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Abstract

Despite the growing number of genome-wide association studies (GWAS) for complex traits, it

remains unclear whether effect sizes of causal genetic variants differ between populations. In

principle, effect sizes of causal variants could differ between populations due to gene-by-gene or

gene-by-environment interactions. However, comparing causal variant effect sizes is challenging: it

is difficult to know which variants are causal, and comparisons of variant effect sizes are confounded

by differences in linkage disequilibrium (LD) structure between ancestries. Here, we develop a

method to assess causal variant effect size differences that overcomes these limitations. Specifically,

we leverage the fact that segments of European ancestry shared between European-American and

admixed African-American individuals have similar LD structure, allowing for unbiased

comparisons of variant effect sizes in European ancestry segments. We apply our method to two

types of traits: gene expression and low-density lipoprotein cholesterol (LDL-C). We find that

causal variant effect sizes for gene expression are significantly different between European-

Americans and African-Americans; for LDL-C, we observe a similar point estimate although this is

not significant, likely due to lower statistical power. Cross-population differences in variant effect

sizes highlight the role of genetic interactions in trait architecture and will contribute to the poor

portability of polygenic scores across populations, reinforcing the importance of conducting GWAS

on individuals of diverse ancestries and environments.

Introduction

Human complex traits are influenced by tens to hundreds of thousands of causal variants, each with

tiny marginal effect sizes. It remains unclear whether these causal variants have the same effect size

in all populations (Brown et al., 2016; Galinsky et al., 2019; Mostafavi et al., 2020). Causal

variants could have different effect sizes between populations with different ancestries or

environments, possibly due to epistatic (gene-by-gene) or gene-by-environment interactions.

However, comparing causal variant effect sizes between populations is challenging. The causal

variants underlying human complex traits are generally unknown and instead, genome-wide

association studies (GWAS) typically identify single nucleotide polymorphisms (SNPs) that are

statistically associated with the trait due to strong linkage disequilibrium (LD) with the causal

variant(s). Due to differences in LD structure, these trait-associated SNPs may not be equally

correlated with the same causal variant in two different populations, resulting in different marginal

effect sizes. This is especially true if the causal variant is private, or only present in a single
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population. Thus, although several studies have observed differences between populations in the

marginal effect sizes of trait-associated SNPs (de Candia et al., 2013; Mancuso et al., 2016; Wojcik

et al., 2019; Bitarello and Mathieson, 2020), this could correspond both to differences in the effect

sizes of causal variants themselves or to differences in LD structure.

Polygenic scores (PGS) are one application for which it is particularly important to understand

whether the true effect sizes of causal variants differ between populations. PGS aim to predict the

genetic component of an individual’s phenotype and have recently been used to successfully predict

risk for human complex diseases including type I diabetes, breast cancer, and coronary artery

disease (Khera et al., 2018; Mavaddat et al., 2019; Sharp et al., 2019). However, PGS constructed

in one population have reduced accuracy in populations with different ancestries or environments, a

problem referred to as poor PGS portability (Martin et al., 2019; Berg et al., 2019; Sohail et al.,

2019; Mostafavi et al., 2020). Poor PGS portability could be partially due to differences in LD

structure between populations, but recent work suggests there are additional factors responsible

(Bitarello and Mathieson, 2020; Wang et al., 2020). One of these additional factors could be that

causal variant effect sizes differ between populations. Thus, understanding whether causal variant

effect sizes differ between populations is critical for improving PGS portability in diverse

populations and ensuring the equitable application of PGS.

Previous work comparing causal variant effect sizes between human populations has leveraged

LD reference panels to account for differences in LD structure between populations (Brown et al.,

2016; Galinsky et al., 2019). These studies found modest differences in causal variant effect sizes for

both gene expression and complex traits. However, these existing methods are limited by their

reliance on accurate LD reference panels and their difficulty in accounting for rare or population-

specific causal variants. Furthermore, these methods are not suitable for application to recently

admixed populations such as African-Americans and Latin Americans due to the complexities of

long-range admixture LD.

In this paper, we compare the genetic architecture of gene expression and low-density

lipoprotein cholesterol (LDL-C) between European-Americans and African-Americans. We first

compare the marginal effect sizes of trait-associated SNPs for gene expression and LDL-C when

estimated from European-Americans and African-Americans. We next quantify the contribution of

local ancestry and local ancestry-by-genotype interactions to phenotypic variance. Lastly, we

leverage the multiple ancestries in the genomes of admixed populations to test whether causal

variant effect sizes differ between populations. Admixed African-American genomes contain regions

of European ancestry that share the same LD structure as the genomes of European-Americans.
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72K individuals, MVP250 individuals, MESAEstimate marginal effect sizes of trait-
associated SNPs in European-Americans3

72K individuals, MVP250 individuals, MESAEstimate marginal effect sizes of trait-
associated SNPs in African-Americans2

315K individuals, UKBB249 individuals, MESAAscertain trait-associated SNPs in a held-out
set of individuals with European ancestry1

LDL-CGene expression
c) Comparison of marginal SNP effect sizes across populations

b) Local ancestry of African-Americans
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Figure 1: Schematic of the analysis pipeline. a) Global ancestry of African-Americans is
predominantly African, with an average global African ancestry fraction of 0.79 in MESA and 0.82
in MVP. b) Local ancestry for one sample individual in MESA. Individuals have either 0, 1, or 2
haplotypes with European ancestry at each position. c) We compare marginal effect sizes of SNPs
between African-Americans and European-Americans.

Within these regions of shared ancestry, we can therefore compare variant effect sizes between

populations without bias from differences in LD structure.

Results

We performed analyses for gene expression and LDL-C, both of which are driven by a combination

of genetic factors and environmental factors. We analyzed gene expression using the Multi-Ethnic

Study of Atherosclerosis (MESA), a dataset with whole genome sequencing and bulk RNA-Seq in

peripheral blood mononuclear cells for 319 African-Americans and 499 European-Americans. We

analyzed LDL-C using the Million Veteran Program (MVP) dataset, which has dense SNP

genotyping and LDL-C measurements for 87K African-Americans and 319K European-Americans.

Of existing human genetic datasets, MESA and MVP have some of the largest cohorts of admixed

individuals for their respective phenotypes.
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Inferring global and local ancestry. We inferred global and local ancestry for the African-

American individuals in MESA and MVP. In both cases, we modeled African-Americans as a

two-way admixture between African and European populations that occurred 8 generations ago

(Baharian et al., 2016). We estimated global ancestry using supervised ADMIXTURE with 1000

Genomes populations (CEU as European and YRI as African) as our reference populations (Auton

et al., 2015; Alexander et al., 2009). The average global African ancestry of African-American

individuals is 0.79 in MESA and 0.82 in MVP, concordant with previous estimates from similar

populations (Martin et al., 2017) (Fig. 1a). We performed local ancestry inference with RFMix

using the same 1000 Genomes reference populations (Maples et al., 2013) (Fig. 1b). As expected

based on their admixture history, the local ancestry of African-American individuals alternates

between blocks of African and European ancestry along the genome and contains relatively large

European blocks (mean size is 15 Mb in MESA, 14 Mb in MVP).

Comparing marginal SNP effect sizes between populations. We first sought to compare

marginal effect sizes of trait-associated SNPs when estimated from European-Americans and from

African-Americans (Fig. 1c). We expect that marginal effect sizes of trait-associated SNPs will

differ between the two populations due to known differences in LD structure between African and

European ancestries, as well as potential differences in epistatic or gene-by-environment

interactions between the populations. However, the magnitude of this difference in marginal effect

sizes remains unclear. The observed magnitude of differences may be inflated by sampling error,

particularly if one population has a small sample size. Additionally, effect sizes are usually largest

in a discovery sample due to Winner’s Curse, which further exacerbates differences between

discovery and replication datasets. To minimize these biases, we ascertained trait-associated SNPs

in a held-out set of individuals and compared effect sizes in an equal number of African-Americans

and European-Americans (Fig 1c).

To compare effect sizes between populations, we log-transformed phenotype measurements for

variance stabilization. We did not perform quantile normalization given that phenotypic variance

might differ between populations (Musharoff et al., 2018). We ascertained unlinked, trait-associated

SNPs in individuals of European ancestry. For gene expression, we restricted our analyses to

putatively cis-acting variants (i.e. within 100 kb of TSS) because cis-acting variants have stronger

effects than trans-acting variants and are more easily detected in modest sample sizes (GTEx

Consortium, 2017; Võsa et al., 2021). In the event that there were multiple SNPs associated with a

gene, we chose the most significant SNP for downstream analyses (GTEx Consortium, 2017). We
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ascertained trait-associated SNPs (false discovery rate < 0.01) in a held-out subset of 249

European-Americans in MESA, which resulted in 2,697 SNP-gene associations. For LDL-C, we

ascertained trait-associated SNPs (p < 5× 10−8) in 315K UK Biobank White British individuals,

and clumped and pruned them, which resulted in 124 trait-associated SNPs. We performed all

subsequent analyses on these trait-associated SNPs.

We next estimated the effect sizes of trait-associated SNPs separately in African-Americans

(βAA) and European-Americans (βEA). For gene expression, βAA and βEA were each estimated

from 250 individuals. For LDL-C, βAA and βEA were each estimated from 72K individuals. For

each trait, we compared marginal effect sizes between the two populations by regressing effect sizes

estimated from African-Americans (β̂AA) on effect sizes estimated from European-Americans (β̂EA)

(Fig. 2). We used total least squares (TLS) to perform the regression because it is robust to

statistical noise in the independent variable (β̂EA), while ordinary least squares is not. Because we

used the same number of samples to estimate βAA and βEA, their standard errors will be

comparable, as is necessary for TLS regression. We constructed 95% confidence intervals for the

slope by bootstrapping over SNPs and concluded that marginal SNP effect sizes are significantly

different if this confidence interval (CI) does not contain 1.

For gene expression, effect sizes estimated from African-Americans are significantly smaller in

magnitude than the corresponding effect sizes estimated from European-Americans, with a slope of

0.84 (95% CI of 0.81-0.87) (Fig. 2). For LDL-C, we similarly observe a slope of 0.84, but this is not

significantly different from 1 (95% CI of 0.66-1.01), likely due to lower statistical power for this

trait. Our observation that marginal effect sizes estimated from African-Americans are smaller in

magnitude can be at least partially explained by our ascertainment of trait-associated SNPs in

individuals of European ancestry. Blocks of LD structure are smaller in populations of African

ancestry than in populations of European ancestry, and the African-Americans in MESA and MVP

have a mean African global ancestry of approximately 80%. Thus, the correlation between causal

variants and trait-associated SNPs ascertained in European populations will generally be weaker in

African-Americans than in European-Americans, meaning that marginal effect sizes estimated from

African-Americans will have a smaller magnitude. Potential differences in epistatic and gene-by-

environment interactions between populations likely also contribute to the observed differences in

marginal effect sizes.

Quantifying role of local ancestry in phenotypic variance. Given that African-Americans

are admixed with both African and European ancestries, we next sought to assess the contribution
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Figure 2: Comparing marginal SNP effect sizes between populations. For each trait-
associated SNP, we estimated its effect size in African-Americans and European-Americans for both
gene expression (log2 fold change) and LDL-C (mg/dL). For all traits, we regressed the effect size
estimated from African-Americans on the effect size estimated from European-Americans. We rep-
resent the 95% bootstrap confidence interval with the orange shaded region. Effect sizes estimated
from African-Americans are a) significantly smaller in magnitude than the corresponding effect sizes
estimated from European-Americans for gene expression and b) smaller but not significantly so for
LDL-C.

Term added Model Total variance explained (%)
Gene expression LDL-C

(1) Technical covariates yi = ciβc 17.08 0.10
(2) Race yi = ciβc + riβr 19.51 0.13
(3) Global ancestry & PCs yi = ciβc + riβr + θiβθ 20.31 0.16
(4) Local ancestry yi = ciβc + riβr + θiβθ+ 20.71 0.41

γiβγ

(5) Genotype yi = ciβc + riβr + θiβθ+ 26.05 2.47
γiβγ + giβg

(6) Local ancestry-by- yi = ciβc + riβr + θiβθ+ 26.49 2.72
genotype interaction γiβγ+gi,AβA+gi,EβE

Table 1: Quantifying role of local ancestry in phenotypic variance. We constructed a series
of models and computed the percentage of phenotypic variance explained. In general, each model
adds one term to its predecessor, which we describe in the first column. We report the mean total
phenotypic variance explained by each model for gene expression and LDL-C. The variables in the
models are defined as follows: ci is a vector of technical/batch covariates; ri is a race indicator
variable; θi is a vector of global African ancestry fraction and principal components; γi is a local
ancestry covariate that counts the number of haplotypes with African ancestry at trait-associated
SNPs; gi is the genotype at trait-associated SNPs (i.e. number of alternate alleles); gi,A is the
number of alternate alleles with African local ancestry and gi,E is the number of alternate alleles
with European local ancestry.
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of local ancestry to phenotypic variation. Specifically, we considered the role of both a local

ancestry covariate term and a local ancestry-by-genotype interaction term. We quantified the

contribution of both terms to phenotypic variation by constructing a series of phenotypic models

and computing the amount of variance explained by each model. We fit each model to roughly 80%

of our data allocated as a training set: 256 African-Americans and 206 European-Americans were

in the training set for MESA, and 52K African-Americans and 52K European-Americans were in

the training set for MVP. We computed the proportion of phenotypic variance explained by the

model in a test set using the remaining 20% of our data. For MESA, the test set contained 63

African-Americans and 51 European-Americans; for MVP, the test set contained 22K African-

Americans and 22K European-Americans. For gene expression, we report the average phenotypic

variance explained across all genes.

We constructed six phenotypic models in total, where each model has an increasing number of

terms relative to its predecessor. Our first phenotypic model (Table 1; Eq. 1) included only

technical covariates (sex and batch for gene expression; sex and age for LDL-C) and explains

17.08% of phenotypic variance for gene expression and 0.10% of phenotypic variance for LDL-C.

Most of the variance explained by these terms for gene expression is due to batch, which is

characteristic of RNA-Seq assays. We next added race, global African ancestry fraction, and

principal components to the model (Table 1; Eq. 2, 3). These covariates can capture unmeasured

genetic and environmental factors relevant for trait variation. In particular, an indicator variable

for race allows for race-specific phenotypic intercepts, which can capture trait-relevant differences in

environment between African-American and European-American populations (Price et al., 2008).

Meanwhile, global African ancestry fraction and principal components capture additional

population structure: global African ancestry fraction stratifies African-Americans, while the

principal components we include (PC2 for gene expression and PC1 for LDL-C) stratify European-

Americans (Supp. Fig. 3). In the context of gene expression, global ancestry and genotype

principal components are known to be relevant for trait variation, potentially because they capture

the effect of trans genetic variation on expression (Nédélec et al., 2016; Randolph et al., 2020; Price

et al., 2008). Compared to a model that only includes technical covariates, including race explains

an additional 2.43% of variance in gene expression and 0.03% of variance in LDL-C. Including

global ancestry and principal components explains an additional 0.81% of variance in gene

expression and 0.03% of variance in LDL-C.

We next considered the importance of a local ancestry covariate that measures the number of

haplotypes with African ancestry at each trait-associated SNP (Table 1; Eq. 4). Local ancestry
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implicitly captures the effect of local genetic variation from SNPs which are not explicitly modeled;

in the context of gene expression, these unmodeled, trait-associated SNPs are likely cis-acting

variants. We find that including local ancestry explains an additional 0.39% of variance in gene

expression and 0.25% of variance in LDL-C. For gene expression, local ancestry explains nearly half

the variance explained by global ancestry and principal components, and for LDL-C, it explains

nearly two-thirds.

Lastly, we considered the importance of a local ancestry-by-genotype interaction term (Table 1;

Eq. 6). We quantified its contribution to phenotypic variation relative to a model which includes

genotypes for trait-associated SNPs without an interaction with local ancestry (Table 1; Eq. 5).

Trait-associated SNPs contribute considerably to trait variation, explaining an additional 5.33% of

variance in gene expression and 2.06% of variance in LDL-C. We therefore sought to understand

whether a local ancestry-by-genotype interaction could explain additional phenotypic variation

relative to genotype alone. We modeled a local ancestry-by-genotype interaction by replacing the

term for trait-associated SNPs, giβg, with separate terms for African and European trait-associated

SNPs, gi,AβA and gi,EβE . gi is defined as the number of alternate alleles at a given trait-associated

locus, and we correspondingly define gi,A as the number of alternate alleles with African local

ancestry and gi,E as the number of alternate alleles with European local ancestry. gi,A and gi,E

therefore sum to gi, and βA is the effect size in African local ancestry while βE is the effect size in

European local ancestry. Replacing the genotype term in our model with a local ancestry-by-

genotype interaction term explains an additional 0.45% of variance in gene expression and 0.25% of

variance in LDL-C. We therefore find that local ancestry-by-genotype interactions are relevant for

phenotypic variation. This is at least partly driven by the differences in LD structure between

ancestries and the ways in which local LD structure impacts the correlation between

trait-associated SNPs and causal variants.

Testing for differences in causal variant effect sizes between populations. Finally, we

asked whether causal variant effect sizes differ between populations. This question is difficult to

answer with standard approaches, due to the way in which LD structure biases comparisons of

marginal effect sizes. We therefore developed a model that leverages the multiple ancestries within

admixed genomes to indirectly test whether causal variant effect sizes differ between populations.

Specifically, we test whether a genetic variant in a region of European ancestry has the same effect

in African-Americans and European-Americans. Given the relatively short time since admixture in

African-Americans (approximately 8 generations), we assume that regions of European ancestry in
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African-Americans and European-Americans are identical with respect to causal variants and LD

structure. Then, under the null hypothesis that causal variants have the same effect in all

populations, trait-associated SNPs in regions of European ancestry will have the same marginal

effect size in African-Americans and European-Americans. However, if causal variant effect sizes

differ between populations due to epistatic or gene-by-environment interactions, trait-associated

SNPs in regions of European ancestry will have different marginal effect sizes in African-Americans

and European-Americans. Specifically, we hypothesize that, in African-Americans, the presence of

epistatic or gene-by-environment interactions would drive the marginal effect size of SNPs in

regions of European ancestry to be more similar to that of SNPs in regions of African ancestry.

Importantly, this comparison is only possible because we compare marginal effect sizes between

genomic regions with shared LD structure; without accounting for LD structure, we would expect

marginal effect sizes of trait-associated SNPs to differ between populations regardless of whether

causal variant effect sizes do (i.e. regardless of whether epistatic or gene-by-environment

interactions exist).

To test this hypothesis, we extend Equation 6 in Table 1 and model the phenotype yi for a

single individual i as follows:

yi = ciβc + riβr + θiβθ + γiβγ + gi,AβA + gi,EβE + δrigi,E(βA − βE) (1)

The first four terms (ci, ri, θi, γi) are technical covariates: race; global ancestry and principal

components; and local ancestry respectively. The next two terms (gi,AβA, gi,EβE), model a local

ancestry-by-genotype interaction as described above.

In the final term, we introduce the parameter δ, which measures the extent to which marginal

effect sizes of SNPs in regions of European ancestry in African-Americans deviate from those in

European-Americans. Using the parameter δ, we can indirectly test whether causal variant effect

sizes differ between African-Americans and European-Americans. When δ equals 0, the marginal

effect size of a SNP in a region of European ancestry in an African-American is equal to βE ; as δ

approaches 1, the marginal effect size approaches βA. Thus, under the null hypothesis that causal

effect sizes are not modified by the genome or environment, δ will be equal to 0. On the other

hand, values of δ greater than 0 indicate that SNPs in regions of European ancestry in African-

Americans and European-Americans have different marginal effect sizes, which provides evidence

for a difference in causal variant effect sizes between populations. Importantly, because we estimate

δ by comparing regions of shared ancestry in two different populations, our estimator is not biased
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We model the marginal effect size of SNPs in regions of
European ancestry in African-Americans as

βE + δ(βA − βE)
where ranges from 0 to 1. As increases, evidence
for a difference in causal variant effect sizes across
populations increases.

δδ

yi = gi βE

(βE + δ(βA − βE))yi = gi

yi = gi βA

δ = 0

0 < δ < 1

δ = 1

Because LD structure differs between ancestries, we
model the marginal effect size of a SNP with different
parameters for European and African local ancestry.

Suppose that an admixed African-American has a
region of European ancestry at this SNP.

Is the marginal effect size of the SNP determined strictly
by the local European ancestry or modified by epistatic
and gene-environmental interactions?

yi = giβE

yi = giβA

yi = ?
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Figure 3: Testing for differences in causal variant effect sizes between populations. a)
We tested for differences in causal variant effect sizes by leveraging regions of European ancestry
shared between African-Americans and European-Americans. The parameter δ measures the extent
to which the marginal effect sizes of SNPs in regions of European ancestry in African-Americans
deviate from those in European-Americans. b,c) Likelihood surface for δ. Maximum likelihood
estimates are 0.43 (0.37, 0.49) for gene expression and 0.46 (-0.06, 0.87) for LDL-C. We denote the
MLE and 95% bootstrap confidence interval with the vertical line and shaded region, respectively.
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by differences in LD structure between European and African ancestries, nor by the possibility of

private causal variants.

For both traits, we fit this model to the trait-associated SNPs we previously ascertained. We

expect that estimates of δ will be noisy at individual SNPs, so for each trait, we estimated a single

shared value of δ across all SNPs. This results in one value of δ for gene expression, estimated from

2,697 SNP-gene associations, and one value for LDL-C, estimated from 124 LDL-associated SNPs.

Because this model is non-linear, we iteratively optimized δ and all other coefficients,

β = (βc, βr, βθ, βγ , βA, βE) with ordinary least squares until convergence. To construct a confidence

interval for δ̂, we bootstrapped over SNPs.

We first assessed the bias in our estimator δ̂. We simulated genotypes and phenotypes for gene

expression, with true values for δ ranging between 0 and 1. We applied our iterative optimization

method to estimate δ and found that we recovered the true value of δ in simulations, demonstrating

our estimator is both accurate and unbiased (Supp. Fig. 6a). We next performed an additional test

of the robustness of our estimator using real data. Specifically, we adapted our model to test

whether causal variants have the same effect size in two independent, randomly sampled subsets of

European-Americans. We expect that SNPs have the same marginal effect size in both groups of

individuals, which means δ should be approximately equal to 0. If δ is estimated to be nonzero

between these sets of European-Americans, this would indicate that our method is biased. We

applied our model to gene expression and LDL-C and find that δ̂ is not significantly different from

0 when comparing two sets of European-Americans: δ̂ is 0.00 for gene expression (95% CI is -0.03,

0.03) and -0.03 for LDL-C (95% CI is -0.09, 0.03) (Supp. Fig. 5). This demonstrates that our

estimator δ̂ is unbiased under the null where the true parameter δ equals zero.

Finally, we used our model to test whether causal variants have the same effect size in African-

Americans and European-Americans. For gene expression, δ̂ is significantly different from zero,

with a maximum likelihood estimate (MLE) of 0.43 and a 95% CI of (0.37, 0.49) (Fig. 3b). For

LDL-C, we estimate a similar MLE of 0.46 with a 95% CI of (−0.06, 0.87) (Fig. 3c). Our results

indicate that SNPs in regions of European ancestry in African-Americans and European-Americans

have different marginal effect sizes, providing evidence for different causal variant effect sizes

between populations. To compute the phenotypic variance explained by this model, we used the

same approach described above. In a test set, the δ term describes a modest amount of phenotypic

variance: 0.02% for gene expression, 0.01% LDL-C. Thus, we find that although these differences

explain a small amount of trait variance, causal variant effect sizes do differ between populations.

Moreover, these effect sizes differ because they are modified by the genome or environment.
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Discussion

We developed a model in which we introduce the parameter δ to test for differences in causal

variant effect sizes between populations. Specifically, we leveraged regions of European ancestry

shared between African-Americans and European-Americans to compare marginal effect sizes in a

manner unbiased by LD structure. We applied our model to two traits, gene expression in MESA

and LDL-C in MVP. For gene expression, we observe that δ̂ is significantly different from zero,

implying that causal variant effect sizes differ between African-Americans and European-

Americans. For LDL-C, we obtain a MLE for δ that is similar to that from gene expression but not

significantly different from zero.

The larger confidence interval for LDL-C is likely due to differences in statistical power between

the two traits. Though we used significantly associated SNPs for both traits, many fewer SNPs

were used in LDL-C analyses (124 SNPs) than in gene expression analyses (2,697 SNPs). Moreover,

trait-associated SNPs were ascertained within the same dataset (MESA) for gene expression but

were ascertained from an external dataset (UK Biobank) for LDL-C. This should not bias the

estimation of δ but may mean that trait-associated SNPs capture a larger proportion of phenotypic

variance for gene expression relative to LDL-C.

Our observation that causal variant effect sizes differ between populations is relevant to previous

work on quantifying cross-population genetic correlations (Brown et al., 2016; Galinsky et al.,

2019). Though there is no straightforward analytical relationship between our parameter δ and

genetic correlation, our results are intuitively consistent with a cross-population genetic correlation

less than one. Because our method is not biased by differences in LD structure, differences in

causal variant effect sizes between populations must be due to unmodeled epistatic or gene-by-

environment interactions. The magnitude of genetic interactions in complex traits has been difficult

to quantify because GWAS are generally underpowered to detect individual interactions of small

effect. We therefore only estimate one parameter δ from all trait-associated SNPs to maximize

power. Nevertheless, future areas of investigation include adapting our model to understand how

the magnitude of genetic interactions varies across SNPs or functional regions of the genome.

Though we observe that causal variant effect sizes significantly differ between populations, we

also find that the inclusion of the δ term in the model does not substantially increase the amount of

phenotypic variance explained. This apparent discrepancy can be resolved by noting that we

evaluate model performance on the full dataset of African-Americans and European-Americans, but

the δ term will only improve the modeling of effect sizes in regions of European ancestry in
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African-Americans, which only represents about 10% of the full dataset.

Our results have implications for the application of polygenic scores (PGS). PGS constructed in

European populations are known to have poor portability to non-European populations. We find

that trait-associated SNPs ascertained in Europeans have attenuated effect sizes in African-

Americans, which is consistent with European-ascertained SNPs tagging causal variants more

poorly in African ancestry. This suggests that a PGS constructed by ascertaining SNPs in

Europeans could have poor accuracy in African-Americans even if SNP effect sizes are estimated

from African-Americans. Furthermore, we find that local ancestry and local ancestry-by-genotype

interactions both contribute to phenotypic variance, implying that PGS in admixed populations

can be improved by modeling these terms. Lastly, we find that causal variant effect sizes differ

between populations. Our results suggest that differences in causal variant effect sizes contribute to

poor PGS portability but are not the main factors responsible. Nevertheless, differences in causal

variant effect sizes that arise from gene-by-environment interactions could help explain the

observed decrease in PGS performance when applied to populations of the same ancestry and

different environments (Mostafavi et al., 2020). Maximizing PGS accuracy for an individual

therefore requires constructing the PGS in a population with the same ancestry and environment

as the individual, underscoring the importance of conducting GWAS in diverse populations.

In summary, our method tests for causal variant effect size differences between populations by

leveraging the multiple ancestries contained in admixed populations to control for differences in LD

structure. This method can be applied to any quantitative or dichotomous trait and additionally

describes the contribution of global and local ancestry to phenotypic variance. Ultimately, our

finding that causal variant effect sizes differ by population gives insight into the importance of

genetic interactions in human complex traits.
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Methods

Data processing

For MVP, we used data processed and subject to quality control as described in Hunter-Zinck et al.

(2020) and used GRCh37 genotype calls. Using KING coefficients (Manichaikul et al., 2010), we

removed relatives who were closer than 3rd degree cousins, which left ∼72K African-American and

∼298K European-American individuals. Data were imputed with IMPUTE using the 1000

Genomes Phase 3 reference panel (Auton et al., 2015; Howie et al., 2009).

For MESA, we obtained phased whole genome sequencing data and gene expression data from

TOPMed Freeze 8. We restricted our analyses to individuals for whom there is available gene

expression data in peripheral blood mononuclear cells, and who have self-reported race as either

White/European-American or Black/African-American.

Inferring global and local ancestry

We performed global ancestry inference with supervised ADMIXTURE using default program

parameters (Alexander et al., 2009). We used 99 CEU individuals and 108 YRI individuals from

1000 Genomes Phase 3 as our reference populations. We filtered for biallelic SNPs with MAF >

0.05 in both the admixed population and the reference populations, and again filtered for MAF >

0.1 after merging the admixed and reference datasets. We pruned SNPs with an r2 value > 0.1. As

previously done for MVP (Hunter-Zinck et al., 2020), the race of each individual (i.e.

African-American or European-American) was determined by HARE (Fang et al., 2019).

We performed local ancestry inference on admixed African-American individuals with RFMix

v1.5.4, using no EM iterations and default program parameters (Maples et al., 2013). We assumed 8

generations since the time of admixture between an African population and a European population

(Baharian et al., 2016). We again used 99 CEU individuals and 108 YRI individuals from 1000

Genomes Phase 3 as our reference populations. We used biallelic SNPs with MAF > 0.05 in both

the admixed population and the reference populations, and removed SNPs with an r2 value > 0.5.

Global ancestry fractions from ADMIXTURE are highly correlated with those implied by

RFMix (MESA ρ = 0.99, MVP ρ = 0.98) (Supp. Fig. 1). In MESA, we excluded 18 African-

American individuals from downstream analyses who either had < 0.5 global African ancestry or

else had discordant RFMix and ADMIXTURE global ancestry estimates. We determined that an

individual had discordant global ancestry estimates if the Euclidean distance between the two

estimates and their average was greater than 0.05. We additionally excluded one European-
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American individual from MESA who clustered with African-American individuals in principal

components analysis of genotypes.

Comparing marginal SNP effect sizes between populations

LDL-C (MVP)

Principal components were calculated on all individuals in the MVP dataset with HARE (Hunter-

Zinck et al., 2020). We ascertained genome-wide significant SNPs in ∼315K UK Biobank White

British individuals (application number 24983). After applying genomic filters (MAF ≥ 0.01,

missing genotype rate ≤ 0.05, Hardy-Weinberg equilibrium), we tested for association with inverse-

variance quantile normalized phenotypes using a linear model (–glm) in plink with the covariates

age, sex, assessment center, and statin usage. Significant variants (p < 5× 10−8) were clumped and

pruned to leave independent SNPs.

To estimate effect sizes of these variants in MVP, we extracted variants from the imputed

genotype set using 1000 Genomes Phase 3 as our reference panel. We filtered for MAF ≥ 0.003 in

European-Americans and African-Americans, leaving 124 independent SNPs. Each individual had

LDL-C measurements at multiple time points, and we therefore used the maximum LDL-C

measurement across time points for all analyses. Additionally, we numerically adjusted LDL-C

measurements based on statin usage. We inferred statin usage at the time of LDL-C measurement

if a statin prescription was filled within the length of the prescription plus a buffer of 15 days

within the measurement date. Our covariates included age, sex, global ancestry, and genetic PC1,

which stratifies European-Americans and is the only principal component associated with LDL-C

after residualizing on the other covariates.

To estimate effect sizes from the 72K African-Americans (βAA), we used linear regression in

plink (–glm) and included the covariates above. We likewise randomly sampled an equal number of

European-Americans and estimated effect sizes (βEA).

Gene expression (MESA)

After filtering for individuals based on ancestry, 499 European-American individuals and 319

African-American individuals with PBMC RNASeq remain. 380 of these individuals had gene

expression data available at two time points, spaced 5 years apart (exam 1 and exam 5). For these

individuals, we used a greedy algorithm to select which time point to use such that the proportions

of potential confounders (sex, time of exam, sequencing center) were approximately balanced

between European-Americans and African-Americans.
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Gene-level read counts were obtained with RNA-SeQC v1.1.9 (DeLuca et al., 2012). As done

previously by GTEx Consortium (2017), we selected genes with expression thresholds of >0.1 TPM

in at least 20% of samples and ≥6 reads in at least 20% of samples, thresholding separately for

European-Americans and African-Americans in both cases. A total of 10,765 genes passed this

filtering step. We log-transformed gene expression measurements and used these transformed

phenotypes in all downstream analyses. We selected biallelic SNPs with a MAF > .05 and minor

allele sample count > 5 in both European-Americans and African-Americans.

To identify SNPs affecting expression in cis, we filtered for SNPs within 100 kb of the TSS for

each gene. We ascertained trait-associated SNPs in a randomly sampled subset of 249 European-

Americans using ordinary least squares. We included four covariates that were significantly

correlated with expression phenotypes: sequencing center, time of exam, sex, and genotype PC 2,

which captures structure within European-Americans (Supp. Fig. 2, Supp. Fig. 3a).

We ascertained trait-associated SNPs with a false discovery rate of 0.01. If there were multiple

significant SNPs per gene remaining after multiple testing correction, we chose the most significant

SNP. We ascertained a total of 2,697 SNP-gene associations, and all downstream analyses are

restricted to these significant associations. Furthermore, all downstream analyses exclude the

European-Americans who were used to ascertain trait-associated SNPs.

For each significant SNP-gene association, we performed two separate regressions to estimate

βAA, the effect size in African-Americans, and βEA, the effect size in European-Americans. To

estimate βEA, we used the same covariates described above. To estimate βAA, we used sequencing

center, time of exam, sex, and global African ancestry fraction. We did not include genotype PC 1

as a covariate despite its significant association with expression because this is highly correlated

with global African ancestry fraction (Supp. Fig. 3b). We estimated βEA in a held-out set of 250

European-Americans and randomly sampled an equal number of African-Americans to estimate

βAA.

Comparison of effect sizes

We used total least squares regression to assess the slope of the relationship between β̂AA and β̂EA.

Estimates of SNP effect sizes are statistically noisy, and unlike ordinary least squares, total least

squares is robust to uncertainty in the x-axis variable. We created 1000 bootstrap replicates for

each trait by sampling with replacement over SNPs and report the 95% CI of the slope as defined

by the 0.025 and 0.975 quantiles.
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Quantifying role of local ancestry in phenotypic variance

We subset our data into a training set of individuals and a test set of individuals using an

80%− 20% split. We used the training subset to fit model coefficients with ordinary least squares

regression. We then used the test set to compute the proportion of variance explained by each

model as the ratio of the variance of the predicted phenotype and the measured phenotype, V ar(ŷ)
V ar(y) .

Here, we performed a regression on the joint sample of African-Americans and European-

Americans, which is distinct from our analyses above which perform a regression on each population

separately. Models with genotype terms included the significant trait-associated SNPs only.

For the gene expression data, there were 256 African-Americans and 206 European-Americans

in the training set; and 63 African-Americans and 51 European-Americans in the test set. We

report the mean total phenotypic variance explained and the mean increase in variance explained,

averaged across all significant genes. For the LDL-C, we used 51,650 training and 22,136 test

individuals from each population, and averaged variance estimates over SNPs.

Testing for differences in causal variant effect sizes between populations

We constructed a phenotypic model in which the parameter δ measures differences in the effect size

of trait-associated SNPs in regions of European ancestry in African-Americans versus

European-Americans.

For the gene expression data, we estimated one value of δ from all SNP-gene associations to

avoid overparameterization. For LDL-C (MVP), we estimated one value of δ across all

trait-associated SNPs.

To fit this model, we began by initializing δ̂ to a random value on the interval [0, 1], which is the

most biologically intuitive range of values for δ (see Fig. 3). We next optimized β̂ = (β̂c, β̂r, β̂θ,

β̂γ , β̂A, β̂E) conditional on this value of δ̂, and we then optimized δ̂ conditional on β̂. For both gene

expression and LDL-C, we performed this regression marginally on each SNP. We continued this

iterative optimizing with ordinary least squares regression until δ̂ converged (i.e. did not change by

>.0001). Though δ̂ was initialized on the interval [0, 1], the optimization procedure itself was

unconstrained. Additionally, we found that regardless of the initial value of δ̂, our optimization

procedure converged to the same value. The optimization method converged quickly for both

datasets (20 iterations for gene expression, 18 for LDL-C).

To construct 95% confidence intervals for δ̂, we bootstrapped over SNPs and reported the 0.025

and 0.975 quantiles. (For gene expression, this procedure is equivalent to bootstrapping over genes

because each gene is modeled by exactly one SNP.)
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To assess the amount of bias in our estimator δ̂ when the true parameter δ equals zero, we

performed a negative control. We modified our model such that we could use δ to compare effect

sizes between two randomly sampled, independent subsets of European-Americans. On average,

these two groups of individuals have the same race, global ancestry, local ancestry, and

environment. Thus, we expect that δ̂ = 0 even in the presence of epistatic or gene-by-environment

interactions. To modify our model, we first excluded any African-Americans with European

ancestry at trait-associated SNPs. This ensured that βA was estimated only from African-

Americans with African ancestry at trait-associated SNPs. Next, we randomly assigned a subset of

the European-Americans into a validation set. For gene expression, this was 100 individuals, and

for LDL-C, this was 72K individuals. We then replaced the race indicator in the last term of the

model with a validation set indicator. With this particular modification of the model, our estimator

δ̂ tests whether trait-associated SNPs have the same effect size in the validation set and the

remaining European-Americans. If δ̂ is an unbiased estimator, δ̂ should be 0 when we conduct the

negative control.

Simulations

We constructed a simulation framework designed to emulate our analyses of gene expression in

MESA. We used sample sizes for individuals and SNPs that were analogous to the real data. We

sampled effect sizes of causal variants from a multivariate Normal distribution:

βA, βE ∼ N


0
0

 ,

 σ2
A σA,E

σA,E σ2
E


 .

For each variant, we simulate allele frequencies separately in African and European ancestry by

randomly sampling from the empirical joint distribution of allele frequency for trait-associated

SNPs in our dataset. We note that this decouples the relationship between effect size and allele

frequency, but this relationship is known to be weak for gene expression (Glassberg et al., 2019).

We simulated ascertainment in a European-ancestry population with a rejection sampling

approach. Specifically, we simulated estimates of effect sizes from a Normal distribution:

β̂E ∼ N
(
βE ,

σ2
ϵ

nσ2
g

)
.
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We simulated residuals, ϵ̂ from a Normal distribution in order to compute a simulated standard

error, sβ̂ :

ϵ̂ ∼ N
(
0, σ2

ϵ

)
,

s2
β̂
=

1
n−2

∑
i ϵ̂

2

ns2g
.

We then computed t-statistics and rejected the simulated tag SNP if it was insignificant,

t =
β̂E,asc

sβ̂
.

We simulated genotypes and phenotypes conditional on race and ancestry. Global African ancestry

fraction, θ, is beta-distributed for African-American individuals and 0 for European-American

individuals:

θ ∼


Beta(α, β) if African-American

0 if European-American.

Local ancestry, γ, is binomially-distributed conditional on global ancestry:

γ|θ ∼ Binom(2, θ).

Genotypes are then binomially-distributed conditional on local ancestry, where pA is the allele

frequency in African ancestry and pE is the allele frequency in European ancestry:

gA ∼ Binom(γ, pA),

gE ∼ Binom(γ, pE).

Lastly, phenotypes are normally distributed based on our specified model:

y ∼ N
(
gAβA + gEβE + δrgE(βA − βE), σ

2
ϵ

)
.

Hyperparameters were chosen such that the simulated and empirical distributions of β̂ are as

similar as possible (Supp. Fig. 6b-d). We simulated 11 values of δ ranging between 0 and 1, and

used our iterative optimization procedure to estimate δ from simulations. To assess the accuracy of

our estimator δ̂, we plotted the estimates δ̂ against the true value δ (Supp. Fig. 6a).
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Figure S1: Comparison of ancestry inference methods. We observe a strong correlation be-
tween RFMix and ADMIXTURE estimates of global African ancestry fraction for African-American
individuals in MESA.
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Figure S2: Association between gene expression phenotypes and covariates. We tested for
statistical association between phenotypes of all 2,697 significant genes and 16 covariates, including
2 batch covariates (sequencing center and exam number), sex, race, global and local ancestry, and
10 genotype principal components (PCs). We show the resulting QQ plots of association p-values,
demonstrating that expression phenotypes are significantly associated with both batch covariates,
sex, race, global and local ancestry, and the first two PCs.
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Figure S3: Principal components analysis of MESA genotypes. a) We computed principal
components from the genotypes of 319 African-Americans and 499 European-Americans in MESA.
The first genotype PC stratifies the African-Americans and the second genotype PC stratifies the
European-Americans. b) Within African-Americans, the first genotype PC is highly correlated with
African global ancestry fraction.
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Figure S4: Ordinary least squares regression of βAA on βEA for a) gene expression and b) LDL-C.
We represent the 95% confidence interval with the orange shaded region.
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Figure S5: Negative control. Likelihood surface for δ. Maximum likelihood estimates are a) 0.00
(-0.03, 0.03) for gene expression and b) -0.03 (-0.09, 0.03) for LDL-C. We denote the MLE and 95%
bootstrap confidence interval with the vertical line and shaded region, respectively.
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Figure S6: Simulations. a) Distribution of δ̂ values estimated for 11 different simulated val-

ues of δ. b, c, d) Comparison of empirical and simulated distributions of β̂ in the ascertain-
ment European-American population, the non-ascertainment European-American population, and
the African-American population.
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