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Abstract

During activation, T cells undergo extensive changes in gene expression which shape the

properties of cells to exert their effector function. Therefore, understanding the genetic

regulation of gene expression during T cell activation provides essential insights into how

genetic variants influence the response to infections and immune diseases. We generated a

single-cell map of expression quantitative trait loci (eQTL) across a T cell activation

time-course. We profiled 655,349 CD4+ naive and memory T cells, capturing transcriptional

states of unstimulated cells and three time points of cell activation in 119 healthy individuals.

We identified 38 cell clusters, including stable clusters such as central and effector memory T

cells and transient clusters that were only present at individual time points of activation, such

as interferon-responding cells. We mapped eQTLs using a T cell activation trajectory and

identified 6,407 eQTL genes, of which a third (2,265 genes) were dynamically regulated

during T cell activation. We integrated this information with GWAS variants for

immune-mediated diseases and observed 127 colocalizations, with significant enrichment in

dynamic eQTLs. Immune disease loci colocalized with genes that are involved in the

regulation of T cell activation, and genes with similar functions tended to be perturbed in the

same direction by disease risk alleles. Our results emphasize the importance of mapping

context-specific gene expression regulation, provide insights into the mechanisms of genetic

susceptibility of immune diseases, and help prioritize new therapeutic targets.
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Introduction

Translating variants from genome-wide association studies (GWAS) to function provides

insights into disease biology and improves treatment options 1. However, linking disease

variants to effector genes and elucidating the mechanisms by which they affect disease is

challenging, as most GWAS variants reside in non-coding regions of the genome.

Disease-associated variants are enriched within enhancer and promoter regions 2,3, and

therefore are likely to act via gene expression regulation. Colocalization analysis can

determine whether GWAS loci share a common causal variant with nearby expression

quantitative trait loci (eQTL), implying that gene expression changes and disease risk are both

driven by the same causal variants 4. Thus, maps of gene expression regulation across tissues

and cell types provide important resources for linking GWAS signals to effector genes.

However, the interpretability of results from these resources is limited because the majority of

available eQTL maps were generated from bulk tissues which include a mixture of cell types.

Gene expression regulation can be cell-type specific 5 and transcriptional profiling of tissues

at a single-cell resolution has uncovered extensive cellular heterogeneity which is masked

with bulk RNA sequencing 6. Additionally, the available eQTL maps fail to capture dynamic

gene expression regulation, which can be context specific, e.g. manifesting throughout

developmental stages 7,8 or in response to an external stimulus 9,10. Therefore, mapping

dynamic gene expression regulation in a disease relevant tissue at a single cell level could

provide a greater resolution into the molecular mechanisms which underlie GWAS

associations and drive disease risk.

We and others have previously demonstrated that variants associated with complex immune

diseases are enriched in enhancers and promoters upregulated upon CD4+ T cell activation
11,12. CD4+ T cells undergo activation in response to antigens arising from pathogens (such as

from bacterial, viral or fungal infections) or self antigens (in autoimmune reaction). CD4+ T cells

can be broadly divided into naive cells, which have not encountered an antigen, and memory

CD4+ T cells, which have previously undergone activation. Although closely related, there are

transcriptional and phenotypic differences in how naive and memory CD4+ T cells respond to

activation 13–15, and there is a high level of heterogeneity within T cells. While naive T cells are

generally thought to be a uniform population, memory cells comprise several subpopulations

including central memory (TCM), effector memory (TEM) and effector memory cells re-expressing

CD45RA (TEMRA). These subsets differ in their proliferation capacity and effector potential, as

manifested by the secretion of cytokines that drive inflammation 16–18. Additionally, a small
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subpopulation of regulatory T cells (Tregs) controls T cell activation, thus preventing

inflammatory reaction. Transcriptionally, these subpopulations form a continuum of

phenotypes within T cells 19.

Given the dynamic nature of T cell activation and the heterogeneity of CD4+ T cells, we used

single-cell RNA-sequencing (scRNA-seq) to map eQTLs across 119 individuals throughout

CD4+ T cell activation. Using 655,349 high quality single-cell transcriptomes spanning four

time points of T cell activation, we defined 38 stable and transient cell populations. We then

reconstructed activation trajectories for naive and memory CD4+ T cells, which enabled us to

identify eQTL effects manifesting at different points in time and across different

subpopulations of cells. We identified 6,407 genes with evidence of genetic regulation, of

which 2,265 exhibited dynamic genetic regulation i.e. eQTL effects which changed as a

function of time during T cell activation. Finally, we used GWAS summary statistics for eleven

immune-mediated diseases and identified 127 genes for which we detected colocalizing

signals between eQTLs and GWAS loci. Colocalizing genes were enriched in time-dependent

eQTLs, as well as in biological pathways controlling T cell activation. Together, our data

suggest that dysregulation of gene expression dynamics during T cell activation could be a

key mechanism underlying immune disease and emphasise the importance of accounting for

context specific gene expression regulation in interpretation of GWAS signals.

Results

Transcriptional response of CD4+ T cells to activation at single-cell resolution

To investigate the gene expression changes induced by CD4+ T cell activation, we isolated

naive and memory CD4+ T cells from 119 healthy individuals (Supplementary Table 1 and

Supplementary Figure 1) and stimulated the cells using anti-CD3/anti-CD28 coated beads

(Figure 1A and Methods). We profiled gene expression using droplet-based scRNA-seq 20 in

activated and resting state. We chose three time points to capture cells before (16h) and after

the first division (40h), as well as after cells have acquired an effector phenotype (5d) 19. This

resulted in a high quality transcriptomic data from 655,349 cells (Methods and

Supplementary Figure 2).

To identify gene expression and cellular composition changes induced by activation, we

performed dimensionality reduction and embedding using the uniform manifold
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approximation (UMAP) 21 (Methods). Cells separated by time point of stimulation, and formed a

gradual progression from resting cells to the most activated cells (largely represented by cells

collected at 5d) (Figure 1B). This progression was accompanied by changes in known T cell

activation markers. For example, an early activation marker, CD69, was upregulated at 16h but

downregulated at later time points. In contrast, expression of IL2RA, a marker of late

activation, peaked at 40h and remained present at 5d (Figure 1C). We identified a large

population of cells that localized between the resting and 16h-stimulated cells (Figure 1B). The

majority of cells in this group (74%) originated from 16h activated cells, and a proportion (26%)

from the 40h time point. We hypothesised that this group represented an early cell state

through which cells transitioned as they became activated. To test this, we analysed cells from

the 16h and 40h time points independently. We confirmed that at each of these time points

cells separated into two clear groups, one of which corresponded to the early transitional

state (Supplementary Figure 4). Cells in this group expressed 4-fold fewer genes compared

to the other cells at their respective activation time points and showed lower expression of a

set of CD4+ T cell activation markers which we previously defined 19 (Supplementary Figure

4). Furthermore, these cells expressed a unique profile characterised by high expression of

STAT1, IFIT3, and GBP1, which differed from resting or fully activated cells (Figure 1C).

Therefore, we concluded that these cells represent a distinct, early activation state which we

annotated as lowly active cells.

We next used unsupervised clustering to map the dynamic changes in cell subsets and states

throughout the activation time course. This revealed a total of 51 cell clusters, which were

merged into 38 cell populations based on their correlated patterns of gene expression

(Supplementary Figure 5 and Methods). This included 25 stable subpopulations, which were

consistently detected at multiple time points, and 13 transient cell states (Figure 1D and

Supplementary Table 2). Stable subpopulations belonged to one of five phenotypes: naive

(TN), central memory (TCM), effector memory (TEM), effector memory re-expressing CD45RA

(TEMRA), and regulatory (nTreg) CD4+ T cells (Figure 1D and 1E). The memory T cell pool consists

of an average of 59% TCM, 30% TEM, 5% Tregs, and 5% TEMRA. We observed that the percentage

of TEM cells decreased with the individual’s age, with a corresponding increase in TCM and

TEMRA. The distribution of subpopulations was not different between males and females

(Supplementary Figure 7). Finally, as we previously demonstrated, these subpopulations

formed a naive-to-memory transcriptional progression 19.
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In contrast to stable subpopulations, transient cell states were only detected at specific

activation time points (Figure 1D and 1E). For example, we observed a population of cells

expressing high levels of interferon (IFN)-induced genes (eg. IFI6, IFIT3, ISG15, MX1) which

emerged during early activation (Supplementary Figure 6). This is consistent with

IFN-induced genes being upregulated during early stages of immune response and their role

in the initiation of an inflammatory response. Another transient subpopulation expressed high

level of NFκB response genes (eg. NFKBID, REL, BCL2A1) (Supplementary Figure 6) and was

most dominant at mid-stages of activation, while absent altogether at later stages.

Additionally, we observed a population of cells undergoing mitosis, as well as a group of cells

expressing high levels of heat shock protein (HSP) family members (e.g. HSPA1A, HSPA1B,

DNAJB1; Supplementary Figure 6). Both of these were present only during late activation.

Interestingly, HSPs have recently been implicated in controlling T cell responses to fever 22

We also observed a subset of TEM cells which upregulated MHC class II molecules (eg.

HLA-DRA, HLA-DPA1, HLA-DRB1) during late activation (Supplementary Figure 6), in

agreement with previous descriptions of activation-induced changes in expression dynamics

at the HLA locus 23. Importantly, individuals uniformly contributed to each cluster, with more

variability observed in TEMRA as previously described 17,24 (Supplementary Figure 6F).
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Figure 1. A single-cell transcriptional map of CD4+ T cell activation. A) Schematic of the study design.
B) UMAP embedding of scRNA-seq data for unstimulated CD4+ T cells and at three timepoints after
activation. Colours represent cell types (blue for TN and red for TM) and shades of colours indicate time
points (lighter shades for early time points and darker shades for late time points). Right panel
represents the five broad cell states. C) Dotplot of highly variable gene expression throughout T cell
activation. Shades of blue represent average expression in each cell population, and dot sizes
represent the proportion of cells expressing the gene. D) Separate UMAP embeddings for the five
broad cell states. Colours represent cell populations derived from unsupervised clustering. E)
Proportion of different cluster groups present at each time point. Cell populations defined from
clustering were classified into one of 10 families, represented in different colours.
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eQTL map of CD4+ T cell activation time course

To study the genetic regulation of gene expression underpinning T cell activation, we

performed cis-eQTL mapping. For each time point, we first reconstructed average gene

expression profiles per cell type and per individual (i.e. pseudobulk transcriptomes)

corresponding to the TN and TM CD4+ T cell types (Methods). In total, we detected between

1,545 and 3,006 genes with significant cis eQTL effects (eGenes) at different activation time

points (Figure 2A). We observed that between 210 and 640 eGenes were only detected in

individual cell states (Figure 2B). For example, kinase NME4 and purinoceptor P2RX4 were

only detected as eGenes in memory T cells at 16h and 40h of activation, respectively (Figure

2C). To assess the extent of this phenomenon and quantify the degree of eQTL sharing

across cell types and cell states, we used the multivariate adaptive shrinkage (mashR) method
25. This analysis showed a higher level of eQTL sharing across cell types within the same time

point (Supplementary Figure 9A) than across different time points, suggesting that eQTL

effect sizes might change throughout T cell activation. Finally, to understand which cell

functions might differ in their genetic regulation across cell types, we tested for pathway

enrichment in eGenes detected in one cell type and not the other, i.e. in memory but not naive

T cells and vice versa (Figure 2D). To confidently capture a set of genes that are cell-type

specific, we only retained genes with an adjusted p-value lower than 0.01 in one cell type, but

higher than 0.1 in the other. This showed that, while eGenes specifically detected in

40h-stimulated naive cells were enriched for cell cycle and cell division, eQTLs specific to

16h-stimulated memory cells were enriched in pathways driving mitochondrial organization.

To gain a more granular view of gene expression regulation throughout T cell activation we

next mapped eQTLs in each of the 38 cell populations that we defined at the single cell level

(Figure 1). We detected up to 3,197 eGenes per T cell population. As expected, we observed a

high overlap between eGenes detected in different T cell clusters (Figure 2E). Nevertheless,

effector memory cells (TEM) and effector memory cells expressing HLA genes (TEM HLA+) had a

higher number of specific eGenes (62-97%) compared to other subpopulations, suggesting

that they are more transcriptionally different than other T cell subsets. eGenes detected in

subpopulations were enriched in the immune relevant pathways. For example, in activated

Tregs, and various effector T cell subsets we observed enrichment in immune disease genes,

IFN-γ signalling and antigen presentation (Figure 2F). We also noticed that smaller

subpopulations, such as TEMRA, yielded a low number of eGenes (3-23) which reflected that the

statistical power to detect eGenes was highly correlated with the number of cells profiled per
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individual per subpopulation (R2 = 0.82, p = 4.8x10-10 ) (Figure 2G). In addition, when we

subsampled cells from a cell population and performed eQTL mapping we observed that

eGene discovery increased proportionally to the number of analysed cells (Supplementary

Figure 9B). These results imply that the uncertainty in gene expression estimation from low

numbers of cells is high, thus reducing our power to map eQTLs. Despite this limitation, we

identified eGenes manifesting in effects in subpopulations and absent in the pseudobulk

analysis of the whole naive or memory T cell populations. For example, we identified between

56 and 153 eGenes (10 to 16% of the eGenes detected at the respective time points) which

were found in the subpopulation of naive T cells with high levels of IFN-induced genes, but

absent in the pseudo-bulk analysis from activated naive T cells (Figure 2H) (e.g. FBXL18).

Similarly, we identified 47-528 (13-31%) eGenes which were detected in either of the two

largest memory cell subpopulations (TCM and TEM) but not in pseudo-bulk memory T cells

(Figure 2I). One example of such a gene is enzyme GNPDA1, which is only detected as an

eGene in TCM but not in TEM or pseudo-bulk memory cells (Figure 2I).
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Figure 2. eQTL mapping in resting and activated CD4+ T cells. A) Number of significant eGenes
detected at each activation time point. Colors represent cell types (blue for TN - naive and red for TM -
memory). B) Number of significant eGenes shared between cells sampled at each time point. C)
Example of T memory cell specific eQTLs detected at 16h and 40h. Box plots show the mean
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expression value of the gene in each sample (Z-scored), stratified by genotype. Each dot represents a
measurement obtained from a separate individual. D) Enriched pathways in cell state specific eGenes.
Color represents adjusted p-value from the enrichment test. E) Pairwise comparison of eGenes shared
between cell subpopulation. Only subpopulations with more than 100 eGenes were used in this
analysis. Green represents the percentage of shared eGenes, yellow represents the percentage of cell
type specific eGenes. F) Pathways enriched by eGenes detected in each subpopulation. Only
subpopulations with more than 100 eGenes were used in this analysis. Colors represent adjusted
p-values from the enrichment test. G) Scatter plot showing the correlation between number of cells per
donor and number of detected eGenes in each cluster. H) Number of subpopulation specific eQTLs
detected in TCM and TEM cells. Bar plots indicate the numbers of eGenes detected in the TCM and TEM

subpopulations that are shared with memory T cells as a whole. Boxplots show an example eQTL
specific to the TCM subpopulation. Each dot represents a measurement obtained from a separate
individual. I) Subpopulation specific eQTLs detected in IFN-responsive clusters. The bar plot indicates
the number of eGenes detected in the IFN-responsive subpopulation that are shared with naive T cells
as a whole. The boxplots show an example eQTL specific to this subpopulation. Each dot represents a
measurement obtained from a separate individual.

eQTLs are enriched in proliferation and immune response gene modules

We next sought to understand which transcriptional programmes shape the T cell response

throughout the course of activation, and whether eGenes regulate specific cell functions. We

computed pairwise gene expression correlations of 11,130 highly expressed and variable

genes across 106 individuals and the 38 identified cell populations (Supplementary Figure 8

and Methods). This co-expression network captures gene expression patterns at a

subpopulation resolution 26. Our analysis revealed 12 different gene modules which represent

key cellular functions involved in T cell activation (Figure 3B and Supplementary Table 3). For

example, module 4 represented a group of genes involved in the regulation of cell cycle

checkpoints and DNA repair mechanisms, and was highly expressed at 40 hours and five

days after activation, confirming that the first cell division happens around two days after

activation 27. Further, module 11 included genes whose expression peaked in lowly active and

16h-stimulated cells and remained high at later activation time points. These genes were

involved in IFN-induced antiviral mechanisms such as OAS and ISG15-signalling. These

pathways are induced rapidly upon viral infection. Finally, module 2 involved NOTCH4,

RUNX2 and RUNX3-signaling. Genes in this module were lowly expressed in resting and

lowly active cells and peaked at 16h and 40h, after which genes were downregulated,

returning to their baseline levels. This pattern of transient upregulation was also observed for

genes involved in RNA metabolism (gene modules 5 and 8).
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Figure 3. eQTLs are enriched in proliferation and immune response gene modules. A gene
co-expression network was built using WGCNA to identify gene modules. A) Heatmap showing the
expression pattern of the 12 identified gene modules. Rows correspond to cell subpopulations. Colours
represent the scaled (Z-scored) average expression of all genes belonging to a module in a given
subpopulation. B) Pathways enriched in each gene module. Shades of blue represent the
log10-transformed enrichment p-values. C) Enrichment of eGenes in gene modules. Shades of blue
represent the log10-transformed permutation p-value. D) Relationship between a gene’s connectivity
and the effect size of its lead eQTL variant. All eQTL effect sizes were log2-transformed. Blue dots
represent significant eGenes, while gray dots represent genes which do not pass the multiple testing
correction.

In addition to separating genes by their temporal dynamics, the co-expression networks also

highlighted subpopulation specific gene expression modules, which correspond to effector T

cell functions. For example, genes involved in cytokine secretion and interleukin signaling

were highly expressed in TEM and TEMRA, but not TCM or TN cells (Figure 3A and 3B), reflecting

the potential of TEM and TEMRA cells to initiate a fast and robust response 18,19. This unique

property of TEM and TEMRA to mediate a quick effector response upon activation was

additionally demonstrated by upregulation of genes within the T cell receptor signaling

pathways (i.e. targets of ZAP-70 and downstream of CD3 zeta chain phosphorylation) at an

earlier stage of activation than other subpopulations. While TEM and TEMRA showed high

expression of the TCR-induced module in the lowly active and 16h states, other
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subpopulations did not express these genes until 40h after stimulation (Figure 3A and 3B).

This reinforces the notion that TEM and TEMRA cells respond to stimulation faster than TCM or TN

cells. Furthermore, we observed that module 12, which included genes important for cytotoxic

function and chemokine signalling, was most highly expressed in resting and activated TEMRA

cells (Figure 3A). This cytotoxic capacity sets TEMRA cells apart from any other T cell

subpopulation.

Next, we asked whether eGenes localised to particular regions of the co-expression

networks. Using a permutation strategy (Methods), we showed that eGenes detected in

activated T cells were particularly enriched in gene modules 2 (metabolism), 3 (cell division)

and 9 (immune processes) (Figure 3C). This suggests that eGenes are involved in T cell

division and function. In contrast, eGenes detected in resting cells showed strongest

enrichment in gene module six, which was enriched for RNA metabolism and Herpes infection

(Figure 3C). Finally, we observed that eQTL effect sizes negatively correlated with the

centrality values of the corresponding eGenes in the coexpression network, i.e. eGenes with

larger eQTL effects were more likely to be less connected in the network (Figure 3D). This

suggests that genes at the edges of the co-expression network are more tolerant to variability

in gene expression.

Modelling of time-dependent eQTL effects throughout CD4+ T cell activation

T cells undergo profound transcriptional changes during activation and previous studies have

shown that eQTLs can be context specific 9,28. Therefore, we sought to assess the role of

genetic variation on the regulation of gene expression dynamics throughout T cell activation

(dynamic eQTLs). We used trajectory inference 29 (Methods) to derive a T cell activation

trajectory, thus allowing us to model activation time as a continuous variable (Figure 4A). We

verified that the obtained trajectory agreed with the time points profiled experimentally, with

the lowest pseudotime values being assigned to resting cells and the highest to cells

activated for five days (Figure 4A). Furthermore, the temporal dynamics of well defined T cell

activation markers such as IL7R (reduced expression upon activation), CD69 (early activation)

and IL2RA (early and late activation) (Figure 4B) followed their expected patterns, confirming

that the inferred trajectory accurately reflects known biology. In total, we identified 5,090

genes for which expression changed as a function of pseudotime (Supplementary Table 4).

For example, IRF1 and TOP2A were respectively downregulated and upregulated at late

stages of activation (Figure 4B). Furthermore, we confirmed that dynamically regulated genes
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were enriched in pathways related to T cell activation, such as DNA replication and regulation

of cell cycle, mRNA transcription and processing, protein translation, a metabolic switch to

support the electron transport chain, signalling downstream of the TCR, signaling by

interleukins, PIP-mediated activation of Akt signaling, and expression of target genes from

NF-κB (Supplementary Table 4). Finally, we observed that memory T cells were characterised

by lower pseudotime values compared to naive cells sampled at the same time points. This is

a consequence of memory T cells showing a shorter activation path, likely reflecting a faster

activation.

To model dynamic eQTLs, we divided the inferred pseudotime trajectory into ten bins (i.e.

pseudotime deciles) and averaged the expression of genes per individual in each bin

(Methods). Splitting the trajectory into bins enabled us to control for the numbers of cells and

therefore to reliably estimate mean gene expression values. We then applied linear mixed

models to test for a significant interaction between genotypes and average pseudotime value

per bin (Figure 4C and Methods). This enabled us to identify eQTLs for which the effect size

changed as a function of activation trajectory. We identified 2,265 genes with dynamic eQTL

effects, which comprised 34% of eGenes in our dataset (Supplementary Table 5). We applied

both linear and quadratic models and observed that most eQTLs followed linear dynamics

across the activation trajectory (74% and 76% in naive and memory T cells, respectively)

(Figure 4E). However, for 502 and 495 genes in naive and memory T cells respectively, we

detected a non-linear interaction with activation trajectory. For example, we identified eQTLs

with non-linear dynamics for GBP7 and CFLAR. These were only apparent upon activation and

the magnitude of their effect sizes peaked at mid stages of the trajectory, significantly

diminishing thereafter (Figure 4D). In contrast, the magnitude of an eQTL for SERINC5 peaked

at early stages of the trajectory and diminished as cells progressed through activation (Figure

4D), as opposed to an eQTL for the interferon alpha inducible gene IFI27L1 for which an

effect size linearly increased along the activation trajectory. Finally, we observed that linear

eQTLs were enriched in metabolic pathways, while non-linear eQTLs were enriched both in

metabolic processes and immune processes like T cell proliferation and leukocyte

degranulation (Figure 4F). This suggests that the genetic regulation of immune genes is

complex, and evident only during certain stages of T cell activation.
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Figure 4. eQTLs with dynamic effects during CD4+ T cell activation. A) Cells were ordered into a
branched pseudotime trajectory using monocle3. The UMAP embedding shows all cells, coloured by
their estimated pseudotime values. Black lines indicate the inferred branched trajectory. B) Example
genes that significantly change as a function of activation pseudotime. Each dot corresponds to a cell,
and colours represent experimental time points. C) Schematic of the analysis approach. Cells were split
into ten windows of equal cell numbers according to their estimated pseudotime values. Linear and
quadratic mixed models were applied to each previously identified eGene to test for an interaction
between genotypes and T cell activation pseudotime. D) Heatmap showing the expression pattern on
each dynamic eGene in memory T cells. Boxplots show examples of non-linear and linear dynamic
eQTLs. The average expression of the gene within each pseudotime window was stratified by
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genotype. E) Number of eGenes with evidence of a significant genotype-pseudotime interaction (i.e.
dynamic eQTLs) in a linear or quadratic mixed model. F) Pathways enriched in linear and quadratic
eGenes. Shades of blue represent log10-transformed enrichment p-values.

Colocalization at GWAS loci identifies candidate immune disease genes

The eQTLs mapped in our dataset provide a unique opportunity for functional interpretation

of GWAS loci by testing for colocalization between eQTLs and GWAS signals. We used

summary statistics for 13 immune-mediated diseases available in the GWAS catalog 30

(Methods) and tested for colocalization with eQTLs that we mapped in pseudobulk naive and

memory CD4+ T cells, as well as in the T cell subpopulations and cell states. We used the

Bayesian method coloc 31 with masking 32, which removes the assumption of a single causal

variant per locus (Methods). We identified 471 unique colocalizations (posterior probability

(PP4) > 0.8), corresponding to 247 GWAS loci for 11 diseases and 314 SNP-gene pairs

(Supplementary Table 6). This enabled us to prioritize 127 candidate disease-causal genes

(Figure 5A). Importantly, 77 (60%) colocalizing genes were detected only upon activation, and

would have been missed by profiling only ex vivo cells. Out of those, 47 (37%) were captured

specifically in later time points of activation (40h + 5d) (Figure 5B). This is important, since

eQTL studies mostly relied either on a resting state or a single time point, usually at the early

stages of T cell activation 12,33.

Generally, we observed more colocalizations in larger cell populations (for which we were

more powered to detect eQTLs) and in traits for which a larger GWAS was available (Figure

5A). The traits with the highest number of colocalisations included Crohn’s disease (CD) and

ulcerative colitis (UC), followed by allergic diseases (AllD), and previous studies have

demonstrated a role of T cells in disease pathobiology 11,12,34. However, we also observed that

type 1 diabetes (T1D) and systemic lupus erythematosus (SLE), although characterised by a

similar number of loci, differed in the proportion of identified colocalizations. In particular, we

observed a lower number of colocalizations with SLE variants, in line with the studies pointing

towards B cells as the drivers of this disease 11,35. We found that 72% of genes colocalized only

with one trait, 14% colocalized with two traits and 14% colocalized with 3 or more diseases

(Supplementary Figure 10A). Overall, we found that 220 disease loci (89%) regulated a single

gene, while 22 (9%) and 5 (2%) loci regulated two and three genes in the associated regions,

respectively.
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While most colocalizing genes were identified in bulk cell types (median per trait = 66%), we

observed between 2 and 15 new candidate genes per disease (median per trait = 25%) which

could only be detected in individual subpopulations (Figure 5C). For example, we identified

an eQTL for TYK2 specifically detected in 16h-stimulated TEM cells colocalized with a CD

association (Supplementary Figure 10B). Similarly, we identified a colocalization between a

CD locus and the ZMIZ1 eQTL specific to 16h-stimulated TCM cells (Supplementary Figure

10C). A closer analysis of ZMIZ1 revealed that this eQTL is absent in other memory T cell

populations such as TEM cells. This causes the signal to be masked in bulk memory cells,

where it is no longer detectable (Supplementary Figure 10C). Both of these colocalizations

are subpopulation and time point-specific, which highlights the importance of measuring gene

expression regulation with cell type and cell state resolution to accelerate interpretation of

disease associations. We observed no differences in the network connectivity of colocalizing

genes compared to the remaining eGenes (Supplementary Figure 10D).

Given that the majority of colocalizations were detected in activated T cells we next asked if

the expression of these genes showed temporal dynamics. We observed that dynamic eQTLs

were significantly enriched in colocalizing eGenes in both naive and memory T cells (36/73

and 44/72 colocalizing genes in naive and memory cells, Fisher’s test p-values 7.9 x 10-5 and

2.6 x 10-7, respectively). Next, we investigated the gene expression patterns between eGenes

that colocalized in both naive and memory cells. While we observed broadly similar gene

expression patterns between naive and memory T cells (Figure 5D), we also identified genes

with differences in expression patterns and genetic regulation in naive and memory T cells.

For example, IL-18 receptor (IL18R1) is a dynamic eQTL only in memory T cells, and it is highly

expressed during early activation of memory T cells, while the expression peaks at late

activation in naive T cells (Figure 5E). In another example, we observed that CTLA4, which

was detected as a dynamic eQTL in both memory and naive T cells, showed different

regulation in the two cell types (Figure 5F); in naive cells upon activation cells upregulated

and maintained high expression of CTLA4, while in memory cells the expression peaked at

early activation and then diminished. This eQTL colocalized with a type 1 diabetes associated

locus and individuals carrying the disease risk allele showed lower expression of CTLA4. This

example is particularly illustrative because of the role CTLA4 plays in regulating the immune

response. Reducing expression of CTLA4 at early stages of cell activation could result in

reduced ability to suppress T cell activation (as CTLA4 is a key mediator of this process) and

would contribute towards excessive T cell activation in disease settings. Additionally, the

same CTLA4 eQTL variant colocalized with suggestive association signals for rheumatoid
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arthritis and celiac disease, in fact, CTLA4 antibody (e.g. abatacept) is used as a treatment in

rheumatoid arthritis (Supplementary Table 6).

Finally, we assessed whether immune disease loci affected any specific cellular functions. We

observed that, collectively, colocalizing genes were significantly enriched in pathways

involved in the regulation of T cell activation and proliferation (Figure 5G). There were 26

genes driving this enrichment, and mainly included the colocalizing genes with association

signals shared across two or more diseases. For 24 out of 26 genes the direction of effect of

the risk allele on gene expression was consistent between traits. Most of the colocalizing

genes clustered into connected modules based on the STRING database 36, i.e. the genes

were physically interacting at the protein level or were co-expressed across a broader range

of tissues (Figure 5H). Furthermore, neighbouring genes within these modules tended to be

perturbed in the same direction by immune disease variants. For example, we observed a

large module of interconnected genes, 12 of which were involved in the regulation of T cell

activation and proliferation. For example, PTPRC was directly connected to CD6, CD5, CTLA4,

and TNFRSF14. Strikingly, all of these genes were downregulated by risk alleles at nearby

disease loci, suggesting that reduced expression of these genes may drive the disease

development. Together, our results demonstrate that immune disease loci colocalize with

genes that are involved in the regulation of T cell activation, and that genes with similar

functions tend to be modulated by disease risk alleles in the same direction.
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Figure 5. Colocalization of CD4+ T cell eQTLs with GWAS associations for immune diseases. A)
Number of significant colocalizations between an eQTL and a GWAS signal identified for each cell
type-trait combination. Marginal bar plots represent the number of independent associations reported
in the GWAS (X axis) and the number of eGenes detected per subpopulation (Y axis). Light and dark
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bars indicate whole (pseudobulk) cell populations and subpopulations, respectively. B) Number of
additional colocalizing genes detected in stimulated cells. C) Number of colocalizing genes observed in
whole cell populations (pseudobulk), subpopulations or both. D) Heatmap showing the expression
pattern of coloc eGenes in naive and memory T cells. The color of annotation boxis shows genes that
are dynamic and static eQTLs. E) Boxplot shows IL18R1 dynamic eQTL. The average expression of the
gene within each pseudotime window was stratified by genotype. F) Boxplot shows CTLA4 dynamic
eQTL. The average expression of the gene within each pseudotime window was stratified by genotype.
Locus plot for a colocalization between a CTLA4 dynamic eQTL and a GWAS association for type 1
diabetes. Each dot represents a variant, with colors indicating their LD with the lead eQTL variant. G)
Tile plot shows enriched pathways within colocalizing genes as well as genes driving the enrichment.
Barplots show adjusted p-values from the enrichment test. Rectangles on top show the disease that
each gene colocalizes with. Red indicates that the disease variant increases the gene expression and
blue indicates that it decreases gene expression. H) STRING network of colocalizing genes. Red
indicates that the disease variant increases the gene expression, blue that it decreases, and yellow that
the effect on gene expression is disease dependent. Black outline highlights genes belonging to the
top enriched pathway (GO.0050867: positive regulation of cell activation).

Discussion

T cell activation plays a critical role in regulating the immune response, and dysregulation of

this process results in poor response to infections, development of common inflammatory and

autoimmune diseases, and in severe instances primary immunodeficiencies. Our study

provides a high-resolution dynamic map of the transcriptional changes which accompany

cells’ transition from a resting state through to three time points of activation.

By using single-cell transcriptional profiling across 655,349 CD4+ T cells we provide an

unbiased view of the T cell response to stimulation, detecting a variety of cell states which

change throughout activation. We identified 38 different cell states, including 13 transient cell

states. The granularity of the single-cell resolution in our study provides new explanations to

previous results from bulk gene expression. For example, a previous study of CD4+ T cell

activation concluded that T cells upregulate a module of IFN-related genes early upon TCR

engagement 37. Here we recapitulate this observation and further resolve it to one specific

subpopulation of naive cells, rather than the whole T cell pool. We also demonstrate that

previously described changes in the expression of class II MHC molecules upon T cell

activation 23, are more precisely driven by TEM cells. Therefore, our data provides a unique

resource for the interpretation of existing and design of future studies of T cell function.

Often eQTLs obtained from bulk RNA-seq mask cell-type specific effects 38, but such gene

expression effects can be mapped with single-cell transcriptomics 39. The available immune

cell eQTL resources 33,40, including those capturing T cell activation 37, have relied on sorting

cells based on the expression of cell surface markers. While sorting enriches cell populations

of certain characteristics, it cannot capture cellular heterogeneity in the sorted populations.
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The single-cell approach of our study allowed us to map eQTLs individually within clusters

identified in an unbiased manner, providing insights into cellular processes that are

genetically regulated across different cell types. For example, we observed that at 40h of

activation eGenes detected in naive CD4+ T cells (TN 40h) were particularly strongly enriched

in different cell metabolic processes, T cell receptor signalling and cell cycle pathways. These

profiles set the TN 40h cell state firmly apart from other cell states. On the other hand, we

observed that eGenes detected in more differentiated cell clusters, such as TN NFκB, Tregs, and

TEM cells were enriched in pathways attributed to cell effector functions (antigen processing,

interferon gamma signalling) and pathways implicated in dysregulation of immune

homeostasis in tissues (type I diabetes, autoimmune thyroid disease and allograft rejection).

The results of our study will help to infer in detail the effects of genetic regulation on the

development of effector T cell functions, and could in the future inform cell engineering

approaches.

Expression QTLs can also be context specific, including those resulting from a response to a

specific stimulus 9,28. However, most existing eQTL resources have profiled cells and tissues at

steady states. While these resources have been instrumental in interpreting GWAS signals,

the proportion of disease associated variants colocalizing with eQTLs remains low 41. By

profiling multiple time points of T cell activation, our study further emphasises the complexity

of context specific gene expression regulation. Importantly, had we only focused on the

resting state, we would have missed the majority of the eQTL effects, impacting our ability to

identify eGenes colocalizing with disease associated variants (only 40% in resting state).

Indeed, eQTLs colocalizing with disease associated variants were enriched for eGenes with

dynamic gene regulation as compared to all the eGenes in our dataset. This emphasizes the

challenges of translating GWAS signals to function and could explain why, at present, eQTL

colocalizations are explaining only a small proportion of GWAS associations.

Finally, we show that our results capture relevant disease biology and can be used to

prioritize novel drug targets. For example, our study found a CTLA4 eQTL which colocalizes

with GWAS associations for three immune diseases, and in all the cases the risk allele

decreased gene expression. This agrees with the known role of CTLA4 in removing

costimulatory molecules from the surface of antigen presenting cells, thus downregulating T

cell activation 42. Thus, a partial reduction of CTLA4 function results in impaired immune

regulation and higher odds of initiating an autoimmune response 43. Furthermore, this is in line

with an existing therapeutic approach in which a CTLA4 fusion protein is administered to

patients with rheumatoid arthritis to regulate T cell activation and help reduce inflammation 44.
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Importantly, we show that the expression of CTLA4 is dynamically regulated, peaking during

early cell activation.

Similarly, a TYK2 eQTL, for which we detected the effect in TEM cells at 16 hours of activation,

colocalizes with variants associated with Crohn’s disease. The TYK2 locus is associated with

10 different autoimmune disorders with at least three independent signals reported 1,45,46. One

of these signals is explained by a missense variant, which reduces signalling downstream of

several cytokine receptors, resulting in a protective effect for immune diseases 1. Here, we

show a similar effect, where individuals carrying a protective allele for Crohn’s disease have

lower expression of TYK2 in TEM cells at 16 hours of activation. Inhibition of TYK2 in treatment

of inflammatory diseases is currently in clinical trials 47. In addition, a SLAMF7 eQTL detected

at 40h of activation colocalizes with a GWAS signal for MS, and SLAMF7 regulators are used

in the treatment for multiple myeloma 48. Therefore, MS could be an alternate indication.

These examples imply that colocalizing genes from our study could have therapeutic value for

immune diseases.

One limitation of this study is that we investigated T cell activation in healthy individuals. As

the disease does not alter the underlying genetics, we can identify eQTLs that determine

immune disease susceptibility. However, we are likely missing T cell states specific for

inflammatory conditions or eQTL signals that only occur following the disease onset. Future

studies in disease cohorts will be required to understand the differences in eQTL discovery

before and after onset of inflammatory diseases.

Our results emphasize the importance of mapping context-specific gene expression

regulation, provide insights into the mechanisms of genetic susceptibility of immune diseases,

and help prioritize new therapeutic targets.
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Methods

Cell isolation and stimulation

Blood samples were obtained from 119 healthy individuals of British ancestry. Of these, 67

were male (53.7%) and 52 female (56.3%), and the mean age of the cohort was 47 years (sd =

15.61 years) (Supplementary Figure 1A). Human biological samples were sourced ethically

and their research use was in accord with the terms of informed consent under an IRB/EC

approved protocol (15/NW/0282).

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque PLUS (GE

healthcare, Buckingham, UK) density gradient centrifugation. Naïve (CD25- CD45RA+

CD45RO-) and memory (CD25- CD45RA- CD45RO+) CD4+ T cells were isolated from the

PBMC fraction using EasySep® naïve CD4+ T cell isolation kits and memory CD4+ T cell

enrichment kits (StemCell Technologies, Meylan, France) according to the manufacturer's

instructions. Naive and memory T cells were then stimulated with anti-CD3/anti-CD28 human

T-Activator Dynabeads® (Invitrogen) at a 1:2 beads-to-cells ratio. Cells were harvested after 16

hours, 40 hours, and 5 days of stimulation. In addition, unstimulated cells kept in culture

without any beads for 16 hours were used as a negative control (i.e. zero hours of activation).

Single-cell RNA-sequencing

Upon harvesting, cells were resuspended in RPMI media to obtain a single-cell suspension.

Next, cells were stained with the live/dead dye 4’,6-diamidino-2-phenylindole (DAPI) and dead

cells were removed from the suspension using fluorescence-activated cell sorting (FACS). Live

cells were resuspended in phosphate buffer saline (PBS), at which point cells obtained from

different individuals but belonging to the same experimental condition were mixed together at

equal ratios to form a single cell suspension (i.e. pool). Each pool corresponded to a mix of

cells from four to six different individuals (median = 6), and we processed a total of 172 pools.

Cells were next processed for single-cell RNA-sequencing using the 10X-Genomics 3’ v2 kit 20,

as specified by the manufacturer’s instructions. Namely, 1 x 104 cells were loaded into each

inlet of a 10X-Genomics Chromium controller in order to create GEM emulsions. Each

experimental condition was loaded in a separate inlet. The targeted recovery was 6,000 cells

per pool. Reverse transcription was performed on the emulsion, after which cDNA was

purified, amplified, and used to construct RNA-sequencing libraries. These libraries were
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sequenced using the Illumina HiSeq 4000 platform, with 75 bp paired-end reads and one cell

pool per sequencing lane.

Genotyping

Genomic DNA was isolated from a suspension of 1 x 106 PBMCs from each individual in the

study using a DNA isolation kit (Qiagen). Genotyping was then performed using the Infinium

CoreExome-24 (v1.3) chip (Illumina).

Genotyping data analysis and imputation

Quality control was performed by removing samples with <95% called genotypes, as well as

keeping only variants with MAF > 5%, SNP call rate > 95%, and in Hardy-Weinberg equilibrium

(HWE; p-value < 0.001).

Imputation of untyped variants was performed as described in Bossini-Castillo et al 49. Briefly

we used BEAGLE 4.1 50 with a reference panel consisting of the 1000 Genomes Phase 3 51 and

the UK10K samples 52. Variants derived from imputation were quality filtered using the

following parameters: allelic R-squared (AR2) >= 0.8, HWE p-value < 0.001, and MAF > 10%. In

total we retained 4,641,747 variants after imputation, which were used for eQTL analysis. We

confirmed that all but one of the individuals in our cohort clustered with the British in England

and Scotland (GBR) population in PCA space (Supplementary Figure 1B). This individual

clustered with the Finnish population and was removed from any further analyses. Finally,

related individuals were kept for every analysis except eQTL mapping, where one random

individual from each pair was used.

Single-cell RNA-sequencing data analysis

Data processing and quality controls

Raw scRNA-seq data were processed using the Cell Ranger Single-Cell Software Suite 20

(v3.0.0, 10X-Genomics). In brief, reads were first assigned to cells and then aligned to the

human genome using STAR 53, with the hg38 build of the human genome (GRCh38) as a

reference for alignment. Ensembl (v93) was used as a reference for gene annotation, and

gene expression was quantified using reads assigned to cells and confidently mapped to the

genome.
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Results from RNA quantification in Cell Ranger were imported into Python (v3.8.1) and

analysed using scanpy (v1.4.4) 54. Samples with less than 70% of reads mapping to cells were

discarded. This resulted in 142 (82%) cell pools and 106 (89%) individuals being kept after

quality filters. In addition, any cells with less than 200 detected genes, an unusually high

number of genes (defined as over four standard deviations above the mean number of

detected genes), or more than 10% of reads mapping to mitochondrial genes were removed

from the data set. Finally, any genes detected in less than 10 cells were discarded. This

resulted in 713,403 cells (96.77% of total) and 23,360 genes passing quality filters.

Deconvolution of single cells by genotype

Each scRNA-seq sample comprised a mix of cells from unrelated individuals. Thus, natural

genetic variation was used to assign cells to their respective individuals. First, a list of

common exonic variants was compiled from the 1000 genomes project phase 3

exome-sequencing data 51. This list included any variants with a minor allele frequency of at

least 5% in the European population. Next, cellSNP (v0.99) 55 was used to generate pileups at

the genomic location of these variants. These pileups, in combination with the variants called

from genotyping in each individual, was used as an input for Vireo (v1), 55. Vireo uses a

Bayesian approach to infer which cells belong to the same individual based on the genetic

variants detected within scRNA-seq reads. Any cells labelled as “unassigned” (less than 0.9

posterior probability of belonging to any individual) or “doublets” (containing mixed

genotypes) by Vireo were discarded. On average, 92% of the cells in each pool were

unambiguously assigned to a single individual in the cohort (Supplementary Figure 2).

Cell cycle scoring

After quality control, the number of unique molecular identifiers (UMIs) mapping to each gene

in each single cell were normalized for library size and log-transformed using scanpy’s default

normalization parameters 54. Next, a publicly available list of cell cycle genes 56 was used in

combination with scanpy to perform cell cycle scoring and assign cells to their respective

stage of the cell cycle.

Exploratory data analysis and removal of cellular contaminations

We performed exploratory analysis at each experimental time point independently. Cells

collected at the same time point were first loaded into scanpy, where normalised

log-transformed UMI counts were used to identify highly variable genes. Between 701 and

1,668 highly variable genes were detected at each time point (mean = 1,301). Only highly

variable genes were used as a basis for the remaining analyses in this section.
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Having identified highly variable genes, technical covariates (cell culture batch) and unwanted

sources of biological variation (i.e. number of UMIs per cell, proportion of reads mapping to

mitochondrial genes, cell cycle scores, and reported sex) were regressed out using scanpy’s

regress_out() function. Next, log-UMI counts were scaled (setting 10 as the maximum value)

and used as an input for principal component analysis. The first 40 principal components

were used to build a k-nearest neighbours (kNN) graph (with k=15), which was used as an

input for embedding and visualization with the uniform manifold approximation and projection

(UMAP) algorithm 21. This kNN graph was further used for unsupervised clustering using the

Leiden algorithm 57.

At this stage, cell clustering revealed a low proportion of three contaminating cell types which

were consistently detected at each time point: B cells, CD8+ T cells, and antigen-presenting

cells (APCs). Furthermore, two additional sources of contamination (SOX4+ precursor cells,

and cells expressing hallmarks of cell culture stress) were detected at zero hours of activation

(Supplementary Figure 3). Cell contaminations were removed from the data set, resulting in

655,349 (91.86% of total) high quality cells kept and successfully annotated as CD4+ T cells.

Identification of a lowly active T cell subpopulation

Having removed cellular contaminations, highly variable genes were recalculated and the

analysis described in the previous section (i.e. batch regression, scaling, PCA, graph

construction, embedding, and clustering) was repeated using CD4+ T cells only. Cells

sampled at 16h and 40h showed a clear separation into two groups, one of which expressed a

significantly lower number of genes and showed comparatively lower levels of previously

described T cell activation markers 19 (Supplementary Figure 4A). This population of lowly

active cells was separated from its original time point and treated as an independent group

for clustering.

Clustering and cluster annotation

Unsupervised clustering was applied independently to the five cell groups of cells identified in

the study (resting, lowly active, 16 hours, 40 hours, and five days) based on their respective

kNN graphs and using the Leiden algorithm 57. This resulted in 51 cell clusters. The similarity of

these clusters to each other was assessed by performing PCA on the full data set (i.e. all cells)

and estimating the Euclidean distance between pairs of clusters (from cluster centre to cluster

centre) based on the first 100 principal components. Clusters with high levels of similarity or

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2021. ; https://doi.org/10.1101/2021.12.06.470953doi: bioRxiv preprint 

https://paperpile.com/c/6Rl5ah/W61Pu
https://paperpile.com/c/6Rl5ah/vnM7
https://paperpile.com/c/6Rl5ah/grti
https://paperpile.com/c/6Rl5ah/vnM7
https://doi.org/10.1101/2021.12.06.470953
http://creativecommons.org/licenses/by/4.0/


overlapping biological characteristics were merged together (Supplementary Figure 5B). This

resulted in 38 distinct groups of cells. Gene markers for each of these groups were identified

using scanpy’s built-in function for gene ranking, which uses a T test to compare the average

expression of a gene in a cluster versus its expression outside the cluster. Each cell group

was annotated by comparing its inferred marker genes with known cell type markers reported

in the literature.

Ordering of cells in a pseudotime trajectory

To perform trajectory inference, raw gene expression measurements for all CD4+ T cells in the

study (i.e. 655,349 cells spanning all time points) were imported into R (v3.6.1) and analysed

using monocle3 (v0.2.0) 29. As opposed to other analyses, where cells from each time point

were treated independently, here some unwanted sources of variation such as cell cycle

scores correlated with the biological process of interest (i.e. T cell activation). Thus, we

implemented a hierarchical batch regression approach, where cell cycle scores were first

regressed within each time point, followed by batch regression in the full data set. In brief,

principal component analysis was performed based on all cells using monocle3’s PCA

implementation. Next, a matrix containing the first 100 principal component coordinates for

each cell was split by time point. Cell cycle effects were then regressed from each sub-matrix

independently using limma’s lmFit function 58. Finally, these cell cycle-corrected matrices were

merged back into a full PCA matrix and cell culture batch effects were regressed based on

the full data set using the mutual nearest neighbours (MNN) algorithm 59.

After batch correction, the first 100 principal components were used to build a kNN graph and

this graph was embedded into a two-dimensional space using UMAP. Finally, UMAP

coordinates were used to infer a branched pseudotime trajectory using monocle3’s

learn_graph function. To identify genes that changed as a function of pseudotime, monocle3’s

graph test was applied to all genes. This test assesses whether cells adjacent in the trajectory

show more correlated expression of a gene than cells which are far apart (i.e. autocorrelation).

Correction for multiple testing was performed using the Q value procedure 60. A gene was

considered as significantly associated with pseudotime if it had a Q value ≤ 0.05 and a

Moran’s I (a measurement of the magnitude of autocorrelation) larger than 0.05 61.

Co-expression network analysis

In order to preserve most of the resolution provided by scRNA-seq while also minimising

zero-inflation and technical noise, gene expression was aggregated per individual and per
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cluster into a pseudobulk count matrix. More specifically, raw UMI counts per gene were

summed across all cells belonging to the same cluster and to the same individual. Summed

expression values were normalised by library size and gene length, resulting in a single

expression matrix with transcript per million (TPM) units (i.e. a pseudobulk matrix).

The resulting pseudobulk matrix was imported into R (v3.6.1) and analysed using the weighted

gene co-expression network analysis (WGCNA) package (v1.69) 26. Only genes with ≥ 1 TPM in

at least 30 samples were used for this analysis. TPM values were first log-transformed, after

which unwanted sources of variation (i.e. cell culture batch, reported sex, and age) were

regressed out using limma’s (v3.40.6) removeBatchEffect() function 58. Next, genes were

filtered by their level of variability, with only genes showing a standard deviation ≥ 0.1 across

samples being kept. This resulted in 11,130 genes taken forward for network construction.

The functions available in WGCNA were used to calculate network properties for these genes,

such as their level of connectivity, as well as to build an adjacency matrix. The soft power

parameter was set to 4 in these analyses, based on an evaluation of the [0,20] parameter

space. The resulting adjacency matrix was transformed into Topological Overlap Matrices

(TOM) of similarity and dissimilarity. Finally, hierarchical clustering was applied to the TOM

dissimilarity matrix in order to build a dendrogram of genes. Gene modules were inferred from

this dendrogram using R’s dynamicTreeCut package (v1.63.1). Mean module expression values

were calculated as the average expression of all genes belonging to that module in a given

sample.

Pathway enrichment analysis

All pathway enrichment analyses were performed using gprofiler2 (v 0.1.9), setting the gene

list of interest as an unordered query and using all genes detected in the study as the

background. Only enriched terms derived from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) or the REACTOME database were kept. gprofiler2’s built-in approach (gSCS)

was used for multiple testing correction. Enriched pathways were visualized in R using the

pheatmap package (v1.0.12).

Expression quantitative trait loci (eQTL) mapping

Mapping of eQTLs
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For each gene we calculated mean expression per cluster per donor. To ensure the high

quality eQTL mapping, we only kept genes with non-zero expression in at least 10% of donors

and mean count per million (cmp) higher than one. We retained between 8,940 and 11,516

genes. To identify cis-eQTLs we used tensorQTL (v1.0.3) 62 to run a linear regression for each

SNP-gene pair, using a 500 kilobase window within the transcription start site (TSS) of each

gene (i.e. cis_nominal mode). We regressed the first 15 gene expression principal components

from this analysis, so as to capture the confounders within our dataset. To correct for the

number of association tests performed per gene, we used a cis permutation pass per gene

with 1000 permutations. Finally, to correct for the number of genes tested and identify

significant eGenes we performed a q-value correction 63 for the top associated SNP-gene pair,

setting a q-value threshold of 0.1.

Analysis of eQTL sharing across  cell types

To assess the sharing between eQTLs, we performed a meta-analysis across cell types and

cell states using the multivariate adaptive shrinkage (mashR) method 25. MashR is a Bayesian

method which estimates the pairwise level of sharing between cell states, where an eQTL is

defined as shared if it has the same effect size (within a factor of 0.5) and direction in two cell

states.

Modelling of eQTL effect sizes as a function of network centrality

To assess the relationship between a gene’s genetic regulation and network centrality, the

effect size of each gene’s lead eQTL variant was modelled as a function of the gene’s

centrality value in the co-expression network described above. This was first done assuming a

linear relationship. However, substantial heteroskedasticity was observed, which suggested a

non-linear relationship, as confirmed using a Breusch-Pagan heteroskedasticity test 64. Thus,

we log-transformed the eQTL effect sizes, which resulted in homoskedastic data and a strong

linear relationship between the variables. All linear models were built and tested using base

R’s lm() function.

Modelling of dynamic psudotime-dependent eQTL effects

To identify pseudotime-dependent eQTL effects, we divided the activation trajectory into 10

windows containing roughly equal numbers of cells (i.e. pseudotime deciles) and averaged

the expression of each gene per individual within each window. To facilitate the interpretation

of coefficients, pseudotime windows were scaled from 0 to 1 prior to this analysis. In order to

account for the higher correlation in expression values derived from the same individual at

multiple pseudotime windows, we applied linear (1) and quadratic (2) mixed models, with
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individuals modelled as random intercepts. We used these models to test for a significant

interaction between genotypes (i.e. the genetic dosage carried by each individual at the lead

eQTL variant for that gene) and pseudotime, as follows:

1. Z_score ~ Genotype + Pseudotime + Cell_culture_batch + Sex + Age +

Genotype*Pseudotime + (1 | Donor)

2. Z_score ~ Genotype + Pseudotime + Pseudotime2 + Cell_culture_batch + Sex + Age +

Genotype*Pseudotime + Genotype*Pseudotime2 + (1 | Donor)

In both cases, the null model was computed using the same parameters while excluding the

Genotype*Pseudotime and Genotype*Pseudotime2 terms. P-values were calculated by

comparing each model to its respective null model using analysis of variance (ANOVA). All

models were implemented in R using the lmer() function. In order to reduce the burden

imposed by multiple testing, we only applied this approach to variants previously identified as

significant lead eQTL variants for a gene by tensorQTL in at least one time point. This was

done separately for naive and memory T cells.

Estimation of pairwise LD

We performed LD calculations based on the individual-level genotype information for the

individuals in this study obtained from genotyping. Namely, we used PLINK (v1.90b4) 65 to

calculate the correlation between pairs of genetic variants across all individuals in the cohort,

using either the --r or the --r2 flags. We restricted this calculation to variants with MAF > 0.01,

computing correlations for any pairs of variants located within 1 Mb of each other and at most

500 variants away. The command used was: plink --r/--r2 --ld-window 500 --ld-window-kb

1000 --maf 0.01 --vcf-half-call h

Integration of eQTLs with GWAS signals

Pre-processing of GWAS summary statistics

Full summary statistics files from previous GWAS studies were downloaded from the GWAS

catalogue 66. These files corresponded to a recent release containing harmonised summary

statistics, which were lifted over to build GRCh38 of the genome and for which the effect size

and effect direction of each variant was aligned to the reported alternative allele 30. Any

signals coming from the X or Y chromosomes, as well as from the MHC region (ch6:28,510,120

– chr6:33,480,577) were discarded. These summary statistics corresponded to 13
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immune-mediated diseases: celiac disease 67, rheumatoid arthritis 68, ankylosing spondylitis 69,

asthma 70, systemic lupus erythematosus 71, type 1 diabetes 72, multiple sclerosis 73, primary

biliary cirrhosis 74, allergic disease 75, juvenile idiopathic arthritis 76, psoriasis 77, ulcerative

colitis, and Crohn’s disease 78.

Colocalization analysis

Genomic loci of interest were identified by intersecting eQTL signals in each cell type with

GWAS loci for 13 immune-mediated diseases. For each trait-cell type pair, we applied

colocalization to any locus where a lead variant for a significant eQTL (q value < 0.1) was

located within 100 kb and in high LD (r2 > 0.5) with a significant GWAS variant (i.e. any GWAS

variant with nominal p value < 1 x 10-5, which enabled us to capture suggestive association

signals). In addition, we required at least 50 variants to be available for testing at each

candidate locus.

At each of these loci, coloc (v4.0.4) was used to test for colocalization between the eQTL and

the GWAS signals. Importantly, these analyses were based on the recently developed

masking approach, which relaxes coloc’s previous assumption of a single causal variant per

locus 32. This is similar to performing conditional analyses at each locus. In brief, we defined a

500 kb window centred at the lead eQTL variant and tested for colocalization using all

common variants located in the window and present in both the eQTL and the GWAS

summary statistics. We used the pairwise LD calculations from our cohort as a basis for

masking, setting an r2 threshold of 0.01 to separate independent signals. Coloc’s prior

parameters were set to their recommended values in the most recent publication 32 (p1=1x10-4,

p2=1x10-4, p12=5x10-6). Significant colocalizations were defined as any instances where the

estimated posterior probability of a shared causal variant (PP4) was ≥ 0.8. In order to discard

potential false positives due to noisy association signals, we only kept for further analysis

traits with more than one significant colocalization (11 out of 13 traits).

To infer the relationship between gene expression and disease risk at each locus, we

estimated the GWAS and eQTL effect sizes (i.e. logeOR and gene expression Z-score) for the

GWAS variant in highest LD with the lead eQTL variant at the locus. We concluded that a

variant increased disease risk via an increase in gene expression if the variant had the same

direction of effects in both studies. In the opposite case, we concluded that the variant

increased disease risk via a decrease in gene expression. If the same variant had different
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estimates of eQTL effect size in different T cell populations, we required that all effect sizes

had the same direction.

Code and data availability

The raw single-cell RNA-sequencing data described in this study will be deposited in the

European Genome-Phenome Archive (EGA) upon manuscript publication. In addition, eQTL

lead signals and summary statistics will be deposited in the eQTL catalogue

(https://www.ebi.ac.uk/eqtl/). A count matrix with processed scRNA-seq UMI counts for all cells

in the study, as well as lower dimensional representations of the data set, will be made

available via the Open Targets website. All the codes used for processing and analyzing the

data in this study are compiled in a GitHub repository, which will be made publicly available

upon manuscript publication.
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Supplementary Figures

Supplementary Figure 1. Demographic characteristics of the cohort. A) Distriution of sex and age for
all individuals. B) Genetic ancestry was inferred for each individual in the cohort by comparing their
genotypes (common genetic variants obtained from genotyping and imputation) with a panel of five
well-defined European ancestries in PCA space. The populations in this panel were derived from the
1000G project (Methods) and corresponded to Utah residents with Northern and Western European
ancestry (CEU), Finnish in Finland (FIN), British in England and Scortland (GBR), Iberian Population in
Spain (IBS), and Toscani in Italy (TSI).
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Supplementary Figure 2. Quality metrics of the scRNA-seq data set. A) Proportion of cells per sample
which are confidently assigned to one individual (assigned), contain RNA from more than one individual
(doublets) or are unassigned (unassigned). B) Dot plot showing the relationship between number of
cells per inlet and number of doublets. C-D) Violin plots showing the number of detected genes (left),
proportion of reads mapping to mitochondrial genes (central) and number of detected UMIs (right) in
assigned cells, doublets and unsigned cells. These metrics are shown separately for resting (C) and
stimulated (D) samples. E) Dot plot showing the number of detected genes and proportion of reads
mapping to mitochondrial genes in each cell. Colours indicate resting (orange) and stimulated (blue)
cells.
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Supplementary Figure 3. Identification and removal of cellular contaminations in the scRNA-seq
data set. Separate UMAP embeddings for cells obtained at four time points. Colours represent cell
populations derived from unsupervised clustering. Green cells are CD4+ T cells. Other colours
represent contaminations that were removed for subsequent analyses. A) Resting cells. B)
16h-stimulated cells. C) 40h-stimulated cells. D) 5 day-stimulated cells.
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Supplementary Figure 4. Identification of a population of lowly active CD4+ T cells. A-B) UMAP
embedding of all CD4+ T cells sampled at 16h (A) and 40h (B) after activation. Each dot is a cell, with
colours indicating either the lowly active population (orange; left panel), the scaled average expression
of a set of T cell activation markers from bulk RNA-seq (central panel), or the number of genes detected
per cell (right panel). C) Location of the lowly active population of cells in a UMAP embedding
containing CD4+ T cells from all time points in the study.
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Supplementary Figure 5. Cluster merging strategy. A) Unsupervised clustering was applied
independently to the five cell groups of cells identified in the study (resting, lowly active, 16 hours, 40
hours, and five days). Colours represent cell populations derived from unsupervised clustering. This
resulted in 51 cell clusters. B) The similarity of clusters was assessed by performing PCA and estimating
the Euclidean distance between pairs of clusters based on the first 100 principal components. Below
the dotted red line are clusters with high levels of similarity that were merged together This resulted in
38 distinct groups of cells.
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Supplementary Figure 6. CD4+ T cell subpopulation markers. A) Cell subpopulations and marker
genes detected independently for CD4+ T cells belonging to each of five broad cell groups: resting (A),
lowly active (B), 16h-stimulated (C), 40h-stimulated (D), and 5 day-stimulated (E) cells. UMAP
embeddings (left panels) show each cell as one dot, with colours indicating cell subpopulations derived
from unsupervised clustering and cluster merging (38 subpopulations in total). Equivalent
subpopulations detected at more than one time point are indicated in the same colour. Dot plots (right
panels) show the top marker genes identified for each subpopulation. Shades of blue indicate the
scaled mean expression of a gene in each subpopulation, while dot sizes correspond to the proportion
of cells in the subpopulation that express the gene. F) Dot plot showing the percentage of cells
belonging to an individual within each cluster. The X-axis is arranged by cluster size (the smallest to the
largest).
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Supplementary Figure 7. Memory T cell distribution. A) Percentage of memory T cell subpopulations.
B) Relationship between age and percentage of nTregs, TCM, TEM and TEMRA. C) Percentage of memory T
cell subpopulations stratified by sex. Each dot represents a measurement obtained from a separate
individual.
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Supplementary Figure 8. Identification of gene expression patterns active throughout CD4+ T cell
activation. A) Genes were ordered into a co-expression matrix using WGCNA (Methods). This
dendrogram shows genes arranged by similarity. Modules of genes with correlated expression are
indicated by blocks of colour at the bottom. B) Relationship between a gene’s connectivity (as inferred
from co-expression network analysis) and the effect size of its lead eQTL signal. All eQTL effect sizes
were log-transformed. Blue dots represent significant eGenes, while gray dots represent genes which
do not pass the eQTL multiple test correction.
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Supplementary Figure 9. eQTLs sharing. A) eQTL sharing was assessed by comparing the effect sizes
and directions of eQTLs across cell types (naive and memory cells) and time points using mashR
(Methods). This heatmap indicates the proportion of eQTLs shared by sign and magnitude between cell
type and time point combinations. B) The relationship between mean number of cells per donor and
power to detect eGenes. TCM cluster was subsampled three times.
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Supplementary Figure 10. eGenes colocalizing at immune disease loci. A) Number of colocalizing
genes shared between different immune traits. Bar plots indicate the number of genes in each set. B
and C) Locus plots for a colocalization between a TYK2 (B) and ZMIZ1 (C) and a GWAS signal for
Crohn’s disease. Each dot corresponds to a genetic variant, with colours indicating their LD with the
lead eQTL variant. Box plots indicate the expression level of TYK2 (B) and ZMIZ1 (C), stratified by
genotype. Each dot corresponds to a measurement from a different individual. D) Relationship between
a gene’s connectivity (as inferred from co-expression network analysis) and the effect size of its lead
eQTL signal. Red dots represent colocalizing genes and gray dots represent all other genes.
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