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Abstract The separation of distinct motor memories by contextual cues is a well known and well9

studied phenomenon of feedforward human motor control. However, there is no clear evidence of10

such context-induced separation in feedback control. Here we test both experimentally and11

computationally if context-dependent switching of feedback controllers is possible in the human12

motor system. Specifically, we probe visuomotor feedback responses of our human participants in13

two different tasks – stop and hit – and under two different schedules. The first, blocked schedule,14

is used to measure the behaviour of stop and hit controllers in isolation, showing that it can only be15

described by two independent controllers with two different sets of control gains. The second,16

mixed schedule, is then used to compare how such behaviour evolves when participants regularly17

switch from one task to the other. Our results support our hypothesis that there is contextual18

switching of feedback controllers, further extending the accumulating evidence of shared features19

between feedforward and feedback control.20

21

Introduction22

Whether it is touching a hot surface, returning a tennis serve or simply lifting an object, the human23

body utilises a variety of sensory inputs to produce movements of any complexity. Indeed, differ-24

ent feedback modalities of human motor control, such as stretch reflex (Houk (1976); Pruszynski25

and Scott (2012); Dimitriou (2016)), vestibulo-ocular reflex (Barr et al. (1976); Tabak and Collewijn26

(1994)), visuomotor (Prablanc and Martin (1992); Franklin and Wolpert (2008); Izawa and Shad-27

mehr (2008); Knill et al. (2011); Reynolds and Day (2012); Franklin et al. (2012); Pruszynski et al.28

(2018); Zhang et al. (2018); Saijo et al. (2005)), or even auditory feedback (Baram and Miller (2007);29

Oscari et al. (2012)) have extensively been studied in prior literature. However, most studies have30

investigated feedback control in paradigms of either a single task (Saunders and Knill (2003, 2005);31

Franklin et al. (2017); Oostwoud Wijdenes et al. (2011, 2013)), or multiple tasks presented in their32

own dedicated blocks (Day and Lyon (2000); Diedrichsen (2007); Maeda et al. (2018); Cross et al.33

(2019); Česonis and Franklin (2020)). While such designs provide key insights into the behaviour of34

the feedback controller in isolation, they are not entirely reflective of human behaviour in real-life35

situations. For example, a realistic sequence of events could require a volleyball player to first36

pick up the ball from the ground by reaching for it with their hand and stopping on contact, only37

then to hit the same ball with the same hand a few moments later while serving. While studying38

both components independently has received focus in the field of motor control, any interactions39

between the feedback controllers in the context of rapid switching have not been broadly studied.40

While feedback control in human movement is critical in correcting for random errors within41

movements, feedforward control corrects for movement errors that are predictable. In order42
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to systematically predict and compensate for specific errors upcoming in a given movement,43

the mechanism of contextual switching via contextual cues is broadly accepted. It is now well44

understood that performing two opposing tasks in an alternating manner will lead to interference45

(Shadmehr et al. (1995); Bock et al. (2001); Sing and Smith (2010)), resulting in behaviour that46

is averaged between the two tasks, failing to deal with either task. However, if the two tasks47

are performed in sufficiently different contexts, such as separate physical or visual workspaces48

(Howard et al. (2013); Forano and Franklin (2020); Hirashima and Nozaki (2012)), or different lead-49

in (Howard et al. (2012); Sarwary et al. (2015)) or follow-through movements (Howard et al. (2015);50

Sheahan et al. (2016)), this interference can be reduced, allowing the formation of two separate51

motor memories. While it is reasonable to expect similar contextual regulation of the feedback52

controllers, to our knowledge the regulation of feedback control in the paradigm of "multitasking"53

has not yet been tested. Therefore, in this study we test whether the feedback control policies54

exhibit such modulation when humans are presented with different tasks in an alternating manner.55

One difference between studying contextual switching in feedforward and feedback control is56

that it is difficult to evaluate whether the feedback control policy has changed after the intervention.57

Specifically, it has been shown computationally that the optimal feedback controller (OFC) with58

fixed parameters can produce variable responses when correcting for perturbations within the59

movement, for example, when the comparable perturbations are induced in different parts (e.g.60

early or late) of otherwise identical movements (Liu and Todorov (2007); Česonis and Franklin (2020,61

2021); Poscente et al. (2021)). Furthermore, such behaviour was also observed in experimental62

studies (Franklin and Wolpert (2008); Oostwoud Wijdenes et al. (2011); Dimitriou et al. (2013);63

Franklin et al. (2016); Česonis and Franklin (2020); Poscente et al. (2021)). Hence, merely observing64

a difference in the feedback response is not enough to conclude a change in the control policy.65

However, recently we demonstrated that as long as two perturbations of the same magnitude are66

induced at the same time-to-target, the same feedback control policy produces the samemagnitude67

response, independent of whether the two perturbations occurred at the same location, time from68

the beginning of the movement, or the movement velocity (Česonis and Franklin (2020)). Thus, we69

can utilise this relationship between the magnitude (or intensity) of the feedback response to a70

perturbation at the same time-to-target to quantify whether the difference in the response is due71

to the change in the control policy or not.72

In this study we test whether human participants exhibit similar switching between feedback73

control policies as they do for feedforward control. Specifically, we test how the feedback control74

policies are affected when our participants are presented with a "multitasking" scenario where they75

have to switch between performing two distinct tasks, i.e. reaching to and stopping at the target, or76

hitting through the target and stopping behind it. While the two tasks are fundamentally different,77

and in isolation should require different feedback control policies, here we test whether the same78

relationship holds true in the mixed schedule (as it would for contextual switching in feedforward79

control), or if the interference between two control policies results in a single policy, averaged or80

weighted between the two independent controllers.81

Results82

In this study we tested the behaviour of the human feedback controller when switching between83

two different tasks. Specifically, we presented our human participants with two tasks requiring84

different control policies – a stop task, where participants had to reach and stop at the target,85

and a hitting task, where participants had to punch through the target and stop behind it. In our86

previous work we demonstrated computationally that these two different types of movements87

trigger feedback responses of different magnitudes, even if the perturbations occur at the same88

position, time, or time-to-target (Česonis and Franklin (2020)). However, if the two movements89

share the same goal (for example the goal of stopping at the same target), then these feedback90

responses match in magnitude if the time-to-target matches in both movements, irrespective91

of other movement parameters like peak velocity, movement distance, distance to the target or92
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Figure 1. Theoretical predictions of two different architectures for feedback regulation. A. Universal feedback
controller. A single feedback controller is used to produce both stop and hit movements, and is adapted to the

given task over multiple trials. Such adaptive behaviour is reminiscent of the behaviour of the feedforward

controller when learning two opposing force-fields without separable context. Cn indicates a feedback
controller at trial n B. A feedback controller as a set of task-specific controllers. A task-specific controller (stop or
hit) is selected based on the task-related context and is used during the given movement. Such contextual

switching behaviour is reminiscent of the behaviour of the feedforward controller when learning two opposing

force fields with separable context. C. Expected regulation of feedback responses by the universal feedback
controller. When exposed to a single task for a long time (blocked schedule) the controller adapts to the given

task, producing optimal responses for both stop and hit conditions. However, due to interference within the

mixed schedule, such a controller would settle to the average (or weighted average) gains between the two

blocked conditions. D. Expected regulation of feedback responses by a set of task specific controllers. Within
the blocked schedule, similar regulation is expected between hit and stop as in the case of the universal

controller (C). However, in the mixed schedule, due to the task-related context, an appropriate controller is
recalled on a trial-to-trial basis, producing similar regulation as within the blocked schedule.

current velocity. Therefore, such a relation between time-to-target and feedback response intensity93

could be used to characterise the feedback control policy.94

We use the relationship between the time-to-target and the feedback response intensity (which95

serves as a proxy for feedback controller gain) as a means to analyse the controller behaviour96

when the task changes. Specifically, we propose two alternatives for the architecture of such97

control: a single universal feedback controller that exhibits adaptation to a given task (Figure 1A), or98

multiple task-specific controllers, gated by task context (Figure 1B). When presented with a single99

task in a blocked schedule (e.g. blocked stop or blocked hit), both the universal controller and100

task specific controllers are expected to behave similarly, as the universal controller should easily101

adapt its gains appropriately for the required task. However, if multiple tasks are presented in a102

mixed schedule (i.e. task can randomly switch from trial to trial), the different control architectures103

predict different responses. Particularly, a single universal controller would aim to adapt to each104

presented task, thus on average producing responses somewhere in between the two given tasks105

within the mixed schedule (Figure 1C). In contrast, a set of task-specific controllers would produce106

similar responses in the mixed schedule as they would in a blocked schedule, as for every trial an107

appropriate controller is selected from a set of controllers, rather than being adapted for the task108

(Figure 1D).109

In order to probe the control policies of human participants within these different tasks, we110
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Figure 2. Experimental perturbations and responses. A. Perturbations in stop (left) and hit (right) conditions.
Participants performed a forward reaching movement towards a target, positioned 25.0 cm in front of the start

position. When the hand crossed one of five evenly spaced locations (dashed lines), a perturbation could be

induced by shifting the target by 2 cm laterally for 250 ms and then returned back to the original position.

Participants were instructed to either stop at the blue target (stop condition), or hit the red target and stop

within the blue rectangle (hit condition). B. Net feedback responses to the target perturbations in the stop
condition, measured via the force channel. Participants produced corrective responses to the target

perturbations that varied by different perturbation onsets. Different traces represent different perturbation

onsets, with darker colours indicating earlier perturbations. Shaded areas represent one standard error of the

mean (SEM). The grey rectangle represents the time window of 180 – 230 ms, where the visuomotor feedback

intensities are measured. C. Net feedback responses to the target perturbations in the hit condition.

occasionally perturbed participants during the movement by visually shifting the target perpen-111

dicular to movement direction and inducing a reactive visuomotor feedback response (Figure112

2A). Recently it has become common practice to maintain these perturbations until the end of113

the movement, such that an active correction is required to successfully complete the trial (Re-114

ichenbach et al. (2013, 2014); Reichenbach and Diedrichsen (2015); Franklin et al. (2016); Gallivan115

et al. (2016); Franklin et al. (2017); de Brouwer et al. (2017, 2018); Česonis and Franklin (2020)).116

However, we have noticed in our previous work that such maintained perturbations significantly117

impact the overall time-to-target, which in turn affects the visuomotor feedback gains (Česonis and118

Franklin (2020)). Thus, to keep the measurements of visuomotor feedback responses consistent119

within time-to-target, in this study we only perturbed our participants laterally in channel trials120

(Franklin and Wolpert (2008); Dimitriou et al. (2013); Scheidt et al. (2000)) and maintained these121

perturbations for 250 ms before switching them off, making any corrections redundant. As a122

result, even when producing the feedback response, participants’ hands are constrained along the123

path of forward movement, resulting in matching movement durations independent of different124

perturbation onsets.125

Participants produced involuntary feedback responses to the target jumps. These responses,126

observed as a lateral force exerted by the participants on the handle of the robotic manipulandum,127

were modulated by the different perturbation onsets (Figure 2BC). From these force responses we128

computed feedback intensities, by averaging individual responses over a time window 180 ms -129

230 ms relative to the perturbation onset on each individual trial. This time window has now been130

used in numerous studies to quantify such responses and is associated with the involuntary, early131

visuomotor responses (Cross et al. (2019); Franklin and Wolpert (2008); Dimitriou et al. (2013);132

de Brouwer et al. (2017, 2018)).133

OFC model predicts differences between hit and stop conditions134

We utilised the mixed-horizon OFC (Česonis and Franklin (2021)) model, presented in our earlier135

work, to generate predictions of feedback control policies in our current study. Due to the experi-136

mental design of this study not requiring an extension in movement times after perturbations, the137

predictions of the mixed-horizon model also matched the predictions of our earlier time-to-target138
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Figure 3. Comparison of OFC model predictions and experimental results. A. Simulated kinematics of stop, hit
and long-stop conditions. Stop and hit conditions produce matching kinematics that only deviate shortly before

movement end. The long-stop condition is a control simulation, that matched the kinematics of the hit

condition for the duration of the hit movement, but was achieved with the same stop controller. B. Simulated
feedback intensities as a function of time-to-target (left) and time-to-movement-end (right). Simulations predict

a faster increase of response intensities for hit condition than for stop condition. As the long-stop condition is

simulated via a longer (28 cm) movement, the time-to-target represents a time until the simulated movement

crosses a point of 25 cm distance (the target distance). For hit and stop conditions, time-to-target and

time-to-movement-end are identical. When expressed against time-to-movement-end, long-stop produces

matching responses to the stop condition, as the feedback controller used for these movements is identical.

With respect to the time-to-target, long-stop responses are time-shifted from the stop responses. C. Simulated
feedback intensities as a function of the position. Stop and hit simulations with these particular kinematics

produce matching feedback intensity profiles when expressed against position, even if the feedback controllers

are different. In contrast, the long-stop simulation with a feedback controller matching that of the stop

condition still produces different intensity profile against position. Shaded areas in simulated traces represent

95% confidence intervals for simulated results. D. Velocity profiles of participants in blocked stop and blocked
hit conditions. The profiles match the task requirements. E. Feedback intensity profiles of participants in
blocked stop and blocked hit conditions, expressed against time-to-target. Participants produce stronger

responses at matching time-to-target in the hit condition, consistent with simulation results for hit and stop. F.
Feedback intensity profiles of participants in blocked stop and blocked hit conditions, expressed against

position. Participants produce matching responses within hit and stop conditions, supporting model

simulations for stop and hit conditions, and not stop and long-stop. Error bars in experimental results

represent 95% confidence intervals.
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OFC model (Česonis and Franklin (2020)). In order to compare differences in control throughout139

hit and stop movements, we first simulated two movement conditions: a 25 cm long movement140

with 60 cm/s peak velocity and velocity at the target distance <1 cm/s (stop condition), and a similar141

movement, but with velocity at the target >20 cm/s (hit condition) (Figure 3A). Both models were142

implemented using a linear quadratic regulator (LQR), and were identical, apart from the difference143

in state-dependent costs of terminal velocity and terminal force. Here we reduced these cost144

parameters for the hit model by a factor of 50 in order to reduce the incentive to stop at the145

target, and thus successfully simulate hit-like movements. In addition, we also simulated a third146

condition, that we term the long-stop condition, where we used the same position, velocity, force147

and mean activation costs as in the stop model, but applied for reaching movements of 28 cm.148

The concept of the long-stop model is to compare the actual hit behaviour, executed through a149

different controller, with "cheating" behaviour where the same stop movement is performed to150

an imaginary target, located beyond the actual target, resulting in non-zero velocity at the actual151

target, and thus appearing as a hit movement. For all three conditions we then induced virtual152

target perturbations by shifting a target laterally by 2 cm at every time step from movement onset153

to movement end. With these simulations we obtained one continuous feedback response profile154

per condition, showing a dependency of feedback response intensity on time-to-target (Figure 3B).155

This feedback response profile is characteristic of the particular movement control policy associated156

with the movement goal, as it is maintained even if the kinematics of the movement change (Figure157

8 in Česonis and Franklin (2020)).158

Even with similar simulated kinematics, that deviate from each other only in the last portion159

of the movement, the OFC model predicts striking differences in the control policies for stop and160

hit conditions (Figure 3B, blue and red traces) or hit and long-stop conditions (Figure 3B, red and161

green traces) when expressed against time-to-target. On the other hand, when expressed against162

position, even different controllers (hit vs stop) show no differences in feedback intensities, while163

identical control (stop vs long-stop) exhibit clear differences (Figure 3C). Among other things, these164

results point out limitations of position as a dependent variable in determining the changes of165

control policies, and provide yet additional support for time-to-target.166

Our models make a few predictions for the behaviour of human participants. First, it challenges167

the classic assumption that visuomotor feedback response profiles are always bell shaped, if probed168

at evenly spaced locations or movement times. Instead, we propose that the bell-shaped feedback169

response profiles are consequential to the specific kinematic values imposed by the experiments,170

and other, for example monotonically decreasing intensity profiles, are also possible with faster171

movements (Figure 3C). Second, our simulations also make predictions on relative differences172

between the feedback intensity profiles in stop and hit conditions. Particularly, we expect the hit173

condition to produce stronger responses than the stop condition for short times-to-target, with174

this relationship inverting for long times-to-target if the two types of movements require different175

feedback controllers (Figure 3B). Note, that while in previous studies it is typical to compare such176

response profiles in terms of perturbation onset location, here no difference between hit and stop177

is predicted in position-dependent profiles (Figure 3C).178

Human control policies match model predictions in hit and stop conditions179

In order to compare the behaviour of our participants to the model predictions, we first analysed180

our results from the blocked schedule of the experiment. Here every participant has completed181

a block of 416 trials of hit condition and another block of 416 trials of stop condition, with the182

order counterbalanced across all participants. Our experimental results qualitatively match the183

predictions of our model. First, participants successfully differentiated between the kinematics of184

the hit and the stop condition, with both types of movements resulting in matching early and peak185

velocity, but with differences towards the end of the movement such that the velocity at the target186

is higher for the hit condition (Figure 3D). Specifically, in the hit condition participants produced187

movements with average velocity at the target of 38.5 cm/s, while successfully stopping at the target188

6 of 22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471371
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript submitted for peer review

in the stop condition. In addition, similar to the model simulations, movements in the hit condition189

were of slightly shorter duration (630 ms vs 700 ms).190

Qualitatively, the experimental feedback responses also match the model predictions (Figure191

3EF). First, due to relatively fast reaching velocities in our experiment, as well as the lack of main-192

tained perturbations, all perturbations were induced at short times-to-target (under 550 ms). For193

comparison, in our previous study (Česonis and Franklin (2020)) perturbations were induced at194

times-to-target that ranged between 300 ms and 1000 ms, with peak feedback intensities recorded195

for perturbations with time-to-target at 400 ms. Second, both our data and the model produce196

feedback intensities at short times-to-target that are higher for the hit condition than for the stop197

condition, even in movement segments where the kinematics are otherwise similar. Importantly,198

we do not fit the model to match the data, but instead use it to qualitatively describe the relative199

regulation of stop and hit conditions. As such, matching features between the intensity profiles of200

the model (Figure 3BC) and the data (Figure 3EF) imply that similar computational mechanisms may201

be in action. Finally, our results also indicate that participants utilise different feedback controllers202

for the hit and stop conditions, as the experimental results for the blocked hit condition match the203

model simulations of the hit, rather than the long-stop condition.204

Human participants utilise contextual switching of feedback controllers205

In the previous sections we established the differences between the baseline control policies of206

hit and stop conditions. Here, we test how these policies change when the exposure to these207

conditions is no longer blocked. For example, it is natural in our daily activities to continuously208

switch between tasks, rather than doing a single task for many repetitions before switching to209

a new task. However, the question remains, how switching between different tasks affects the210

underlying feedback control policies. To test this, in the second half of the experiment we presented211

our participants with the same two types of movements (hit and stop), but now with the conditions212

randomly mixed across trials, instead of being presented in two separate blocks. As such, we could213

test for one of two possible outcomes:214

1. Control policies for stop and hit movements in the mixed schedule match respectively the215

control policies in the stop and hit movements in the blocked schedule (Figure 1D). Such an216

outcome would indicate that participants are able to easily switch between different control217

policies (at least within consecutive trials).218

2. Control policies for stop and hit movements in the mixed schedule do not match with the219

respective baseline policies, indicating interference when switching amongmultiple conditions220

(Figure 1C).221

While both outcomes have previously been discussed from the sensorimotor adaptation perspective,222

to our knowledge they have not yet been demonstrated for feedback control.223

Our participants successfully produced the movements required in the experiment (Figure224

4A). Particularly, we observed clear distinctions in the terminal velocity between the hit and stop225

conditions, independent of the experimental schedule (blocked or mixed). A two-way repeated-226

measures ANOVA showed a significant main effect on condition (hit or stop, F1,13 = 544.2, p ≪ 0.001),227

but no significant main effect on experiment schedule (blocked or mixed, F1,13 = 0.710, p = 0.42)228

or schedule/condition interactions (F1,13 = 0.681, p = 0.42). In addition, a complementary Bayesian229

repeated-measures ANOVA analysis showed similar results, with a very strong effect (Raftery and230

Kass (1995)) of condition (hit or stop, BFincl = 1.6 × 1025), and with a tendency towards no effect231

of schedule (blocked or mixed, BFincl = 0.379), or condition/schedule interaction (BFincl = 0.409).232

A similar analysis for peak velocities showed a significant main effect of condition (hit or stop,233

F1,13 = 5.94, p = 0.03; although BFincl = 1.12 indicates not enough evidence to either reject or accept234

the null hypothesis) and condition/schedule interaction (F1,13 = 19.3, p ≪ 0.001; BFincl = 32.6), but not235

on schedule (blocked or mixed, F1,13 = 1.52, p = 0.24; BFincl = 0.56 shows a weak tendency towards236

accepting null hypothesis). The Holm-Bonferroni corrected post-hoc analysis for the interaction237
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Figure 4. Experimental results of stop and hit conditions in both blocked and mixed schedules. A. Velocity
profiles against position. Both stop conditions and both hit conditions produce respectively similar velocity

profiles, showing that participants successfully performed the task in the mixed schedule. B. Feedback
response intensities represented as a function of time-to-target. Hit and stop movements in the mixed schedule

demonstrate differences when expressed against time-to-target, that match the differences between hit and

stop conditions in the blocked schedule. This supports the hypothesis of contextual controller switching

between multiple task-specific controllers. C. Feedback intensities in all four conditions show no differences
when expressed against position or D.movement time at perturbation onset, as predicted by the OFC
simulations. This questions the appropriateness of position or movement time as the reference frames in which

to compare multiple feedback controllers. Error bars and shaded areas indicate 95% confidence intervals of the

mean.

term revealed that participants produced slightly faster movements in the mixed-hit condition, with238

the peak velocities matching otherwise.239

We examined the evolution of the experimental visuomotor responses as a function of perturba-240

tion onset position or onset time across the four different conditions (Figure 4CD). When expressed241

against either position or time, the visuomotor intensity profiles do not show the classical bell-242

shaped profile where strongest responses occur in the middle of the movement and are reduced243

towards the beginning and end. Instead, our participants produced the strongest responses for244

the earliest perturbations, induced at 1/6 of the total forward movement, with further responses245

decaying in intensity as perturbations occurred closer to the target. Moreover, we observed no246

significant differences in visuomotor responses across the different conditions and schedules.247

Three-way repeated-measures ANOVA with condition (stop or hit), schedule (blocked or mixed)248

and perturbation location (5 levels) as main factors showed no effect of condition (F1,13 = 0.486,249

p = 0.50; BFincl = 0.238 shows substantial evidence towards no effect), schedule (F1,13 = 0.096,250

p = 0.76; BFincl = 0.142 shows substantial evidence towards no effect) or condition/schedule inter-251

action (F1,13 = 0.657, p = 0.43; BFincl = 0.305 shows substantial evidence towards no effect). While252

we observed a significant main effect of the perturbation location (F2.9,37.7 = 61.2, p ≪ 0.001 after253

Greenhouse-Geisser sphericity correction; BFincl = 9.3 × 1036), such an effect was expected due254
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to the temporal evolution of feedback responses. In addition, we observed a significant inter-255

action between perturbation onset location and the condition (F2.1,27.0 = 6.26, p = 0.005 after the256

sphericity correction; BFincl = 6.86), however a Holm-Bonferroni corrected post-hoc analysis on the257

interaction term did not indicate any meaningful interaction effects, with none of the significant258

interactions appearing at the same perturbation onset location. Finally, the remaining interactions259

of schedule/perturbation (F2.6,33.9 = 2.67, p = 0.07 after Greenhouse-Geisser sphericity correction;260

BFincl = 0.289) and condition/schedule/perturbation (F2.8,36.8 = 0.233, p = 0.86 after Greenhouse-261

Geisser sphericity correction; BFincl = 0.075) showed no significant effects. Thus, as a whole our262

analysis indicates that the feedback controllers could not be differentiated when expressed as a263

function of the position within the movement.264

When expressed against time-to-target, the visuomotor feedback responses show decreasing265

feedback intensities with decreasing time-to-target, with responses virtually vanishing when the266

time-to-target approaches zero (Figure 4B). This behaviour is consistent with our previous models267

describing the time-gain relationship (Česonis and Franklin (2020)). In addition, we observe stronger268

increases in visuomotor feedback intensity with increasing time-to-target for the hit condition269

compared to the stop condition, in both blocked and mixed schedules. Such regulation was270

previously predicted by our time-to-target OFC model (see Fig 9C in Česonis and Franklin (2020)) for271

short times-to-target. Finally, we also observe a qualitative match between the two stop conditions272

(mixed and blocked) as well as between the two hit conditions (mixed and blocked), suggesting first273

evidence of rapid feedback controller switching in the mixed schedule.274

Qualitatively the increase of visuomotor response intensities with time-to-target for our specific275

results could be well described by a line function for each of the four combinations of condition276

and schedule. In order to get a quantitative estimate of the differences between the conditions277

we performed a Two-way ANCOVA analysis of visuomotor response intensity, with schedule and278

condition as the two factors, and time-to-target as the covariate. The results showed a significant279

main effect of condition (hit or stop, F1,275 = 24.8, p ≪ 0.001; BFincl = 9.46 × 103), and time-to-280

target (F1,275 = 222.8, p ≪ 0.001; BFincl = 1.04 × 1033), but no effect of the experimental schedule281

(blocked or mixed, F1,275 = 0.098, p = 0.75; BFincl = 0.138) or of schedule/condition interaction282

(F1,275 = 1.06, p = 0.30; BFincl = 0.304 shows tendency towards no effect). Such results indicate283

that we can successfully separate the two different controllers when expressing their feedback284

response intensities (or their gains) against the time-to-target. Furthermore, we also show that285

such differences are only present when comparing the controllers for different tasks, and are not286

dependent on the presentation schedule of these tasks. Thus, we demonstrate that our participants287

successfully selected an appropriate controller for a hit or a stop task, even in a schedule where the288

task could change on consecutive trials.289

Discussion290

In this study we have demonstrated that humans are capable of rapid switching between appropri-291

ate feedback controllers in the presence of different contextual cues. Specifically, our participants292

show systematic differences in feedback responses when performing hitting movements, compared293

to reach-and-stop movements. Moreover, the same systematic differences are present, both when294

the two tasks are performed in isolation (blocked schedule), or when rapidly switching from one295

task to the other (mixed schedule), showing that these differences are evoked within a single trial,296

and not gradually adapted. Finally, these feedback responses are also well matched with the297

optimal feedback control predictions for these responses in hit and stop tasks, further reinforcing298

accumulating evidence of optimality principals in the feedback control of human movements.299

In order to gain insight into computational mechanisms that are employed when humans switch300

between hit and stop conditions, in this study we formulate our hypothesis through normative301

modelling (Harris and Wolpert (1998); Todorov and Jordan (2002); Liu and Todorov (2007); Versty-302

nen and Sabes (2011); Rigoux and Guigon (2012); Berniker and Penny (2019)). Such an approach303

compares the behavioural experimental data to the results simulated computationally through a304
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known bottom-up design. In turn, any mismatch between the data and the model rules out the305

mechanism, while matching behaviour provides support for the likelihood of such a mechanism.306

Specifically, here we simulate three different types of control movements: stop movement, where307

a point mass is stopped at a target 25 cm away from the start position; hit movement, where the308

point mass is instead brought to the same target with nonzero terminal velocity; and a long-stop309

movement, with similar kinematics to the hit movement within the 25 cm segment, generated by310

a stop movement to a secondary virtual target at 28 cm distance. The hit and stop simulations311

differed in the implementation of the feedback controller, with the state dependent costs for the312

terminal velocity and terminal acceleration reduced by a factor of 50 for the hit condition. As a313

result, the two models inherently simulate the behaviour that is achieved via different controllers.314

On the other hand, the long-stop condition was simulated by using the same controller as the315

stop condition, but to a target at 28 cm instead of 25 cm. Consequently, such a movement still316

maintained a non-zero velocity at 25 cm, virtually simulating a hit-like movement. Notably, in order317

to better match the kinematics of a long-stop movement to the kinematics of the hit and stop318

movements, we temporally modulated the activation cost R of the long-stop controller, which we319

have previously shown does not affect the overall feedback responses in terms of time-to-target320

(Česonis and Franklin (2020)). In general, while kinematics of hit and long-stop models matched321

well, the two simulations predicted very different feedback response profiles when expressed both322

against time-to-target and against position. Finally, the responses of our participants in the hit323

condition matched better with the model simulation of the hit condition, rather than the simulation324

of the long-stop, providing evidence that humans use different feedback controllers for different325

tasks.326

Principles of contextual switching have been extensively studied in the context of feedforward327

adaptation (Wada et al. (2003); Lee and Schweighofer (2009); Howard et al. (2013); Sarwary et al.328

(2015); Howard et al. (2017); Forano and Franklin (2020); Forano et al. (2021)). While these cues vary329

in effectiveness (Wada et al. (2003); Howard et al. (2013)) and are typically considered as relative330

weightings of multiple feedforward models (Wolpert and Kawato (1998)), strong dynamic cues such331

as differences in follow-through (Howard et al. (2015); Sheahan et al. (2016)), lead-in (Howard et al.332

(2012, 2017)), or visual workspace (Forano and Franklin (2020); Hirashima and Nozaki (2012)) can333

effectively separate the feedforward models. As multiple recent papers have demonstrated that334

voluntary (feedforward) and feedback control likely share neural circuits (Ahmadi-Pajouh et al.335

(2012); Hayashi et al. (2016); Maeda et al. (2018, 2020); Voudouris and Fiehler (2021); Poscente336

et al. (2021)), it is reasonable to believe that similar contextual regulation would also be present in337

feedback control. However, studies that have shown this parallel changes in the feedback responses338

to the learning of the feedforward dynamics, either examined before and after adaptation to339

novel dynamicsWagner and Smith (2008); Ahmadi-Pajouh et al. (2012);Maeda et al. (2018, 2021),340

or during the process of adaptation Cluff and Scott (2013); Franklin et al. (2017); Franklin and341

Franklin (2021); Coltman and Gribble (2020), meaning that the they could not distinguish between342

the slow adaptation of the feedback controller to each condition or the rapid switching between two343

controllers. Moreover, other studies have suggested that feedforward and feedback controllers are344

learned separately and may even compete with one another (Kasuga et al. (2015)), suggesting that345

these share different neural circuits and may have different properties. In this study we showed346

that in the mixed schedule, where the task goal unpredictably switched between hit or stop tasks on347

consecutive trials, participants evoked different control policies for each task. Furthermore, these348

policies, evoked within mixed schedule, well matched with the respective policies in the blocked349

schedule, suggesting that they were not only different from one another, but also appropriate for350

each task, showing the strong separation of the two contexts. While this is not unexpected, as351

the two hit and stop tasks are significantly different in their dynamics and thus should act as a352

strong contextual cue, one important result is that we demonstrated that the context regulates353

the feedback, and not only feedforward control. Finally, our results are also consistent with the354

accumulating evidence of the shared relationship between feedforward and feedback control in355
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human reaching.356

One reason why contextual effects on feedback control have not been broadly studied, is that it is357

difficult to quantify what really constitutes a change in feedback control policy. For example, we can358

trigger responses of different magnitudes by changing the size of the perturbation (Franklin et al.359

(2016); Nashed et al. (2012)), inducing perturbations at different positions (Dimitriou et al. (2013);360

Česonis and Franklin (2020)) or at different times (Liu and Todorov (2007);OostwoudWijdenes et al.361

(2011, 2019)). However, computationally such differences in response intensity can be achieved362

within the same optimal feedback controller without ever changing control parameters. In a recent363

study de Comite et al. (2021) demonstrated that the control signal is modified during reaching364

when the task goal changes. While the study provided important insights into online modification of365

control in tasks conceptually similar to the change in context (i.e. obstacles appearing in the path of366

reaching), the change in the control signal alone does not directly imply the change in the feedback367

controller. That is, from the computational point of view, the control signal u is modulated not only368

by the control gain L, but also the observed state vector x̂, which conventionally also includes the369

target representation. Thus, it is equally possible that the change in the control signal is achieved370

through an update of the target state representation, as it is through the recomputation of the371

control policies. Even though the results, described in the article, are indeed likely to be achieved372

through the update of the controller gains and not only through the update of the target, they also373

highlight the need of more direct methods to evaluate the change in the control. In our study we374

separate the two variables (controller gain L and state estimate x̂) through normative modelling,375

where we make predictions on the human behaviour. Specifically, we simulate the behaviour either376

by recomputing the controller L (Figure 3BC, hit and stop), or by updating the state estimate x̂ and377

using the same controller L (Figure 3BC, stop and long-stop), to compare with the experimental378

results (Figure 3EF). These results show that humans indeed change their control policies when379

the task goal (e.g. hit or stop) changes. Thus, by combining behavioural results with normative380

control models we can clearly identify that it is specifically the change in control, and not other381

mechanisms, that is responsible for the regulation observed in the experimental data.382

Previous studies have demonstrated that visuomotor feedback intensity profiles are roughly383

bell-shaped along the movement – low at the beginning and the end, and peaking in the middle384

(Dimitriou et al. (2013); Česonis and Franklin (2020)) – leading to assumptions that these gains385

might parallel the velocity (Voudouris and Fiehler (2021); Poscente et al. (2021)). Our simulations386

and experimental results (Figure 3CF) demonstrate that this bell-shape profile is not fixed, and that387

other profiles are possible. In our previous work, we established a robust relationship between388

the visuomotor feedback intensities and time-to-target, demonstrating that time-to-target is the389

fundamental variable that modulates the responses, given that the task goal (and thus the feedback390

controller) remains the same (Česonis and Franklin (2020)). This means that the bell-shaped profile391

is simply a by-product of a specific timing of perturbations, and is not regulated by their onset392

location. As a consequence, the shape of these feedback intensity profiles can be modulated393

away from the bell-shaped profile by changing movement speed, target distance or acceleration394

profile. Such results illustrate possible caveats in the experimental paradigms of motor control:395

historically, some of the task requirements have been largely consistent, particularly in terms of396

reaching distance, reaching speed or duration. This may result in some measured behavioural397

outcomes being specific to these kinematics or conditions rather than representing the general398

features of the motor control system. Thus, while we do not advocate for routinely altering the399

standard experimental and analytical methods, it is worth considering the specific biases that such400

methods may contribute to a given study.401

One popular way of looking at the visuomotor responses in humans is how they vary with402

position in a movement. Indeed, numerous studies either analyse the evolution of responses403

against position (Dimitriou et al. (2013); Česonis and Franklin (2020); Poscente et al. (2021)), or404

induce perturbations based on a fixed position (Franklin and Wolpert (2008); Knill et al. (2011);405

Franklin et al. (2016); Gallivan et al. (2016); de Brouwer et al. (2017, 2018); Cross et al. (2019)), with406
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the expectation that these perturbations induce similar responses unless the control changes. For407

example, Knill et al. (2011) demonstrated different feedback responses, induced at a matched408

position in movements towards different targets. While we believe that these different target409

properties indeed suggest different feedback controllers, such a distinction cannot be reliably tested410

with only one perturbation, matched by position. Our results clearly demonstrate the limitations of411

position as the main variable to probe such control. On one hand, even with similar kinematics412

for the majority of the movement, simulations of stop and long-stop movements predict radically413

different responses at matching positions (Figure 3C), despite the fact that these are generated414

with identical controllers. On the other hand, different controllers for hit and stop conditions415

still produced roughly matching feedback responses at the same position, consistent with the416

experimental data (Figure 3CF). In contrast to position as the main variable, OFC simulations in417

both this study and our previous work (Česonis and Franklin (2020)) show that the same controller,418

when expressed against time-to-target, produces matching response profiles, independent of419

other kinematic factors such as movement velocity or position of the perturbation onset (Figure420

3B). Furthermore, different controllers, such as hit and stop, produce feedback responses with421

systematic differences when expressed against time-to-target, exactly as demonstrated by our422

participants. Thus, we propose that time-to-target is the better reference frame for comparing423

feedback responses.424

In this study we have raised two alternative hypotheses about the regulation of feedback425

controllers within the mixed schedule. The first possibility is that the feedback control gradually426

adapts to a given task over a few consecutive trials, similar to the feedforward control during427

learning of a force field or visuomotor rotation. If such adaptation was true, we expect different428

feedback intensities between the hit and stop conditions in the blocked schedule as the controller429

has enough trials to reach steady-state behaviour. However, in the mixed schedule the controller430

would drift between the equilibrium of hit and stop conditions, producing similar responses for431

mixed hit and mixed stop conditions. Note that even in such a case where only a single controller is432

performing both hit and stop trials, we would not necessarily expect any effects on the kinematics433

or the participant’s ability to complete the task. Instead, due to the feedback nature of the control,434

a sub-optimal controller would still complete the movement, but produce sub-optimal (e.g. more435

costly) responses in the presence of external disturbances. The second possibility is that an436

appropriate controller is selected before each movement based on the provided context, allowing437

immediate switching between tasks. In this case, the feedback intensity profiles would match for438

the same task, regardless of the schedule of their presentation. That is, we expect to see similarities439

between both hit conditions, as well as between both stop conditions, but differences between any440

two hit and stop conditions. Our experimental results strongly support the latter option, as we441

not only observe differences between mixed hit and mixed stop conditions, but also observe their442

respective match with the blocked conditions. While our results do not rule out the adaptation of443

feedback controllers in general, we do demonstrate that different optimal controllers can be rapidly444

selected and switched between for familiar tasks.445

One important aspect of the relationship between feedforward and feedback control is that446

modulating one of them should affect the behaviour of the other. Indeed, previous work has447

demonstrated that human participants changed their feedback gains after adapting their feedfor-448

ward models to novel dynamics (Wagner and Smith (2008); Ahmadi-Pajouh et al. (2012); Franklin449

et al. (2012); Cluff and Scott (2013); Franklin et al. (2017);Maeda et al. (2018); Coltman and Gribble450

(2020);Maeda et al. (2021); Franklin and Franklin (2021)). However, an adapted movement in the451

force field typically produces kinematics that are similar to those in baseline movements, suggesting452

that such change of gains is achieved at matching times-to-target, and with the same task goal.453

Thus, our proposed framework that the relation between feedback intensities and time-to-target454

is unique for a unique controller would predict that the feedback gains would remain unchanged.455

As a result, we can not directly explain this change of control gains, unless the feedback controller456

somehow changes during adaptation. One factor driving such a change is that adapted movements457
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in the force field are more effortful than baseline movements, due to additional muscle activity458

required to compensate for the force. An increased effort in the context of OFC simulations would459

thus increase the model activation cost R, resulting in a change of optimal feedback gains and460

intensities at matching times-to-target. In addition, the presence of a force field likely influences the461

biomechanics of the movement (particularly the muscle viscosity b), changes the state transition462

due to the external dynamics (via state transition matrix A), and updates the state uncertainty463

(Izawa et al. (2008)), resulting in the same controller being applied to a different control plant, and464

thus producing different responses. Moreover, if the controller is optimised to to this new control465

plant, adaptation will inevitably require a new feedback controller. Therefore, such changes in466

feedback control are expected, even though conventionally it appears that the task goal remains467

the same after adaptation to the novel dynamics.468

Even though many recent studies use force channel trials (Scheidt et al. (2000)) to accurately469

measure the visuomotor feedback responses (Franklin and Wolpert (2008); Franklin et al. (2012)),470

often these brief perturbation trials are complemented with maintained perturbation trials (Re-471

ichenbach et al. (2013, 2014); Reichenbach and Diedrichsen (2015); Franklin et al. (2016, 2017);472

de Brouwer et al. (2017, 2018); Česonis and Franklin (2020)). This is because brief perturbations473

within a channel trial are task-irrelevant, and can be ignored without compromising the task,474

whereas maintained perturbations strengthen these responses as they require an active correction475

for the participant to reach the target. However, we have recently shown that these maintained476

perturbations also force a non-trivial extension of the movement duration compared to the non-477

perturbedmovement, and thus complicate the relationship between the perturbation onset location478

and the time-to-target. Hence, in order to consistently evaluate the control behaviour and its re-479

lation to the time-to-target, here we deliberately chose to only induce perturbations within the480

force channels and not to include the maintained perturbations. Although this generally decreases481

overall feedback intensities, our participants produced clear responses that exhibited the temporal482

evolution as predicted by the OFC model simulations.483

In summary, here we again demonstrate that time-to-target (elsewhere referred to as urgency)484

(Česonis and Franklin (2020); Crevecoeur et al. (2013); Poscente et al. (2021); Oostwoud Wijdenes485

et al. (2011, 2019)), and not position or velocity, act as a primary predictor for the feedback response486

intensity when the task goal is fixed. Moreover, when comparing multiple tasks, the time-to-target487

reference frame consistently separates the feedback control policies for these tasks – an outcome488

that fails when comparing two different controller gains within the position reference frame. While489

position within the movement, and velocity at the time of a perturbation, definitely influence the490

controller responses, our results clearly demonstrate that the effect of these variables on overall491

control may be somewhat exaggerated in the previous literature. For example, our participants492

produced temporal evolution of the responses to visual perturbations that neither paralleled493

the velocity, nor showed the typical variation with position (with peak responses achieved mid-494

movement), but could be explained by the time-to-target dependency that was predicted by OFC.495

In addition, participants were able to switch their feedback controller from one trial to another,496

demonstrating the principle of contextual switching for feedback control. Such switching, well497

known in feedforward control, further reinforces accumulating evidence of the shared connections498

between feedforward and feedback control. Most importantly, our results demonstrate that the499

visuomotor feedback control in humans not only follows the principles of optimal control for a500

singular task, but also selects an appropriate controller for that task upon presenting the relevant501

context.502

Methods503

Participants504

Fourteen right-handed (Oldfield (1971)) human participants (age 21-29 years, 5 females) with no505

known neurological diseases took part in the experiment. All participants were naïve to the purpose506
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Figure 5. Experimental setup. A. Participants controlled a yellow cursor by moving a robotic handle. The cursor
was projected via a screen-mirror system directly into the plane of the participant’s hand. B. Stop condition.
Participants were instructed to reach with the cursor through a red line and stop within the blue target. Target

perturbations were occasionally induced via target jumps of 2 cm laterally. C. Hit condition. Participants were
instructed to reach through the red target and stop within the blue area. Target perturbations (2 cm laterally)

were again induced on random trials. D. Visual feedback was presented after each trial. Participants were
shown the workspace with the start position and the target still present. In addition, two indicators were

displayed. A bar chart at the top-right part of the workspace scaled proportionally with the absolute peak

velocity, and was green if the velocity was within the required range as indicated by two grey brackets. A

horizontal bar indicating the actual forward location where this peak velocity was achieved was displayed

between the start and target positions. This bar was green if the peak location matched the experimental

requirements, indicated by two large rectangular blocks. If both location and peak amplitude criteria were

successfully fulfilled, participants were rewarded with one point. If at least one of the two criteria was not

fulfilled, the respective indicator turned red instead of green, and no point was provided. In both hit and stop

experiments participants were instructed to move through the red workspace element and stop at the blue,

and were rewarded with one point if they both intercepted the target and fulfilled both velocity requirements.

of the study, and provided a written informed consent before participating. The study was approved507

by the Ethics Committee of the Medical Faculty of the Technical University of Munich.508

Experimental setup509

Participants performed forward reaching movements either to a target (stop condition) or through510

the target (hit condition) while grasping the handle of a robotic manipulandum (vBOT, Howard et al.511

(2009)) with their right hand, with their right arm supported on an air sled. Participants were seated512

in an adjustable chair and restrained using a four-point harness in order to limit the movement of513

the shoulder. A six-axis force transducer (ATI Nano 25; ATI Industrial Automation) measured the514

end-point forces applied by the participant on the handle. Position and force data were sampled515

at 1 kHz, while velocity information was obtained by differentiating the position over time. Visual516
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feedback was provided via a computer monitor and mirror system, such that this system prevented517

direct vision of the hand and arm, and the virtual workspace appeared in the horizontal plane518

of the hand (Figure 5A). The exact timing of any visual stimulus presented to the participant was519

determined from the graphics card refresh signal.520

Participants controlled a yellow cursor (circle of 1.0 cm diameter) by moving the robotic handle.521

The centre position of this cursor in the virtual workspace always matched the physical position522

of the handle. Every experimental trial was initiated when the cursor was brought into the start523

position (grey circle of 1.6 cm diameter), which was located 20 cm in front of participants’ chest and524

centred with the body. When the cursor was within this start position, the circle changed from grey525

to white and the type of experimental trial was indicated by the presentation of a target. After a526

random delay, sampled from an exponential distribution with � = 0.7 and truncated outside 1.0 s -527

2.0 s interval, a tone was played to indicate the start of the movement. If participants failed to leave528

the start position within 1000 ms after this tone, the procedure of the current trial was aborted and529

restarted.530

Over the course of the experiment the participants were tasked to complete two types of531

movements: stop movements, where they were required to stop within the target (a circle of 1.2532

cm diameter, located 25.0 cm in front of the start position) (Figure 5B), or hit movements, where533

they had to intercept the target without stopping, and instead stop in a designated stopping area (a534

blue rectangle, [width, height] = [15 cm, 4 cm], centred 5 cm beyond the target) (Figure 5C). The535

reaching movement was considered complete once the centre of the cursor was maintained for536

600 ms either within the area of the target in stop trials, or within the stopping area in the hit537

trials. In addition, if the movement duration was longer than 4.0 s, the trial was timed-out and538

had to be repeated. After each trial, the participant’s hand was passively moved back to the start539

position by the vBOT, while the feedback of the previous trial was provided on screen (Figure 5D).540

All movements were self-paced, with short breaks provided every 208 trials, and a longer break541

(5-10 minutes) provided at the half-way point of the experiment.542

Experimental paradigm543

Participants performed reaching movements in four conditions – blocked stop, blocked hit, mixed544

stop and mixed hit – that were part of a single experiment. Across these conditions, participants545

were required to either reach to the target and stop there (the stop conditions), or to reach through546

the target and stop in the designated stopping area (hit conditions). In order to easily cue the547

distinction between the hit and stop conditions, the two types of trials had small visual differences.548

For the hit condition participants were presented with a red target (a red circle of 1.2 cm diameter)549

and a rectangular blue stopping area of dimensions 15 cm by 4 cm, centred 5 cm beyond the target550

(Figure 5C). For the stop condition participants were presented with a target that was otherwise551

identical to the target in hit condition, but was blue in colour, and with a horizontal, 15 cm wide552

red line, that was placed 3 cm before the target (Figure 5B). While this line had no functional553

interaction with the experiment, it allowed us to consistently instruct the participants to always554

perform reaching movements so that they intercept the red element in the workspace, and stop555

within the blue element.556

In order to probe the visuomotor feedback responses of participants, during some reaching557

movements we briefly perturbed the target by shifting it 2.0 cm laterally for 250 ms before returning558

back to the original position (Figure 2A). These perturbed trials were always performed within the559

virtual mechanical channel, where participants were free to move along the line between the start560

position and the target, but were laterally constrained by a virtual viscoelastic wall with stiffness561

of 2 N/m and damping 4000 Ns/m (Scheidt et al. (2000); Franklin and Wolpert (2008); Dimitriou562

et al. (2013)). As the perturbations were always task-irrelevant, this channel therefore did not563

obstruct participants to complete the trial. However, as participants still produced involuntary564

feedback responses due to the target shift, the virtual channel allowed us to record the forces that565

participants produced due to the perturbations and measure the intensities of the visuomotor566
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feedback responses.567

For each type of movement (i.e. hit or stop) there was a total of 11 different perturbations. Ten568

of these perturbations were cued during the reaching movement as participants crossed one of the569

five perturbation onset locations, equally spaced between the start position and the target position570

(4.2, 8.3, 12.5, 16.7, and 20.8 cm from the centre of the start position). At all of these five locations571

the target could either shift to the left or to the right. In addition, one zero-magnitude perturbation572

was also included, where the movement was simply performed within the channel without any573

target shift in order to probe the force profile of the natural movement. Finally, in addition to574

the perturbation trials we also included non-perturbed trials where participants simply reached575

towards the target without any target perturbation and without the virtual channel constraining the576

hand.577

In order to present the different perturbations in a balanced manner, we combined different578

types of trials in blocks of 16 trials. One block of 16 trials contained 11 perturbed trials (5 per-579

turbation onset locations x 2 directions, plus one neutral movement in the force channel), and 5580

non-perturbed movements without the force channel. Each of the four experimental conditions581

consisted of 26 such blocks, with the order of trials fully randomised within each block, resulting in582

416 trials per condition and 1664 trials overall.583

In the first half of the experiment, participants were always presented with the two blocked-584

design conditions (blocked hit and blocked stop), with the order of the conditions balanced across585

the population of participants. That is, each participant started with 416 trials of stop trials, followed586

by 416 hit trials or vice-versa. In the second half of the experiment, the two final conditions –mixed587

hit and mixed stop – were presented in a pseudo-random order within the same blocks. While588

individual trials within mixed conditions were identical to the individual trials within the respective589

blocked conditions, they were now presented in a pseudo-randomised order. Specifically, the590

remaining 832 trials were divided into 26 blocks of 32 trials, with each block consisting of 16 hit and591

16 stop trials fully randomised within this block.592

Feedback regarding movement kinematics593

In theory, the movements in hit condition could be interpreted as the movements, where the goal594

is to go through the via-point (the red target) and stop at the blue stopping area. As a result, such595

movements could simply be treated by participants as the stop movements with longer movement596

distance and a less restrictive target. Typically for such reaching movements, humans would597

produce a velocity profile that is bell-shaped, with peak velocity near the middle of the movement,598

and therefore further along the movement than in the stop condition. In order to avoid such599

differences and keep the velocity profiles comparable between the two conditions, we provided600

the task-relevant feedback on the velocity profiles, specifically the peak velocity and peak velocity601

location, to our participants (Figure 5D).602

Independent of the experimental condition, participants were required to produce the move-603

ments with the peak velocity of 60 cm/s ± 8 cm/s, and the peak velocity location within 11.25 cm604

- 13.75 cm movement distance (or 45%-55% of the distance between the start location and the605

target). The peak velocity was indicated as the small bar chart at the top-right of the screen, with606

the required velocity range indicated by two grey brackets. If the velocity target was matched, the607

bar chart turned green, otherwise it was red. Similarly, the peak velocity location was shown as a608

horizontal bar, centred around the movement distance where the peak velocity was reached. If609

this location was within the target range (also indicated by grey brackets), it was displayed as green,610

otherwise it was red. Participants were rewarded one point if both velocity requirements were611

successfully met, and the cursor intercepted the target during the movement.612

Data Analysis and Code Availability613

All data was pre-processed for the analysis in MATLAB 2017b: force and kinematic time series614

were low-pass filtered with a tenth-order zero-phase-lag Butterworth filter with 15 Hz cutoff and615
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resampled at 1 kHz to account for an occasional missed sample during the signal recording. All616

subsequent analysis was performed in Python 3.9.4 and JASP v0.14.1 (JASP Team (2021)). First,617

raw visuomotor feedback intensities were calculated from the force responses, recorded after618

the induction of a target perturbation. Specifically, for every perturbation trial we averaged the619

lateral force response over a time window of 180 ms - 230 ms after the onset of the perturbation,620

and subtracted a neutral force profile over the matching time window. This method and the621

particular time window has now been used in numerous studies to calculate the intensity of the622

early involuntary visuomotor feedback response (Franklin and Wolpert (2008); Dimitriou et al.623

(2013); Franklin et al. (2016); Česonis and Franklin (2020); Cross et al. (2019); de Brouwer et al.624

(2017, 2018)). As the direction of the response differed based on the perturbation direction, we625

reversed the direction of the intensities of responses to the leftward perturbations and grouped all626

intensities by the perturbation onset location. Second, we normalised mean feedback responses627

between 0 and 1 for each participant in order to avoid the group effect being biased towards628

participants with stronger responses. Finally, in our analysis the start of all movements was defined629

as the last time sample where the cursor is still within the area of the start circle, and the end630

of the movement was defined as the last time sample before the cursor enters the target circle.631

Time-to-target values were extracted from the data for every perturbation trial by subtracting the632

perturbation onset time from the movement end time.633

In this article we provide two types of statistical analysis: the conventional frequentist statistics,634

as well as complementary Bayesian analysis that is presented as Bayesian factors (Raftery and635

Kass (1995)), which instead of a simple hypothesis testing provides evidence for or against the null636

hypothesis. As a result, among other things, Bayesian analysis allows us to distinguish between637

accumulating evidence for the null hypothesis, and simply lacking evidence in either direction due638

to low power or small sample size.639

All the Jupyter notebooks for the data analysis, pre-processed experimental data and statistical640

analysis conducted in this article are available at https://figshare.com/s/ddc74e11dc25d04457ae.641

Computational modelling642

In this study we formulated our initial hypothesis about the feedback control mechanisms in643

humans by first simulating the behaviour of the optimal feedback controller (OFC). Specifically, we644

used a finite-horizon linear-quadratic regulator framework – a relatively simple OFC that assumes645

perfect sensory input, as well as no control-dependent noise, while still being able to capture a646

significant part of the variance of human reaching movements (Kuo (1995); Česonis and Franklin647

(2021)). In order to model the feedback behaviour of our human participants, we first simulated648

virtual movements of a point mass with m = 1 kg, and an intrinsic muscle damping b = 0.1 Ns/m.649

This point mass was controlled in two dimensions by two orthogonal force actuators that simulated650

muscles, and regulated by a control signal ut via a first-order low-pass filter with a time constant651

� = 0.06 s. At time t within the movement, such system could be described by the state transition652

model:653

xt+1 = Axt + B(ut + �t), (1)

where A is a state transition matrix, B is a control matrix, and �t is additive control noise. For one654

spacial dimension A and B are defined in discrete time as:655

A =

⎡

⎢

⎢

⎢

⎣

1 �t 0
0 1 − b�t∕m �t∕m
0 0 1 − �t∕�

⎤

⎥

⎥

⎥

⎦

,656
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B =

⎡

⎢

⎢

⎢

⎣

0
�t∕�
0

⎤

⎥

⎥

⎥

⎦

Finally, to simulate our model in discrete time we used the sampling rate �t = 0.01 s657

State xt exists in the Cartesian plane and consists of position p, velocity v and force f (two658

dimensions each). The control signal ut is produced via the feedback control law:659

ut = −Lxt (2)

where L is a matrix of optimal feedback control gains, obtained by optimising the performance660

index (also known as the cost function):661

J =
N
∑

t=0
xTt Qtxt + uTt Rtut =

N
∑

t=0
!p,t(pt − p∗)2 + !v,t||vt||2 + !f,t||ft||2 + !r,t||ut||2. (3)

Here xTt Qxt and u
T
t Rut are two components of the total cost, known as state-cost and a control-cost662

respectively. In addition, !p, !v and !f are position, velocity and force state cost parameters, p∗
663

is a target position, !r is the activation cost parameter and N is the duration of the movement,664

here required as a model input. Within the finite-horizon formulation, the cost parameters can be665

non-stationary and thus be different for every time-point. However, in our simulations we set Q = 0666

for t ≠ N , consistent with (Todorov (2005); Liu and Todorov (2007)).667

In this study we simulate three different controllers that we call stop, hit and long-stop. While668

the stop and long-stop controllers are derived from the identical set of costs state-costs Q, they are669

used for slightly different movements (25 cm and 700 ms for stop, 28 cm and 800 ms for long-stop).670

We used !p = 1.5, !v = 1 and !f = 0.1 as the values for the state cost parameters in this model, and671

the activation cost R = 3 ×10−6. Furthermore, in order to better match the forward velocity profiles,672

we also introduced a non-stationarity in the activation cost R of the long stop movement, where the673

total integral of the activation cost over the movement is not changed, but this cost develops over674

time during the movement. Specifically, at a time t in the trial, the activation cost for the long-stop675

movement was computed by:676

Rlong−stop(t) = RC(t), (4)

where677

C(t) ∝ exp
(

p
t + q
r

)

, (5)

and the mean of C(t) equals 1 for the duration of the trial, so that Rlong−stop produces the same678

amount of activation asR over the duration of the trial. Here p = 1, q = -1000 and r = 65 are constants,679

fit via trial and error in order to produce the forward velocity profile of long-stop condition that680

matches the velocity of stop and hit conditions. We have previously shown that such modulation681

only affects the kinematics of the movement, but does not change the feedback responses when682

expressed against the time-to-target (Česonis and Franklin (2021)). On the other hand, in order683

to incentivise the hit controller to produce faster movements at the target, we reduced the cost684

parameters for terminal velocity and terminal force by a factor of 50. As a result, such controller685

produced hit-like movements that were aimed directly at a target, positioned at 25 cm distance, over686

620 ms, which matched the kinematics of the long-stop controller over this movement segment.687

Finally, for each controller we simulated feedback response intensity profiles along the move-688

ment, which we then used to compare the control policies predicted by each controller. To do689

so, we induced lateral target perturbations of 2 cm magnitude during the simulated movement690

to the target and recorded the corrective force, produced by each controller as a result of these691

perturbations. While in the experimental study we only induced such perturbations at five different692

18 of 22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471371
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript submitted for peer review

onsets due to practical reasons, in our simulations we could perturb the movements at every point693

in time and fully map the response intensity profiles over the movement. Thus, for each model we694

simulated different movements with perturbations at each movement time-step (i.e. every 10 ms),695

with one perturbation only happening once per movement. In addition, to simulate the visuomotor696

delay that is present in humans, we delayed the onset of each perturbation by 150 ms, so that697

for the perturbation triggered at time t, the target is shifted at time t + 150ms. We then averaged698

the force, produced by our model over a time interval 10 ms – 60 ms after the target was shifted699

(160 ms – 210 ms after the perturbation was triggered), representing the visuomotor response700

window of 180 ms – 230 ms in human subjects. Note that we used an earlier window for the model701

simulations than for the human subjects as the responses in the simulations ramp up fast due to702

muscles simplified to a single low pass filter.703
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