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Abstract  

 

High throughput sequencing has enabled the interrogation of the transcriptomic landscape of 

glucagon-secreting alpha cells, insulin-secreting beta cells, and somatostatin-secreting delta cells. These 

approaches have furthered our understanding of expression patterns that define healthy or diseased islet cell 

types and helped explicate some of the intricacies between major islet cell crosstalk and glucose regulation. 

All three endocrine cell types derive from a common pancreatic progenitor, yet alpha and beta cells have 

partially opposing functions, and delta cells modulate and control insulin and glucagon release. While gene 

signatures that define and maintain cellular identity have been widely explored, the underlying epigenetic 

components are incompletely characterized and understood. Chromatin accessibility and remodeling is a 

dynamic attribute that plays a critical role to determine and maintain cellular identity. Here, we compare 

and contrast the chromatin landscape between mouse alpha, beta, and delta cells using ATAC-Seq to 

evaluate the significant differences in chromatin accessibility. The similarities and differences in chromatin 

accessibility between these related islet endocrine cells help define their fate in support of their distinct 

functional roles. We identify patterns that suggest that both alpha and delta cells are poised, but repressed, 

from becoming beta-like. We also identify patterns in differentially enriched chromatin that have 

transcription factor motifs preferentially associated with different regions of the genome. Finally, we 

identify and visualize both novel and previously discovered common endocrine- and cell specific- enhancer 

regions across differentially enriched chromatin.  
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Introduction 

 

The evaluation of the transcriptional landscape through high-throughput bulk sequencing (bulkSeq) 

in both mouse and human of major islet cell types has granted a deeper understanding of cellular identity 

and intercellular crosstalk within the pancreas. This has enabled the detection of distinct gene pattern 

signatures between major islet cell types in mouse and human [1-6]. However, gene expression represents 

the final outcome of a complex layer of genetic and epigenetic factors that determine islet cell fate [7-9] 

and identity [10, 11]. Previous studies have explored pancreatic islet cellular identity by evaluating 

epigenomic features such as methylation [12-14], histone modifications [15-18], and enhancer regulatory 

regions [19-24]. While each of these factors contributes to defining and maintaining cell fate and identity, 

connecting chromatin accessibility differences to epigenetic factors promises to provide further insight into 

outstanding questions within the field.  

Chromatin remodeling is a central epigenetic regulator that can be surveyed in order to better 

understand cell states [20, 25-28]. The accessibility of chromatin via changes between euchromatin and 

heterochromatin, and nucleosome occupancy, plays a significant role in cell lineage, and in tissue- and cell-

specific gene expression [11, 25, 29]. Epigenetic stability is required for the maintenance of islet cell 

identity, while changes in chromatin accessibility are associated with perturbations in gene expression due 

to disease [7, 22, 30]. Chromatin accessibility in tandem with other epigenetic factors at promoter-proximal 

regions [29, 31] of a gene allows for direct activation or repression of transcription. In contrast, open 

chromatin at exonic [32], intronic [33], or distal-intergenic regions [34] can be accessed by regulatory 

factors that act as nearby or distal enhancers that govern lineage branching and stable cell fate.  

Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) allows for the unbiased, 

modification-independent evaluation of chromatin accessibility within cell types and can be run with 

relatively small sample input [30, 35]. Previous studies have explored chromatin accessibility in healthy [5, 

11, 36, 37]  and T2D [22, 23, 38, 39]  islets as well as pancreatic progenitors [9]  using bulkSeq through 
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human antibody panels alongside FACS-purification or through single-cell sequencing (scATACSeq) [40-

42].  However, none of these studies have explored pancreatic islet cell chromatin accessibility from mouse 

FACS-purified alpha, beta, and delta cells. Therefore, to better understand endocrine islet cell identity 

between mouse alpha, beta, and delta cells, we compared chromatin accessibility and transcriptome data 

for FACS-purified mouse alpha, beta, and delta cells sorted from pancreatic islets from triple transgenic 

reporter strains - mIns1-H2b-mCherry beta cells crossed to mice with alpha or delta cells marked by YFP 

in a Cre-dependent fashion - that we generated for this purpose [1, 6]. This approach allowed for the direct 

comparison between ATAC-Seq and RNA-Seq datasets from alpha, beta, and delta cells from these lines.  

We integrated our ATAC-Seq data with high-quality transcription factor and histone binding data 

from other mouse pancreatic islet studies to evaluate how transcriptional activators and repressors may 

collectively regulate differential gene expression at promoter-proximal regions. To support the visualization 

and integration of our ATAC-Seq chromatin data and previously published transcriptome of the FACS-

purified alpha, beta, and delta cells alongside select epigenomic datasets from histone marker and 

transcription factor Chromatin Immuno Precipitation (ChIP) data, we developed an R package, epiRomics 

[See: https://github.com/Huising-Lab/epiRomics]. This package is a novel, publicly available  resource that 

is described in detail elsewhere [43]. epiRomics allows for the visualization of integrated epigenomic data 

and visualizes putative enhancer regions without the requirement for extensive bio-informatics experience, 

with the intent of enabling more of our colleagues to tease apart key regions that may drive cell fate 

switching and maintenance between the major islet endocrine cell types. Through this approach we 

identified putative enhancer regions at distal-intergenic regions common to all cell types as well as regions 

selectively accessible only in a single islet cell type and confirmed previously identified mouse pancreatic 

islet enhancers.  
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Methods 

 

Islet isolation and FACS sorting 

 

 mIns1-H2b-mCherry [1] x Rosa-LSL-YFP crossed to either Sst-Cre [44] or Gcg-Cre [45] triple 

transgenic mice were pooled by sex, each sample yielding a median of 20,000 cells, with islet isolation and 

FACS-sorting as previously described (Supplemental Fig. 1) [1, 46-48].  

 

Assay for transposase-accessible chromatin using sequencing 

 

 Single-end 50 bp reads were generated after library size selection yielded an average of 450 bp 

fragments and sequenced as previously described using NexteraDNA library protocol  [30]. 

 

Alignment and differential peak calling 

 

 Reads from each replicate (Supplemental Table 1) were evaluated for quality control and trimmed 

using FastQC and Trimmomatic, respectively [49-51]. A modified index of Gencode GRCm38.p4 (mm10) 

was built to exclude mitochondrial DNA prior to aligning reads with Bowtie 2 [52, 53]. Post-alignment, 

duplicates were marked using Picard Tools, blacklist regions were removed, and BAM files were converted 

into tagAlign format for downstream use. Peak calling and bigwig generation was done using MACS2 [54]. 

Differential expression testing was performed using DiffBind’s edgeR method [55, 56]. 

 

Quality control and validation 
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 Quality control metrics were evaluated within raw reads as well as peak calls and compared against 

ENCODE standards for fraction of reads in peaks (FRiP), leading to the removal of one beta replicate with 

a FRiP score far below 0.3 (Supplemental Table 1; Fig. 1A-C) [57, 58].  

Downstream analysis 

Transcription factor footprinting analysis and validation against existing ChIP data was performed 

through a modified script utilizing chromVar [59], regioneR [60], GenomicRanges [61], and motifmatchr 

[62] using the HOCOMOCO database [63]. Pathways analysis on differential chromatin accessibility was 

performed using the R Bioconductor packages ChIPseeker [64], ReactomePA [65], and clusterProfiler [66]. 

 

Enhancer Identification 

 We developed a novel R package, epiRomics, to integrate our chromatin accessibility data 

alongside aggregated pancreatic islet ChIP and histone data to identify putative enhancer regions, as 

described [43]. The package, example data, and vignette can be found at: https://github.com/Huising-

Lab/epiRomics and an interactive browser of the results from this manuscript is publicly available at: 

https://www.huisinglab.com/epiRomics_2021/index.html. 

 

Integrated data 

 Mouse alpha, beta, and delta (GEO: GSE80673), alongside alpha- and delta- transdifferentiated 

beta (GEO: GSE88778) transcriptomes were integrated into this analysis [6, 67]. Aggregated ChIP datasets 

of transcription factors and histone marks were added to the analysis through epiRomics [43] to identify 

putative enhancer regions (Supplemental Table 2).  
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Results 

ATAC-Seq validation                 

 

To determine whether chromatin accessibility patterns differed between islet endocrine cell types, 

principal component analysis (PCA) was applied to peak calls across all samples. This confirmed that 

replicates clustered by cell type (Fig. 1A), a finding that was further validated by heatmaps using all defined 

peaks across replicates (Fig. 1B). Alongside quality control applied through the generation and analysis of 

this dataset, the fraction of reads in peaks (FRiP) score was in excess of the commonly applied benchmark 

of 30% (Fig. 1C). Furthermore, the FRiP score was independent of variability in unique read depth, 

indicating that peak calls were reproducible across all replicates within cell types independent of read depth 

range.  

 

Validation of islet cell chromatin accessibility data coupled to companion transcriptomes 

 After preliminary validation of our derived ATAC-Seq data, we checked for the presence of 

chromatin peak enrichment for alpha, beta, and delta marker genes that have been previously well-

established and validated through complementary bench-lab or computational methods. We expected that 

if a gene is expressed within a cell type, its ATAC signal near the transcription start site (TSS) at promoter-

proximal regions should reflect chromatin accessibility. Indeed, cell type-specific chromatin accessibility 

correlated with gene expression of Ins2, Gcg, and Sst genes for beta, alpha, and delta cells, respectively 

(Fig. 1D-F) [4, 6, 68]. After confirming chromatin accessibility in key cell-identity markers, we sought to 

compare and contrast select regions identified from prior groups that evaluated chromatin accessibility in 
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human islets  [5, 12, 38], as well as to further query whether chromatin was always uniquely enriched on a 

panel of cell type-specific genes across alpha (Arx, Ttr, Gc), beta (Ucn3, MafA, Pdx1), and delta  cells 

(Pdx1, Hhex, Rbp4, Ghsr) (Fig. 2; Supplemental Fig. 2). Each of these genes demonstrated overall strong 

concordance between cell type-enriched gene expression and cell type-specific enrichment of available 

chromatin. This validated the utility of ATAC-Seq data to detect epigenetic factors that determine gene 

expression. 

 

The chromatin landscape of the annotated genome across cell types  

As genes make up a small fraction of the entire genome, we determined the overall distribution of 

peaks across the annotated genome within each cell type. We defined five regions of interest to further 

explore – promoter-proximal, intronic, exonic, downstream, or distal-intergenic (Fig. 3A). We identified a 

consensus set of 124,494 peaks marking open chromatin through the R package DiffBind. This number is 

comparable to the number of open regions found in previous studies of pancreatic islet chromatin 

accessibility [11, 38-40] (Supplemental Dataset 1). We then evaluated the distribution of called peaks 

present in at least one replicate within 3kb upstream of the TSS and confirmed that a majority of genes 

enriched in each islet cell type were accompanied by promoter-proximal peaks (Fig. 3B-D). The distribution 

of ATAC-Seq peaks across different pre-defined genomic areas was overall similar across alpha, beta, and 

delta cells. For each endocrine cell type between 21.98-24.88% of open chromatin was promoter-proximal, 

whereas promoter-proximal areas account for 2.41% of the mouse genome. A further 34.92-38.33% of 

peaks for all cell types were found on distal-intergenic regions, which was proportional to the fraction of 

the genome that falls into this category (Fig. 3E-G). Finally, we noted that between 33.07- 33.65% of peaks 

occurred on intronic regions (first or other), relative to the 37.7% of the mouse genome classified as intronic 

[69].  
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Regional differences and characteristics of differentially enriched chromatin 

 

As our overall distribution of ATAC-Seq peaks across different genomic regions was consistent 

across alpha, beta, and delta cells, we compared differential chromatin accessibility between these cell types 

in greater detail. To this end, we performed pairwise differential ATAC-Seq peak enrichment testing across 

alpha, beta, and delta cells. Out of 124,494 identified consensus regions of open chromatin across the three 

cell types, 18,409 (14.8%) differentially enriched peaks (p-value <= 0.05) were identified between alpha 

and beta (Fig. 4A), 12,722 (10.2%) between alpha and delta (Fig. 4B), and 16,913 (14.6%) between beta 

and delta cells (Fig. 4C).  

After performing differential peak enrichment testing, we discovered that 22.89% of all 

differentially enriched peaks between alpha and beta cells were promoter-proximal (0-3kb) (Fig. 5A). A 

further 33.22% of differential peaks were linked to distal-intergenic regions and another 33.61% of 

differential peaks were intronic (first and other combined) (Fig. 5A). This assessment of differential peaks 

without considering the direction of enrichment revealed no major difference with overall peak distribution 

described earlier (Fig. 3). However, when factoring in the direction of enrichment we observed that 35.08% 

of alpha cell-enriched peaks was promoter-proximal. In contrast, only 12.5 % of beta cell enriched peaks 

occurred in promoter-proximal areas (Fig. 5B). Instead, a majority of ATAC peaks enriched in beta cells 

were located at distal-intergenic regions (45.41%) (Fig. 5B). 

Between alpha and delta cells, we identified that 21.29% of differentially enriched peaks occurred 

promoter-proximally. Another 36.4% of peaks occurred on distal intergenic regions and 35.5% on intronic 

regions (Fig. 5C). A similar preference of alpha cell-enriched peaks in promotor-proximal regions was 

evident when comparing alpha to delta cells, with 30.33% of all enriched alpha peaks occurring promoter-

proximally, but only 9.56% of delta cell peaks. Instead, 38.41% of delta cell enriched peaks were distal-

intergenic (Fig. 5D). 
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Lastly, between beta and delta cells, 26.62% of all differentially enriched peaks were promoter-

proximal, 32.2% distal intergenic, and 34.33% on intronic regions (Fig. 5E). Further break down revealed 

a bias towards distal-intergenic enriched peaks within beta cells (42.86%), as opposed to promoter-proximal 

peaks in delta cells (28.20%) (Fig. 5F). 

 

Differential chromatin enrichment in the majority of cases correlates with gene expression 

 So far, we detected a disproportionate fraction of peaks associated with promoter-proximal regions 

in general (Fig. 3). Moreover, ATAC-Seq peaks that were differentially enriched in alpha and - to a lesser 

extent - delta cells were considerably more likely to occur at promoter-proximal sites. Instead, peaks 

enriched in beta cells more likely occurred at distal intergenic regions (Fig. 5). Therefore, we determined 

whether the enrichment of promoter-proximal peaks correlated with increased expression of the 

corresponding. Genes with increased expression in a cell type accompanied by a significantly enriched 

ATAC-Seq peak proximal to its TSS were considered ‘congruent’ genes (Fig. 6A). The underlying 

mechanism in such a scenario might be the presence of transcriptional activators at the promoter-proximal 

site that promote gene expression. Conversely, genes with a significantly enriched ATAC-Seq peak 

proximal to its TSS accompanying a reduction in corresponding gene expression were considered 

‘incongruent’ genes (Fig. 6B). The underlying mechanism for these genes might be the presence of 

transcriptional repressors at the promoter that prevent gene expression (Supplemental Dataset 2) [70-73]. 

Finally, genes that had significantly enriched chromatin in either cell type, but no evidence of mRNA 

expression were considered ‘unexpressed’ (Fig. 6C).  

  When we compared differentially enriched TSS-associated chromatin against corresponding gene 

expression between alpha and beta cells, we found that in the majority of cases (86%), differential chromatin 

enrichment on TSS regions successfully captured the epigenetics of gene regulation. Exactly, 50% of genes 

with differentially enriched chromatin at the TSS had a corresponding increase in gene expression within 
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the same cell type (congruent genes). 36% showed TSS chromatin accessibility enrichment, but with a 

reduction in gene expression for each cell (incongruent genes - either alpha repressed (33%), or beta 

repressed (3%)). Strikingly, a substantial majority of the incongruent genes in this comparison were alpha 

repressed. Finally, only 14% of all genes with differentially enriched TSS chromatin showing no expression 

in either cell type (unexpressed) (Fig. 6D). A further visualization of select gene expression against TSS-

associated chromatin accessibility indicated the majority as congruent, with a highlighted example of an 

incongruent (putatively alpha repressed or alpha cell poised) gene observed in the alpha cell TSS 

enrichment for the beta-specific genes MafA (Fig. 2E; Supplemental Fig. 3A). MafA is a key transcription 

factor enriched in beta cells yet shows abundant chromatin accessibility in alpha cells.  

 We observed a similar distribution between congruent (55%), incongruent (24%), and no 

expression genes (20%), between alpha and delta cells. We noted a more uniform distribution between 

alpha (14%) and delta (10%) repressed genes. (Fig. 6E). Upon visualizing gene expression and chromatin 

accessibility, we confirmed congruent gene expression and TSS chromatin accessibility of key transcription 

factors known to regulate both alpha – MafB, Ttr, and Arx – and delta – Pdx1 and Hhex – cell fate 

(Supplemental Fig. 3B). 

 For our final pairwise comparison between beta and delta cells, we again found a similar fraction 

of congruent (57%), incongruent (32%), and no expression (11%) genes (Fig. 6F). We noted a minor 

fraction of repressed genes with open chromatin in beta cells (1.5%), with the overwhelming majority of 

repressed genes corresponding to delta cells (30.45%), similar to the pattern seen in alpha repressed genes 

between alpha and beta cells. Further visualization of select marker gene expression against chromatin 

accessibility showed generally good congruence between chromatin accessibility at the TSS and gene 

expression (Supplemental Fig. 3C). 

 

Poised genes are enriched in beta cells with a non-beta cell lineage history 
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To further interrogate whether these alpha- or delta- repressed genes could be poised beta cell 

genes, we incorporated transcriptome data from beta cells with an alpha- or delta- cell lineage history [67] 

– also from our companion RNA-Seq experiment. These cells, termed “transdifferentiated,” are functionally 

mature beta cells (defined by the presence of Ucn3), but have either a Gcg- or Sst-Cre lineage label, 

reflective of a lineage history as an alpha or delta cell, respectively. We reasoned that if alpha- or delta- 

repressed genes are poised beta cell genes, we should expect to observe a stepwise transition in gene 

expression levels, showing little or no expression in either alpha or delta cells, to intermediate expression 

in alpha- or delta- transdifferentiated cells, and full expression in beta cells. We confirmed that the majority 

(83.6%) of alpha-repressed genes showed intermediate expression in the alpha-to-beta-transdifferentiated 

population, and the highest expression in beta cells. A subset of genes (16.4%) showed the highest 

expression in the alpha-transdifferentiated population (Fig. 7A). We observed a similar pattern between 

delta, delta-transdifferentiated, and beta cells; however, only half (50.18%) of delta repressed genes 

demonstrated an intermediate expression in the delta-to-beta-transdifferentiated population and the highest 

in beta (Fig. 7B). The remainder of the genes showed the highest expression in delta-to-beta-

transdifferentiated cells.  

 

Differential meta-chromatin enrichment testing 

Given that in a majority of cases, TSS-associated chromatin recapitulated the underlying regulation 

of gene expression, we inquired whether differentially enriched chromatin peaks were associated with genes 

concentrated in pathways or gene networks that would better reflect our understanding of the biology across 

these different islet endocrine cell types. Between alpha and beta cells, KEGG set pathway testing of 

differentially accessible chromatin identified pathways related to protein digestion and absorption and cell 

adhesion molecules unique to beta cells, Hippo, Wnt, and ubiquitin-mediated proteolysis unique to alpha 

cells, and MAPK, axon guidance, and cAMP pathways enriched within both (Supplemental Fig. 4A-B). 

Upon comparing the differentially accessibly chromatin between alpha and delta cells, adherens junctions 
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appeared selective to delta cells, while no pathways were enriched specifically in alpha cells. MAPK, axon 

guidance, and Ras signaling pathways showed general enrichment of associated peaks within both alpha 

and delta cells (Supplemental Fig. 5A-B). Lastly, in beta and delta cells, a pairwise analysis of differentially 

accessible chromatin identified the Glycosaminoglycan (GAG) biosynthesis pathway as unique to beta cells 

- where GAG metabolism and biosynthesis impairment has been linked to beta cell dysregulation [74], 

adherens junctions and Rap1 signaling pathways unique to delta cells, and MAPK, axon guidance, and 

cAMP signaling pathways enriched within both (Supplemental Fig. 6A-B). 

 

Islet transcription factor ChIP-Seq binding correlates with open chromatin    

 After exploring the interrelationship between accessible chromatin and gene expression, we 

expanded our approach to include additional epigenetic controls to the regulation of islet cell gene 

expression. We therefore  aggregated high-quality, mouse pancreatic islet transcription factor binding data 

via ChIP-Seq - Pdx1 [75], Nkx6-1 [76], Neurod1 [77], Insm1 [77], Foxa2 [77], Nkx2-2 [78], Rfx6 [79], 

MafA [24], Isl1 [80], Kat2b [81], Ldb1 [80], and Gata6 [82] - and asked what fraction of open chromatin – 

as defined by our consensus ATAC-Seq peak set – containing binding sites for each respective transcription 

factor. The transcription factors Foxa2 (29.07%), Insm1 (28.40%), and Neurod1 (20.09%) had the highest 

percentage of ChIP-confirmed binding site overlap with open chromatin. This provided further support that 

our ATAC-Seq data was of high quality and suggested that open chromatin is a reliable indicator of 

epigenetic regulation (Supplemental Table 3A). To further explore whether these aggregated transcription 

factor ChIP data convey epigenetic relevance, we queried what fraction of total ChIP binding sites 

overlapped with open chromatin. Indeed, we observed that in several cases, over 50% of transcription factor 

ChIP binding sites overlapped with open chromatin, with the transcription factors Nkx2.2 (63.79%), 

Neurod1 (55.07%), and Insm1 (51.49%) showing the greatest degree of overlap (Supplemental Table 3B). 

These results supported our findings that open chromatin reflects epigenetic regulation in alpha, beta, and 

delta cells, in part through the binding of transcription factors. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 6, 2021. ; https://doi.org/10.1101/2021.12.06.471006doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471006


 14 

  

Transcription factor motif finding suggests genomic preferences at differentially enriched chromatin 

between cell types 

After observing a strong degree of overlap of known islet transcription factor binding on open 

chromatin, we conducted an unbiased evaluation whether DNA motifs for their respective transcription 

factor proteins were differentially enriched on ATAC peaks in promoter, intronic, exonic, downstream, or 

distal regions. We included transcription factors with known DNA-binding motifs to determine if they were 

more likely to occur at specific areas of the genome. We required that the transcription factor associated 

with the DNA sequence motif considered is expressed (RPKM>0) in the cell type with chromatin-motif 

association. 

Motifs for key transcription factors involved in beta cell identity, such as MafA, were present 

ubiquitously across most functional regions we defined (promoter-proximal, intronic, exonic, downstream, 

and distal intergenic) (Fig. 8A). In contrast, the motifs for cell-identity drivers Irx2 [4] were concentrated 

at the promoter-proximal regions of chromatin peaks associated with genes differentially expressed by 

alpha cells. Insm1 [77] motifs were concentrated at the promoter-proximal regions of chromatin peaks 

associated with genes differentially expressed by beta cells. In another example, DNA-binding motifs 

associated with the ubiquitous islet transcription factor Pax6 [83] were concentrated on intronic chromatin.  

We performed the same transcription factor footprinting test between alpha and delta cells (Fig. 

8B). Of note, the motif for Pbx3, a transcription factor driving Sst expression in delta cells [84], was 

enriched in accessible chromatin at promoter-proximal regions. The motif for Stat4, recently implicated in 

establishing alpha cell identity [85] was concentrated exonic chromatin. Lastly, the motif for Ptf1a, a 

transcription factor identified in early pancreatic endocrine cell development [86], was preferentially 

associated with areas of open chromatin at distal intergenic regions.  
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Between beta and delta cells, no single transcription factor motif overlapped across all five 

functional categories, nor were there any unique to downstream or exonic regions, as we observed in the 

prior alpha and delta comparisons (Fig. 8C). Of note, the motif for Smad3, a transcription factor important 

for islet development [87], as well as the negative regulation of insulin secretion in beta cells via occupancy 

of the insulin promoter [88], was concentrated in promoter-proximal accessible chromatin. Motifs for Insm1 

[77] and Nkx6.1 [89], both key beta cell identity transcription factors, were preferentially associated with 

accessible chromatin at intronic regions. Lastly, motifs for Fev – recently identified as important for the 

development and differentiation of the endocrine lineage [90] - and Atf3 – linked to enhancer regions 

in EndoC-bH1 cells [11] - were enriched in accessible chromatin at distal regions.  

 

Validating motif calls against aggregated islet ChIP datasets 

As we observed motif binding site preferences across promoter, intronic, exonic, downstream, or 

distal chromatin regions, we wished to confirm how accurately predictive DNA motif binding sites conveys 

true transcription factor binding. To do so, we once again turned to our aggregated pancreatic islet ChIP 

datasets. We applied the same motif detection method as above on individual ChIP datasets and on all open 

chromatin – as derived from our ATAC-Seq consensus peak set –and assessed how well predicted motif 

binding overlapped with true ChIP peaks from our selected list of ChIP-Seq data. We observed strong 

(57%) true positive and low (8.34%) false negative values for the Rfx DNA-motif’s ability to predict all 

Rfx ChIP binding sites (Supplemental Table 4A). We then limited this same test to Rfx6 ChIP-Seq binding 

sites (35.65%) that were shared across 1.19% of all open chromatin ATAC peaks (Supplemental Table 3A-

B). Notably, when comparing DNA-motif predictions for Rfx6 against these shared Rfx6 ChIP-Seq binding 

sites, we observed that 65.10% were true positives, while 8.81% were false predictions (Supplemental Table 

4B). However, we also observed a broad distribution in true positive values across these DNA-binding 

motifs (4.71-65.10%), and also noted a relatively low range of false positives (1.68-8.81%). This is 
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reflective of a limitation in the ability for DNA-motif’s to consistently predict true transcription factor 

binding.  

 

 

Determining overlap of differentially enriched chromatin with islet ChIP and histone datasets 

 

Given that may of the DNA-motifs associated with transcription factors do not have available ChIP-

Seq datasets derived from mouse pancreatic islets, we sought to understand whether differential chromatin 

between cell types could be associated to transcription factors and histone markers integral to pancreatic 

islet cell fate that do have available ChIP data, as opposed to relying only on predictive motifs. As we 

previously observed strong enrichment of transcription factor binding sites across all open islet chromatin, 

we wanted to confirm if this overlap is augmented in differentially enriched chromatin associated with 

pancreatic islet transcription factor binding sites via aggregated islet ChIP data - Pdx1, Nkx6-1, Neurod1, 

Insm1, Foxa2, Nkx2-2, Rfx6, and MafA -  and select, key histone marks — H3K27ac [91], H3K4me3 [91], 

and H3K4me1 [12]. Our intention in integrating these data was in anticipation that they may help delineate 

whether enhancer regions are poised (defined by: H3k4me1) [92], or active (defined by: H3k27ac and 

H3k4me1) [93], and whether promoter regions are active (defined by: H3k4me3) [94]. Indeed, we observed 

that differentially enriched peaks within our comparisons occurred at much higher rates than random chance 

across a majority of transcription factor ChIP data associated with islet cell identity (Supplemental Fig. 7A-

C) as well as all predictive histone marker regions (Supplemental Fig. 7D-F). This further supported our 

hypothesis that open chromatin, and now specifically differentially enriched chromatin, would be directly 

associated with the transcription factors responsible for shaping islet cell-specific gene expression patterns 

and identity. As differentially enriched chromatin is associated with cell-identity regulatory networks, we 

inquired to selectively evaluate these regions for enhancers that may be relevant to pancreatic islet cell 

identity.  
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Identifying and visualizing putative islet cell-type specific enhancers via epiRomics 

These transcription factor and histone ChIP datasets were then fed into an R package named 

epiRomics that we developed to identify putative enhancer regions involved in pancreatic islet cell identity. 

We defined enhancer regions by the co-localization of H3k27ac and H3k4me1 histone modifications within 

islet cell chromatin. We stringently narrowed our definition further by requiring these regions to also have 

transcription factor binding sites - Pdx1, Nkx6-1, Neurod1, Insm1, Foxa2, Nkx2-2, Rfx6, MafA, Isl1, 

Kat2b, Ldb1, and Gata6  – defined by islet ChIP data that are either ubiquitously or selectively expressed 

across the three islet cell types (Fig. 2E-F; Supplemental Fig. 2E; Supplemental Fig. 8A-I). This first pass 

resulted in 28,647 putative enhancer regions (Supplemental Dataset 3). We then filtered this list against 

chromatin accessible regions from our ATAC-Seq data sets of alpha, beta, and delta cells, resulting in 

16,651 putative active enhancers (Fig. 9A). To further increase our confidence in these enhancer calls, we 

crossed our putative enhancer regions against the curated FANTOM5 curated enhancer database [95]. This 

resulted in a conservative list of 3,535 putative enhancer regions. Of these 2,347 were inaccessible to at 

least two out of three islet endocrine cell types (Fig. 9B) (Supplemental Dataset 4). 

In both putative enhancer lists, we found that 39.8-43.2% of the enhancer regions we identified 

were common across all cell types, supporting the theory that related cell types of a common origin would 

have a sizeable commonality of similar regulatory regions involved in development and maintenance (Fig. 

9A-B). Interestingly, between 1.53–10.1% of called enhancers were associated with accessible chromatin 

unique to each cell type. Enhancer regions selective to beta cells were identified at the highest frequency 

(~10%), while alpha and delta enhancers made up ~2% of the list.  

Upon evaluating whether or not our putative enhancer list would recapitulate two previous mouse 

pancreatic islet studies delineating enhancers, we confirmed that our approach was able to independently 

identify an established intronic enhancer on the Slc30a8 gene, demonstrated to be regulated in part by the 
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Pdx1 transcription factor (Fig. 9C) [96]. Our approach also supported a previously identified promoter-

proximal enhancer region targeting Pdx1, with co-occurring binding sites for islet transcription factors 

Insm1, Neurod1, and Foxa2 (Fig. 9D)  [77].  

Given that our approach corroborated enhancers identified through complementary methods in 

previous mouse islet studies, we investigated cell-specific or common putative enhancer candidates by 

evaluating those with the highest number of transcription factor co-binding sites from our list. One of the 

top predicted beta cell-unique putative enhancer regions is located on the sixth exon of the Slc35d2 gene 

and aligns with eight different ChIP co-localization binding sites (Fig. 10A). An alpha cell-unique putative 

enhancer located at a distal-intergenic region ~30kb upstream of Dusp10, overlapped precisely with six 

sites of co-binding from various transcription factors (Fig. 10B). A delta cell-unique region at a distal-

intergenic enhancer region ~21kb upstream of Gm20745 aligned closely with no fewer than 12 sites of co-

binding from multiple transcription factors. (Fig. 10C). And finally, a common enhancer located ~32kb 

upstream of Snap25 – a gene expressed in alpha, beta, and delta cells, associated with a total of 17 co-

binding sites of aggregated transcription factors. (Fig. 10D).  

We noted further examples of enhancer regions that are inaccessible to beta, but present in both 

alpha and delta (Supplemental Fig. 9A) cells, or others with chromatin accessibility across all cell types 

with an adjacent, intronic enhancer region uniquely available to beta cells alone (Supplemental Fig. 9B). In 

particular, the Slc2a2 gene shares common open chromatin across alpha, beta, and delta cells. However, 

beta cells have a gained accessible chromatin region on the first intron identified as a putative enhancer and 

which overlaps with six co-binding sites. Finally, we noted more putative regions that were enriched in 

both alpha and beta cells, and present in delta cells as well (Supplemental Fig. 9C-D).  
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Discussion 

The high quality ATAC-Seq data derived from this study is the first dataset of its kind from FACS-

purified mouse alpha, beta, and delta cells. Moreover, while bulk-ATAC-Seq data from human alpha and 

beta cells have previously been reported, our data are the first to report on chromatin accessibility of delta 

cells and combine these cell’s chromatin landscapes to companion transcriptome data. We believe that our 

data will provide a useful resource that complements our companion transcriptome data that we reported 

previously using the exact same combination of reporter strains [6]. Leveraging these data allowed us to 

confirm previous findings in a human ATAC-Seq study evaluating alpha and beta cells, which suggested 

that alpha cells are poised but repressed from becoming beta cells [5], and present evidence that supports 

that delta cells might be similarly epigenetically poised to adopt a beta cell like gene expression pattern. 

We also now harmonized our ATAC-Seq and RNA-Seq data with a wealth of -omics levels data from our 

colleagues, resulting in a comprehensive multi-layered omics overview that includes histone modifications 

and transcription factor binding sites. Finally, we made these data accessible through an intuitive interface 

that we developed to be navigated without any bioinformatics experience.  

In evaluating the chromatin landscape of alpha, beta, and delta cells, we noted that over half of 

accessible chromatin in any of the cell types corresponded to promoter-proximal regions (~25%) and 

intronic regions (~32%), even though a much smaller fraction of the genome is represented by promoter-

proximal sites. This underscores that a substantial portion of regulatory activity occurs directly at genic 

regions themselves. The enrichment of promoter-proximal and intronic open chromatin we observed in 

mouse islet cells agrees with previous findings in human studies [5, 38]. The strong presence of intronic 

peaks supported previously established findings of how enhancers on introns can act as suppressors [33] or 

drivers of gene expression [97] – in one instance, how Pdx1 regulates the expression Slc30a8 through an 

intronic enhancer [96] – and suggested that these intron regions of accessible chromatin may play a role in 

cell identity (Fig. 8D). Our findings of a large number of peaks residing at distal-intergenic regions (~35%) 

agree with previous research identifying and emphasizing the role of distal intergenic regions acting as 
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enhancers (Fig. 10C-D, Supplemental Fig. 9C-D) in pancreatic islet identity and functional beta cell 

behavior, and through linkage with T2D GWAS studies that link these regions to beta cell dysregulation 

[19, 20, 23, 24, 98, 99].  

Upon evaluating differences in chromatin accessibility between pairwise comparisons, we 

discovered that overall, differentially enriched ATAC-Seq peaks in alpha or delta cells were more likely to 

occur at promoter-proximal regions adjacent to the TSS, whereas peaks enriched in beta cells were often 

found in distal intergenic or intronic regions, suggesting different mechanisms regulating alpha and delta 

cell fate specification (Fig. 5B, 5F). When comparing differentially enriched TSS-associated chromatin and 

respective gene expression, we observed a strong association between chromatin accessibility and gene 

expression. However, both alpha and delta cells showed a preference in putatively poised genes when either 

was compared to beta cells. Of note, MafA is a key transcription factor enriched in beta cells that shows 

abundant chromatin accessibility in both alpha and delta cells (Fig. 2E) but is only expressed in beta cells. 

Another notable example is Pdx1, which shows poised TSS enrichment in alpha cells, but is only expressed 

in beta and delta cells (Fig. 2F).  

Moreover, a majority of alpha- and delta- repressed genes showed intermediate expression in the 

transdifferentiated populations (Fig. 7A-B), further supporting that these are indeed putatively poised. 

These observations are in line with prior data that suggest that  alpha cells are epigenetically poised to 

become beta cells, but are prevented from assuming beta cell transcriptional programs by repressive 

regulators at key beta-specific transcription factors [5, 15]. Our observations here also fit reports of adult 

or juvenile transdifferentiation of alpha-to-beta, or delta-to-beta, respectively [5, 67, 100], although the 

contribution of these processes to beta cell regeneration is uncertain [101]. 

After evaluated motif binding on differentially enriched chromatin, we found that Irx2 and Insm1 

motifs are enriched at promoter-proximal regions of cell-specific alpha peaks when comparing alpha and 

beta cells, suggesting that they directly drive gene expression or repression in alpha cells by binding to 

uniquely accessible chromatin [4, 77]. For Irx2, this indicates that it directly drives gene expression or 
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repression in alpha cells. For Insm1, which is expressed more uniformly in all three endocrine cell types, 

the role that it plays at promoter-proximal accessible chromatin is more complex and cannot be as readily 

inferred. Between alpha and delta cells, the DNA binding motif for Pbx3, a transcription factor implicated 

in driving Sst expression in delta cells, was found preferentially enriched in accessible chromatin associated 

with promoter-proximal peaks [84], while the DNA motif for Atf2, identified as an enriched alpha cell motif 

in a previous human study, was found to be preferential enriched to chromatin associated with intronic 

peaks [5]. Between beta and delta cells, Insm1 and Nkx6.1 had motifs enriched at intronic chromatin regions 

[77, 89], while Fev – recently identified in pancreatic islet development - and Atf3 – linked to enhancer 

regions in EndoC-bH1 cells - were identified as preferential to chromatin associated with distal-intergenic 

regions via their DNA binding motifs [11, 90].  

Utilizing the R package epiRomics, we were able to derive a set of 16,651 putative enhancer peaks. 

Of these regions, 16.7% of enhancers were shared between beta and alpha cells, and 17.8% were shared 

between beta and delta cells, as opposed to the 8.18% shared between alpha and delta cells. Of note, our 

approach identified previously identified intronic enhancers, such as the one located on Slc30a8 that is 

regulated in part via the binding of the transcription actor Pdx1 and a promoter-proximal enhancer region 

upstream of the Pdx1 that is associated with Insm1, Neurod1, and Foxa2 binding, also identified by our 

approach (Fig. 9D) [77]. One final example of an enhancer is situated on the first intron of Slc2a2. having 

unique chromatin accessibility to beta cells, coupled with multiple transcription factor binding sites, 

including Pdx1, MafA, and Nkx6.1, could possibly explain the expression of the gene in beta cells while it 

is near undetectable between alpha and delta cells (Supplemental Fig.9B). Slc2a2 plays a necessary role 

glucose-stimulated insulin secretion [102], with a recent study identifying a downstream enhancer 

regulating Slc2a2 requiring the co-occupancy of both MafA and Neurod1, but also noting that complex 

epigenetic interactions occur beyond the scope of this distal region [103]. 

 One limitation of our approach was that we were constrained to using protein data available to the 

field. The substantial majority are transcription factors associated with beta cells, with the results reflective 
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of this limitation. For instance, 10.1% of the enhancer regions called were unique to beta cells, whereas we 

were only able to identify 1.53-2.47% unique to either delta or alpha cells (Fig. 2E-F; Supplemental Fig. 

2E; Supplemental Fig. 8A-I). The over-representation of beta cell-specific enhancer regions is probably 

explained by the fact that ChIP data for alpha and delta cell-specific enhancers obtained from pure 

populations of primary alpha and delta cells does not exist. While the majority of the transcription factors 

here are associated with beta cells, these data are still informative as delta and alpha regions with absence 

of beta-cell transcription factor binding may be areas regulated through other layers of epigenetics, such as 

methylation, or via alpha- or delta- specific transcription factors for which no ChIP data is currently 

available [94]. While further validation of these regions lays beyond the scope of this study, such 

information would be readily integrated in the future in the multi-omics resource we described here.  

 

 In conclusion, we provide a comprehensive snapshot of the characterization of chromatin 

similarities and differences between mouse alpha, beta, and delta cells. Here, we identify certain TSS genic 

regions that present as putatively poised in either alpha or delta cells and demonstrate intermediate 

expression of these genes in beta cells of a non beta-lineage (either alpha or delta transdifferentiated). We 

also provide a novel approach to identify active enhancers in these cell types through the use of these data 

alongside data integrated from the field using our package, epiRomics, first confirming enhancers identified 

in previous studies, and then showcasing novel regions with potential for further exploration. Taken 

together, we have demonstrated that the integration of chromatin accessibility data via ATAC-Seq with 

other epigenomic data can help further delineate regulatory regions and help answer outstanding questions 

in the field. Studies and resources such as these are relevant in such that they also function as a supportive 

resource for integrative research. Given this, we have made these data along with those aggregated through 

our approach as an interactive resource available on our website.  
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Conclusion 

Here we have established a comprehensive picture of chromatin accessibility between major islet 

endocrine cell types and present the novel chromatin landscape of delta cells. We identified differential 

chromatin accessibility at promoter-proximal regions in both alpha cells and delta cells, when compared to 

beta cells. This finding was in line with a previous study in human islets, and further builds on previous 

literature in the field suggesting that both alpha and delta cells can transdifferentiate into beta cells. We also 

identified preferentially binding pattern differences across the annotated genome in transcription factor 

DNA-motifs across differentially enriched chromatin. Our evaluation of whether chromatin enrichment at 

the gene body is always correlated with gene expression enrichment also demonstrated that transcriptional 

regulation plays a role in determining cell fate rather than chromatin dynamics alone. Lastly, we devised 

and provided a simple approach to utilize and integrate a subset of these epigenomic datasets – ChIP and 

histone - alongside our ATAC-Seq chromatin data integrated with our previously published transcriptome 

of the FACS-purified alpha, beta, and delta cells through the development of an R package, epiRomics. 

This allowed for the visualization of integrated epigenomic data, and furthermore applies a novel approach 

to identify putative enhancer regions, enabling a high-resolution overview of key regions that may be 

responsible for driving cell fate decisions in pancreatic islet cell types. We have made this an interactive 

resource publicly available at https://www.huisinglab.com/epiRomics_2021/index.html. We believe our 

data and the tool we developed to visualize it to be a valuable resource to our field in pursuit of a full 

understanding of the epigenetic control over islet gene expression.  
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Supplemental Figure 1

A
Beta and Alpha FACS  Beta and Delta FACS 
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Figure Legends 

Main Figures 

Figure 1 – Validating alpha, beta, and delta chromatin accessibility ATAC Seq. A: Dimensional 

reduction through principal component analysis across seven samples from all three cell types (See 

Supplemental Table 1 for details). All three cell type’s replicates clustered closer together and separate 

from other cell types. B: Heatmap further confirming quality of replicates and similarity between replicates 

within each cell type. C: Fraction of Reads in Peaks (FRiP) score evaluation across samples, confirming 

high library complexity irrespective of depth of sequencing. D-F: Confirming chromatin accessibility at the 

TSS (arrows) against bulk RNA-Seq expression in key islet cell type-specific marker gene regions - Ins2, 

Gcg, and Sst - in beta, alpha, and delta cells, respectively.  

Figure 2 - Validating chromatin accessibility ATAC Seq alongside companion RNA-Seq expression 

in alpha, beta, and delta cells against hallmark genes governing its respective cell’s identity. All genes 

are oriented for 5’ to 3’ end. A-C: Chromatin accessibility and transcript expression across alpha cell 

hallmark genes Arx, Ttr, and Gc. D-F: Chromatin accessibility and transcript expression across beta cell 

hallmark genes Ucn3, Esr1, and Pdx1. G-I: Chromatin accessibility and transcript expression across delta 

cell hallmark genes Hhex, Rbp4, and Ghsr.  

Figure 3 – Evaluating chromatin accessibility ATAC Seq similarities and differences across all three 

cell types. A: Schematic of annotated genomic regions – promoter proximal, intronic, exonic, distal-

intergenic, or downstream.  B-D: TSS peak (defined as 3kb up or downstream each respective gene) 

chromatin accessibility density across beta, alpha, and delta cells. E-G: Distribution of chromatin peaks 

within each cell type across the annotated genome.  

Figure 4 – Comparing chromatin accessibility through differential enrichment analysis across alpha, 

beta, and delta cells. A: Differential chromatin accessibility peaks between alpha and beta ATAC Seq 

data. A total of 18,409  peaks were considered differentially enriched at p-value <= 0.05 (Supplemental 

Dataset 1). B: Differential chromatin accessibility peaks between alpha and delta ATAC Seq data. A total 

of 12,722 peaks were considered differentially enriched at p-value <= 0.05 (Supplemental Dataset 1). C: 

Differential chromatin accessibility peaks between beta and delta ATAC Seq data. A total of 16,913 were 

considered differentially enriched at p-value <= 0.05 (Supplemental Dataset 1). 

Figure 5 – Regional differences and characteristics of differentially enriched peaks between alpha, 

beta, and delta cells. A: Distribution of regional preference across the annotated genome of differentially 

enriched peaks between alpha and beta cells. B: Regional preference breakdown of differentially enriched 
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peaks between alpha and beta cells, indicating prevalence of enrichment for each cell type and genomic 

annotation. Differentially enriched chromatin favored promoter-proximal peaks in alpha cells, and distal-

intergenic regions in beta cells. C: Distribution of regional preference across the annotated genome of 

differentially enriched peaks between alpha and delta cells. D: Regional preference breakdown of 

differentially enriched peaks between alpha and delta cells, indicating prevalence of enrichment for each 

cell type and genomic annotation. Differentially enriched chromatin favored promoter-proximal peaks in 

alpha cells, and distal-intergenic regions in delta cells. E: Distribution of regional preference across the 

annotated genome of differentially enriched peaks between beta and delta cells. F: Regional preference 

breakdown of differentially enriched peaks between beta and delta cells, indicating prevalence of 

enrichment for each cell type and genomic annotation. Differentially enriched chromatin favored promoter-

proximal peaks in delta cells, and distal-intergenic regions in beta cells. 

Figure 6 – Differentially enriched chromatin at TSS genic regions and their respective gene’s 

expression between alpha, beta, and delta cells. A-C: Schematic of ‘congruent’, ‘incongruent’, and 

‘unexpressed’ categories used to determine the association of enriched chromatin at TSS genic regions and 

respective gene expression. D: Differentially enriched chromatin at TSS genic regions and their respective 

gene’s expression between alpha and beta cells. The majority (50%) of genes with enriched chromatin at 

promoter-proximal regions around their TSS had correlated gene expression (congruent). Another 36% of 

chromatin enriched TSS regions showed repressed gene expression for each cell type (alpha repressed 

(33%) or beta repressed (3%)), and finally, 14% were unexpressed. E: Differentially enriched chromatin at 

TSS genic regions and their respective gene’s expression between alpha and delta cells. The majority (55%) 

of genes with enriched chromatin had correlated gene expression (congruent). Another 24% of chromatin 

enriched TSS genic regions showed repressed gene expression for each cell type (alpha repressed (14%) or 

delta repressed (10%)), and finally, 20% showed no expression. F: Differentially enriched chromatin at 

TSS genic regions and their respective gene’s expression between beta and delta cells. The majority (57%) 

of genes with enriched chromatin had correlated gene expression (congruent). Another 32% of chromatin 

enriched TSS regions showed repressed gene expression for each cell type (beta repressed (1.5%) or delta 

repressed (30.45%)), and finally, 11% showed no difference.  

Figure 7 – Gene expression of poised genes enriched in beta cells with a non-beta cell lineage. A: 

Evaluating alpha repressed genes (Fig. 6A) across alpha, alpha transdifferentiated, and beta cell 

transcriptomes. The great majority (83.6%) of genes repressed in alpha cells showed intermediate 

expression in alpha transdifferentiated cells, and highest expression in beta cells, further validating that 

alpha cells are poised to become beta cells, with a subset (16.4%) of those genes required for the transition.  

B: Evaluating delta repressed genes (Fig. 6C) across delta, delta transdifferentiated, and beta cell 
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transcriptomes. Around half (50.18%) of genes repressed in delta cells showed intermediate expression in 

delta transdifferentiated cells, and highest expression in beta cells, validating that delta cells – to a lesser 

extent than alpha – are also poised to become beta cells, with the remainder of genes (49.82%) required for 

the transition.  

Figure 8 – Evaluating expressed, cell-specific transcription factor footprints on differentially 

enriched peaks across cell types. A: Evaluating cell-specific transcription factor footprints on 

differentially enriched peaks for alpha and beta cells, suggesting transcription factor preference for these 

peaks across the functionally annotated genome. Notably, three known transcription factors were predicted 

to overlap all defined regions of the genome, whereas others showed preference for binding at either 

promoter, exon, intron, or distal regions, suggesting different mechanisms of regulation. B: Evaluating cell-

specific transcription factor footprints on differentially enriched peaks for alpha and delta cells, suggesting 

transcription factor preference for these peaks across the functionally annotated genome. No known 

transcription factor was predicted to bind to all defined regions of the genome, with the majority binding to 

either intronic, distal, or promoter areas. C: Evaluating cell-specific transcription factor footprints on 

differentially enriched peaks for beta and delta cells, suggesting transcription factor preference for these 

peaks across the functionally annotated genome. No known transcription factor was found predicted to bind 

to all defined regions of the genome, with the great majority showing a preference for distal, intronic, or 

promoter regions.  

Figure 9 – Putative enhancer detection overlap between the three cell types. A: First-pass overlap of 

unfiltered putative enhancers called with our novel package, epiRomics. Open chromatin regions in at least 

one cell type were crossed against two informative histone marks - H3k27ac and H3k4me1 – and 

transcription factor binding data to call putative enhancer regions. A total of 28,647 regions were identified 

(Supplemental Dataset 3). 39.8% of putative enhancer calls had chromatin accessible to all three cell types, 

suggestive of pancreatic endocrine cell development and maintenance involvement. The overlap of 

enhancer calls with open chromatin between any two cells type was 8.51% - 18.9%. Between 1.89% - 

9.94% of calls were unique to one cell type alone. B: First-pass enhancer calls were filtered against the 

curated FANTOM5 database delineating all identified enhancers in the mouse genome. This resulted in a 

much more conservative list of 3,535 regions identified (Supplemental Dataset 4). The distribution of 

enhancers unique or common between cell types remained comparable, with 43.2% identified across all 

three cell types, and 1.53% - 10.1% unique to a cell type. C: Confirming an enhancer on the second intron 

of Slc30a8, identified in a previous study, with 14 sites of co-binding from multiple transcription factors. 

D: Confirming an a promoter-proximal enhancer (~1kb upstream) of the gene that codes for the 

transcription actor Pdx1, with 9 sites of co-binding from multiple transcription factors.  
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Figure 10– Visualizing novel, putative enhancer detection between cell types. A: Visualizing a beta-

unique enhancer region. An exonic enhancer region selected from our filtered enhancer call list, with 8 sites 

of co-binding from various transcription factors relevant to pancreatic islet cell identity and maintenance 

[1]. B: Visualizing an alpha-unique enhancer region; a distal-intergenic enhancer region (~30kb upstream 

of Dusp10) selected from our filtered enhancer call list, with 6 sites of co-binding from various transcription 

factors. C: Visualizing a delta-unique enhancer region. A distal-intergenic enhancer region (~21kb 

upstream of Gm20745) selected from our filtered enhancer call list, with 12 sites of co-binding from various 

transcription factors. D: Visualizing a non-unique enhancer region common across all three cell types. A 

distal-intergenic enhancer region (~32kb upstream of Snap25) selected from our filtered enhancer call list, 

with 17 sites of co-binding from various transcription factors. 
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Supplemental Tables 

Supplemental Table 1 – Quality control metrics across all ATAC-Seq replicates described.  

Supplemental Table 2 – Aggregated dataset description and reference. A:  Pancreatic islet ChIP Seq 

transcription factor data aggregated to identify enhancer and enhancer regions. B: Pancreatic islet histone 

data aggregated to identify enhancer and enhancer regions. The final approach utilized two histone marks 

deemed most relevant at delineating putative enhancer regions while taking into account a risk of both false 

positives and false negatives.  

Supplemental Table 3 – Validating open chromatin peaks against known pancreatic islet ChIP binding 

sites. A:  Evaluating the extent of open chromatin– as defined by our ATAC-Seq consensus peak set – 

contained binding sites for known, pancreatic islet transcription factors. Percent of open chromatin with 

associated binding sites ranged from 0.31-29.07%. The transcription factors Foxa2, Insm1, and Neurod1 

had the highest number of binding sites. B: Evaluating the extent of each ChIP-Seq experiment’s binding 

site calls overlapped with open chromatin. Percent of overlap ranged from 0.35-63.79%. Nkx2.2, Neurod1, 

and Insm1 had the greatest overlap.  

Supplemental Table 4 – Validating motif-calling approach against known ChIP binding sites. A:  

Pancreatic islet ChIP Seq transcription factor peak calls analyzed by the motif-calling method to determine 

sensitivity and specificity. True positive calls ranged from 0.59-57%, and false positives ranged from 1.19-

8.34%. B: Pancreatic islet ChIP Seq transcription factor peak calls limited to open chromatin determined 

by the consensus peak set analyzed by the motif-calling method to determine sensitivity and specificity. 

True positive calls ranged from 4.71-65.10%, and false positives ranged from 1.68-8.81%. 
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Supplemental Figures 

Supplemental Figure 1 – FACS sorting gates used to isolate alpha, beta, and delta cells through our 

mouse reporter lines. FACS sorting gates isolating beta cells (Ins2-mCherry+) from either alpha (Gcg-

YFP+) or delta cells (Sst-YFP+). Double negatives are non-beta and non-alpha or non-delta cells. Double 

positives (mCherry/YFP+) represent cells with both Ins2 expression and Gcg or Sst expression, reflective 

of transdifferentiated beta cells. These were not included in any of the samples. 

Supplemental Figure 2 – Validating more chromatin accessibility ATAC Seq and companion RNA-

Seq expression in alpha, beta, and delta cells against hallmark genes governing its respective cell’s 

identity. All genes are oriented for 5’ to 3’ end. A-C: Chromatin accessibility and transcript expression 

across alpha cell hallmark genes Irx1, Irx2, and MafB. D-F: Chromatin accessibility and transcript 

expression across beta cell hallmark genes Abcc8, Nkx6.1, and Slc2a2. G-I: Chromatin accessibility and 

transcript expression across delta cell hallmark genes Ffar4, Gabrb3, and Ache.  

Supplemental Figure 3 – Chromatin enrichment does not always correlate with associated gene 

expression. Select hallmark genes defining demonstrating congruent and incongruent chromatin and 

gene enrichment for cell-specific markers. A: Differentially enriched chromatin at TSS regions and 

respective gene expression between alpha and beta cells. The majority of cell-specific markers show TSS-

enrichment within the cell type of expression. Notably, Nkx6.1 and MafA show TSS enrichment in alpha 

cells, despite being transcription factors associated with beta cells. B: Differentially enriched chromatin at 

TSS regions and respective gene expression between alpha and delta cells. C: Differentially enriched 

chromatin at TSS regions and respective gene expression between beta and beta cells. The majority of cell-

specific markers show TSS-enrichment within the cell type of expression.  

Supplemental Figure 4 – Evaluating KEGG and gene network enrichment across differentially 

enriched peaks between alpha and beta cells. A: KEGG enrichment of differentially enriched peaks 

identified pathways common between the two cell types, or unique to one. B: Gene network enrichment 

indicative of possible functions of differentially enriched chromatin regions between the two cell types.  

Supplemental Figure 5 – Evaluating KEGG and gene network enrichment across differentially 

enriched peaks between alpha and delta cells. A: KEGG enrichment of differentially enriched peaks 

identified pathways common between the two cell types, or unique to one. B: Gene network enrichment 

indicative of possible functions of differentially enriched chromatin regions between the two cell types.  

Supplemental Figure 6 – Evaluating KEGG and gene network enrichment across differentially 

enriched peaks between beta and delta cells. A: KEGG enrichment of differentially enriched peaks 
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identified pathways common between the two cell types, or unique to one. B: Gene network enrichment 

indicative of possible functions of differentially enriched chromatin regions between the two cell types.  

Supplemental Figure 7 – Verifying transcription factor binding sites and histone mark occurrence at 

chromatin peaks to determine significance (observed versus expected). A-C: Transcription factors on 

chromatin regions deemed enriched between differentially enriched chromatin across all three pairwise 

comparisons.. The majority of transcription factors used in our analysis were deemed statistically significant 

when observed compared to predicted. D-F: Histone mark occurrence on chromatin regions deemed 

enriched between differentially enriched chromatin across all three pairwise comparisons. All histone marks 

used in our analysis were deemed statistically significant when observed compared to predicted.  

Supplemental Figure 8 – Aggregated  transcription factor ATAC Seq and companion RNA-Seq 

expression in alpha, beta, and delta cells. All genes are oriented for 5’ to 3’ end. A-I: Chromatin 

accessibility and gene expression for aggregated ChIP datasets.  

Supplemental Figure 9 – Further illustration of enhancer calls. A: Visualizing a common alpha and 

delta enhancer region, unavailable in beta cells. B: Further illustration of a beta-unique enhancer region, 

occurring on the first intron of Slc2a2, with 6 co-binding sites for multiple transcription actors. C-D: Two 

examples of called enhancer regions common across all three cell types. Both are in distal-intergenic 

regions of the genome and exhibit high transcription factor co-binding activity.  
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Supplemental Datasets 

Supplemental Dataset 1 – Annotated consensus chromatin peak set across alpha, beta and delta cells, 

along with differential enrichment results between the three pairwise comparisons.  

Supplemental Dataset 2 – Congruent and incongruent genes of differentially expressed genes between 

the three pairwise comparisons. Congruent genes showed gene expression in the same direction as 

chromatin accessibility enrichment, whereas incongruent genes had opposing expression and enrichment.  

Supplemental Dataset 3 – Unfiltered putative enhancer calls defined by open chromatin region in at 

least one of three cell types, overlapping the histone markers H3K27ac and H3K4me1. These regions 

were crossed against pancreatic islet transcription factors to identify enhancer regions.  

Supplemental Dataset 4 – Filtered putative enhancer calls defined by open chromatin region in at 

least one of three cell types, overlapping the histone markers H3K27ac and H3K4me1. These regions 

were crossed against pancreatic islet transcription factors to identify enhancer regions. Last, these data were 

filtered for regions occurring on curated enhancer calls in the mouse genome using the FANTOM5 

database.  
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