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ABSTRACT 28 

Natural perception relies inherently on inferring causal structure in the environment. 29 

However, the neural mechanisms and functional circuits that are essential for 30 

representing and updating the hidden causal structure and corresponding sensory 31 

representations during multisensory processing are unknown. To address this, monkeys 32 

were trained to infer the probability of a potential common source from visual and 33 

proprioceptive signals on the basis of their spatial disparity in a virtual reality system. 34 

The proprioceptive drift reported by monkeys demonstrated that they combined 35 

historical information and current multisensory signals to estimate the hidden common 36 

source and subsequently updated both the causal structure and sensory representation. 37 

Single-unit recordings in premotor and parietal cortices revealed that neural activity in 38 

premotor cortex represents the core computation of causal inference, characterizing the 39 

estimation and update of the likelihood of integrating multiple sensory inputs at a trial-40 

by-trial level. In response to signals from premotor cortex, neural activity in parietal 41 

cortex also represents the causal structure and further dynamically updates the sensory 42 

representation to maintain consistency with the causal inference structure. Thus, our 43 

results indicate how premotor cortex integrates historical information and sensory 44 

inputs to infer hidden variables and selectively updates sensory representations in 45 

parietal cortex to support behavior. This dynamic loop of frontal-parietal interactions in 46 

the causal inference framework may provide the neural mechanism to answer long-47 

standing questions regarding how neural circuits represent hidden structures for body-48 

awareness and agency.  49 

  50 
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INTRODUCTION 51 

The brain is constantly confronted with a myriad of sensory signals. Natural perception 52 

relies inherently on inferring the environment’s hidden causal structure(Deroy, Spence, 53 

& Noppeney, 2016; French & DeAngelis, 2020; Lochmann & Deneve, 2011). In the 54 

process of building representation of the bodily self, the brain combines, in a near-55 

optimal manner, information from multiple sensory inputs. When a single entity (e.g. 56 

the bodily self) evokes correlated noisy signals, our brain combines the information to 57 

infer the properties of this entity on the basis of the quality and uncertainty of the 58 

sensory stimuli. As a result, behavioral performance often benefits from combining 59 

information using such uncertainty-based weighting across sensory systems(Stein & 60 

Stanford, 2008). However, in a natural environment, multiple sensory cues are typically 61 

produced by more than one source (for example, two entities), which should not be 62 

integrated in the brain, especially when the superposing cues are sufficiently dissimilar 63 

and uncorrelated. Instead, the brain’s inferential process of integration breaks down, 64 

leading to the perception that these cues originate from distinct entities. This process of 65 

inferring the causes of sensory inputs for perception is known as causal 66 

inference(Kording et al., 2007). 67 

 Thus far, most of neurobiological studies of multisensory processing have operated 68 

under the assumption that different streams of sensory information can arise from the 69 

same source. For example, previous neurophysiological research in monkeys showed 70 

that neurons implement reliability-weighted integration on the premise that visual and 71 

vestibular signals are from one common source(Fetsch, DeAngelis, & Angelaki, 2013; 72 

Morgan, Deangelis, & Angelaki, 2008; Porter, Metzger, & Groh, 2007). Therefore, 73 

despite the ubiquity of the phenomenon of causal inference and much psychophysical 74 

and theoretical research(Acerbi, Dokka, Angelaki, & Ma, 2018; Dokka, Park, Jansen, 75 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.469042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.469042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

DeAngelis, & Angelaki, 2019; Kayser & Shams, 2015; Kording et al., 2007; Mohl, 76 

Pearson, & Groh, 2020; Rohe & Noppeney, 2015; Sato, Toyoizumi, & Aihara, 2007), 77 

its neural mechanisms and functional circuits remain largely unknown. While recent 78 

studies in humans have begun to establish neural correlates(Aller & Noppeney, 2019; 79 

Cao, Summerfield, Park, Giordano, & Kayser, 2019; Rohe, Ehlis, & Noppeney, 2019; 80 

Rohe & Noppeney, 2015, 2016), the sequential process of first encoding the sensory 81 

signals, subsequently combining them with prior information to infer whether the 82 

sources should be assigned to the same entity for later information integration or 83 

segregation, and finally, but most importantly, updating prior information for both the 84 

hidden structure of the environmental sources and their downstream sensory 85 

representations has never been studied at the single-neuron resolution in animals.  86 

 In the present study, we established an objective and quantitative signature of 87 

causal inference at a single-trial level using a reaching task and a virtual reality system 88 

in macaque monkeys. We showed that monkeys combined historical information and 89 

current multisensory signals to estimate the hidden common source, and more 90 

importantly, subsequently updated both the causal structure and sensory representation 91 

during the inference. We then further recorded from the premotor and parietal (area 5) 92 

cortices of three monkeys to investigate the neural dynamic and functional circuits of 93 

causal inference in multisensory processing. Our behavioral and neural results reveal a 94 

complete account of neural computation that appears to mediate causal inference 95 

behavior, which includes inferring a hidden common source and updating prior and 96 

sensory representations at different hierarchies. 97 

 98 

 99 

 100 
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RESULTS 101 

Behavioral paradigm 102 

Using a virtual-reality system, we trained three monkeys (monkeys H, N, and S) to 103 

reach for a visual target with their nonvisible (proprioceptive) arm while viewing a 104 

virtual arm moving in synchrony with a preset spatial visual-proprioceptive (VP) 105 

disparity (Fig. 1A). On each trial of the experiment, the monkeys were required to 106 

initiate the trial by placing their hand on the starting position (blue dot) for 1 s and were 107 

instructed not to move. After the initiation period, the starting point disappeared and 108 

the visual virtual arm was rotated; this mismatch arm was maintained for 0.5 s as the 109 

preparation period. The reaching target was presented as a “go” signal, and monkeys 110 

had to reach toward the visual target within 2.5 s and place their hand in the target area 111 

for 0.5 s, referred to as the target-holding period, to receive a reward. Any arm 112 

movement during the target-holding period automatically terminated the trial. The 113 

proprioceptive drift due to the disparity between visual and proprioceptive inputs was 114 

measured at the endpoint of the reach and was defined as the angle difference between 115 

the proprioceptive arm and the visual target (the estimated arm) (Fig. 1B, see details of 116 

animal training and reward in Methods). In addition to this VP-conflict (VPC) task, two 117 

control experiments were conducted: (i) where the visual and proprioceptive 118 

information were perfectly aligned (VP task) and (ii) where there was only a 119 

proprioceptive signal (P task). The procedures of the three tasks (VPC, VP, and P) were 120 

essentially identical, except that the visual or proprioceptive information presented to 121 

monkeys varied according to the context of the experiment (see Methods). Using a 122 

block design, the order of three different blocks (tasks) in each training or recording 123 

session was randomized. 124 

 125 
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Causal inference framework and monkey’s behavior 126 

The hierarchical Bayesian causal inference (BCI) model encodes probability 127 

distributions over the two sensory (visual and proprioceptive) signals and incorporates 128 

rules that govern how a prior belief about the sensory causal structure is combined with 129 

incoming information to judge the event probability in proprioception. To examine 130 

whether the monkeys inferred the causal structure during multisensory processing, we 131 

first examined the proprioceptive drift as a function of disparity in the VPC task. 132 

Overall, the three monkeys showed a very consistent behavioral pattern, with the 133 

proprioceptive drift increasing for small levels of disparity and plateauing or even 134 

decreasing when the disparity became larger (e.g., exceeded 20°) (Fig. 1C; for data on 135 

individual monkeys, see Fig. S1). The BCI model qualitatively explains the nonlinear 136 

dependence of drift as a function of disparity. For small disparities, there is a high 137 

probability that the proprioceptive and visual signals came from the same source. Hence, 138 

the visual information is fully integrated with the proprioceptive information. For large 139 

disparities, however, it is likely that the proprioceptive and visual signals are from 140 

different sources, leading to a breakdown of integration and consideration of only the 141 

proprioceptive information (segregation). In this case, visual information has a weak 142 

weight in the integration. As a consequence, the effect of disparity on drift is reduced. 143 

The BCI model quantified the nonlinear dependence between disparity and 144 

proprioceptive drift to measure the posterior probability of a common source (Pcom), the 145 

consequence of cause inference. We fitted the behavioral data using the BCI model. The 146 

results showed two signatures of the Pcom pattern: (i) the averaged Pcom decreased as the 147 

disparity increased (Fig. 1D), and (ii) within each disparity, especially the large ones, 148 

the Pcom decreased as the proprioceptive drift decreased (Fig. 1E) (see individual 149 

monkeys’ behavior in Fig. S1).  150 
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 151 

Figure 1. Behavioral task and proprioceptive drift results. (A) Overview of the behavioral 152 

task. The monkey was instructed to hold its proprioceptive arm over the starting position (blue 153 

dot) to initiate one trial. After the rotation of the virtual visual arm, a virtual red dot was 154 

presented, and the monkey was required to place its proprioceptive arm on the target and hold 155 

to get a reward. (B) Schematic drawing of reward area, proprioceptive drift, and the different 156 

types of arms (veridical/proprioceptive and virtual/visual). Here, proprioceptive drift was 157 

defined as the rotated degree from the veridical arm position to the estimated arm position (the 158 

same as the target location) measured from the shoulder. The reward area is defined by the 159 

green area, which ensured the monkey performed the task in a rational way and without visual 160 

feedback (see animal training in Methods). (C) Example behavioral results from one session of 161 

one monkey (also see Fig. S1). CCW, counterclockwise; CW, clockwise. The black line 162 

represents raw data. The gray line represents the BCI model fitting result. (D) The average Pcom 163 

as a function of disparity. The black line represents the average Pcom across monkeys. The 164 

dashed lines represent the average Pcoms across sessions of three monkeys separately. Error 165 

bars indicate standard errors of the means (SEMs). (E) Model prediction of the Pcom. Each point 166 

represents the average Pcom in each cluster grouped by specific disparity and proprioceptive 167 

drift according to the monkey’s behavior. 168 

 169 

 More importantly, the model posits that not only the inference of the causal 170 

structure is based on visual and proprioceptive inputs but also the subsequent updating 171 

of (i) the prior belief of causal structure based on the historical information (e.g., 172 

probability of a common source in the previous trials), and (ii) the uncertainty of 173 

sensory signals for the visual and proprioceptive recalibration (Fig. 2A). To test these 174 

hypotheses, we first implemented the Markov analysis of the prior belief and Pcom (see 175 
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Methods) to see whether the prior probability of a common source (Pprior) in the current 176 

trial depended on the historical Pcom (Fig. 2B). The Markov model included the 177 

transition probability of Pprior between the current (nth) and previous (nth − 1) trial to 178 

account for the trial-by-trial variability in spatial drifts observed in the three monkeys 179 

(Fig. 2B, left). The fit to the model demonstrated that the Pcom observed in the nth trial 180 

was significantly affected by that in the previous (nth − 1) trial (Wilcoxon signed-rank 181 

test, p < 0.001), indicating that the Pcom was computed on the basis of both Pprior from 182 

the previous trial and the sensory inputs, with their disparity, from the current trial. Note 183 

that the transition probabilities (P(C=1|C=1) and P(C=1|C=2)) remained relatively high (larger than 184 

0.8 in three monkeys) was because that overall the number of high Pcom trial was much 185 

more than low Pcom trial in either training or recording sessions. This was consistent with 186 

high baseline Pprior in three monkeys (Table S1).  187 

 188 

Figure 2. Causal inference model predicts the dynamic updating of monkey’s behavior. 189 

(A) Schematic drawing of the dynamic hierarchical causal inference model. V-arm, visual arm 190 

signal; P-arm, proprioceptive arm signal; C=1, both V-arm and P-arm come from one common 191 

source; C=2, V-arm and P-arm come from different sources. (B) Transition probability from 192 
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previous trial’s Pcom to current trial’s Pprior. Left: the transition probability of an example 193 

session. Right: average transition probabilities across all sessions from three monkeys. The 194 

darker-colored points represent the average transition probabilities across monkeys. The 195 

lighter-colored points represent the average transition probabilities of the three monkeys 196 

separately (Wilcoxon signed-rank test, W = 6996.0, p < 0.001). (C) After-trial effect of sensory 197 

updating. Left: the distribution of arm locations in P blocks after VP and VPC tasks in an 198 

example session. The solid lines were fitted with Gaussian distributions. Right: the averaged 199 

standard deviations of drift in P blocks after VP and VPC tasks. The solid lines represent the 200 

averaged standard deviation of drift in VP and VPC (0°) across all sessions of all monkeys in 201 

early trials (Wilcoxon signed-rank test, W = 851.0, p = 0.012, false-discovery rate [FDR] 202 

corrected) and in late trials (Wilcoxon signed-rank test, W = 1,024.0, p = 0.073, FDR corrected). 203 

The uncertainty of P trials after the VPC task in the early part of the session was significantly 204 

larger than that in the later part (Wilcoxon signed-rank test, W = 917.0, p = 0.035, FDR 205 

corrected); this is not the case for P trials after the VP task (Wilcoxon signed-rank test, W = 206 

1,086.0, p = 0.15, FDR corrected). (D) Within-trial effect of sensory updating. Left: the 207 

distribution of arm locations in VP and VPC (0°) tasks. The solid lines were fitted with 208 

Gaussian distributions. Right: the average standard deviation of drift in VPC (0°) trials was 209 

significantly higher than that in VP trials (Wilcoxon signed-rank test, W =10,035.0, p < 0.001). 210 

The dashed lines represent the average standard deviation of the drift in VP and VPC (0°) in 211 

each monkey. Error bars indicate SEMs; *p < 0.05; *** p <0.001; n.s., not significant. 212 

 213 

 We next examined whether the sensory representation is updated to maintain 214 

consistency with the causal structure of the environment. That is, the estimates of 215 

physical arm locations should tradeoff in systematic ways depending on the current 216 

common-source belief (e.g., Pcom in different tasks: VP, P and VPC). For example, when 217 

the monkey incorrectly infers the visual and proprioceptive arms come from the same 218 

source when a disparity is presented, the uncertainty of proprioception should increase 219 

to “explain away” the conflict between the two inputs. According to this idea, since that 220 

the block design in the current experiment resulted in P trials (in the P task) sometimes 221 

following VPC task and other times following VP tasks, we then reasoned that because 222 

the overall Pcom was lower in the VPC task than in the VP task, the uncertainty of 223 

proprioception (i.e., the distribution of proprioceptive drifts in the P trials) would be 224 

larger after the VPC task than after the VP task. We analyzed the drift variation in P 225 
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trials and found that, in the early trials (first third of each P block), the uncertainty of P 226 

trials following the VPC task was significantly larger than that following the VP task 227 

(Fig. 2C, Wilcoxon signed-rank test, p = 0.012). The increase in the uncertainty of 228 

proprioception was recovered in the late trials (last third of each P block), evident by a 229 

significant difference in the uncertainty between early and late P trials (Fig. 2C, 230 

Wilcoxon signed-rank test, p = 0.035). The decrease in the uncertainty of 231 

proprioception was reasonable, as the tradeoff effect in VPC task gradually recovered.  232 

Furthermore, we hypothesized that if a tradeoff of sensory representation occurs 233 

during the process of causal inference, the tradeoff would also affect the uncertainty of 234 

VP integration in both VP and VPC tasks. We examined the distribution of 235 

proprioceptive drifts using the trials with 0° disparity in the VPC task, in which the V 236 

and P information were congruent, and compared it with the distribution in the VP task. 237 

As predicted, we found that the variance of the proprioceptive drift was significantly 238 

larger in the VPC task than in the VP task (Fig. 2D, Wilcoxon signed-rank test, p < 239 

0.001). As a control, we also investigated whether the mean of drift, representing the 240 

accuracy of proprioceptive arm, was affected by the causal structure of the environment. 241 

We found there was no significant difference between the mean of drift for P trials 242 

following the VPC task and that following the VP task in both early part (Fig. S2, left, 243 

Wilcoxon signed-rank test, p = 0.37, FDR corrected) and late part (Fig. S2, right, 244 

Wilcoxon signed-rank test, p = 0.37, FDR corrected). Besides these, we also found that 245 

the mean of proprioceptive drift was not updated in the VPC task compared with VP 246 

task (Fig. S2 right, Wilcoxon signed-rank test, p = 0.29). Thus, these results supported 247 

the notion of a tradeoff in proprioception according to causal inference environments; 248 

that is, the uncertainty, not the accuracy, of sensory representation is updated 249 

dynamically based on the task environment (Pcom). 250 
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 To summarize the above-described behavioral results, first, we found that 251 

proprioceptive drift in monkeys shows a nonlinear dependency on the disparity between 252 

proprioceptive and visual input, which was well explained by the causal inference 253 

model. Second, we showed that the Pcom integrated with visual-proprioceptive sensory 254 

inputs and is updated by historical information in a trial-by-trial basis. Third, to 255 

maintain a consistency of causal inference, sensory uncertainty, reflected by the 256 

variance of proprioceptive drift, is updated in the inference along with the change of 257 

Pcom. Taken together, we established the behavioral paradigm in which monkeys infer 258 

the hidden cause by integrating prior information and sensory inputs while dynamically 259 

updating both Pcom and sensory representation. The behavioral responses of the 260 

monkeys enabled us to examine the underlying neural mechanisms and functional 261 

circuits. 262 

 263 

Causal inference in individual premotor and parietal neurons 264 

We recorded from two brain regions, premotor cortex (475 neurons) and parietal cortex 265 

(area 5; 238 neurons), in the three monkeys performing the reaching tasks (Fig. 3A, for 266 

details, see Supplementary Materials). We first examined the neural representations of 267 

the visual and proprioceptive arm locations in each trial during the target-holding period 268 

in the VPC, VP, and P tasks (Fig. 3B). Both brain regions conveyed significant 269 

information about the arm location in the three tasks, as measured by a bias-corrected 270 

percent explained variance (ωPEV) (Fig. 3C, Wilcoxon signed-rank test, p < 0.001, 271 

FDR corrected; see Methods). In the VP and P tasks in which there are no visual-272 

proprioceptive disparities, both premotor and parietal regions showed similar visual and 273 

proprioceptive arm information (Fig. 3C, left, VP arm, Wilcoxon rank-sum test, p = 274 

0.97, FDR corrected; P arm, Wilcoxon rank-sum test, , p = 0.49, FDR corrected). 275 
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However, when disparities were introduced in the VPC task, the premotor cortex 276 

showed a stronger signal for visual arm information (Fig. 3C, right, Wilcoxon rank-sum 277 

test, p < 0.001, FDR corrected), whereas parietal cortex showed stronger signals for 278 

information related to the proprioceptive arm (Fig. 3C, right, Wilcoxon rank-sum test, 279 

p < 0.001, FDR corrected). This suggests that premotor and parietal regions may play 280 

different roles during causal inference processing. 281 

 282 

Figure 3. Casual inference neurons in premotor and parietal cortices. (A) Recording sites. 283 

Left: two regions of interest were recorded through single electrodes in macaque monkeys. 284 

Middle and right: specific recording sites in three monkeys. L, left hemisphere; R, right 285 

hemisphere; A, anterior; P, posterior; M, medial. (B) Temporal structure of a single trial for the 286 

VPC condition. (C) Neural information of arm locations in premotor and parietal cortices. Left: 287 

No significant difference between the brain regions for the neural information of VP arm 288 
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(Wilcoxon rank-sum test, W = 0.040, p = 0.97, FDR corrected) and P arm (Wilcoxon rank-sum 289 

test, W = -0.90, p = 0.49, FDR corrected), respectively. Right: There were significant 290 

differences between the brain regions for both the neural information of Veridical arm 291 

(Wilcoxon rank-sum test, W = -5.32, p < 0.001, FDR corrected) and Visual arm (Wilcoxon 292 

rank-sum test W = 5.68, p < 0.001, FDR corrected) in VPC condition, respectively. Both brain 293 

regions conveyed significant information about the arm location in the three tasks (PMC: VP 294 

arm, Wilcoxon signed-rank test, W = 38,146.0, p < 0.001, FDR corrected; P arm, Wilcoxon 295 

signed-rank test, W = 34,983.0, p < 0.001, FDR corrected; Veridical arm (VPC), Wilcoxon 296 

signed-rank test, W = 35,062.0, p < 0.001, FDR corrected; Visual arm (VPC), Wilcoxon signed-297 

rank test, W = 22,226.0, p < 0.001, FDR corrected. Area5: VP arm, Wilcoxon signed-rank test, 298 

W = 9,390.0, p < 0.001, FDR corrected; P arm, Wilcoxon signed-rank test, W = 7,324.0, p < 299 

0.001, FDR corrected; Veridical arm (VPC), Wilcoxon signed-rank test, W = 3,552.0, p < 0.001, 300 

FDR corrected; Visual arm (VPC), Wilcoxon signed-rank test, W = 10,483.0, p < 0.001, FDR 301 

corrected). Error bars indicate SEMs. (D) Schematic drawing of VP weight analysis (see 302 

Methods) in one example trial for the VPC condition. (E) Two examples of causal inference 303 

neurons in premotor and parietal cortices during the target-holding period. Each point 304 

represents one single trial, and the color represents the value of VP weight. (F) Population 305 

causal inference patterns in two brain regions. Each point was a pseudo-trial that was generated 306 

through bootstrapping, and the color represents the value of VP weight. (G) An example neuron 307 

in parietal cortex showing the causal inference pattern defined by a significant positive 308 

correlation between VP weight and Pcom (Pearson's correlation). Each point represents the 309 

average Pcom and VP weight in a cluster from the behavioral Pcom pattern. The solid line was 310 

fitted with linear regression, and the shaded area indicates the 95% confidence interval. The bar 311 

plot represents the fraction of causal inference neurons in premotor (13.1%, One sample Z-test, 312 

Z = 5.21, p <0.001) and parietal (8.0%, One sample Z-test, Z = 1.70, p = 0.045) cortices which 313 

were significantly higher than chance level (5%), respectively. There was a significant 314 

difference between the brain regions (Pearson's chi-square test,  2 = 3.89, p = 0.049). *** p < 315 

0.001. 316 

 317 

 To further quantify neural information about causal inference in the VPC task at 318 

the single-neuron and single-trial levels, we utilized the VP and P tasks to characterize 319 

neural responses, as these tasks involve expected stereotypical behaviors in the two 320 

extreme regimes: full integration and segregation. Thus, neurons that are more active 321 

during the VP task reflect a preference for integrating congruent VP information and, 322 

hence, constitute a natural candidate for “integration (VP) neurons”. By contrast, 323 

neurons that are more active during the P task are likely candidates for “segregation (P) 324 

neurons”. We then implemented a linear probabilistic model which combined how the 325 
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neural response pattern aligned with the VP and P response profiles and used this model 326 

to implement a probabilistic decoding analysis to calculate the probability of VP or P 327 

(VP weight = Pvp/[Pvp + Pp]) on the basis of the firing rate in each trial (Fig. 3D, also 328 

see Methods). Thus, for a single trial, a larger VP weight denotes a higher probability 329 

of integration (high Pcom). We first focused on the target-holding period in a trial, as the 330 

neurons could well display their spatial tunings when monkeys holding their arms on 331 

the target. We found that both premotor and parietal regions carry information about 332 

Pcom at the single-neuron level during the target-holding period (Fig. 3E and F). That is, 333 

the VP weight of the neuron or population progressively decreased along with the 334 

disparity, and in trials with large disparity (e.g., 35° and 45°), the neuron(s) had a higher 335 

VP weight when the drift was large (i.e., the monkey integrated the visual information; 336 

thus, a high Pcom predicted by the BCI model) and shifted gradually toward higher P 337 

weights when the drift shifted to 0 (i.e., the monkey segregated the visual information; 338 

thus, a low Pcom predicted by the BCI model). The VP weight was highly correlated 339 

with the Pcom from behavior (Fig. 3G). Note that premotor cortex had a slightly higher 340 

proportion of causal inference neurons (13.1%) than parietal cortex (8.0%, Pearson's 341 

chi-square test, 2 = 3.89, p = 0.049). 342 

 343 

Population states encode Pcom during causal inference 344 

We next focused on the overall populations of neurons in both regions and asked 345 

whether and how their population states reflect the uncertainty of causal structure, Pcom. 346 

We were guided by the results from single-neuron analyses during the target-holding 347 

period described above, in which neurons responsive to high Pcom (prefer integration) 348 

are more likely to show neural tuning similar to that during the VP task, and neurons 349 

responsive to low Pcom (prefer segregation) show a tuning profile similar to that in the 350 
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P task. We thus hypothesized that there are neural components or subspaces embedded 351 

in the population activity that represent the dynamic change in the coding of Pcom in the 352 

VPC task, which would lie between the components representing the VP and P profiles. 353 

Furthermore, the computation of Pcom in the BCI model is determined by the relation 354 

and disparities between the visual information from the artificial arm and 355 

proprioceptive information from the monkey’s actual arm. In other words, according to 356 

the model, the causal inference can be constructed before the visual target appears, and 357 

the participant uses this information to guide the reach. We thus further hypothesized 358 

that the dynamics of the population states also reflect the Pcom during the preparation 359 

period, during which there is no motor planning or preparation. 360 

 Thus, we grouped trials from each neuron into high and low Pcom classes according 361 

to the drift under each disparity (high, top third of the trials [in red]; low, bottom third 362 

of the trials [in blue]) (Fig. 4A). We conducted demixed principal component analysis 363 

(dPCA) to visualize any neural component that represents the Pcom in the VPC task in 364 

relation to that in the VP and P tasks (see Methods). dPCA decomposes population 365 

activity into a set of dimensions that each explain the variance of one factor of the data 366 

(Kobak et al., 2016). We included the factors of time, arm location, and Pcom (Fig. 4B). 367 

In the analysis, VP and P trials were included, which served as the templates of 368 

integration and segregation, respectively. As shown in the schema (Fig. 4B), if the 369 

decomposed neural components indeed represent the Pcom, the population activity of 370 

high and low classes in this subspace should lie between that of the VP and P classes 371 

and the four classes (high, low, VP, and P) should be separated from each other. The 372 

dPCA results indicated that the Pcom components, which were unrelated to the arm 373 

location, represented 29.9% and 20.5% of the total firing rate variance in the premotor 374 

and parietal areas, respectively (Fig. 4C, in red). Importantly, the activity in Pcom 375 
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dimensions seems consistent with our hypothesis, demonstrating the dynamics of Pcom 376 

between integration (VP) and segregation (P). In addition, compared to the activity in 377 

parietal cortex, the neural trajectories of the premotor populations showed an earlier 378 

divergence in Pcom dimensions (Fig. 4D).  379 

 To further quantify their dynamics in a statistical manner, we trained a linear 380 

support vector machine (SVM) using pooled activities in each brain region through the 381 

entire trial. The dynamic decoding results showed that the Pcom information is correctly 382 

predicted by neuronal population activities in both regions after target onset but is 383 

decoded only by premotor neurons during the preparation period, when there was no 384 

visual target or motor preparation (Fig. 4E, cluster-based permutation test, p < 0.05). 385 

This may suggest that the premotor cortex is where causal inference is computed and 386 

sends the information to parietal cortex during the reaching period.  387 
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 388 

Figure 4. Dynamic population decoding of Pcom. (A) Schematic drawing of the high Pcom 389 

group (top third of trials) and the low Pcom group (bottom third of trials) based on the relative 390 

drift (drift/disparity). (B) Schematic drawing of the dPCA. All trials of each neuron were 391 

grouped into 20 classes (5 targets × 4 conditions, including VP and P tasks and high and low 392 

groups in the VPC task). The marginalization matrix was generated by averaging all trials in 393 

each class. (C) dPCA decomposes population activity into a set of components given the task 394 

parameters of interest. (D) Temporal evolution of dPCA components of Pcom. The gray points 395 

represent the disparity onset; the black points represent the target onset. (E) Population 396 

decoding of Pcom. The decoding accuracy was plotted as a function of time. The gray shaded 397 

area represents the preparation period. The horizontal dashed black line represents the chance 398 

level. The horizontal solid colored lines at the top represent the time of significant decoding 399 

accuracy (cluster-based permutation test, p < 0.05). Shaded areas indicate 95% confidence 400 

intervals. (F) jPECC results averaged across all sessions. Left: x-axis represents the time of 401 

Parietal (Brodmann Area 5) from target onset; y-axis: represents the time of Premotor (PMC) 402 

from target onset.The color bar represents the cross-validated correlation coefficient. Right: 403 

lead-lag interactions as a function of time relative to target onset. The horizontal black line 404 
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represents the time of significant jPECC asymmetry index versus shuffled data (cluster-based 405 

permutation test, p < 0.05).  406 

 407 

Next, we tested the relationship between the population activities in the two areas. 408 

We performed a joint peri-event canonical correlation (jPECC) analysis, which detects 409 

correlations in a “communication subspace” between two brain regions(Steinmetz, 410 

Zatka-Haas, Carandini, & Harris, 2019). In brief, we conducted a canonical correlation 411 

analysis for every pair of time points containing the population neural firing rates from 412 

the two regions. If the shared neural activity emerges at different times in the two 413 

regions, that is, activity in one region potentially leads to activity in the other one, then 414 

we should observe a temporal offset between them. The jPECC results revealed a 415 

significant time lag for activity correlations between premotor and parietal areas in Pcom 416 

dimensions (Fig. 4F, cluster-based permutation test, p < 0.05), suggesting a potential 417 

feedback signal of Pcom from premotor cortex to parietal cortex. As a control, we 418 

performed the same procedure with misalignment trials (see Methods) to exclude the 419 

probability that the observed time lag resulted from the intrinsic temporal property of 420 

neuronal activities in these regions. There was no significant time lag between premotor 421 

and parietal areas when the trials were misaligned (Fig. S3). 422 

 423 

History-dependent Pcom in premotor cortex 424 

The behavioral experiments showed that the Pcom can be updated by previous sensory 425 

experience in a trial-by-trial basis. To test the effect of the historical Pcom on the causal 426 

inference in each trial, we examined neural activities during the baseline period in the 427 

VPC task, before a disparity in the visual and proprioceptive arm is introduced (Fig. 428 

5A). We again classified the trials according to high and low Pcom. Figure 5A depicts 429 

the results from an example premotor neuron, showing that during the baseline period 430 

the neural activity exhibited selectivity toward the previous trial’s Pcom, and at the same 431 
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time its neural trajectories in high and low prior classes lied between the VP and P 432 

templates. Of 475 neurons in premotor cortex, 39 (8.2%) showed such selectivity to the 433 

previous trial (Fig. S4).  434 

 To further test the relation between baseline neural activity and behavior in a 435 

quantitative manner, we examined whether the population activities of these neurons 436 

can predict the Pcom from previous trials. We trained an SVM using pooled activities 437 

across recording sessions. The historical Pcom information was only correctly decoded 438 

from the baseline activity in premotor cortex (Fig. 5B, cluster-based permutation test, 439 

p < 0.05). Moreover, only recent historical information (nth − 1 trial) had a significant 440 

impact on the current trial (Fig. 5C, permutation test, p < 0.001). 441 

 442 

Figure 5. Premotor neurons encode prior information (previous trial’s Pcom) during the 443 

reference period. (A) Example neuron in premotor cortex showing selectivity to prior 444 

information during the baseline period. The trials in the raster plot were sorted by the Pcom in 445 

the previous trial and grouped into high (red dots) and low (blue dots) groups. Bottom: temporal 446 

evolution of the average firing rate of “high prior” and “low prior” groups. The black horizontal 447 

line at the top represents the time window with a significant difference (two-sided t test, t = 448 

2.36, p = 0.019). Shaded areas indicate SEMs. (B) Dynamic population decoding of prior 449 

information (nth – 1 trial). The gray shaded window represents the reference period. The 450 

horizontal solid colored line at the top represents the time with significant decoding accuracy 451 
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with a cluster-based permutation test (p < 0.05). Shaded areas indicate 95% confidence 452 

intervals. The horizontal dashed black line represents the chance level. (C) Decoding accuracy 453 

of prior trials (nth − 1 to nth − 4). Lag 0 represents the decoding of Pcom in the current (nth) trial. 454 

The horizontal dashed black line represents the chance level (permutation test, p < 0.001). The 455 

solid lines were fitted with exponential distributions. Error bars indicate 95% confidence 456 

intervals. (D) Schematic drawing of orthogonal subspaces of Pprior and Pcom. The solid-line 457 

circles represent Pcom and dotted circles represent Pprior. Red represents high Pcom, blue 458 

represents low Pcom. (E) Left: percentage of baseline-period (Pprior) data variance (black bars, 459 

explained variance: about 99.9%) and target-holding period data variance (gray bars, explained 460 

variance: about 10.8% ) explained by the top ten prior PCs. Right: percentage of baseline-period 461 

(Pprior) data variance (black bars, explained variance: about 13.9%) and target-holding (Pcom) 462 

period data variance (gray bars, explained variance: about 99.9%) explained by the top ten Pcom 463 

PCs. (F) Premotor encoded prior information during the reference period quickly decreased 464 

after the disparity onset while the Pcom information emerged. The orange line represents the 465 

population decoding accuracy of Pprior (n
th – 1 trial). The black line represents the population 466 

decoding accuracy of Pcom. The orange and black horizontal solid colored lines at the top 467 

represent the time with significant decoding accuracy with a cluster-based permutation test (p 468 

< 0.05) for prior information and Pcom information, respectively. *** p < 0.001. 469 

 470 

 As both Pprior and Pcom were represented in premotor neural activities, we wanted 471 

to examine their relationship in the neural states. We first found that there were very 472 

few neurons that responded to both information types (see Fig. S4). We then 473 

hypothesized that Pprior and Pcom may be represented independently at a population level. 474 

To validate this hypothesis, we conducted PCA on the population activities during 475 

baseline and target-holding periods for Pprior and Pcom, respectively. If they are 476 

independent, the subspaces of Pprior and Pcom will be near orthogonal, and the PCs of 477 

Pprior and Pcom will capture little variance of each other(Elsayed, Lara, Kaufman, 478 

Churchland, & Cunningham, 2016). To quantify this, we projected the Pprior data onto 479 

the Pcom subspace to calculate the percent variance explained by the Pcom PCs and 480 

repeated the same procedure for the Pcom data (Fig. 5D). The results show that the top 481 

ten Pprior PCs captured very little Pcom variance, and similarly, the top ten Pcom PCs 482 

captured very little Pprior variance (Fig. 5E) . These results support the hypothesis that 483 

the two information types are represented independently in premotor cortex. However, 484 
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such independency between Pcom and Pprior could also be caused by their different 485 

temporal structures in the task. Thus, we examined their neural dynamics within a trial. 486 

Figure 5F shows the time course of decoding results of prior and posterior information, 487 

where the Pprior quickly decreased after the disparity onset, and at the same time, the 488 

Pcom information increased and was retained until the end of the trial. These results 489 

demonstrated the dynamics in the computation of causal inference, where the 490 

information from the last trial is only preserved transiently and then used to integrate 491 

with sensory inputs to generate Pcom information.  492 

 493 

Update sensory uncertainty of arm location in parietal cortex (area 5) 494 

Finally, we investigated the neural activities associated with the updating of sensory 495 

uncertainty. The behavior results revealed a significantly greater uncertainty of 496 

proprioception in VP trials in the VPC task (low belief of a common source) than in the 497 

VP task (high belief of a common source) (Fig. 2C). We hypothesized that the sensory 498 

signals, which were used to make causal inference, in turn, updated their neuronal 499 

tunings to match inferred causal structure. We first examined the difference in neural 500 

tuning for arm location using the VP trials in the VP and VPC (trials with no disparity) 501 

tasks. Fig. 6A (right) shows an example neuron from the parietal cortex tuned to the 502 

center (0°) of arm location during reaching in the VP task, and the tuning 503 

range/uncertainty of the arm location was broader/lower in the VPC task. Here, for 504 

visualization purpose, we selected the time point when this neuron demonstrated the 505 

highest difference of ωPEV in the VP trials between VP and VPC tasks for the tuning 506 

calculation (Fig. 6A, left, peak delta ωPEV). The averaged dynamic spatial selectivity 507 

of all neurons revealed a significant decrease of the total spike rate variance explained 508 

by the arm location in the parietal cortex but not in the premotor cortex (Fig 6B, cluster-509 
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based permutation test, p < 0.05). Furthermore, at the population level, we performed 510 

the SVM decoding analysis of arm locations and found that only parietal cortex showed 511 

a significantly decreased decoding accuracy in the VPC task (Fig 6C, cluster-based 512 

permutation test, p < 0.05). We also confirmed that the change of decoding accurarcy 513 

in the parietal cortex was significantly larger than the change in the premotor cortex 514 

(two-way ANOVA, Condition (VP and VPC 0°)  Region (parietal and premotor), 515 

significant interaction effect, p < 0.05). 516 

 517 

 518 

Figure 6. Representation of arm location is updated in parietal cortex. (A) Left: The 519 

difference of ωPEV between VP and VPC (0°) conditions for an example neuron in parietal 520 

cortex. Right: Snapshot of the arm location tuning for VP and VPC (0°) conditions at the time 521 

point showed in the left panel (peak delta ωPEV). The solid curves were fitted with a von Mises 522 

distribution. (B) Dynamic average ωPEV for VP and VPC (0°) conditions. The horizontal line 523 

at the top represents the time bins in which the ωPEV for the VPC (0°) condition was 524 

significantly lower than that for the VP condition (cluster-based permutation test, p < 0.05). (C) 525 

Dynamic population decoding of arm locations. The horizontal line at the top represents the 526 

time bins in which the decoding accuracy for the VPC (0°) condition was significantly lower 527 

than that for the VP condition (cluster-based permutation test, p < 0.05). Shaded areas indicate 528 

95% confidence intervals. The horizontal dashed black lines represent the chance level. 529 
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DISCUSSION 530 

Our data of behavior and multi-area neural recordings revealed, for the first time, the 531 

dynamic computation of causal inference in the frontal and parietal regions at single-532 

neuron resolution during multisensory processing. Complementary to the previous 533 

findings focused on the feedforward sequential processing of BCI, the present results 534 

demonstrate parallel top-down processing of the hidden variable of Pcom from the 535 

premotor cortex, which monitors the weights of sensory combinations in the parietal 536 

cortex. By resolving the historical information and causal belief, the hidden causal 537 

structure and sensory representation are dynamically updated in the premotor and 538 

parietal cortices, respectively. 539 

 In the last 15 years, the BCI model has been extended to account for a large number 540 

of perceptual and sensorimotor phenomena and vast behavioral data(Shams & 541 

Beierholm). Recent studies have begun to map the algorithms and neural 542 

implementation in the human brain. Noninvasive human functional magnetic resonance 543 

imaging studies revealed a neural correlation to causal inference in parietal cortex, and 544 

magnetoencephalography showed that frontal neural activities are also involved in 545 

causal inference(Cao et al., 2019; Rohe et al., 2019; Rohe & Noppeney, 2015, 2016). 546 

However, at the single-neuron level, very few studies have examined the neural 547 

mechanism in animals. More importantly, none of the human studies have investigated 548 

the neural representation of the hidden variable, Pcom. How the prefrontal-parietal 549 

circuits contribute to the encoding and updating of Pcom has not been explored. Our 550 

results reconciled and extended previous findings by showing that Pcom is successively 551 

represented by premotor and parietal neural activities. Unlike previous human imaging 552 

studies, which used the final behavioral estimation as the index of causal inference(Cao 553 

et al., 2019; Rohe et al., 2019), our study directly examined the neural representation 554 
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and dynamics of the hidden variable Pcom at single-neuron and neural population levels. 555 

We showed that, even within a trial, the inference of a common source was dynamic. 556 

We thus propose a dynamic flow of information processing during causal inference, 557 

where the Pcom is estimated from the information of sensory uncertainties and the 558 

disparity between them in the premotor cortex and then used for later sensory 559 

integration or segregation (model weighted average)(Kording et al., 2007); finally, 560 

these signals are maintained in the premotor-parietal circuit to guide the reaching 561 

behavior.  562 

 Historical experiences create our prior beliefs of the surrounding environment. It 563 

was proposed that various cognitive functions, such as sensory perception, motor 564 

control, and working memory, can be modulated by historical perception(Akrami, 565 

Kopec, Diamond, & Brody, 2018; Ernst & Banks, 2002; Rao, DeAngelis, & Snyder, 566 

2012). Computationally, historical modulation can be well understood within the 567 

Bayesian framework(Kording & Wolpert, 2004). For instance, by imposing the BCI 568 

model in the present study, we showed that prior knowledge of a common source is 569 

updated by the hidden probability of the common source (Pcom) in the previous trial and 570 

then integrated with the sensory inputs in a Bayesian manner. The feedback from a 571 

posterior signal is one of the signatures of a hierarchical recurrent Bayesian model in a 572 

recurrent neural network(Darlington, Beck, & Lisberger, 2018). Furthermore, the 573 

posterior signal enables the construction of the causal inference environment, which 574 

can modulate sensory processing in lower-level sensory areas (e.g., parietal cortex) 575 

through a top-down feedback mechanism to maintain the belief of the causal structure. 576 

Therefore, our results provide the first behavioral and neural evidence in animals that 577 

the frontal-parietal circuit represents the hierarchical Bayesian inference and 578 

dynamically updates the causal structure and sensory representation to support the 579 
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causal inference during multisensory processing.  580 

 Previous research over the past two decades has revealed that even the perceptions 581 

of body ownership and agency are remarkably malleable and involve continuous 582 

processing of multisensory information and causal inference(Kilteni, Maselli, Kording, 583 

& Slater, 2015; Legaspi & Toyoizumi, 2019). Thus, our study provides unique data 584 

toward an understanding of self-relative awareness (e.g., bodily self-consciousness) in 585 

macaque monkeys, showing neural implementation of causal inference at the neural 586 

circuit level. We also identified the hidden components of causal inference in the 587 

parietal and premotor cortices of macaque monkeys by using a visual-proprioceptive 588 

task. This is important, because, unlike most sensory cognitive functions, the subjective 589 

perceptions of body ownership and agency cannot be directly measured from explicit 590 

reports from animals. Using the BCI model and neural activities recorded from multiple 591 

brain areas, we now are able to begin exploring body ownership and agency 592 

qualitatively by examining the hidden variable in both behavior and neural 593 

representations.  594 

In the BCI framework, there are two key components, inferring the hidden 595 

variables (e.g., Pcom) and updating the causal structure and sensory representation. We 596 

have suggested that the representation and core computation of the hidden common 597 

source most likely takes place in the premotor cortex(Ehrsson & Chancel, 2019; Fang 598 

et al., 2019), which is consistent with findings for body awareness in humans(Blanke, 599 

Slater, & Serino, 2015; Ehrsson, Spence, & Passingham, 2004). The posterior belief of 600 

a common source is calculated using a Bayesian approach by integrating prior 601 

knowledge and sensory entities, and theoretically, these components should be 602 

dynamically updated at different time hierarchies. For example, the prior configuration 603 

of the body, known as the body schema in psychology, constrains the possible 604 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.469042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.469042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

distribution of the body states but is dynamically updated when the context changes to 605 

maintain consistency between the internal body model and sensory inputs (e.g., rubber 606 

hand illusion or body illusion)(Botvinick & Cohen, 1998; Kilteni et al., 2015). 607 

Pathological impairment in inferring the sensory source can result in 608 

somatoparaphrenia, in which the patient declares that his or her body part belongs to 609 

another person despite the visual and proprioceptive signals from the common source 610 

of their own body(Keromnes et al., 2019). Similarly, schizophrenia patients suffering 611 

from delusions of agency have shown impairments in updating their internal causal 612 

structures. They show a deficit in the ability to detect the source of their thoughts and 613 

actions and thus incorrectly attribute them to external agents(Haggard, 2017). Therefore, 614 

although we demonstrated the neural representations and their updating by using the 615 

multisensory and reaching task in monkeys, the computational mechanism and 616 

underlying neural circuits might contribute to learning and inference in any task that 617 

relies on causal inference.  618 
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METHODS AND MATERIALS 630 

Experimental model and subject details 631 

All animal procedures were approved by the Animal Care Committee of Center for 632 

Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, 633 

Chinese Academy of Sciences, and were described previously in detail(Fang et al., 634 

2019). Briefly, three male adult rhesus monkeys (Macaca mulatta; monkey H, N, and 635 

S, weighting 6–10 kg) participated in the experiment. During the experiment, the 636 

monkeys were seated comfortably in the monkey chairs and their heads were fixed. All 637 

monkeys were implanted with chambers for recordings. 638 

 639 

Method details 640 

Some of the following methods are similar to those previous published(Fang et al., 641 

2019). 642 

Apparatus 643 

The monkeys were seated in front of a chest-height table on which a lab-made virtual 644 

reality system was placed (Fang et al., 2019). During the entire experiment, the 645 

monkey’s left arm (and the right arm in the case of Monkey H, who was right handed) 646 

was placed on the system and blocked from sight. A CCD camera (MV-VEM120SC; 647 

Microvision Co., China) captured the image of the monkey’s arm reflected in a 45° 648 

mirror. This image was projected to the rear screen by a high-resolution projector (BenQ 649 

MX602, China). Therefore, when the monkey looked in the horizontal mirror 650 

suspended between the screen and the table, the visual arm image appeared to be its 651 

real arm on the table. The lower edge of the screen was aligned to the table edge. The 652 

monkey’s trunk was close to the edge of the table, and the left shoulder was aligned 653 

with the midline of the screen. By using the OpenCV graphics libraries in C++ (Visual 654 

Studio 2010; Microsoft Co., WA, USA), the arm image and the visual target were 655 

generated and manipulated. By using CinePlex Behavioral Research Systems (Plexon 656 

Inc., TX, USA), sampled at 80 Hz, the hand position was tracked and recorded. The 657 

tracking color marker was painted onto the monkey’s first segment of the middle finger, 658 

which was not visible after adjusting the light exposure settings of the video. 659 

Behavioral task procedures 660 

The monkey was trained to report its proprioceptive arm location by reaching for a 661 

target in a visual-proprioceptive causal inference task (Fig. 1A) (Fang et al., 2019). The 662 

monkey initiated a trial by placing its hand on the starting point (a blue dot with a 1.5-663 

cm diameter) for 1,000 ms and was instructed not to move. After the initiation period, 664 

the starting point disappeared and the visual arm was rotated (within one video frame, 665 

16.7 ms) for the visual-proprioceptive conflict (VPC) condition, and the rotation was 666 

maintained for 500 ms (the preparation period). After that, the reaching target was 667 

presented as a “go” signal. The monkey had to reach the target (chosen from T1 to T5 668 
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randomly trial by trial [Fig. 1A]) within 2,500 ms and hold its hand in the target area 669 

(see as follows) for 500 ms to receive a drop of juice as the reward. Any arm movement 670 

during the target-holding period automatically terminated the trial. The rotated arm was 671 

maintained throughout the entire trial along with the arm movement. The intertrial 672 

interval (ITI) was ~1.5–2 s, after which the monkey was allowed to start the next trial. 673 

During the ITI, the visual scene was blank. Under the VPC condition, across trials, the 674 

visual arm was randomly presented with a disparity of 0°, ±10°, ±20°, ±35°, or ±45° (+, 675 

clockwise [CW]; −, counterclockwise [CCW] direction) from the subject’s 676 

proprioceptive arm, with its shoulder as the center point. The starting point was fixed 677 

25 cm away from the monkey’s shoulder. The target position was selected randomly 678 

trial by trial from one of five possible positions located on an arc (a ±4° jitter was added 679 

to the original position trial by trial to ensure the monkey did not perform the task by 680 

memorizing all the target positions. 681 

Besides the VPC condition, the monkey also was instructed to perform a vision-682 

proprioception (VP) congruent task and proprioception-only (P) task during the 683 

recording session. The only difference between the VPC and VP condition was that 684 

during the entire trial under the VP condition, the visual arm was always congruent with 685 

the proprioceptive arm. The only difference between VP and P conditions was that 686 

during the single-trial for the P condition, the visual arm information was blocked 687 

starting from the onset of the preparation period.  688 

Each VPC block contained 55 trials in which the 9 disparities and 5 targets were 689 

randomly combined. Each VP and P block contained 27 trials in which 5 targets 690 

randomly occurred in every single trial. In one recording session, typically one or two 691 

P blocks were given first to ensure that the monkey performed the task with its 692 

proprioceptive arm, and then in the following blocks, VP, P, and VPC conditions were 693 

randomly mixed. One recording session contained more than 3 VP and P blocks and 694 

more than 8 VPC blocks.  695 

Target (with reward) area  696 

To ensure the monkeys indeed performed the reaching-to-target task with their 697 

proprioceptive hand, under the VPC condition, the reaching target area (with reward) 698 

was defined as follows: the radial distance from the hand to the center of the target was 699 

less than 5 cm to ensure that the monkey did reach out to the target; with the target as 700 

the center, the azimuth range was set from [−8 + rotation degree] to +8° when the 701 

rotation degree was negative ( counter-clockwise), and from –8° to [+8 + rotation 702 

degree] when the rotation degree was positive (clockwise) (green zone in Fig. 1B). Only 703 

the correct trials were used in the subsequent analysis.  704 

Electrophysiology 705 

Extracellular single-unit recordings were performed described previously (Fang et al., 706 

2019) from three hemispheres in three monkeys. Briefly, under strictly sterile 707 

conditions and general anesthesia with isoflurane, a cylindrical recording chamber 708 

(Crist Instrument Co., Inc., Maryland, USA) of 22 mm in diameter was implanted in 709 
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the premotor cortex and in the parietal area 5. The location of the recording chamber 710 

on each animal was determined by individual MRI atlas (3T, Center for Excellence in 711 

Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese 712 

Academy of Sciences) (Graziano, 1999; Graziano, Cooke, & Taylor, 2000; Matelli & 713 

Luppino, 2001). During the recording session, glass-coated tungsten electrodes (1–2 714 

MΩ; Alpha Omega, Israel) were inserted into the cortex via a guide tube using multi-715 

electrode driver (NAN electrode system; Plexon Inc., USA). On-line raw neural signals 716 

were processed offline to obtain a single unit by Offline Sorter (Plexon Inc., Dallas, 717 

TX). The sorted files were then exported to NeuroExplorer software (Plexon Inc., 718 

Dallas, TX) to generate a mat format for analysis in MATLAB (Mathworks, Natick, 719 

MA, USA) and Python (The Python Software Foundation). 720 

 721 

Quantification and statistical analysis 722 

All statistical analyses were implemented with scripts written in MATLAB or Python. 723 

In premotor cortex, 475 neurons were recorded from two monkeys (272 neurons from 724 

Monkey H and 203 neurons from Monkey N); in parietal area 5, 238 neurons were 725 

recorded from two monkeys (116 neurons from Monkey N and 122 neurons from 726 

Monkey S). As all monkeys’ behavior and model fitting results were similar, for all 727 

analyses, data were combined across monkeys. All related statistics are reported in the 728 

Figure legends. 729 

Analysis of behavior data 730 

Bayesian causal inference model 731 

To capture the uncertainty of causal structure, the core of causal inference, the Bayesian 732 

causal inference (BCI) model described in a previous visual-proprioceptive integration 733 

study (Fang et al., 2019) was adopted. In the present study, the BCI framework included 734 

three models: (i) the full-segregation model, which assumes that visual and 735 

proprioceptive estimates of the arm’s locations are drawn independently from different 736 

sources (C=2) and processed independently; (ii) the forced-fusion model, which 737 

assumes that visual and proprioceptive estimates of the arm’s locations are drawn from 738 

a common source (C=1) and integrated optimally, weighted by their reliabilities; and 739 

(iii) the BCI model, which computes the final proprioceptive estimate by averaging the 740 

spatial estimates under full-segregation and forced-fusion assumptions weighted by the 741 

posterior probabilities of common source. Here, the BCI model assumes that both visual 742 

and proprioceptive location information (𝑆𝑉 and 𝑆𝑃) are represented as 𝑥𝑉 and 𝑥𝑃 743 

in the neural system, respectively, which are drawn from the normal distribution with 744 

sensory noise [𝑁(𝑆𝑉 , 𝜎𝑉), 𝑁(𝑆𝑃 , 𝜎𝑃)]. The causal inference structure is determined by 745 

the joint distribution of two sensory signals (sensory likelihood) and the prior 746 

probability of a common source (Pprior). Thus, according to the Bayesian rule, the 747 

posterior probability of common source (one source probability [Pcom]) is calculated 748 

as follows:  749 
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𝑝(𝐶 = 1|𝑥𝑉, 𝑥𝑃) =  
𝑝(𝑥𝑉, 𝑥𝑃|𝐶 = 1)𝑃𝑝𝑟𝑖𝑜𝑟

𝑝(𝑥𝑉, 𝑥𝑃|𝐶 = 1)𝑃𝑝𝑟𝑖𝑜𝑟+𝑝(𝑥𝑉,𝑥𝑃|𝐶=2)(1−𝑃𝑝𝑟𝑖𝑜𝑟)
, 750 

and the two sources of probability are 𝑝(𝐶 = 2|𝑥𝑉, 𝑥𝑃) = 1 − 𝑝(𝐶 = 1|𝑥𝑉, 𝑥𝑃). If the 751 

system completely “believes” the two sensory signals are from different sources (full-752 

segregation situation), the proprioceptive arm position is estimated independently from 753 

the visual information, as follows: 754 

�̂�𝑃,𝐶=2 =

𝑥𝑃
𝜎𝑃

2 +
𝜇𝑃𝑟
𝜎𝑃𝑟

2

1

𝜎𝑃
2 +

1

𝜎𝑃𝑟
2

, 755 

where 𝑁(𝜇𝑃𝑟 , 𝜎𝑃𝑟) represents a prior distribution of arm locations. In this experiment, 756 

the 𝜇𝑃𝑟 was set to 0 and 𝜎𝑃𝑟 was set to 10,000 to approximate a uniform distribution. 757 

If the system completely “believes” there is only one common source for the two 758 

sensory signals (forced-fusion situation), then the estimate of arm position is 759 

determined by the optimal integration rule, as follows: 760 

�̂�𝑉𝑃,𝐶=1 =

𝑥𝑉
𝜎𝑉

2 +
𝑥𝑃
𝜎𝑃

2 +
𝜇𝑃𝑟
𝜎𝑃𝑟

2

1

𝜎𝑉
2 +

1

𝜎𝑃
2 +

1

𝜎𝑃𝑟
2

. 761 

In the model simulation, the proprioceptive arm position at the end of the trial was 762 

set to zero (𝑆𝑃 = 0), so that the visual arm position is the visual-proprioceptive (𝑆𝑉 =763 

disparity ). In the task, monkeys were required to report their proprioceptive arm 764 

position, thus only the proprioceptive estimate was simulated. 765 

Model fitting  766 

To estimate the best-fitting model parameters in the BCI model, for each recording 767 

session, an optimization search was implemented that maximized the log likelihood of 768 

each model given the monkey’s data under the VPC condition. The prior probability of 769 

common source (Pprior) and visual and proprioceptive standard deviations, V and P, 770 

respectively, were set as free parameters to be optimized. For each optimization step, 771 

5,000 trials per disparity were simulated to form the distribution, and the sum log 772 

likelihood of the observations given the model was calculated for each disparity. Then, 773 

the parameters were optimized by minimizing the sum log likelihood using a genetic 774 

algorithm (ga function in MATLAB). The procedure was the same as for the optimal 775 

integration model, except that there were no causal structures and only two free 776 

parameters (V and P) need to be optimized. All simulation and optimization processes 777 

were performed in MATLAB. Only correct trials were included. 778 

Model comparison 779 

To determine the model that best explained the data at the group level using Bayesian 780 

Information Criterion (BIC), a Bayesian random-effects model comparison was used 781 

(Rigoux, Stephan, Friston, & Daunizeau, 2014). 𝐵𝐼𝐶 =  −2𝐿𝐿 + 𝑘  𝑙𝑛(𝑛), where LL 782 

denotes the log likelihood, k is the number of free parameters, n is the total number of 783 

data points, and ln is the natural logarithm. Finally, the better model was identified at 784 

the group level by the exceedance the probability based on all sessions of monkeys’ 785 
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BICs (Wozny, Beierholm, & Shams, 2010). 786 

The models’ goodness-of-fit was reported using the coefficient of determination 787 

(R2)(Fang et al., 2019),  788 

𝑅2 = 1 − exp [−
2

𝑛
{𝐿𝐿(�̂�) − 𝐿𝐿(0)}], 789 

Where 𝐿𝐿(�̂�) and 𝐿𝐿(0) denote the log-likelihoods of the fitted and the null model, 790 

respectively, and n is the number of observations. The null model assumes that monkeys 791 

report the perceived arm position randomly over the disparity range from the leftmost 792 

to the rightmost. Thus, a uniform distribution over this span was predicted. 793 

Pprior updating in causal inference  794 

To evaluate how the historical posterior probability of common source ( 𝑃𝑐𝑜𝑚 ) 795 

influences the prior probability of common source (Pprior), a Markov process was 796 

adopted to model the updating of (Pprior). That is,  797 

𝑝(𝐶=1)
𝑛 = 𝑝(𝐶=1|𝐶=1) ∗ 𝑝(𝐶=1|𝐷𝑎𝑡𝑎)

𝑛−1 + 𝑝(𝐶=1|𝐶=2) ∗ (1 − 𝑝(𝐶=1|𝐷𝑎𝑡𝑎)
𝑛−1 ), 798 

where 𝑝(𝐶=1) and 𝑝(𝐶=1|𝐷𝑎𝑡𝑎) denoted Pprior and Pcom respectively, and n denotes the 799 

nth trial under the VPC condition. Two prior states were included: C=1 (one common 800 

source) and C=2 (two different sources) at each trial. 𝑝(𝐶=1|𝐶=1) denotes the transition 801 

probability from one common source (C=1) to one common source (C=1), and 802 

𝑝(𝐶=1|𝐶=2)  denotes the transition probability from different sources (C=2) to one 803 

common source (C=1). For statistical significance analysis between 𝑝(𝐶=1|𝐶=1)  and 804 

𝑝(𝐶=1|𝐶=2), the Wilcoxon signed-rank test was used for paired data. 805 

 Note both Pprior and Pcom are latent variables. During model fitting process, we first 806 

used the Bayesian causal inference model (as mentioned before) to find the overall Pprior, 807 

𝜎𝑃 , and 𝜎𝑉  of the subjects in the day/session as the starting parameter of the 808 

subsequent Markov model. For all subsequent trials (except the first trial), both Pprior 809 

and Pcom are unknown. As time goes on, starting from the first trial, the Pcom of the 810 

current trial is obtained through the Bayesian causal inference model, and the Pprior of 811 

the next trial is obtained through the integration probability (Pcom) or separation 812 

probability (1 - Pcom) which are multiplied and added by the corresponding transition 813 

probability. Here, we fitted the observed data--drift to get the two free parameters 814 

transition probability. Through the transition probability, we define the influence of the 815 

Pcom of the previous trial on the Pprior of the next trial. 816 

Updating of proprioceptive representation  817 

To evaluate whether the primary sensory representation was modulated by the belief of 818 

causal structure, the proprioceptive variance within and after VPC tasks was compared 819 

to the baseline condition. For the within effect, the proprioceptive drift was calculated 820 

using the trials with 0° disparity in the VPC task and trials in VP task (baseline 821 

condition). Here, the standard deviation (SD) of proprioceptive drift was used as a 822 

measurement for the reliability of proprioceptive representation, in which higher SD 823 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.469042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.469042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

indicates lower reliability and vice versa. The mean of the proprioceptive drift for each 824 

target was normalized to zero. For the after effect, the SDs of proprioceptive drift under 825 

the P condition were compared between after the VP condition (baseline condition) and 826 

after the VPC condition. To characterize the temporal dynamic of the proprioceptive 827 

updating (after effect), trials in the first third and in the last third of the P task were 828 

compared. As control, similar analysis was conducted for the raw mean of 829 

proprioceptive drift (Fig S2). For statistical significance analysis, Wilcoxon signed-830 

rank test was used for paired data. 831 

Preprocessing of single-unit data 832 

To estimate continuous time-dependent firing rates, timestamps of spiking events were 833 

resampled at 1 kHz and converted into binary spikes for single trials. Spike trains were 834 

then convolved with a symmetric Hann kernel (MATLAB, MathWorks), 835 

convolved𝑤(𝑛) = 𝐴 (1 − cos (2𝜋
𝑛

𝑁
)) , 0 ≤ 𝑛 ≤ 𝑁 (𝑁 = 𝐿 − 1), 836 

where A is a normalization factor ensuring the sum of the kernel values equals 1. 837 

Window width L was set to 300 ms. Single neurons were included in the analysis only 838 

if they had been recorded for a full set of conditions (VP, P, and VPC conditions with 9 839 

disparities: 0°, ±10°, ±20°, ±35°, and ±45°). 840 

Peri-stimulus time histograms (PSTHs) were then calculated for four epochs of 841 

interest in a trial: (i) the baseline epoch (500 ms before the onset of visual arm rotation), 842 

(ii) the preparation epoch (500 ms after the onset of the visual arm rotation), (iii) the 843 

target onset epoch (1,000 ms after the onset of target onset), and (iv) the target-holding 844 

epoch (500 ms after the onset of target holding). To smooth the firing rate at each time 845 

point, the neural firing rate was calculated by averaging in sliding windows (window 846 

size, 400 ms; step size, 100 ms) in a single trial, resulting in 22 time bins of mean firing 847 

rate for every single trial for subsequent dynamic analysis. 848 

Causal inference neuron 849 

To measure the representation of a single neuron for causal inference on a single trial, 850 

the probability that a single neuron would integrate or segregate the sensory information 851 

on a single trial was calculated(Fang et al., 2019). The basic assumption here is that in 852 

a single trial under the VPC condition, if the neuron is more inclined to represent 853 

integrated information, then its firing rate will be closer to its response under VP 854 

conditions and the farther away from the response under P conditions, and vice versa. 855 

The normalized weight of integration (VP weight) was calculated as follows: 856 

(1) First, obtain the neuron response to the arm position under P and VP tasks and 857 

fit the von Mises distribution to get the tuning curve. 858 

(2) Under VPC conditions, obtain the current visual arm and the real arm positions, 859 

and at the same time, obtain the neuron’s firing rate when the arm is in the 860 

corresponding position under VP and P conditions, 𝜆𝑉𝑃 and  𝜆𝑃, respectively.  861 

(3) The VP and P templates can be generated through the Poisson distribution: 862 

𝑃𝑟𝑉𝑃(𝑋 = 𝑘) =  
𝜆𝑉𝑃

𝑘 𝑒−𝜆𝑉𝑃

𝑘!
, 863 
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𝑃𝑟𝑃(𝑋 = 𝑘) =  
𝜆𝑃

𝑘𝑒−𝜆𝑃

𝑘!
. 864 

(4) According to the corresponding probabilities, 𝑃𝑟𝑉𝑃  and 𝑃𝑟𝑃  in the two 865 

templates are obtained, and the integration weights for this neuron in the VPC 866 

task can be obtained through standardization: 867 

VP weight =  
𝑃𝑟𝑉𝑃

(𝑃𝑟𝑉𝑃+𝑃𝑟𝑃)
. 868 

To quantitatively describe whether a single neuron is encoding causal inference, the 869 

correlation between 𝑃𝑐𝑜𝑚   and VP weight is calculated. The logic is as follows: the 870 

𝑃𝑐𝑜𝑚  can be used to measure the degree of integration of sensory information and 871 

separation of sensory information at the behavioral level, whereas VP weight can 872 

measure this characteristic at the electrophysiological level. Therefore, if a neuron is 873 

performing causal inference, there should be a significant positive correlation between 874 

the Pcom and VP weight for the corresponding behavior. Neurons that (i) respond to 875 

VP/P conditions and (ii) for which Pcom and VP weight are significantly positively 876 

correlated in the final holding stage are called causal inference neurons. The specific 877 

algorithm was as follows: 878 

(1) First, obtain neurons with significant selectivity under VP and P conditions 879 

(ANOVA, main effect, p < 0.05). 880 

(2) According proprioception drift, all trials were divided into 29 classes. 881 

Continuous drift values were grouped into nine clusters: < -35°, [-35° -25°], [-882 

25° -15°], [-15° -6°], [-6° +6°], [+6° +15°], [+15° +25°], [+25° +35°], > +35°. 883 

To be noticed, ±6° covers approximately 99% of drift distribution under the VP 884 

and P condition. Thus, for the disparity 0°, there was only one cluster [-6° +6°]. 885 

Since the distribution of drift becomes wider (higher variance) along with the 886 

larger the disparity, the more clusters would be assigned for big disparity. For 887 

example, for the disparity ±45°, there were five clusters of drifts. 𝑃𝑐𝑜𝑚 and VP 888 

weight were assigned for each class by averaging all trials within it. the Pearson 889 

correlation coefficient was then calculated between 𝑃𝑐𝑜𝑚 and VP weight. If the 890 

𝑃𝑐𝑜𝑚 and VP weight were correlated significantly and positively (p < 0.05 and 891 

r > 0), the neuron was called as a causal inference neuron. 892 

To evaluate whether the fraction of causal inference neurons was significant highly 893 

than chance level (5%), one sample Z-tests (one-sided) were conducted for each brain 894 

region, respectively. 895 

Population pattern of causal inference 896 

To visualize the VP weight pattern at the brain region level, the VP weight of each trial 897 

of a single neuron under VPC conditions was calculated and then divided into 29 898 

clusters as described above. Then, the bootstrap method was used to randomly select 899 

50 trials from each cluster for averaging. This was repeated 50 times to obtain the VP 900 

weight (50  29) of a neuron for visualization. This results in a 50  29  N matrix, 901 

where N indicates the number of neurons in each brain region. The trial corresponding 902 

to each neuron was averaged to obtain a 50  29 matrix. The VP weights of a brain 903 
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region were visualized in a heatmap. 904 

High/low 𝑷𝒄𝒐𝒎 groups 905 

To characterize the dynamic representation of the 𝑃𝑐𝑜𝑚 in the entire session, all trials 906 

in a recording session were divided into high 𝑃𝑐𝑜𝑚 trials and low 𝑃𝑐𝑜𝑚 trials on the 907 

basis of the relative proprioception drift (RD). The relative proprioception drift (RD = 908 

drift/disparity) of each trial was calculated. The basic idea was that the larger the 𝑃𝑐𝑜𝑚, 909 

the more likely the monkey was to integrate the visual and proprioceptive information, 910 

and the corresponding RD is closer to 1. The top third and bottom third of the trials 911 

were designated the high 𝑃𝑐𝑜𝑚  class and the low 𝑃𝑐𝑜𝑚  class, respectively. These 912 

grouping methods were verified by the demixed principal component analysis (dPCA).  913 

dPCA 914 

The method for dPCA was adopted from that published in a previous study (Kobak et 915 

al., 2016). Time, target position/arm location (−30°, −20°, 0°, 20°, and 30°), and 𝑃𝑐𝑜𝑚 916 

(VP, P, high 𝑃𝑐𝑜𝑚  and low 𝑃𝑐𝑜𝑚 ) were combined to obtain the marginalized 917 

covariance matrix of the three. The neurons whose trial number was not less than 5 918 

under a single condition were selected for dPCA. Population activity was then projected 919 

on the decoding axes and ordered by their explained total variance for each 920 

marginalization. 921 

Information encoded by individual neurons 922 

The percentage of explained variance (PEV) (Buschman, Siegel, Roy, & Miller, 2011) 923 

was used to measure the basic task components encoded by a single neuron, in which 924 

PEV reflected the degree to which the variance of a single neuron can be explained for 925 

a specific task component. Generally, PEV can be expressed as a statistical value of 𝜂2, 926 

that is, the ratio of the variance between groups to the total variance. As the statistical 927 

value of 𝜂2 has a strong positive bias for a small sample, the unbiased 𝜔2 statistical 928 

value (ωPEV) (Olejnik & Algina, 2003) was used. 929 

To evaluate the information about the locations of the veridical arm, visual arm, 930 

and estimated arm encoded by a single neuron in the VPC task, an analysis of 931 

covariance was used to decompose the variance, and the ωPEV was calculated. In detail, 932 

for a single neuron, ωPEV was calculated for each type of arm when setting other two 933 

types of arm locations as covariates. the whole reaching space was divided into 11 parts 934 

from, −45 to 45, to transform it from a continuous variable to a discrete variable. For 935 

statistical significance analysis comparing two brain regions, a nonparametric 936 

Wilcoxon rank-sum test was used for unpaired data. 937 

The ωPEV was calculated in each time bin to characterize the temporal dynamics 938 

of ωPEV under VP and VPC (0°) conditions. The baseline was defined as the period 939 

500 ms before the onset of visual arm rotation, and the time bins significantly different 940 

from the baseline were determined by a one-sided, paired Wilcoxon signed-rank with 941 

false-discovery rate (FDR) correction. The time bins showing significant differences 942 

between VP and VPC (0°) conditions were determined by a cluster-based permutation 943 

test(Gramfort et al., 2013). 944 
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Population decoding analysis 945 

Decoding of 𝑷𝒄𝒐𝒎 946 

The population decoding analysis of 𝑃𝑐𝑜𝑚 was performed by the linear support vector 947 

machine (SVM) classifiers with the scikit-learn toolbox(Pedregosa et al., 2011). All 948 

neurons were included in this analysis without considering their 𝑃𝑐𝑜𝑚 selectivity. The 949 

classifier was trained to classify the 𝑃𝑐𝑜𝑚 (high/low 𝑃𝑐𝑜𝑚) with neural activity (peri-950 

stimulus time histograms) from each brain region. All recording sessions were pooled 951 

to form a pseudo-population. Neurons with more than 50 trials in each 𝑃𝑐𝑜𝑚 group 952 

were included in this analysis. Tenfold cross-validation was then implemented by 953 

splitting the neural data into 10 subsamples, each randomly drawn from the entire 954 

dataset. Decoders were then trained on 9 of the subsamples and tested on the remaining 955 

one. This process was repeated 10 times to obtain the decoding accuracy by averaging 956 

across all 10 decoders. This cross-validation process was repeated 1,000 times, and the 957 

overall decoding accuracy was taken as the mean across the 1,000 repetitions. The 958 

decoding analysis was conducted for all time points. The significance for decoding 959 

accuracy was determined by comparing the mean decoding accuracy to the null 960 

distribution from the shuffled data. The significant time duration was determined using 961 

a cluster-based permutation test for multiple comparisons across time 962 

intervals(Gramfort et al., 2013). 963 

To test whether premotor cortex neurons encode 𝑃𝑐𝑜𝑚  earlier than area 5, a 964 

randomization test was performed between them. The corresponding numbers (here, 50 965 

neurons per region) of neurons were randomly exchanged between the paired regions 966 

1,000 times to generate a null distribution (chance level) of time lags, and the 967 

significance was determined by a permutation test of the true time lag from the original 968 

data and the null distribution.  969 

Decoding of Pprior 970 

Neurons with more than 50 trials in each 𝑃𝑐𝑜𝑚  group (high and low 𝑃𝑐𝑜𝑚  groups, 971 

same as for the 𝑃𝑐𝑜𝑚 decoding analysis described above) were selected or the Pprior 972 

updating decoding. The decoding procedure was the same as described for “Decoding 973 

of 𝑃𝑐𝑜𝑚” unless the trials were sorted and labeled by the previous trial’s 𝑃𝑐𝑜𝑚 (nth trial 974 

− 1 to nth trial − 4) under the VPC condition. The statistical significance was determined 975 

by a cluster-based permutation test(Gramfort et al., 2013).  976 

Subspace overlap analysis 977 

PCA was performed on neural activities during the baseline period and during the 978 

target-holding period. The first ten PCs during each period were used to obtained the 979 

𝑃𝑝𝑟𝑖𝑜𝑟 and 𝑃𝑐𝑜𝑚  subspaces. To test the overlap of these subspaces, the baseline-period 980 

activity was projected onto the 𝑃𝑝𝑟𝑖𝑜𝑟 subspace, and the percent variance explained 981 

relative to the total variance of the baseline period data was quantified; similarly, the 982 

target-holding period activity was projected onto the 𝑃𝑐𝑜𝑚 subspace, and the percent 983 

variance explained relative to the total variance of the target-holding period data was 984 
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quantified(Elsayed et al., 2016). 985 

Decoding of arm locations 986 

All arm locations were separated into 5 spatial bins: −30°, −20°, 0°, 20°, and 30°. The 987 

basic decoding procedure was the same as described above for “Decoding of 𝑃𝑐𝑜𝑚.” 988 

Neurons with more than 6 trials in each arm location bin were selected. Leave-one-out 989 

cross-validation was then implemented, and this process was repeated 1,000 times to 990 

obtain the averaged decoding accuracy. The decoding analysis was conducted for all 991 

time points. Statistical significance for decoding accuracy was determined by 992 

comparing the mean decoding accuracy to the null distribution from shuffled data. The 993 

time bins with significant difference between conditions (VP and VPC [0°]) were 994 

determined by the cluster-based permutation test for multiple comparisons across time 995 

intervals(Gramfort et al., 2013).  996 

Joint peri-event canonical correlation (jPECC) analysis 997 

To test the relationship between population activities in the two brain regions, the 998 

jPECC method described in a previous study (Steinmetz et al., 2019) was utilized. First, 999 

the neuronal responses in two brain regions under the same behavior conditions, namely, 1000 

high 𝑃𝑐𝑜𝑚 and low 𝑃𝑐𝑜𝑚, were aligned. Then, a PCA was conducted across time and 1001 

trials to reduce the dimensionality to obtain the first 10 principal components (PCs) for 1002 

each brain region. The trials were then divided into ten equal parts (training set and 1003 

testing set) for cross-validation (10-fold cross-validation). The PCs of the training set 1004 

of each brain region were used to perform a canonical correlation analysis to obtain the 1005 

first pair of canonical correlation components (L2 regularization, λ = 0.5). Then, the 1006 

PCs of the testing set from each brain region were projected onto the first pair of 1007 

canonical correlation components, and the correlation was determined by the Pearson 1008 

correlation coefficient between these projections from each region. This analysis was 1009 

performed for each pair of time bins to construct a cross-validated correlation 1010 

coefficient matrix. Fifty trials for each group (high 𝑃𝑐𝑜𝑚 and low 𝑃𝑐𝑜𝑚) from each 1011 

brain region were randomly selected by bootstrapping in this analysis. Finally, a 1012 

heatmap was obtained by averaging the correlation coefficient matrix repeated 1,000 1013 

times. 1014 

To quantify the lead–lag relationship of information exchange between brain 1015 

regions, an asymmetric index was calculated by diagonally slicing the jPECC matrix 1016 

from +300 ms to +300 ms relative to each time point (Steinmetz et al., 2019). For time 1017 

point t, the average correlation coefficient across the left half of this slice (that is, the 1018 

average along a vector from [t − 300, t + 300] to [t, t]) was subtracted from the right 1019 

half of this slice (from [t, t] to [t + 300, t − 300]) to yield the asymmetry index. To test 1020 

the leading significant time point across brain regions, the data from neurons in these 1021 

brain regions were exchanged, and the above-described analysis was repeated 1,000 1022 

times to obtain the null distribution of the asymmetric index. Then, a cluster-based 1023 

permutation test was performed to test whether the symmetric index was significantly 1024 

greater than the chance level(Gramfort et al., 2013). 1025 
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To further exclude the possibility that the observed lead–lag relationship resulted 1026 

from the intrinsic properties of neuronal activities rather than the encoded information 1027 

in these regions, all trials in each brain region were shuffled to ensure that the inter-1028 

region trials were not aligned. Then, the analysis was repeated as described above to 1029 

obtain the asymmetric index. 1030 

 1031 

DATA AND CODE AVAILABILITY 1032 

Raw electrophysiology recording files, due to their size (multiple terabytes), are 1033 

available upon reasonable request. 1034 
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SUPPLEMENTARY INFORMATION 1167 

Table S1. Model parameters and fitting evaluations of two models for monkeys.  1168 

Subject 
Causal inference (model averaging) Forced fusion 

relBICGroup EP R2 𝝈P 𝝈V Pprior relBICGroup EP R2 𝝈P 𝝈V 

Monkey H 0 >0.999 0.96±0.0017 7.72±0.14 5.83±0.090 0.999±0.0004 329.52  2.31E-14 0.93±0.0039 9.87±0.24 9.02±0.23 

Monkey N 0 >0.999 0.93±0.0080 9.56±0.16 4.93±0.15 0.86±0.026 812.34  4.04E-28 0.37±0.36 11.34±0.10 10.46±0.13 

Monkey S 0 >0.999 0.96±0.0022 8.98±0.14 5.72±0.22 0.98±0.012 290.04  7.57E-23 0.94±0.0027 10.10±0.14 8.34±0.17 

The model parameters and R2 were averaged across days for monkeys; data are presented as the means ± the standard errors of the means. The 1169 

relBICgroup was the summation of all days’ BIC for monkeys.  1170 

Abbreviations: 𝝈P, standard deviation of the proprioception likelihood; 𝝈V, standard deviation of the vision likelihood; Pprior, prior probability of 1171 

common source; relBICgroup, Bayesian information criterion at the group level; EP, exceedance probability; R2, coefficient of determination. 1172 
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 1177 

Figure S1. Behavior performance and causal inference model predict results in individual 1178 

monkeys. (A) The pattern of drift is consistent across all three monkeys (black lines and dots), and the 1179 

predictions of the causal inference model (gray lines and dots) characterized monkeys’ behavior data. 1180 

Each dot represents a single trial, and lines represent the average result. The blue and orange solid lines 1181 

represent the visual and proprioceptive bias, respectively. (B) Model prediction of the posterior 1182 

probability of common source (Pcom). Each dot represents the averaged Pcom in a cluster grouped by the 1183 

disparity and drift based on the monkey’s behavior. (C) Average Pcom as the function of disparity. The 1184 

black lines represent the average Pcom of each monkey. 1185 
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 1187 

Figure S2. Sensory updating is not reflected in the mean of drift. Left: mean drift in P blocks after 1188 

VP and VPC tasks. The solid lines represent the means of drift in VP and VPC (0°) tasks across all 1189 

sessions of all monkeys in the early part of the sessions (Wilcoxon signed-rank test, W = 3,591.0, p = 1190 

0.37, FDR) and the late part of the sessions (Wilcoxon signed-rank test, W = 3749.0, p = 0.37, FDR). 1191 

Right: mean of drift in VPC (0°) trials was not significantly different from that in VP trials (Wilcoxon 1192 

signed-rank test, W = 13,668.0, p = 0.29). The dashed lines represent the means of the drift for VP and 1193 

VPC (0°) tasks in each monkey. Error bars indicate the SEMs. n.s., not significant. 1194 
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 1196 

Figure S3. jPECC analysis with shuffled temporal alignment trials. For determining whether 1197 

correlations occur with a temporal offset between premotor and parietal cortices after shuffling the trials’ 1198 

alignment. Left: cross-validated correlation coefficient between premotor and parietal cortices. The 1199 

trial’s temporal alignment was shuffled to determine whether correlations occur with a temporal offset 1200 

between the paired brain regions. Right: the black line represents the lead–lag interactions as a function 1201 

of time relative to target onset, and the gray dashed line represents the chance level (chance level = 0). 1202 
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 1204 

Figure S4. Percentage of prior-selective neurons and causal inference (CI) neurons. Red, the 1205 

number of pure prior-selective neurons; blue, the number of pure CI neurons; purple, the number of 1206 

dual-selective neurons. 1207 
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