
EpyNN: Educational python for Neural Networks

Florian Malard1, Laura Danner1, Emilie Rouzies2, Jesse G Meyer1, Ewen Lescop3, and

Stéphanie Olivier-Van Stichelen1

1Department of Biochemistry, Medical College of Wisconsin, Milwaukee, USA
2INRAE, Riverly, 69625 Villeurbanne Cedex, France

3Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay,

LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France

December 6, 2021

Abstract

Summary: Artificial Neural Networks (ANNs) have achieved unequaled performance for numerous

problems in many areas of Science, Business, Public Policy, and more. While experts are familiar with

performance-oriented software and underlying theory, ANNs are difficult to comprehend for non-experts

because it requires skills in programming, background in mathematics and knowledge of terminology and

concepts. In this work, we release EpyNN, an educational python resource meant for a public willing to

understand key concepts and practical implementation of scalable ANN architectures from concise, homo-

geneous and idiomatic source code. EpyNN contains an educational Application Programming Interface

(API), educational workflows from data preparation to ANN training and a documentation website setting

side-by-side code, mathematics, graphical representation and text to facilitate learning and provide teaching

material. Overall, EpyNN provides basics for python-fluent individuals who wish to learn, teach or develop

from scratch.

Availability: EpyNN documentation is available at https://epynn.net and repository can be retrieved from

https://github.com/synthaze/epynn.

Contact: Stéphanie Olivier-Van-Stichelen, solivier@mcw.edu.

Supplementary Information: Supplementary files and listings.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net
https://github.com/synthaze/epynn
mailto:solivier@mcw.edu
https://doi.org/10.1101/2021.12.06.470764

1 Introduction

Approaches based on Artificial Neural Networks (ANNs) are implemented to solve problems in many fields

with strong implications for topics of public interest such as life sciences and medicine. Therein, highly

promising applications of ANNs may include drug discovery [1], gene interaction and disease prediction [2]

as well as protein structure prediction [3]. However, the day-to-day integration of ANNs in data analysis

workflows remains mostly tied to the expert community, well at ease with ANN theory and Application

Programming Interface (API) available from performance-oriented, widespread software [4, 5, 6, 7]. Limi-

tations in programming skills, background in mathematics or terminology and concepts likely explain why

deep learning is not standard in every lab dealing with large sets of data.

Non-experts still have opportunities to become familiar with ANNs. The proficient programmer can take

advantage of performance-oriented high-level APIs to achieve state-of-the-art results. This, however, re-

quires using ANNs as black-boxes with no understanding of the inner workings. An expert programmer may

find readable source codes on sharing platforms but will face highly heterogeneous contents. On the other

hand, people with limited programming skills can rely on the extremely rich web documentation including

mainstream articles, programming and/or mathematics oriented posts and notebooks. However, while this

documentation contains useful items, they do not provide functional codes and are time-consuming.

To cope with the before-mentioned limitations, we release an integrated Educational python resource for

Neural Networks (EpyNN) providing homogeneous implementations of diverse ANNs architectures. The

EpyNN education-oriented API is written concisely and exhaustively commented to facilitate learning and

use as teaching material. The repository contains examples of workflows from data preparation to ANNs

training and prediction. EpyNN comes along with a documentation website which provides side-by-side code,

mathematics and graphical representations along with standard package documentation. Overall, EpyNN is

directed toward non-experts of the field who wish to learn, teach or develop from scratch.

2 Implementation

EpyNN is written in Python (3.7.1) [8] and computational flows are written in pure NumPy, the worldwide

standard for array programming [9, 10]. Educational examples for data preparation and training of ANNs

using EpyNN are provided as regular Python code and Jupyter notebook [11]. The EpyNN documentation

website available at https://epynn.net was built with Sphinx [12] using a theme provided by ”Read the

Docs” [13] and runs with Apache2 [14] over HTTP with SSL/TLS [15] on GNU/Linux Debian 10 (Buster) [16].

EpyNN is licensed under the GNU General Public License v3.0 [17] and is compatible with GNU/Linux,

MacOS and Windows.

3 Features

3.1 Educational API

ANN models are built by stacking layers with distinct architectures (Figure 1). EpyNN implements a set of

major layers extensively documented at https://epynn.net. This includes the following layers: Fully connected

(Dense) [18, 19], Recurrent Neural Network (RNN) [20], Gated Recurrent Unit (GRU) [21], Long Short-Term

Memory (LSTM) [22], Convolution 2D and Pooling layers [23, 24]. EpyNN also provides Dropout [25] and

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net
https://epynn.net
https://doi.org/10.1101/2021.12.06.470764

Flatten layers for network regularization and data reshaping, respectively, as well as a Template pass-through

layer. Finally, the input Embedding layer supports data normalization, one-hot encoding and mini-batches

preparation for Stochastic Gradient Descent (SGD). ANN can be created using the EpyNN model provided

with a list of layers (See https://epynn.net/epynn). Hyperparameters can be set globally for all layers or

locally for each layer. Supported activation functions include the Rectifier Linear Unit (ReLU) and Leaky

ReLU, Exponential Linear Unit (ELU) and logistic functions sigmoid, hyperbolic tangent and softmax (See

https://epynn.net/activation). Supported loss functions include Mean Squared Error (MSE), Mean Absolute

Error (MAE), Mean Squared Logarithmic Error (MSLE), Binary Cross-Entropy (BCE) and Categorical

Cross-Entropy (CCE) (See https://epynn.net/loss). Evaluation metrics include accuracy, precision, recall,

specificity and F-Score.

3.2 Educational Python

One layer is defined inside one directory containing four files for model defini-

tion, forward propagation, backward propagation and parameters-related functions (See

https://github.com/synthaze/epynn/tree/main/epynn). Sources strictly layer mathematical definitions

and therefore they are accurate and concise with definition ranging from 66 to 269 lines of codes for the

Template and LSTM layers, respectively. The ANN model EpyNN and other modules for activation, loss

functions, metrics and more were written following the same guidelines. Importantly, sources are extensively

commented with an average of 0.35 line of comments for each line of code (Table 1). Overall, native

implementations are written in idiomatic Python/NumPy with a strong focus on homogeneity across the

whole package.

3.3 Educational Workflows

We provide 14 educational workflows on data type, structure and preparation along with principles to design

and train ANN, both in regular Python and Jupyter notebooks formats (Table 2). In the notebooks, we

introduced educational features of EpyNN’s API. Among others, this includes exhaustive initialization logs

reporting on layers’ dimensions and shapes for input, output and processing intermediates. In addition,

layers in EpyNN share the same cache structure, which makes easy content manipulation out of built-in

procedures and purposes. To facilitate monitoring, we implemented colorful logs during model training along

with automatic plot facilities upon completion.

3.4 Educational Website

https://epynn.net was designed to provide integrative educational material, traditional python package doc-

umentation and Jupyter notebooks. Therein, systematic descriptions put side-by-side code, mathematical

notation, graphical representation and succinct text-based explanations for most object in EpyNN (Figure 2).

Because ANNs may be difficult to comprehend for non-expert, we consider this multi-levels approach is key

to facilitate understanding with regards to the diversity of users and backgrounds. Accordingly, we expect

more individuals to find an anchor point and therefore evolve toward a global understanding. Overall, we

implemented https://epynn.net to be an easy learning material and teaching support.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net/epynn
https://epynn.net/activation
https://epynn.net/loss
https://github.com/synthaze/epynn/tree/main/epynn
https://epynn.net
https://epynn.net
https://doi.org/10.1101/2021.12.06.470764

4 Related work

EpyNN should not be confounded in the crowded space of deep-learning libraries that attempt to provide a

high-level API that is easy to use. Such popular deep-learning libraries are generally developed for perfor-

mance in production environment and not for educational purposes (e.g., Tensorflow [5], Keras [4], Torch [6],

Fastai [7], and others). The main and crucial difference is simple: the source code of high-level APIs in

production-focused deep-learning libraries is not written to be used as a teaching or learning material. This

means that it turns extremely difficult to locate and understand the algorithms explaining the inner working

of ANNs in the source code of such popular, production-focused libraries (Listing S1, S2).

Still, EpyNN is highly suited to teach and learn the backbone of other popular, production-focused li-

braries. EpyNN computational schemes were validated by direct comparison with Tensorflow/Keras [4] in

264 distinct configurations (File S1). While providing identical results for identical configurations, the ten-

sorflow/python directory contains 1291 python files for a total of 333 527 lines of codes (File S2). By contrast,

the EpyNN/epynn directory contains 58 files for a total of 2317 lines of code. Therefore, EpyNN provides

the opportunity to read and understand every line of code behind its educational API which may remain

highly similar in use compared with other libraries, including Tensorflow/Keras [4].

5 Context of Use

The main goal of EpyNN is to provide an integrated environment allowing to understand the inner working

of ANNs trained with backpropagation. EpyNN brings together theory and practice through its lightweight

API which relies on sources that are written to be read and modified by users. This in conjunction with an

educational website that describes the functional code line by line with diagrams, mathematics and text.

Said differently, there is virtually no abstraction between the source code of EpyNN and the integrated

documentation.

Typically, one user would use EpyNN by setting up the following environment: one text editor session to

review and customize the source code of EpyNN educational API, another session to write the executable

script for ANN design and training, a web session at https://epynn.net to take advantage of the extended

documentation and finally a terminal session to proceed with ANN training and further operations (Figure 3).

Users may work on a local copy of EpyNN educational API sources to design exercises, to customize and

compare variants of existing architectures or even to implement new architecture via the Template layer (See

https://epynn.net/epynnlayers#template-layer).

6 Conclusion

We developed EpyNN, an education-oriented python resource aiming to encourage practice, understand-

ing and adoption of ANNs by non-experts researchers and beyond. EpyNN features an educational

API, concise python sources, educational workflows and a rich educational website. Because EpyNN is

easy to customize, we anticipate and encourage deposition of additional content from push request at

https://github.com/synthaze/epynn.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net
https://epynn.net/epynnlayers#template-layer
https://github.com/synthaze/epynn
https://doi.org/10.1101/2021.12.06.470764

Acknowledgments

We thank Axelle Malard (https://axellemalard.com), artistic director and graphic designer who kindly offered

to provide EpyNN logos and favicons. We thank Christelle Gloor (D-INFK, ETH Zurich) for useful discussions

during the development of EpyNN. This work was supported by the Medical College of Wisconsin and the

National Institute of Health (R00 HD087430).

References
[1] Igor I Baskin, David Winkler, and Igor V Tetko. A renaissance of neural networks in drug discovery. Expert opinion on

drug discovery, 11(8):785–795, 2016.

[2] Giulia Muzio, Leslie O’Bray, and Karsten Borgwardt. Biological network analysis with deep learning. Briefings in bioin-

formatics, 22(2):1515–1530, 2021.

[3] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvu-

nakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold.

Nature, pages 1–11, 2021.

[4] François Chollet et al. keras, 2015.

[5] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium

on operating systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems, 32:8026–8037, 2019.

[7] Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. Information, 11(2):108, 2020.

[8] Python Software Foundation. Python 3.7.1. https://www.python.org/downloads/release/python-371/, 2018.

[9] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient numerical compu-

tation. Computing in science & engineering, 13(2):22–30, 2011.

[10] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric

Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming with numpy. Nature, 585(7825):357–

362, 2020.

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier, Jonathan Frederic,

Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter Notebooks-a publishing format for reproducible

computational workflows., volume 2016. 2016.

[12] Georg Brandl. Sphinx. python documentation generator. https://www.sphinx-doc.org/en/master/index.html, 2007.

[13] Inc & contributors Read the Docs. Read the docs. https://readthedocs.org/, 2007.

[14] The Apache Software Foundation. Apache. http server project. https://httpd.apache.org/, 2007.

[15] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maurizio Munafò, Konstantina

Papagiannaki, and Peter Steenkiste. The cost of the ”s” in https. Proceedings of the 10th ACM International on Conference

on emerging Networking Experiments and Technologies, pages 133–140, 2014.

[16] The community-supported Debian Project. Debian. the universal operating system. https://www.debian.org/, 2007.

[17] Free Software Foundation. Gnu general public license v3.0. https://www.gnu.org/licenses/gpl-3.0.html, 2007.

[18] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of

mathematical biophysics, 5(4):115–133, 1943.

[19] Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. An introductory review of deep

learning for prediction models with big data. Frontiers in Artificial Intelligence, 3:4, 2020.

[20] John A Bullinaria. Recurrent neural networks. Neural Computation: Lecture, 12, 2013.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://axellemalard.com
https://www.python.org/downloads/release/python-371/
https://www.sphinx-doc.org/en/master/index.html
https://readthedocs.org/
https://httpd.apache.org/
https://www.debian.org/
https://www.gnu.org/licenses/gpl-3.0.html
https://doi.org/10.1101/2021.12.06.470764

[21] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[23] Samer Hijazi, Rishi Kumar, Chris Rowen, et al. Using convolutional neural networks for image recognition. Cadence

Design Systems Inc.: San Jose, CA, USA, pages 1–12, 2015.

[24] Manli Sun, Zhanjie Song, Xiaoheng Jiang, Jing Pan, and Yanwei Pang. Learning pooling for convolutional neural network.

Neurocomputing, 224:96–104, 2017.

[25] Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information processing systems, 26:2814–

2822, 2013.

[26] Eugenia Wulff-Fuentes, Rex R Berendt, Logan Massman, Laura Danner, Florian Malard, Jeet Vora, Robel Kahsay, and

Stephanie Olivier-Van Stichelen. The human o-glcnacome database and meta-analysis. Scientific data, 8(1):1–11, 2021.

[27] Florian Malard, Eugenia Wulff-Fuentes, Rex R Berendt, Guillaume Didier, and Stéphanie Olivier-Van Stichelen. Autom-

atization and self-maintenance of the o-glcnacome catalog: a smart scientific database. Database, 2021, 2021.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

Figures and Tables

OutputEmbedding Hidden Hidden Hidden

Optional, 1 to N layers

Loss

Forward

Backward

Predictions

Error

f h
1

h
1

h
2

g

Figure 1: ANN model and layers. Here is depicted a set of five layers, equivalent to a set of five functions
{f, h1, h1, h2, g}. This set contains a subset of four distinct layer architectures {f, h1, h2, g} because two
layers are defined by the same function h1. The ANN model featuring the set of five stacked layers is the
composite function (g ◦ h2 ◦ h1 ◦ h1 ◦ f) which takes input and returns predictions (forward, red) further
compared to target values through the derivative of a loss function (e.g., Mean Squared Error). The error
gradient is propagated backward through each layer and, if applicable, trainable parameters are updated
accordingly (backward, green). See https://epynn.net/epynn for more details.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net/epynn
https://doi.org/10.1101/2021.12.06.470764

Recurrent Neural Network (RRN)

Layer architecture

Backward

Shapes

Forward

Gradients

Live examples

-

-

(1)

(2)

(3)

(4.1s)

(4.2s)

Figure 2: EpyNN https://epynn.net educational website - Example of integrated documentation.
The EpyNN educational API is documented with systematic descriptions involving classic API documenta-
tion and corresponding source codes explained line-by-line via direct translation into diagrams, mathematics
and text. This scheme is shown for the RNN layer and is extracted from https://epynn.net/RNN. Objects
and methods/functions related to network and layer models or activation and loss functions, among others,
were documented following this scheme. See https://epynn.net/glossary#notations for conventions about
notations.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net
https://epynn.net/RNN
https://epynn.net/glossary#notations
https://doi.org/10.1101/2021.12.06.470764

Train your

model

epynn sources
or your own

Live examples
or your own

See how it

works

epynn.net

Figure 3: How to use EpyNN - Suggestion of interface. The interface is made of text editor sessions
for EpyNN epynn library (left, top) and live examples (left, bottom), EpyNN https://epynn.net educa-
tional website (right, top) and a terminal session to run EpyNN (right, bottom). EpyNN sources can refer
to the root module files or a working copy in the current directory. Note that new layer architectures
can be implemented on-the-fly from existing and template layers. See https://epynn.net/epynnlayers and
https://epynn.net/quickstart#how-to-use-epynn for more documentation.

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net
https://epynn.net/epynnlayers
https://epynn.net/quickstart#how-to-use-epynn
https://doi.org/10.1101/2021.12.06.470764

Subdirectory Files Lines Docstring Code Inline Block Comment Description

network 8 601 151 325 4 125 0.4
ANN model, methods
e.g., training, prediction

embedding 5 318 108 176 6 34 0.23
Input layer
Pre-processing

convolution 4 274 58 158 19 58 0.49
4D - Images
Through space

dense 4 181 54 108 16 19 0.32
2D - Series
Historical concept

dropout 4 153 54 80 6 19 0.31
Regularization layer
Prevent overfitting

flatten 4 135 54 66 6 15 0.32
Adapter layer
Reshape 3D+ to 2D

gru 4 316 58 219 46 39 0.39
3D - Sequences
Extended memory

lstm 4 377 62 269 64 46 0.41
3D - Sequences
Extended memory

pooling 4 223 56 113 9 54 0.56
4D - Images
Compression layer
Features extraction

rnn 4 241 58 155 30 28 0.37
3D - Sequences
e.g., Time series, text

template 4 134 56 66 6 12 0.27
Pass-through layer,
template to customize

commons 9 1107 429 571 44 107 0.26
Common modules
e.g., metrics, loss...

Total 58 4060 1198 2306 256 556 0.35 -

Table 1: EpyNN epynn library tree - Description and source code statistics. The educational
library module in EpyNN repository corresponds to the epynn directory. Each subdirectory except network
and commons implement a specific layer architecture. RNN, LSTM and GRU are so-called recurrent layers.
Files: Number of files in each subdirectory. Lines: Total number of lines in files, excluding blank lines.
Docstring: Lines accounting for documentation strings or ”global” code comments. Code: Lines accounting
for executable python code. Inline, Block: Lines accounting for ”local” code comments. Comment: Is equal to
Inline+Block

Code or lines of ”local” code comments for one line of executable code. Review the epynnlive directory
at https://github.com/synthaze/epynn/tree/main/epynn.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://github.com/synthaze/epynn/tree/main/epynn
https://doi.org/10.1101/2021.12.06.470764

Subdirectory Files Lines Docstring Code Block Comment Models Description

dummy boolean 3 122 26 64 32 0.52 1
Python basics,
Boolean,
Perceptron

dummy image 3 174 32 100 42 0.42 2
Image definition
and generation,
CNN

dummy string 3 169 26 106 37 0.35 4
String data type,
one-hot encoding,
recurrent layers

dummy time 3 196 34 119 43 0.36 4
Time series,
signal detection,
recurrent layers

author music 3 209 23 138 48 0.35 3
WAV audio files
manipulation,
recurrent layers

captcha mnist 3 148 13 104 31 0.3 2
IDX format,
encoded image,
CNN

ptm protein 3 178 13 127 38 0.3 4
O-GlcNAcylated
peptides [26, 27],
recurrent layers

Total 21 1196 167 758 271 0.36 20 -

Table 2: EpyNN epynnlive examples tree - Description and source code statistics. Educa-
tional workflows for data preparation and model training are located inside the epynnlive directory in
the EpyNN repository. Each subdirectory contains 3 python files prepare dataset.py, train.py and set-
tings.py and Jupyter notebooks versions prepare dataset.ipynb and train.ipynb not accounted here. In
descrption, CNN refers to Convolutional Neural Network. Lines: Total number of lines in files, ex-
cluding blank lines. Docstring: Lines accounting for documentation strings or ”global” code comments.
Code: Lines accounting for executable python code. Block: Lines accounting for ”local” code comments.
Comment: Is equal to Block

Code or lines of ”local” code comments for one line of executable code. Mod-
els: Number of distinct ANN configuration reviewed in train.py. Review the epynnlive directory at
https://github.com/synthaze/epynn/tree/main/epynnlive and Jupyter notebooks for data preparation at
https://epynn.net/nbdata and model training at https://epynn.net/nbtraining.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://github.com/synthaze/epynn/tree/main/epynnlive
https://epynn.net/nbdata
https://epynn.net/nbtraining
https://doi.org/10.1101/2021.12.06.470764

Supplementary Material for:

EpyNN: Educational python for Neural Networks

Supplementary files

Supplementary file S1

FileS1.zip: Contains executable python codes used for validation of EpyNN against Tensorflow/Keras using

tensorflow==2.3.0 pip package. See README for details. Note that a summary of results is available at

https://epynn.net/index #is-epynn-reliable.

Supplementary file S2

FileS2.zip: XLSX file summary and python script used to count the number of files and lines of code within

tensorflow/python directory from tensorflow==2.3.0 pip package. By lines of code we mean all but not blank

lines, docstrings and block comments.

Supplementary listings

Supplementary listing S1

def lstm_forward(layer, A):

"""Forward propagate signal to next layer.

"""

(1) Initialize cache, hidden and memory states

X, h, C_ = initialize_forward(layer, A)

Iterate over sequence steps

for s in range(layer.d['s']):

(2s) Slice sequence (m, s, e) w.r.t to step

X = layer.fc['X'][:, s]

(3s) Retrieve previous states

hp = layer.fc['hp'][:, s] = h # (3.1s) Hidden

Cp_ = layer.fc['Cp_'][:, s] = C_ # (3.2s) Memory

(4s) Activate forget gate

f_ = layer.fc['f_'][:, s] = (

np.dot(X, layer.p['Uf'])

+ np.dot(hp, layer.p['Vf'])

+ layer.p['bf']

) # (4.1s)

f = layer.fc['f'][:, s] = layer.activate_forget(f_) # (4.2s)

(5s) Activate input gate

i_ = layer.fc['i_'][:, s] = (

np.dot(X, layer.p['Ui'])

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net/index #is-epynn-reliable
https://doi.org/10.1101/2021.12.06.470764

+ np.dot(hp, layer.p['Vi'])

+ layer.p['bi']

) # (5.1s)

i = layer.fc['i'][:, s] = layer.activate_input(i_) # (5.2s)

(6s) Activate candidate

g_ = layer.fc['g_'][:, s] = (

np.dot(X, layer.p['Ug'])

+ np.dot(hp, layer.p['Vg'])

+ layer.p['bg']

) # (6.1s)

g = layer.fc['g'][:, s] = layer.activate_candidate(g_) # (6.2s)

(7s) Activate output gate

o_ = layer.fc['o_'][:, s] = (

np.dot(X, layer.p['Uo'])

+ np.dot(hp, layer.p['Vo'])

+ layer.p['bo']

) # (7.1s)

o = layer.fc['o'][:, s] = layer.activate_output(o_) # (7.2s)

(8s) Compute current memory state

C_ = layer.fc['C_'][:, s] = (

Cp_ * f

+ i * g

) # (8.1s)

C = layer.fc['C'][:, s] = layer.activate(C_) # (8.2s)

(9s) Compute current hidden state

h = layer.fc['h'][:, s] = o * C

Return the last hidden state or the full sequence

A = layer.fc['h'] if layer.sequences else layer.fc['h'][:, -1]

return A # To next layer

Listing S1: EpyNN sources for epynn.lstm.forward.lstm forward(). The function describes the for-
ward propagation algorithm for the LSTM layer in EpyNN. This function is easy to find in the source of
EpyNN because it is simply located within the epynn.lstm.forward module which contains a total of two
functions for less than hundred lines of code. Moreover, it is easy to understand because written in idiomatic
Python/NumPy and exhaustively commented. Finally, extended documentation on this code is available at
https://epynn.net/LSTM#forward. See https://epynn.net/glossary#notations for conventions about nota-
tions.

Supplementary listing S2

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://epynn.net/LSTM#forward
https://epynn.net/glossary#notations
https://doi.org/10.1101/2021.12.06.470764

def call(self, inputs, states, training=None):

h_tm1 = states[0] # previous memory state

c_tm1 = states[1] # previous carry state

dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4)

rec_dp_mask = self.get_recurrent_dropout_mask_for_cell(

h_tm1, training, count=4)

if self.implementation == 1:

if 0 < self.dropout < 1.:

inputs_i = inputs * dp_mask[0]

inputs_f = inputs * dp_mask[1]

inputs_c = inputs * dp_mask[2]

inputs_o = inputs * dp_mask[3]

else:

inputs_i = inputs

inputs_f = inputs

inputs_c = inputs

inputs_o = inputs

k_i, k_f, k_c, k_o = array_ops.split(

self.kernel, num_or_size_splits=4, axis=1)

x_i = K.dot(inputs_i, k_i)

x_f = K.dot(inputs_f, k_f)

x_c = K.dot(inputs_c, k_c)

x_o = K.dot(inputs_o, k_o)

if self.use_bias:

b_i, b_f, b_c, b_o = array_ops.split(

self.bias, num_or_size_splits=4, axis=0)

x_i = K.bias_add(x_i, b_i)

x_f = K.bias_add(x_f, b_f)

x_c = K.bias_add(x_c, b_c)

x_o = K.bias_add(x_o, b_o)

if 0 < self.recurrent_dropout < 1.:

h_tm1_i = h_tm1 * rec_dp_mask[0]

h_tm1_f = h_tm1 * rec_dp_mask[1]

h_tm1_c = h_tm1 * rec_dp_mask[2]

h_tm1_o = h_tm1 * rec_dp_mask[3]

else:

h_tm1_i = h_tm1

h_tm1_f = h_tm1

h_tm1_c = h_tm1

h_tm1_o = h_tm1

x = (x_i, x_f, x_c, x_o)

h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o)

c, o = self._compute_carry_and_output(x, h_tm1, c_tm1)

else:

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

if 0. < self.dropout < 1.:

inputs = inputs * dp_mask[0]

z = K.dot(inputs, self.kernel)

z += K.dot(h_tm1, self.recurrent_kernel)

if self.use_bias:

z = K.bias_add(z, self.bias)

z = array_ops.split(z, num_or_size_splits=4, axis=1)

c, o = self._compute_carry_and_output_fused(z, c_tm1)

h = o * self.activation(c)

return h, [h, c]

Listing S2:Tensorflow/Keras sources for tensorflow.python.keras.layers.recurrent.LSTMCell.call().
The method describes the forward propagation algorithm for the LSTM cell in Tesorflow/Keras. This
method is not easy to find in the source of Tensorflow/Keras because of the number of recursion levels down
to tensorflow.python.keras.layers.recurrent module which contains 34 objects, 200 methods and 1 766 lines
of code. In addition, there is no block or inline comment in this code.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.470764doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.06.470764

