
LEARNING ACTIVE MULTIMODAL SUBSPACES IN THE BRAIN

Ishaan Batta? Anees Abrol? Zening Fu? Vince D. Calhoun?

? Center for Translational Research in Neuroimaging and Data Science (TReNDS):
Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA

ABSTRACT

Here we introduce a multimodal framework to identify sub-
spaces in the human brain that are defined by collective
changes in structural and functional measures and are actively
linked to demographic, biological and cognitive indicators in
a population. We determine the multimodal subspaces using
principles of active subspace learning (ASL) and demonstrate
its application on a sample learning task (biological ageing)
on a Schizophrenia dataset. The proposed multimodal ASL
method successfully identifies latent brain representations as
subsets of brain regions and connections forming co-varying
subspaces in association with biological age. We show that
Schizophrenia is characterized by different subspace pat-
terns compared to those in a cognitively normal brain. The
multimodal features generated by projecting structural and
functional MRI components onto these active subspaces per-
form better than several PCA-based transformations and
equally well when compared to non-transformed features on
the studied learning task. In essence, the proposed method
successfully learns active brain subspaces associated with a
specific brain condition but inferred from the brain imaging
data along with the biological/cognitive traits of interest.

Index Terms— Subspace Analysis, Multimodal Fusion,
Schizophrenia, Neuroimaging, Learning, Functional Connec-
tivity, MRI

1. INTRODUCTION

Understanding structural and functional changes in the brain
has been of prime importance in neuroscience. Numer-
ous learning-based approaches have addressed it using neu-
roimaging data by performing predictive or diagnostic anal-
ysis [1], as well as working to identify indicators for brain
disorders [2, 3]. Such indicators could be utilized along
with certain biological or cognitive traits to create biomark-
ers based on neuroimaging data. Apart from diagnostic
advantage, such approaches may also give insights towards
understanding the organization and functioning of the brain.
More recently, studies have shown that instead of tracking
changes in individual brain areas, mental health disorders
are characterized by collectively changing structural as well
as functional subspaces in the brain [4]. Many studies have
aimed to achieve this by synthesizing multimodal features

from neuroimaging data [5, 6]. Thus, it is becoming increas-
ingly emphatic to have extensive frameworks that take into
account multiple modalities of brain as well as involve a syn-
thesis as to understand the subspace properties within as well
as across modalities at the same time.

Motivated by that, we develop and introduce a multi-
modal framework based on active subspace learning (ASL)
which helps in identification of subspaces from the brain that
are defined by collective changes in both structural as well
as functional measures. Our framework is based on eigen-
decomposition of the covariance of the gradient of a function
defined from multimodal input features to a given cognitive
or biological target variable. It uses the most contributing
eigenvectors to identify the directions (subspaces) in which
certain structural components and functional connections co-
vary the most in association with the target variable. We show
by repeated analysis that the method is stable and is capable
of extracting structural components and functional connec-
tions which consistently contribute to active subspaces. Thus,
our framework is able to: (a) synthesize multimodal features
to identify active and sparse subspaces defined by both struc-
tural and functional modalities, (b) utilize information from
the target variable at hand while computing subspaces rather
than generic subspace computation, (c) identify subspace
patterns in Schizophrenia that are different from healthy con-
trols and (d) retain predictive information in the transformed
features generated by projecting the input data onto active
subspaces.

2. METHODS

2.1. Dataset, Pre-Processing and scICA Components

Structural MRI (sMRI) and resting-state functional MRI
(fMRI) data were used from the Function Biomedical In-
formatics Research Network (fBIRN) [7] dataset. FBIRN
dataset includes 160 healthy control (HC) subjects (45/115
F/M, age range 19 − 59 yrs, mean age 37.04 ± 10.86) and
151 subjects with Schizophrenia (SZ) (36/115 F/M, age range
18 − 62 yrs, mean age 38.77 ± 11.63). Data pre-processing
was done using the statistical parametric mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/) toolkit and Matlab 2016
followed by registration onto the standard Montreal Neu-
rological Institute (MNI) space and voxel-level gray matter
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volume (GMV) maps were created from the structural data
and fMRI time series from the functional data.

Subsequently, spatially constrained group independent
component analysis (scICA) approach [8] with the Neuro-
mark framework [9] was used on the functional data to get
53 consistent component masks corresponding to brain areas.
Static functional connectivity (SFNC) features were com-
puted using the fMRI time-series from the 53 components,
giving 53C2 = 1378 pairwise correlations for each subject.
The masks were registered to the structural space to obtain
53 structural features corresponding to mean scICA loadings
from voxel-level GMV maps.

2.2. Active Subspace Learning Framework
For a given point x ∈ Rm in an input feature space of dimen-
sion m, let f : Rm → R be a function mapping the space of
input features to the space of target variable. Note that in our
case, x could be considered as features from the brain, y as a
cognitive or biological trait, and f could be a regression func-
tion. The methodology of Active Subspace Learning Analy-
sis [10] (ASL) works by performing the eigen-decomposition
of the expected outer-product (covariance) of the gradient of
function f as follows:

C = E
[
(∇xf)(∇xf)

T
]

(1)

In practice, one can estimate C as Ĉ from the data. In this
approach, we considered f to be the Gaussian Process Re-
gression function, as a closed-form estimation of the matrix
Ĉ can be obtained from a dataset of n subjects, [X,y] with
X ∈ Rm×n, and y ∈ Rn [11].

The eigen-decomposition of C is then utilized to iden-
tify a set of active subspaces defined by the eigenvectors with
significantly large eigenvalues. Further, one can create a set
of transformed features X̂ by projecting the input space onto
these active subspaces.

C = WΛWT (2)

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , (3)

such that Λ2 ≈ 0, and λi � 0 ∀λi ∈ Λ1

X̂ = WT
1 X (4)

Essentially, the active subspace vectors are the directions
in which the entity represented by the features shows the most
variation in association with the target variable at hand.

2.3. Identifying Multimodal Subspaces for the Brain
For neuroimaging data, this framework can be used towards
a dual purpose of identifying subspaces and generating trans-
formed features for learning applications or subsequent anal-
ysis. In the case of structural features as input, each column
of the W1 matrix represents an active subspace made up of a
subset of structural components of the brain, where the value
corresponding to each component signifies the contribution of

the component in the particular subspace. For SFNC features
as input, the active subspaces would correspond to a subset
of connections (sub-networks) in the brain. In this work, we
concatenated the structural and SFNC inputs to create a mul-
timodal framework that is used to obtain subspaces spanning
both structural and functional domains i.e. the input matrix

X now can be written as X =
[
Xs

T Xf
T
]T

, where Xs

and Xf are matrices for structural and SFNC features respec-
tively. The active subspaces thus obtained correspond to the
direction of highest change with respect to the target trait in a
multimodal dimension made of structural and functional sub-
dimensions. We selected age as the target variable.

(a) Eigenvalues (b) Group Differences between HC
and SZ

Fig. 1: (a) Matrix representing active multimodal subspaces
for a single run of the ASL framework. Each column is an ac-
tive subspace, while each row corresponds to the contribution
of the structural component/functional connection in the ac-
tive multimodal subspace. (b) Group differences between ac-
tive subspaces computed using data from only control (HC)
and only Szhizophrenia (SZ) groups. Each element at posi-
tion i, j corresponds to the two-sided t-test result on whether
the mean value of corresponding element in subspace matrix
(i.e. Wij) across 100 repetitions is significantly different (p
< 0.05) between the HC and SZ groups. Elements with sig-
nificant difference are shown in black.

3. RESULTS

3.1. Active Multimodal Subspaces
Multimodal ASL analysis was done as described in subsec-
tions 2.3, 2.2. The eigen-matrix was computed as W =
[W1 W2], where W1 represents the multimodal active sub-
sapce matrix separated from W2 based on a threshold on the
eigenvalues cumulatively capturing 99% of the variance. 100
most predictive SFNC features were used for computational
feasibility of eigen-decompositions involved due to repetition
experiments discussed subsequently.

It can be observed that the multimodal subspaces are in-
deed sparse (Figure 1a) with each mulimodal subspace con-
sisting of contributions from both structural components as
well as functional connections. Further, to check how the ac-
tive subspaces vary between control (HC) and Schizophrenia
(SZ) groups, we computed active subspaces using data from
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(a) Structural (b) Functional (c) Component Names

Fig. 2: Components/connections with significantly high value of mean overall contribution sc as defined in subsection 3.2. (a)
Significantly contributing structural components are shown on the brain map along with sc values and (b) Functional connec-
tions are shown between components as connectogram with widths representing the value of sc. The numbers on the left of the
colorbar in (a) and outside the circumference of the connectogram in (b) correspond to the component names in (c).

only HC and only SZ groups. Figure 1b shows the group dif-
ferences between means of contributions to active subspaces
i.e. elements of the W matrix in Equation 3 between HC and
SZ groups for 100 reps. It can be noted that many compo-
nents/connections that define the subspaces in Schizophrenia
are significantly different from the ones for the control group.

3.2. Subspace Stability and Consistent Components
To check the robustness of the subspaces, the whole ASL
analysis was performed for 100 repetitions on randomly se-
lected 80% of the data as training set. To test for any struc-
tural components or functional connections that feature con-
sistently in active multimodal subspaces across the repeti-
tions, we defined a contribution metric vector s. For the rth

repetition, the cth element of s(r) is defined for the corre-
sponding component/connection c as,

s(r)c = max
1≤i≤ar

∣∣∣W(r)
c,i

∣∣∣ (5)

where ar is the number of active subspaces and W(r) is the
subspace matrix for repetition r, as defined in Equation 3.
s
(r)
c essentially captures the extent to which the cth compo-

nent/connection contributes to any of the active subspaces
for the rth repetition. Since each subspace vector is a unit
basis vector of an eigen-space, the maximum value across
subspaces in Equation 5 accounts for the significant contri-
bution in at least one active subspace and the absolute value
accounts for weight in any direction. The summarized contri-
bution sc of component/connection c was computed by sim-
ply taking the mean across repetitions. For each component,

a one-sided t-test was done on the values {s(r)c }1≤r≤100 to
check if the mean sc was significantly high (sc > 0.1 with p-
value < 0.05). Based on this test for consistent contribution
of components/connections, 9 structural components and 27
functional connections were found to significantly contribute
to the multimodal subspaces (See Figure 2).

(a) Pearson’s Correlation Coefficient (b) NRMSE

Fig. 3: Performance comparison for regression analysis on
age using Ridge regression. (a) Pearson correlation and (b)
normalized root mean square error (NRMSE) are plotted for
ASL features computed by projecting the concatenated multi-
modal features onto the active multimodal subspaces as com-
puted in Equation 4. Comparison is shown with null model,
non-transformed multimodal features (Raw) and PCA-based
transformations described in subsection subsection 3.3. (Note
that null model has no correlation as the prediction is a con-
stant vector)

3.3. Performance Comparison
Regression analysis was also done on the ASL transformed
features X̂ in Equation 4 to check if they retain or enhance
predictive information. Figure 3 shows performances from
100 repetitions of Ridge regression analysis with 4-fold cross
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validation on the training set and testing on randomly cho-
sen 20% held-out data. Performance of ASL features cre-
ated as in Equation 4 was compared with baseline models
including null model (predicting mean of the training data),
non-transformed multimodal features (Raw), and finally prin-
ciple component analysis (PCA)-based transformation meth-
ods which do not take the target variable information into ac-
count. These include standard PCA, kernel PCA with linear
(kPCAl), radial kernels (kPCAr), and sparse PCA (sPCA).

ASL feature performance was significantly better than the
PCA based methods and comparable to non-transformed high
dimension multimodal features, indicating that the predictive
information is retained while computing the multimodal sub-
spaces and projecting input data as in (Equation 4).

4. CONCLUSION

Our framework is able to identify sparse, stable subspaces
which synthesize both structure and function, while taking
into account the association with changes in a given target
variable (age), which is also a possible reason for retention
in predictive performance Figure 3. As depicted in Figure
1b, Schizophrenia involves significantly different brain sub-

space patterns than the controls in characterizing the changes
in the target variable. As in Figure 2, it can be seen that
there are multiple brain regions whose structure as well as
function co-vary in association with the target variable, while
for certain regions only one of the modalities is involved.
Rather than looking at individual modality or individual re-
gions, the framework presented in this work takes into ac-
count subspaces that span both functional and structural as-
pects of the brain and is also able to compute subspcaces spe-
cific to a given disorder. Additionally, having a target vari-
able into consideration makes it viable to identify multimodal
biomarkers for disorders involving a particular cognitive or
biological trait of interest. In future this work could be ex-
tended to create more robust analysis scalable to higher di-
mensions as well as faster in computation.
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