gradient directions. Note the severe signal
drop in the seventh direction because of motion.

Figure 12. Colored FA and FA (top row) illustration of autoencoder enhancement between two original
adjacent fetal slices in a still subject (35 GW). The bottom row shows a similar illustration of MD and FA
for a moving subject (24 GW).
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Figure 13. FA and MD in genu and splenium of corpus callosum for three subjects (27, 29 and 35 GW)
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the Leenaards and Jeantet Foundations. We also thank Athena Taymourtash for the help in the acceleration
of the technical analysis and Samuel Lamon (MD) for the help in the segmentation of the corpus callosum.

DATA AVAILABILITY STATEMENT

The pre-term newborns dataset analyzed in this study is a subset of the developing Human
Connectome Project (dHCP) dataset. This dataset is publicly available at: http://www.

developingconnectome.org/data-release/data-release-user-guide/.
The fetal data is from the University Children’s Hospital Zürich (KISPI) and cannot be shared with the
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1 SUPPLEMENTARY TABLES AND FIGURES

Table S1. Main settings of acquisition protocols in fetal brain diffusion MRI.
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Subject ID

sub-CC00788XX22
sub-CC00764BN14
sub-CC00764AN14
sub-CC00760XX10
sub-CC00735XX18
sub-CC00703XX10
sub-CC00670XX11
sub-CC00627XX17
sub-CC00571AN11
sub-CC00570XX10
sub-CC00563XX11
sub-CC00492BN15
sub-CC00492AN15
sub-CC00423XX11
sub-CC00351XX05
sub-CC00293BN14
sub-CC00293AN14
sub-CC00281AN10
sub-CC00238BN16
sub-CC00238AN16
sub-CC00231XX09
sub-CC00216AN10
sub-CC00177XX13
sub-CC00161XX05
sub-CC00147XX16
sub-CC00132XX09
sub-CC00129BN14
sub-CC00129AN14
sub-CC00124XX09
sub-CC00087BN14
sub-CC00063AN06

Table S2. IDs of the pre-term subjects used from the developing Human Connectome Project (dHCP) dataset.
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Axial-1 Axial-2 Axial-3

Motion subject 1 - Vol 6,7,15 Vol 11

Motion subject 2 Vol 2,3,4,5,6,7 Vol 11,14 Vol 14

Still subject 1 All volumes except vol 0 (b0) - All volumes except vol 0 (b0)
Table S3. Discarded volumes per each 4D acquisition for three subjects. All the volumes were kept for the remaining subjects.

Figure S1: MD and FA illustration of AE enhancement between two adjacent fetal slices in two moving
subject (top rows: 27, 23 GW) and two still subjects (bottom rows: 35, 24 GW).
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