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Abstract 20 

A challenge in designing treatment regimens for tuberculosis is the necessity to use three or more 21 

antibiotics in combination. The combination space is too large to be comprehensively assayed; 22 

therefore, only a small number of possible combinations are tested. We narrowed the 23 

prohibitively large search space of combination drug responses by breaking down high-order 24 

combinations into units of drug pairs. Using pairwise drug potency and drug interaction metrics 25 

from in vitro experiments across multiple growth environments, we trained machine learning 26 

models to predict outcomes associated with higher-order combinations in the BALB/c relapsing 27 

mouse model, an important preclinical model for drug development. We systematically predicted 28 

treatment outcomes of >500 combinations among twelve antibiotics. Our classifiers performed 29 

well on test data and predicted many novel combinations to be improved over bedaquiline + 30 

pretomanid + linezolid, an effective regimen for multidrug-resistant tuberculosis that also 31 

shortens treatment in BALB/c mice compared to the standard of care. To understand the design 32 

features of effective drug combinations, we reformulated classifiers as simple rulesets to reveal 33 

guiding principles of constructing combination therapies for both preclinical and clinical 34 

outcomes. One example ruleset is to include a drug pair that is synergistic in dormancy and 35 

another pair that is potent in a cholesterol-rich growth environment. These rulesets are 36 

predictive, intuitive, and practical, thus enabling rational construction of effective drug 37 

combinations based on in vitro pairwise drug synergies and potencies. As more preclinical and 38 

clinical drug combination data become available, we expect to improve predictions and 39 

combination design rules.  40 
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Introduction 41 

Tuberculosis (TB) remains a prevalent and important global health concern, with more than ten 42 

million people falling ill and about 1.4 million dying in 2019 (World Health Organization, 2020). 43 

Multiple drugs are used to treat TB because combination therapy shortens treatment duration, 44 

reduces disease relapse (increases treatment efficacy), and lowers the rate of drug resistance 45 

development compared with monotherapy (Fox et al., 1999). The standard of care (SOC) for TB 46 

treatment was developed almost 40 years ago and consists of four drugs (isoniazid (H), 47 

rifampicin (R), pyrazinamide (Z), ethambutol (E); HRZE) given for two months followed by two 48 

drugs (H and R; HR) given for another four to seven months (Fox et al., 1999). New multidrug 49 

therapies are needed to improve treatment outcomes and should include drugs that shorten 50 

treatment, increase treatment efficacy, or both. 51 

Efforts to develop new antibiotics and combination therapies for TB have been highly productive 52 

(Aldridge et al., 2021). The large combination space created by the dozens of currently used 53 

drugs and the many under development (newtbdrugs.org) cannot be surveyed clinically. There is 54 

new evidence that improved drug combinations are in this space, as a recent clinical study 55 

identified a four-drug combination that shortened treatment by two months by substituting two 56 

drugs (H and R) from the SOC with moxifloxacin (M) and rifapentine (P) (Dorman et al., 2021). 57 

Furthermore, the combination consisting of bedaquiline (B), pretomanid (Pa) and linezolid (L), 58 

BPaL, has become an example for attainable TB treatment improvement in combination space 59 

because it shortened treatment of multidrug-resistant TB from over two years to six months with 60 

increased efficacy from less than 50% to more than 90% cure (Conradie et al., 2020). Reciprocal 61 

methods to clinical studies are needed to rapidly and systematically design combination 62 

therapies. 63 
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Preclinical animal studies are the primary tool in identifying drug combinations for clinical 64 

evaluation. The BALB/c relapsing mouse model (RMM) of durable treatment identified BPaL as 65 

a highly effective combination that showed faster and more effective curing than the three-drug 66 

mouse SOC (HRZ)(Xu et al., 2019). However, the number of combinations that can be tested in 67 

mouse studies is limited, and methods that prioritize drug combinations for preclinical testing are 68 

needed. We recently demonstrated that in vitro drug combination measurements in suites of 69 

multiple growth conditions were predictive of treatment improvement over the SOC in the RMM 70 

(Larkins-Ford et al., 2021). Those results suggest the potential to use in vitro measurements to 71 

select drug combinations with a high probability for treatment improvement over the SOC. 72 

However, the approach would still require measuring thousands of drug combinations to 73 

systematically survey the combination space, which is not feasible in either preclinical animal 74 

studies or in vitro experiments (Figure 1A).  75 

One approach to searching the drug combination space more efficiently is to address the 76 

combinatorial explosion by utilizing drug pair data instead of requiring empirical data of three- 77 

and four-way combinations (Figure 1A). For example, there are almost 6,000 three- and four-78 

drug combinations among twenty drugs but only 190 drug pairs; therefore, a method to 79 

understand and predict high-order combination treatment outcomes based on pairwise 80 

measurements alone would improve efficiency by ~30-fold. The success of computational 81 

algorithms developed to predict the in vitro behavior of high-order drug combinations (three or 82 

more drugs) from the underlying low-order drug combinations (Wood et al., 2012, Katzir et al., 83 

2019, Chandrasekaran et al., 2016, Cokol et al., 2017) indicates that pairwise drug interactions 84 

contain information important for understanding the activity of high-order drug combinations. 85 

These methods were developed to investigate drug interactions, which describe how drugs in 86 
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combination can interact to produce combination effects that are greater than, less than, or as 87 

good as the effects of individual drugs (synergy, antagonism, and additivity, respectively). The 88 

prior success in mapping pairwise to high-order drug interactions in vitro suggests that it may 89 

also be possible to predict outcomes of multidrug therapies in vivo based on the properties of 90 

underlying drug pairs. 91 

In this study, we develop a joint in vitro and computational framework to predict combination 92 

treatment outcomes for TB in mouse and clinical studies. Our study design is motivated by (a) 93 

the predictive signal of in vitro combination potencies and drug interactions to outcomes in the 94 

RMM using validated in vitro growth conditions, and (b) the ability to predict high-order drug 95 

interactions from underlying pairwise interactions. We used a dataset of systematic pairwise drug 96 

response data to develop machine learning models that accurately predict RMM and clinical 97 

outcomes of high-order combinations, creating a scalable and resource-sparing method to design 98 

combination therapies for TB rationally. We found that pairwise in vitro data carry a strong 99 

predictive signal, resulting in multiple rule sets for constructing effective high-order 100 

combinations based on the interaction and potencies of drug pairs as the building blocks. The 101 

resulting rule sets provide interpretable heuristics for rational assembly of optimized drug 102 

combinations that are better than the standard of care and BPaL in the RMM. We found that top 103 

combinations could be designed by assembling, for example, a pair that is synergistic in a culture 104 

environment that induces dormancy with another pair that is potent in a lipid-rich growth 105 

medium. Furthermore, the principles of combination design translated from the RMM to clinical 106 

outcomes. Our framework simultaneously creates accurate predictions of combination therapy 107 

outcomes in preclinical models and interpretable rules to construct optimized combinations.  108 
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Results 109 

Organizing high-order drug combinations by summarizing pairwise drug combination data 110 

We hypothesized that high-order drug combination RMM treatment outcomes could be predicted 111 

using in vitro pairwise drug combination measurements because pairwise drug interaction data 112 

are predictive of high-order drug interactions in Mycobacterium tuberculosis (Mtb), Escherichia 113 

coli, and cancer cells (Wood et al., 2012, Katzir et al., 2019, Chandrasekaran et al., 2016, 114 

Julkunen et al., 2020). In addition, we have previously shown that in vitro drug combination 115 

response data is predictive of RMM treatment outcomes (Larkins-Ford et al., 2021). To test this 116 

hypothesis, we designed a data structure to organize pairwise in vitro drug combination 117 

measurements across a range of drug pair potencies and drug interactions for each high-order 118 

drug combination under consideration (Figure 1).  119 

We used pairwise drug combination response data from a large-scale study that contains in vitro 120 

measurement of two- and three-drug combinations among ten commonly used anti-tuberculosis 121 

drugs (Larkins-Ford et al., 2021). To broaden the scope of in vivo studies, we expanded this 10-122 

drug set (bedaquiline, clofazimine, ethambutol, isoniazid, linezolid, moxifloxacin, pretomanid, 123 

pyrazinamide, rifapentine, rifampicin) with pairwise measurement to SQ109 and sutezolid for a 124 

total of 12 drugs. A portion of the SQ109 pairwise data was described previously (Egbelowo et 125 

al., 2021), while its remainder and all of the sutezolid data are new to this study. An equipotent 126 

mixture of each drug was measured at multiple doses to generate a pairwise dose response curve 127 

(Cokol et al., 2017, Larkins-Ford et al., 2021, Van et al., 2021). Drug combinations were 128 

measured in seven in vitro growth conditions relevant to the environments encountered by Mtb 129 

during infection: fatty acid carbon sources consisting of (1) butyrate, (2) valerate, (3) 0.05 mM 130 
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cholesterol, and (4) 0.2 mM cholesterol (cholesterol-high), as well as (5) acidic medium (acidic), 131 

(6) non-replicating/hypoxic medium (dormancy), and (7) standard laboratory growth medium 132 

(standard). Longitudinal measurements were made, and two time points were targeted that 133 

represent a relatively consistent drug exposure time across conditions (constant), as well as the 134 

maximal drug exposure time relative to the doubling time of Mtb in each growth condition 135 

(terminal; constant and terminal times were the same for the standard condition). Five metrics 136 

were calculated for each dose-response curve (Figure 1B), capturing combination potency 137 

(AUC25, Einf, GRinf) and drug interactions at low and high dose levels (log2FIC50, log2FIC90). In 138 

total, 65 metrics were calculated for each of the 60 drug pairs, totaling 3900 pairwise dose 139 

response metrics (Table S1). 140 

When breaking down high-order drug combinations into corresponding sets of drug pairs (e.g., 141 

ABC into AB, AC, and BC), some drug pairs will serve as components of multiple high-order 142 

drug combinations (e.g., AB is a component of ABC, ABD, ABCD). An important consequence 143 

is that each drug pair in a high-order drug combination will have an associated metric (e.g., for 144 

combination ABC, there will be an Einf metric for AB, AC, and CD), but drug combinations of 145 

different orders will consist of different numbers of drug pairs and consequently have different 146 

numbers of pairwise dose-response metrics. To make combinations of different orders 147 

comparable, we devised a data structure where each high-order drug combination was 148 

represented by the same number of dose-response features, accomplished by aggregating the 149 

constituent pairwise metrics (AUC25, Einf, GRinf, log2FIC50, log2FIC90) using three summary 150 

statistics: minimum (min), maximum (max), and arithmetic mean (mean; Figure 1C). The three 151 

summary statistics ensured a uniform data structure of 195 features (mean, min, max of pairs for 152 
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each metric, condition, and time point) from pairwise data for all high-order combinations (Table 153 

S2), facilitating downstream analyses.  154 

Pairwise data are predictive of high-order in vivo treatment outcome 155 

To test the hypothesis that in vivo high-order drug combination treatment outcomes can be 156 

predicted from in vitro pairwise treatment data, we binned the dataset of high-order (three-, four-157 

, and five-drug) combinations by assessing whether each combination was better (+C1) or worse 158 

(-C1) than the SOC in the RMM outcome using published animal studies. Combinations were 159 

deemed better if they achieved lower relapse (increased efficacy), similar relapse percentage 160 

with shorter treatment time (treatment shortening), or both, over the SOC (Table S3). Principal 161 

Component Analysis (PCA) revealed partial separation of +C1 and -C1 combinations along the 162 

first principal component (PC), indicating a strong predictive signal in pairwise data and 163 

suggesting that linear combinations of in vitro pairwise drug responses may be sufficient to 164 

distinguish drug combinations with different in vivo outcomes, even in the absence of trained 165 

supervised learning models. Notably, the signal was robust to the number of drugs involved in a 166 

combination, as we observed separation between 3-drug and 4+-drug combinations along the 167 

second PC, which was orthogonal to the first (Figure S1A). 168 

Though PCA revealed partial separation of -C1 and +C1 combinations, the remaining overlap 169 

hinders accurate classification of candidate combinations using PCs alone, so we turned to 170 

supervised machine learning (ML) to increase classification accuracy. We evaluated seven ML 171 

algorithms for their ability to distinguish +C1 and -C1 combinations and compared their 172 

performance with repeated random partitioning of data for model training and evaluation. We 173 

observed ensemble methods, such as Random Forest (RF), to be top performers (Table S4), with 174 
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corresponding classifiers achieving high (AUC > 0.86) accuracy on both training and test data. 175 

We, therefore, chose RF for all subsequent analyses.  176 

By necessity, TB drug regimen development is iterative in that drugs are added to or substituted 177 

into effective combination scaffolds. Testing of combinations with new antibiotics often begins 178 

by adding or substituting a drug into a combination that has been previously tested. To simulate 179 

the process of using a new drug in combination with existing drugs, we treated each drug from 180 

the 12-drug dataset as a “new” drug. For this analysis, each drug was individually left out except 181 

for rifampicin, which could not be left out because too few -C1 combinations remained in the 182 

training set. We reserved combinations containing the candidate drug for testing (“leave-one-183 

drug-out”) and trained a model on the remaining drug combinations. For each of the 11 “leave-184 

one-drug-out” training/test sets, we included the HRZE combination (four-drug SOC) in the test 185 

set to evaluate combination prediction compared with the SOC. The models correctly predicted 186 

whether including the “left-out” drug improved treatment outcome (mean AUC +/- SEM 0.91 +/- 187 

0.04, Table S5). Though the inclusion of any one drug into the scaffold was not a requirement for 188 

accurate performance, the exception was the model trained after bedaquiline was left out, which 189 

produced a random classifier (AUC = 0.58). Together, these results demonstrate that RMM 190 

outcomes of combinations containing a previously untested drug can be effectively predicted 191 

using pairwise in vitro measurements with minor drug-specific limitations. 192 

Additional classifiers predict top performing combination outcomes in vivo 193 

Of all the possible 575 three- and four-drug combinations among the 12 drugs, only 39 (~7%) 194 

were annotated with an RMM outcome, which we further split into 29 training and 10 test 195 

combinations. Given the SOC classifier (Figure 2A), we used the 29 annotated combinations in 196 
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the training set to compute the optimal classification threshold (Youden’s J; P(+C1)=0.71) and 197 

applied it to categorize in vitro data from the 10 test combinations and the remaining 536 (~93%) 198 

candidate combinations (Table S6). Of the 536 candidates, the classifier predicted 400 (76%) to 199 

be an improvement over the SOC, which was too high for effective follow-up. We, therefore, 200 

sought to prioritize the candidates further by asking whether they also outperform bedaquiline, 201 

pretomanid, and linezolid (BPaL). This combination is better than the SOC in the RMM (Xu et 202 

al., 2019, Mudde et al., 2021, Berg et al., 2021) and is a highly effective combination in the 203 

clinic, where it has been used to dramatically shorten the treatment time of multidrug-resistant 204 

TB (MDR TB) (Conradie et al., 2020). 205 

We reannotated the RMM outcome (Figure 2B) according to whether it was better than BPaL 206 

(+C2) or not (-C2, Table S3). The +C2 group is a proper subset of the SOC +C1, and the new -207 

C2 class combines the remaining +C1 (now labeled +C1-C2) and the previously labeled -C1 208 

combinations. As with SOC, in vitro pairwise data are separated by the +C2 and -C2 labels along 209 

the top principal component (Figure S1B).  210 

Using the same validation process we performed with SOC classifiers, we evaluated the 211 

performance of a model trained with features from all conditions for its ability to distinguish 212 

+C2/-C2 combinations. We observed comparable performance for the all-condition model during 213 

model training (AUC = 0.83) and high performance using the held-out test set (AUC = 0.89, 214 

Figure 2C). We also observed that combinations predicted to be better than BPaL (Youden’s J; 215 

P(+C2)>0.36) also tend to have the highest likelihood to improve treatment outcome over the 216 

SOC (P(+C1)>0.78, Figure 2D, Table S6). However, the converse is not true: high probability 217 

+C1 (P(+C1)>0.71) combinations may or may not be better than BPaL. This suggests that the 218 

SOC and BPaL classifiers are non-redundant, and classification for improvement over BPaL 219 
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(182 combinations, 34%, Table S6) can further refine the set of +C1 combinations for 220 

experimental follow-up. We observed a wide range of probabilities for the BPaL classification 221 

(P(+C2) between ~0.35 and ~0.75) in which there are few annotated combinations; therefore, 222 

further prioritization may be achieved using a more conservative BPaL classification threshold 223 

(e.g., P(+C2)=0.5, 14% (73) +C2 combinations) or by ranking candidate combinations using 224 

probabilities (Figure 2D). Whichever method is used for candidate prioritization, we predict that 225 

there are many potential treatment-improving combinations using existing anti-tuberculosis 226 

drugs and that +C2 combinations represent a unique subset of treatment improving 227 

combinations.  228 

RMM outcome prediction is improved using subsets of in vitro conditions 229 

Mtb encounters many environments during infection, and some are thought to contribute more 230 

than others to the requirement for long treatments. Models constructed from multiple conditions 231 

as a “sum-of-parts” are likely to be the most predictive because they represent the diversity of 232 

microenvironments encountered during an infection (Larkins-Ford et al., 2021). We asked which 233 

of the seven in vitro models were most predictive and whether a smaller set of in vitro conditions 234 

could be used to model RMM outcomes. We reasoned that a model trained with three conditions 235 

would be sufficient to represent the diversity of physiological states during infection while also 236 

constituting a practical set of experiments to perform. We also confirmed that increasing the 237 

number of conditions in a model beyond three did not generally improve performance (Figure 238 

S2). 239 

After evaluating all possible three-condition models, we observed that all but one model was 240 

high performing for both outcomes (AUC > 0.7, Figure 3A) and that many performed better than 241 
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the seven-condition model (SOC AUC=0.83, BPaL AUC=0.83). These results demonstrate that 242 

three conditions were sufficient to train models that were as good or better than a model trained 243 

on all possible condition information. We confirmed the high performance of three-condition 244 

models using test data and predicted candidate combination classification comparable to the all-245 

condition model (Figure S3). Furthermore, high-performing models can be trained using many 246 

aggregated sets of three conditions (Figure S2). Finally, the high performance of three-condition 247 

sets for both BPaL and SOC outcome models suggests that using one of the two is sufficient for 248 

classifier evaluation. Therefore, we focused on only BPaL outcome models in subsequent 249 

analyses.  250 

Conditions that have important information for predicting in vivo outcomes should be those that 251 

improve model performance when included, even if the condition is not the highest performing 252 

when considered by itself. Therefore, we compared model training performance with and without 253 

each of the seven conditions. We expected that if a condition is sufficiently informative, a 254 

majority (>50%) of the models that include it should have increased performance compared to 255 

when that condition is excluded. We observed that 65% of models saw an increase in AUC when 256 

butyrate was included, with similar trends for dormancy (54% of models) and cholesterol-high 257 

(51% of models, Figure S4A). The trend towards increased performance was maintained among 258 

models using data from four or more conditions that included butyrate+dormancy+cholesterol-259 

high compared to those with only two or fewer of these conditions (p=0.206, Figure S4B). 260 

Lastly, we observed that the model butyrate+dormancy+cholesterol-high was the sixth-highest 261 

performing three-condition model for the BPaL outcome (AUC=0.92, F1=0.81, Figure 3A, Table 262 

S7), and the top five three-condition models included at least one of these three conditions. 263 
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Though dormancy and butyrate were the top two highest-performing single-condition models 264 

(Table S7), the cholesterol-high condition performed modestly as a single-condition model 265 

compared to other growth environments. Nevertheless, models with other conditions improved 266 

upon the addition of cholesterol-high measurements (Figure S4A), suggesting that the condition 267 

carries an orthogonal signal to other conditions. 268 

This analysis demonstrates that there is predictive information in many of the in vitro models, 269 

with some conditions carrying redundant information, while others provided an orthogonal signal 270 

that improved classifier performance. Future work to prioritize combination therapies based on 271 

pairwise measurement will therefore not require exhaustive measurement in many growth 272 

conditions but can instead focus on sets of three in vitro models with established predictive 273 

accuracy. 274 

Treatment outcome is driven by exceptional drug pairs rather than averaged pairwise properties 275 

Evaluation of growth condition contribution to classifier performance provides one angle of 276 

interpretability, whereas further insight may be gained from evaluating individual features. We 277 

sought to understand what features could accurately distinguish +C2/-C2 and +C1/-C1 278 

combinations and what feature values constituted +C2 combinations. We examined the values of 279 

individual features among all conditions and found that several correlated with the +C2/-C2 280 

outcome class (9 of the 186 (~5%) features; p<0.05, Wilcoxon rank-sum test, using Benjamini-281 

Hochberg multiple hypothesis correction; Figure 3B and C, Table S8, Figure S5A). Though no 282 

features differed significantly between +C1 and -C1 drug combinations (all p>0.05), we 283 

nevertheless observed a strong correlation between the significance of potency features in the 284 

SOC and BPaL comparisons (Figure 3B, Pearson correlation, R=0.72, p<0.001). In contrast, 285 
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there was a substantially weaker correlation in the importance of drug interaction metrics 286 

between the SOC and BPaL outcome thresholds (Figure 3C, Pearson correlation, R=0.36, 287 

p=0.002). As with potency features, several drug interactions features differed significantly 288 

between +C2 and -C2 combinations, but not between +C1 and –C1 ones (Figure 3C); this is 289 

consistent with a prior study where we found that RMM outcomes relative to the SOC were 290 

predicted by potency metrics rather than synergies (Larkins-Ford et al., 2021).  291 

We noted that many significant features were from the butyrate and dormancy conditions (Figure 292 

3B and C), supporting the use of a three-condition model that includes these conditions. We also 293 

observed that all of the significant features to correlate with the +C2/-C2 dichotomy describe the 294 

most potent and most synergistic pairs (e.g., minimum GRinf and log2FIC values and maximum 295 

Einf and AUC25 values among the underlying pairs of a high-order combination). These results 296 

suggest that a small number of strong drug pairs contribute more information about treatment 297 

improvement of a high-order combination than the average behavior of all involved pairs. 298 

Furthermore, these observations are not specific to the training set and generalize when test 299 

combinations were also considered (Figure S5B and C). Taken together, these results indicate 300 

that the degree of treatment improvement of a drug combination (over BPaL and SOC) can be 301 

predicted using in vitro measurements of pairwise drug potency and that there are drug pair 302 

synergies when Mtb are dormant, which distinguish drug combinations that are better than BPaL. 303 

Design principles for constructing effective drug combinations  304 

Given our observations that highly effective drug pairs are driving the treatment outcome of 305 

high-order drug combinations (Figure 3), we aimed to understand how to identify and compile 306 
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effective drug pairs using in vitro measurements. Our goal was to compose a set of rules to guide 307 

the rational design of high-order drug combinations using drug pairs as the building blocks.  308 

Decision tree classification mirrors human decision-making and can define a set of rules for 309 

classification tasks. To make the rules defined by the decision tree interpretable and 310 

straightforward, we focused on the features from the butyrate, dormancy, and cholesterol-high 311 

conditions, motivated by the largest increase in performance when these three conditions were 312 

included in a machine learning model. We selected a single potency and drug interaction feature 313 

from each condition by choosing features with the strongest association (lowest p-values) with 314 

the +C2/-C2 dichotomy based on the Wilcoxon rank-sum test analysis (Table S8). We used the 315 

training and test data split from the BPaL RF classifier and trained a decision tree (DT1) to 316 

identify the features and thresholds that were most informative for identifying +C2 combinations 317 

(Figure 4A). The rules defined by these features indicate that the first step in constructing a 318 

combination is to choose a potent drug pair in butyrate (GRinf in butyrate at the constant time 319 

point < -0.38) and then choose a pair that is additive/synergistic in cholesterol-high (log2FIC50 in 320 

cholesterol-high at the terminal time point < 0.13). Several candidate drug combinations were 321 

also identified using these rules as likely to be +C2. The lower complexity of a two-feature 322 

decision tree yields did not alter accuracy when predicting the test set outcome compared to the 323 

RF classifier (83%), demonstrating that the simplicity of a short rule set provides an accurate 324 

understanding of how to construct effective combinations based on minimal information from 325 

pairwise measurement in vitro.  326 

The first decision tree (DT1) used only two features of the many that were observed to separate 327 

+C2 from -C2 combinations, suggesting that we may be able to write other rule sets. We trained 328 

a second decision tree (DT2), with an emphasis on dormancy and cholesterol-high features. DT2 329 
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was observed to be similar to DT1, with the second rule (of additivity/synergy in cholesterol-330 

high) being identical in both trees. Conversely, the first decision in DT2 is based on having a 331 

highly synergistic drug pair in dormancy (Figure 4B, log2FIC50 at the constant time point < -332 

0.84) instead of a potent pair in butyrate (from DT1). The ability to substitute the first rule with 333 

another shows redundancies in predictive signals among the metrics in the in vitro dataset. Taken 334 

together, the DTs define a set of interpretable rules that can govern the rational design of 335 

effective high-order drug combinations. Notably, the rule sets are not absolute. Multiple rule 336 

variations can instruct the design of effective +C2 therapies, guided by the availability of the 337 

conditions used for the pairwise in vitro measurement (for more DTs in other condition subsets, 338 

see Figure S6). 339 

We used DT1 and DT2 to predict classification as +C2 or -C2 on candidate combinations (Figure 340 

4). Many drugs and drug combinations were over-represented in the combinations predicted to 341 

be +C2 (47 drugs and combinations by Fisher’s exact test, p<0.05, after Benjamini-Hochberg 342 

multiple hypothesis correction, Table S9). Notably, we observed enrichment of combinations 343 

that include bedaquiline (B), pyrazinamide (Z), clofazimine (C), and SQ109 (Sq), suggesting that 344 

these drugs partner well with other drugs. Prominent in these over-represented combinations is 345 

bedaquiline + pyrazinamide (B+Z); this may be explained by how well B+Z satisfies one rule in 346 

each DT (potent in butyrate and synergistic in dormancy). However, the likelihood of high-order 347 

combinations that include B+Z to be +C2 increased when another additive or synergistic pair in 348 

cholesterol-high is also included in the combination (Figure 4A). Stated another way, if B+Z 349 

satisfied the first rule (potent in butyrate or synergistic in dormancy), a combination would be 350 

+C2 (green region) if a different pair contributed to the second rule (non-antagonism in 351 

cholesterol-high). We trained alternative DTs for other top 3-condition models (Figure S6). We 352 
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observed that potent pairs in dormancy, butyrate, and standard medium and synergistic pairs in 353 

dormancy, cholesterol-high, and valerate are features of +C2 combinations. We also observed 354 

that a rule set might include both synergy (a synergistic pair in dormancy) and antagonism (mean 355 

behavior of antagonism among the pairs in acidic medium) (Figure S6D); therefore, synergy as a 356 

heuristic may be specific to the growth condition and whether a dominant drug pair or average 357 

pairwise drug interaction are considered. 358 

We conclude that when in vitro pairwise data are predictive of combination treatment outcomes 359 

in vivo, simplified and intuitive heuristics can be developed to define and interpret design 360 

principles on how to construct combinations from the bottom up. A rules-based approach will 361 

enable us to glance at systematic pairwise drug response metrics in Mtb to optimize combination 362 

therapies without running classifiers. To fully realize the potential of our drug combination 363 

dataset and aid in this “at-a-glance” approach to combination building, we have provided 364 

heatmaps of key pairwise drug combination metrics (Figure S7). 365 

Translation of combination drug design principles to clinical outcomes  366 

The effectiveness and interpretability of the classifiers and rules for rationally designing 367 

combinations support the utility of the presented in vitro dataset for understanding the drivers of 368 

drug combination efficacy in preclinical mouse models of durable treatment outcomes. In 369 

principle, this methodology is agnostic to the in vivo outcomes that the models will be trained on, 370 

so long as the in vitro conditions are predictive of the pharmacodynamics at the sites of infection. 371 

We next asked whether our in vitro data could inform our understanding of clinical outcomes of 372 

drug combination treatment. We compiled a list and scored the outcome of drug combinations 373 

that had been evaluated for bactericidal activity in phase 2a and phase 2b clinical trials (Table 374 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2021. ; https://doi.org/10.1101/2021.12.05.471248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.05.471248
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

S3). Clinical outcomes were scored relative to the SOC, as BPaL is not yet known to be 375 

treatment shortening relative to the SOC for drug-sensitive Mtb in clinical studies (in contrast to 376 

the RMM). Consistent with previous studies (Rosenthal et al., 2012, Dorman et al., 2012, 377 

Bartelink et al., 2017, Gillespie et al., 2014, Li et al., 2015, Lanoix et al., 2016a) we observed 378 

some discordance in the classification of the effectiveness of drug combinations between RMM 379 

and clinical outcomes (Figure 5A, Table S3). This discordance is expected because the outcomes 380 

(bactericidal vs. relapse) are different and suggest that a model trained for SOC (RMM) may not 381 

necessarily predict combinations with bactericidal efficacy in clinical studies. Two of the six 382 

discordant combinations were HRZM and MRZE; both failed to improve HRZE in the ReMOX 383 

clinical trial (Gillespie et al., 2014) and are -C1 in our clinical annotation. We previously 384 

annotated both combinations for bactericidal activity in the BALB/c mouse model as -C1 385 

(Larkins-Ford et al., 2021), suggesting that the source of discordance may be the difference in 386 

outcome type. Due to the high cost of misidentifying combinations for follow-up in clinical 387 

trials, developing models and rules that identify potentially treatment improving combinations in 388 

clinical trials, separate from the preclinical predictions, is highly important.  389 

There were too few drug combinations with clinical outcome scores to evaluate models with a 390 

held-out test set. Therefore, we trained random forest classifiers using the same approach applied 391 

for SOC and BPaL RMM and assessed their performance in cross-validation. We observed high 392 

performance (AUC > 0.8, similar to performances in the RMM) in models using many subsets of 393 

conditions (Table S7). Dormancy alone was a predictive condition (AUC=0.77, Table S7), 394 

suggesting that treating non-replicating Mtb is important for identifying effective drug 395 

combinations in humans. As with the BPaL predictions in the RMM, synergy in dormancy is 396 

associated with improved clinical outcomes (Table S8, log2FIC50 dormancy minimum, p=0.03, 397 
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FDR p=0.41). The three-condition subset of butyrate+dormancy+cholesterol-high was the 398 

highest performing three-condition model (Table S7), suggesting that the information in these 399 

three conditions may be highly informative for understanding in vivo drug treatment that is not 400 

species-specific. Together, these results support using the in vitro data to train models that can be 401 

used to predict treatment outcomes in humans.  402 

We generated predictions using the high-performing butyrate+dormancy+cholesterol-high 403 

model. We observed that candidate combinations had different predicted classifications for the 404 

SOC RMM and clinical models (Figure 5B), mirroring the discordance we previously noted 405 

(Figure 5A). Many of the candidate combinations using the twelve drugs were predicted to be 406 

+C1 for the clinical outcome (447, ~79%, Figure 5B, Table S6), suggesting there may be many 407 

treatment improving combinations remaining to be tested using existing TB drugs. We compared 408 

the BPaL (RMM) and SOC (clinical) RF classifiers and found weak but significant correlation 409 

between their predictions (Figure S8B; Spearman's rho=0.31, p<0.001). Notably, there were no 410 

combinations predicted (or annotated) to be better than BPaL in RMM that were also worse than 411 

SOC in the clinic, supporting the use of the RMM for identifying treatment improving 412 

combinations using BPaL as a benchmark.  413 

To define a set of rules for rationally designing clinically effective drug combinations, we used 414 

the decision tree approach and generated two example rulesets (Figure 5C and D). The clinical 415 

rulesets require antagonism in butyrate and potency in a lipid-rich environment (or synergy in 416 

dormancy) (Figure 5C and D). Though it is not intuitive to choose combinations with 417 

antagonistic pairs, we previously identified high-order drug combination antagonism as 418 

important for classifying +C1 drug combinations (Larkins-Ford et al., 2021), supporting the 419 

notion that in some growth conditions, average in vitro drug pair antagonism may be associated 420 
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with better outcomes relative to the SOC in both clinical and mouse studies. In other conditions, 421 

particularly in dormancy (Figure 3C, Figure 5D), synergy should be prioritized. For example, we 422 

observed synergy between isoniazid and pyrazinamide in dormancy (Table S1). This pair was 423 

recently observed to be synergistic in patients by PET-CT imaging in the first few weeks of 424 

clinical treatment (Xie et al., 2021)(Figure S7). For the SOC (clinical) DT, we note that HPZM, 425 

the intensive phase drug combination from Study 31 that shortens treatment time over the SOC 426 

in clinical trials (Dorman et al., 2021), satisfies one rule (antagonism in butyrate) but barely 427 

misses the threshold for the second rule (potency in cholesterol-high or synergy in dormancy), 428 

incorrectly predicting it to be -C1. Using RF and DT models, we predict that there are treatment 429 

shortening combinations among the drugs in this 12-drug set (Table S3, Figure 5C and D). We 430 

anticipate that as more clinical data become available, we will be able to refine the rule sets and 431 

improve prediction accuracy. Using in vitro drug combination measurements, rules for rationally 432 

designing drug combinations can be written that are interpretable and allow for comparisons 433 

between human and preclinical studies.  434 

Discussion 435 

Our original goal in this study was to make the prediction of in vivo outcomes more efficient by 436 

factoring high-order combinations into more scalable parts: drug pairs. In the process, we found 437 

that models using pairwise in vitro measurements were predictive of high-order combination 438 

treatment in mouse models of disease relapse (RMM). Classifications based on pairwise instead 439 

of high-order measurements enabled us to predict three- and four-way drug combination 440 

outcomes in vivo among 12 TB antibiotics using around ten-fold fewer combination 441 

measurements than would have been required if we used direct DiaMOND measurement of each 442 
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high-order combination. We increased the prediction resolution by introducing a higher threshold 443 

for classifications of in vivo outcomes (better than BPaL). With this approach, we predicted 444 

outcomes in 536 candidate combinations with no published RMM outcomes. We narrowed the 445 

number of combinations predicted to be top performers to 73 (14%) as better than BPaL in the 446 

RMM.  447 

Factorization of high-order combinations into pairwise drug units also enabled us to develop 448 

predictive models that were very interpretable. We learned that a drug pair could be a building 449 

block upon which to assemble high-order combinations. We defined sets of rules that guide the 450 

construction of treatment-improving high-order combinations from effective building blocks. For 451 

example, one such rule is that one drug pair must be synergistic in the in vitro dormancy 452 

condition, and another pair must be potent in a growth medium where high levels of cholesterol 453 

are the carbon source. Though our machine learning models are more accurate than the rulesets 454 

from decision trees, these simple rules enabled us to rationally design combinations by 455 

evaluating systematic pairwise data. We applied the same classification and rule-building 456 

framework to outcomes in clinical trials, finding that the principles of combination design in the 457 

RMM translate to clinical outcomes. The clinical and RMM rulesets included pairs that are 458 

synergistic in dormancy and potent in lipid-rich conditions, consistent with notion that treating 459 

the most refractory bacteria in an infection is important for improving treatment outcomes. This 460 

is both intuitive and consistent with the decades of preclinical and clinical studies (Mitchison, 461 

1996, Fox et al., 1999, Gengenbacher and Kaufmann, 2012, Kerantzas and Jacobs, 2017). 462 

Constructing combinations from building block pairs is harmonious with the approaches used to 463 

design preclinical studies and clinical trials in that drugs are added to an effective base 464 

combination and evaluated as to whether or not the new combination improves outcomes (Fox et 465 
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al., 1999, Gillespie et al., 2014, Bonnett et al., 2017, Rustomjee et al., 2008, Lee et al., 2019, 466 

Nuermberger et al., 2004a, Nuermberger et al., 2006, Nuermberger et al., 2008, Tasneen et al., 467 

2015, Tasneen et al., 2011, Rosenthal et al., 2012, Tasneen et al., 2016). Using the available data, 468 

we predict that there are other treatment improving combinations in the existing drug 469 

combination space. In the future, the design principles will allow us to construct candidate 470 

combinations “at-a-glance” using practical and cost-effect pairwise combination measurement.  471 

The rulesets we define establish a framework for combination design in experimentally tractable 472 

sizes: properties of a drug pair. We anticipated averaged pairwise data to predict a combination 473 

outcome. Instead, we found that properties defining the “best” (e.g., most potent or most 474 

interacting) pair in a combination were most informative. Ideally, each objective in a rule set 475 

should be achieved with a different pair. In this way, each pair can be viewed as a building block 476 

that not only enables us to construct combinations rationally from the bottom-up but also to 477 

identify how established combinations may be improved. Our initial rule sets assemble two pairs 478 

into 3-way combinations but generally leave a degree of freedom for choosing the fourth drug 479 

for 4-way combinations. We expect to define the third rule and enable 4-drug combination 480 

design when more 4-way in vivo data are available for model training. 481 

The features used in each rule are also specific to the metric type, e.g., potency or interaction, 482 

allowing us to evaluate whether synergy is a requirement of the best combinations. One rule set 483 

for designing combinations that are better than BPaL in the RMM starts by assembling pairs with 484 

a synergistic pair in the dormancy in vitro model. Synergy separates combinations at the BPaL 485 

threshold, especially in dormancy. Classification around the standard of care is not driven by 486 

pairwise (this study) or high-order (Larkins-Ford et al., 2021) drug interactions. Furthermore, 487 

antagonism (not synergy) in in vitro models such as butyrate increases the likelihood of a 488 
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combination performing better than the standard of care in vivo. These seemingly disparate rules 489 

may reflect the difference between simply achieving treatment efficacy (SOC) and improving 490 

treatment (better than BPaL) or may be indicative of which populations are easiest to sterilize 491 

(actively growing cells can be killed rapidly with drug pairs that are potent together) versus those 492 

where synergy is necessary (dormancy). To design a top-performing combination, having drugs 493 

that enhance the effect of each other could aid in targeting the most refractory cells in an 494 

infection (e.g., dormant/non-replicating) (Mitchison, 1996, Fox et al., 1999, Gengenbacher and 495 

Kaufmann, 2012, Kerantzas and Jacobs, 2017, Gold and Nathan, 2017, Saito et al., 2021). 496 

Further study is required to evaluate where these rulesets can be understood in the dynamic 497 

course of drug response in TB granulomas where Mtb residing in multiple compartments can 498 

respond differentially to treatment.  499 

Drug sensitivity is highly dependent on the growth environment (Tarshis and Weed, 1953, Pethe 500 

et al., 2010, Zhang et al., 2013, Sanders et al., 2018, Sinclair et al., 2019, Cokol et al., 2019, 501 

Lamont et al., 2020). Therefore, the profiles of pairwise potencies and drug interactions were 502 

different in each of the seven in vitro growth models we evaluated. We constructed classifiers 503 

using data from each in vitro model alone and from all possible combinations of conditions to 504 

assess the relative importance of pairwise data from each growth environment. There was a 505 

strong predictive signal in most of the in vitro growth models. Still, the strongest signals were 506 

from the lipid-rich and dormancy-inducing conditions (butyrate, dormancy, cholesterol-high) 507 

when used together in classifiers. Some conditions provided orthogonal information that 508 

complemented and refined classifiers based on the top individual conditions (butyrate, 509 

dormancy, cholesterol-high), consistent with our understanding of the microenvironments where 510 

persisters reside, e.g., in lipid-rich environments and in conditions that lead to non-replicating 511 
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subpopulations of Mtb (Fox et al., 1999, Daniel et al., 2011, Sarathy and Dartois, 2020, Gold and 512 

Nathan, 2017, Saito et al., 2021).  513 

Predictive models are only as good as the data on which they are based, so our ability to make 514 

predictions and interpret combination design principles are dependent on the available in vivo 515 

and clinical combination outcome data. We anticipate that our classifiers will be refined and 516 

improved with future iterations that incorporate in vivo tests of combinations from our 517 

predictions and those that include antibiotics with new target profiles (Aldridge et al., 2021). The 518 

principles of ruleset design for the relapsing mouse model were generalizable to the clinical 519 

outcomes. As both classifiers are refined with accumulating data, we can compare rule sets to 520 

better define situations in which the RMM is predictive of clinical outcomes. These approaches 521 

will allow us to utilize best the rich information provided by preclinical and clinical studies 522 

through parallel in vitro studies, making bottom-up and top-down coordinated methods for the 523 

rational design of combination therapies for TB. 524 
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Figure legends 539 

Figure 1. Data structure to organize in vitro drug pair data underlying higher-order drug 540 

combinations. (A) Summary of combinatorial explosion going from single drugs to three- and 541 

four-drug combinations for ten and twenty drugs. (B) Diagram of drug combination dose 542 

response curve, highlighting four (Einf, log2FIC90, log2FIC50, AUC25) of the five metrics 543 

calculated. GRinf is not diagramed because a separate dose response curve is used (Hafner et al., 544 

2016). Below each metric is an arrow that points to whether low (down arrow) or high (up 545 

arrow) metric values are potent or synergistic. (C) Diagram of data structure used in the study. 546 

Combination ABC is composed of three drug pairs: AB, AC, BC. Metrics from each pairwise 547 

dose response curve are collated and summarized by calculating the minimum, maximum and 548 

mean for each metric (green) for every measured growth condition and time point. The summary 549 

metrics for a combination in an in vitro condition (orange) are compiled and concatenated with 550 
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the metrics for all in vitro conditions (purple) to constitute all the pairwise data underlying a 551 

high-order combination at a given time point. The totality of data from all combinations (grey) at 552 

two time points in seven growth conditions and five metrics comprise the in vitro dataset used in 553 

this study.  554 

Figure 2. in vitro pairwise data is predictive of treatment improvement in vivo. (A) Receiver 555 

operator characteristic (ROC, upper panel) and precision recall (PR, lower panel) curves 556 

associated with an SOC random forest classifier trained using all summary pairwise features 557 

from seven in vitro growth conditions. The model was trained on 70% of annotated combinations 558 

and tested on the remaining 30%. Test combinations are colored by outcome annotation (blue = 559 

+C1, better than the standard of care; orange = -C1, standard of care or worse). (B) Schematic of 560 

combinations in the training set with annotations indicated by color and brackets. Selected 561 

combinations important for defining classes are indicated with single drug letter abbreviations 562 

(Table 1). (C) Receiver operator characteristic (ROC, upper panel) and precision recall (PR, 563 

lower panel) curves associated with a BPaL random forest classifier trained using all summary 564 

pairwise features from seven in vitro growth conditions. The model was trained on 70% of 565 

annotated combinations and tested on the remaining 30%. Test combinations are colored by 566 

outcome annotation (green = +C2, better than the BPaL; yellow = -C2, BPaL or worse). (D) 567 

Probability scatter plot for SOC model predictions (+C1 probability) and BPaL model 568 

predictions (+C2 probability). Marginal box plots show the annotated combination probability 569 

distributions. Annotated combinations are colored as in panel B (orange = -C1, blue = +C1-C2, 570 

green = +C2). Training combinations for SOC and BPaL are labeled with circles. Test 571 

combinations are labeled with triangles. Combinations that were used for training in SOC and 572 

testing in BPaL or testing in SOC modeling and training in BPaL modeling are labeled with 573 
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diamonds. Combinations without annotations (candidates) are labeled with grey squares, and the 574 

number and proportion of candidates in three quadrants are indicated. A probability threshold 575 

associated with Youden’s J is shown with solid black lines. Probability regions showing 576 

classification of combinations within regions are colored as in panel B. 577 

Figure 3. Predictive information in subsets of in vitro conditions and dose response metrics. (A) 578 

Scatter plot of model performance (AUC) for the SOC and BPaL machine learning models 579 

trained on data from one, three or all (seven) conditions and evaluated in cross-validation (see 580 

Figure S2 for performance of models from any number of conditions). Marginal boxplots 581 

indicate the performance of models containing each condition. Dashed line indicates the median 582 

performance across all models. One-, seven-, and selected three-condition subsets are labeled. 583 

Single condition abbreviations: a, acidic; b, butyrate; c, cholesterol; d, dormancy; h, 584 

cholesterol(high); s, standard; v, valerate (Table 1). (B) Scatter plot of p-values from the 585 

Wilcoxon rank-sum tests contrasting values of individual potency features across SOC (-C1 vs. 586 

+C1) and BPaL (-C2 vs. +C2) outcomes. Features are colored by in vitro condition and shaped 587 

by metric type (circle, AUC25; square, Einf; downward triangle, GRinf). P-values are corrected for 588 

multiple hypothesis testing within each outcome group (e.g., corrected for SOC comparison 589 

separate from BPaL comparison). Dashed lines show p=0.05. Features with FDR p-values <0.05 590 

are annotated with extra information such as time (C or T for constant or terminal, respectively) 591 

and the summary statistic type (minimum, mean, or maximum). Linear regression line (solid 592 

black), confidence interval (shaded region), Pearson correlation coefficient (R) and associated p-593 

value are indicated on plot. (C) Scatter plot of p-values from the Wilcoxon rank-sum tests 594 

contrasting values of individual drug interaction features across SOC (-C1 vs. +C1) and BPaL (-595 
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C2 vs. +C2) outcomes. Plot elements are analogous to those in panel B. Features are shaped by 596 

metric type (upward triangle, log2FIC90; diamond, log2FIC50).  597 

Figure 4. Rule sets for assembling +C2 (RMM) drug combinations based on effective drug 598 

pairs. Scatter plots of two metrics identified to be important for outperforming BPaL, shown as 599 

decision tree 1 (A) and an alternative decision tree 2 (B). Combinations are colored by 600 

classification (green = +C2, orange = -C2). Combinations are plotted separately based on 601 

whether they were used in decision tree model training (circle, left), testing (triangle, middle), or 602 

are candidates (square, right). Selected drug combinations are indicated with labels. Regions of 603 

the plot are colored based on the decision tree classification using thresholds (dashed lines) 604 

learned during training. White region denotes satisfying rule one but not rule two criteria for +C2 605 

classification. Metric values of selected drug pairs are indicated along plot margins. Rules are 606 

written in logic format on the right 607 

Figure 5. Modeling and rational design principals applied to clinical SOC outcome. (A) Overlap 608 

in +C1(blue) and -C1(red) drug combination categorization between SOC (RMM) and SOC 609 

(clinical) outcomes. Blue/red squares highlight differences between outcome annotation. (B) 610 

Probability scatter plot for SOC model predictions (+C1 probability) and clinical model 611 

predictions (+C1 probability) using the butyrate+dormancy+cholesterol-high condition data. 612 

Annotated combinations are colored as in panel A. Model training combinations for both SOC 613 

and clinical are labeled with circles. Combinations used for testing the SOC model and training 614 

the clinical model training are labeled with diamonds. Candidate combinations (without 615 

annotations) are labeled with grey squares, and the number and percent of candidates in three 616 

quadrants are indicated. Probability regions and threshold are labeled as in Figure 2 with regions 617 

colored as in panel A. (C) and (D) show scatter plots and alternative rule sets for two metrics 618 
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identified as important for outperforming the SOC for decision tree 1 (C) and decision tree 2 (D) 619 

trained for clinical bactericidal outcomes. Combinations are plotted and shaped as in Figure 4. 620 

Regions are colored as in (B) based on decision tree classification thresholds learned during 621 

training.  622 

Tables 623 

Drugs    

B  bedaquiline, ATP synthesis inhibitor  

C  clofazimine, antimycobacterial/multi-process inhibitor  

E  ethambutol, cell wall synthesis inhibitor  

H  isoniazid, cell wall synthesis inhibitor  

L  linezolid, protein synthesis inhibitor  

M  moxifloxacin, DNA synthesis inhibitor  

Pa  pretomanid, cell wall synthesis inhibitor/ nitric oxide production  

Z  pyrazinamide, antimycobacterial/multi-process inhibitor  

R  rifampicin, transcriptional inhibitor  

P  rifapentine, transcriptional inhibitor  

Su  sutezolid, protein synthesis inhibitor  

Sq  SQ109, multi-process inhibitor  

    

Drug Combination    

BPaL  bedaquiline + pretomanid + linezolid  

HRZE  isoniazid + rifampicin + pyrazinamide + ethambutol - four-drug 

standard of care  
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BPaMZ  bedaquiline + pretomanid + moxifloxacin + pyrazinamide  

HRZM  isoniazid + rifampicin + pyrazinamide + moxifloxacin  

MRZE  moxifloxacin + rifampicin + pyrazinamide + ethambutol  

HPZM  isoniazid + rifapentine + pyrazinamide + moxifloxacin  

HRZ  isoniazid + rifampicin + pyrazinamide   

    

Treatment outcome and 

classification  

  

+C1  better than standard of care  

-C1  as good or worse than the standard of care (HRZE or HRZ)  

+C2  better than BPaL  

-C2  as good or worse than BPaL  

+C1-C2 (+C1 and -C2)  Overlap between better than standard of care and worse than BPaL  

SOC  Standard of Care  

TTP  Time to Culture Positivity  

    

Mouse model    

RMM  Relapsing mouse model  

    

In vitro models    

a  acidic  

b  butyrate  

c  cholesterol (0.05 mM)  

d  dormancy  

h  cholesterol-high (0.2 mM)  
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s  standard  

v  valerate  

    

Data and Metrics    

C  constant time point  

T  terminal time point  

CT  constant and terminal time points are the same  

Log2FICn  fractional inhibitory concentration at n % growth inhibition  

AUC25  the normalized area under the dose-response curve to the 25% 

inhibition point  

Einf  the effect at infinite drug concentration (maximum achievable 

effect)  

GRinf  normalized growth inhibition effect at infinite drug concentration 

(maximum achievable effect)  

ROC  receiver operator characteristic  

AUC  the area under the ROC curve  

PR  precision-recall  

F1  the harmonic mean of the precision and recall  

    

Machine Learning acronyms    

PC  Principal Component  

PCA  Principal Component Analysis  

RF  Random Forest  

DT  Decision Tree  

 624 
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Table 1. Abbreviations used in this study. Abbreviations along with brief descriptions are listed. 625 

Methods 626 

Mtb culturing and in vitro pairwise drug response measurements 627 

To expand the pairwise drug combination response dataset from 10-drugs (described in (Larkins-628 

Ford et al., 2021)) to 12-drugs, we use DiaMOND to measure 2-way dose-response curves with 629 

sutezolid and SQ109 against each other and the 10-drug set. The pairwise data with sutezolid is 630 

new to this study. Some of the SQ109 pairwise measures were reported in (Egbelowo et al., 631 

2021), and the remaining combination measures in other growth environments are new to this 632 

study. All experiments were performed using the same procedures as described in (Larkins-Ford 633 

et al., 2021). Briefly, drug response was measured using an autoluminescent reporter strain of M. 634 

tuberculosis Erdman (transformed with a single copy chromosomal integration of 635 

pMV306hsp+LuxG13; (Andreu et al., 2010)), and metrics were averages of at least biological 636 

duplicate experiments. DiaMOND requires single- and equipotent drug combination dose 637 

responses to determine the potency and drug interactions. A 1.5-fold, ten-dose resolution dose-638 

response was used for all experiments. SQ109 and sutezolid (non-metabolite form) were 639 

provided by Sequella, Inc. Drugs were stored and dispensed in DMSO using a digital drug 640 

dispenser (HP D300e).  641 

The base medium of the standard and acidic in vitro models consisted of 7H9 Middlebrook 642 

medium supplemented with 10% OADC (0.5g/L oleic acid, 50g/L albumin, 20g/L dextrose, and 643 

0.04g/L catalase), 0.05% Tween-80, and 25µg/mL kanamycin (to maintain selection of reporter-644 

carrying Mtb). The base medium of the other in vitro models was 7H9 (4.73g/L) supplemented 645 
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with fatty acid-free BSA (0.5g/L), NaCl (100mM), tyloxapol (0.05%), and 25µg/mL kanamycin. 646 

All in vitro model media were buffered to pH7.0 with 100 mM MOPS except acidic (buffered to 647 

pH5.7 with 100 mM MES). Carbon sources were added to in vitro model media to final 648 

concentration as follows: acidic and standard (glycerol, 0.2%), butyrate and dormancy (sodium 649 

butyrate, 5mM), valerate (valeric acid, 0.1%), cholesterol (cholesterol, 0.05mM), and 650 

cholesterol-high (cholesterol, 0.2 mM).  651 

Mtb were cultured at 37℃ with aeration unless noted. Cells were maintained in standard media 652 

and passaged while in the mid-log phase (OD600 < 0.7). Mtb were acclimated to in vitro model 653 

growth medium for 2-6 doubling times prior to treatment for the DiaMOND assays. Acclimated 654 

Mtb were seeded at OD600=0.05 at 50uL per well onto 384-well plates with antibiotics pre-655 

dispensed. The simple dormancy model is based on the butyrate medium, supplemented with 656 

sodium nitrate (5mM), sealed, and cultured without aeration to lower oxygen levels. After 28 657 

days, dormant Mtb are plated (20uL per well) on antibiotic-seeded wells, the plates sealed and 658 

incubated. After seven days, 80uL of standard medium was added to each well, and plates were 659 

incubated with aeration for recovery and growth inhibition measurements.  660 

Growth inhibition was measured by OD600 (for all conditions except dormancy) or luminescence 661 

(dormancy) using a Synergy Neo2 Hybrid Multi-Mode Reader (BioTek). The constant and 662 

terminal times are as follows in days, respectively: standard (4.2), acidic (6, 12), butyrate (6, 10), 663 

valerate (9, 15), cholesterol-high (12, 24), cholesterol (7, 28), dormancy (2, 4 into recovery). 664 

Growth inhibition measurements were processed, and dose-response metrics were calculated 665 

using custom scripts written in MATLAB (MathWorks).  666 
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Drug pair dataset and data structure 667 

For modeling and analysis, we used a 12-drug 2-way drug response dataset comprised of data 668 

from a 10-drug combination dose-response DiaMOND dataset (Larkins-Ford et al., 2021), a 669 

DiaMOND study of drug interactions with SQ109 (Egbelowo et al., 2021), and new 670 

measurements (sutezolid combinations and select SQ109 combinations). We selected the drug 671 

pair data from the dataset and used the dose-response metrics (AUC25, Einf, GRinf; higher 672 

(positive) AUC25 and Einf values are potent and lower (negative) GRinf values are potent) and 673 

drug interactions (log2FIC50, log2FIC90; negative and positive values indicate synergy and 674 

antagonism, respectively) from the constant and terminal time points. These drug pair metrics 675 

were aggregated via the minimum, maximum, and mean summary statistics for each high-order 676 

drug combination. Drugs with the same mechanism of action were excluded from any drug pair 677 

and high-order drug analysis (i.e., linezolid+sutezolid or rifampicin+rifapentine are not in 678 

candidate combinations).  679 

in vivo annotation of drug combinations 680 

Annotations of drug combinations for the SOC outcome (+C1/-C1) were taken from a previous 681 

study (Larkins-Ford et al., 2021). The same studies were used to annotate the BPaL outcome 682 

(+C2/-C2). Twelve combinations were evaluated in Phase 2b trials for bactericidal activity using 683 

either culture negativity or time to positive (TTP) culture microbiological outcomes after eight 684 

weeks of treatment (Table S3). To increase the number of combinations for training machine 685 

learning models and because of the high clinical efficacy of bedaquiline-containing 686 

combinations, we also included one Phase 2a study (Diacon et al., 2015), where three 687 

bedaquiline-containing combinations (B+C+Pa+Z, B+C+Pa, B+C+Z) were tested for early 688 
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bactericidal activity after 14 days of drug treatment using the TTP outcome. Similar conclusions 689 

can be drawn from comparing culture negativity (at eight weeks) and TTP (up to 56 days) 690 

(Phillips et al., 2016, Tweed et al., 2019, Olaru et al., 2014, de Knegt et al., 2017). We confirmed 691 

that including these combinations did not skew our candidate prediction results by comparing 692 

predictions to those made by a model that excluded these three combinations (R = 0.96 Pearson 693 

correlation, Figure S9). 694 

Data processing, computational analyses, and visualization 695 

All data processing, computational analyses, and visualizations were performed in R (v4.0.1) 696 

using the tidyverse environment packages (v1.3.0). The readxls (v1.3.1) and openxlsx (v4.1.4) 697 

packages were used for data table import and export. The prcomp function from the stats 698 

package was used for PCA. Features with more than 35% missing data points were excluded 699 

from machine learning and PCA. Mean value imputation (Dray and Josse, 2014) was used for 700 

the remaining features with missing data. All features were mean-centered and scaled to unit 701 

variance prior to PCA. The ggplot2 (v3.3.0), ggpubr (v0.3.0), and ggrepel (v0.9.1) packages 702 

were used for all visualizations. 703 

Machine learning 704 

All machine learning tasks, including model training and evaluation in cross-validation, were 705 

performed using the “machine learning in R” (mlr v2.17.0) package with individual learners 706 

loaded from additional packages (random forest, randomForestSRC (v2.9.3); Bayesian additive 707 

regression tree, bartMachine (v1.2.6); extreme gradient boosting, xgboost, (v1.4.1.1); k-nearest 708 

neighbor, kknn (v1.3.1); logistic regression, stats (v4.0.1); naïve Bayes, naiveBayes (v0.9.7); 709 

neural net, neuralnet (v1.44.2)). Models were evaluated on a 30% proportion of data (test) 710 
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withheld from training. The test/training split was selected by random 30/70% partitioning of the 711 

data ten times and identifying a representative partition that had closest estimated model 712 

performance to the mean of the ten iterations (Table S10). Where appropriate, model 713 

performance was also estimated via cross-validation with a Monte-Carlo resampling strategy that 714 

partitioned the training (70% proportion) data into further 70/30% training/test splits across ten 715 

iterations. The Youden’s J (Youden, 1950) was used to select the optimal classification threshold 716 

based on training data.  717 

Decision tree and rule set determination 718 

Decision trees were constructed in R using the rpart function (rpart package, v4.1-15), and rules 719 

and thresholds were analyzed using the rpart.plot package (v3.1.0). The minimum number of 720 

combinations for splitting a node was set to two, and the minimum terminal leaf size was set to 721 

five (RMM SOC and BPaL) or two (clinical SOC). Trees were allowed to grow fully.  722 

“Leave-one-drug-out” analysis 723 

For each of the 12 drugs, annotated combinations containing that drug were withheld from model 724 

training. Models were trained with the remaining annotated combinations, and performance on 725 

data containing the withheld drug was determined. 726 

Statistical analysis 727 

Statistical analyses were performed using the stats, ggpubr (v0.3.0), and rstatrix (v0.5.0) 728 

packages in R. Statistical significance threshold was chosen to be less than 0.05, unless 729 

otherwise indicated. The Wilcoxon rank-sum test was used to compare mean values across 730 

outcome groups. The Benjamini-Hochberg method was used to control the false discovery rate 731 
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(FDR) for multiple hypothesis testing (Benjamini and Hochberg, 1995). Pearson’s correlation 732 

was used to measure linear correlations.  733 

Drug pair enrichment analysis 734 

To determine if +C2 combinations contained signature sets of drugs, we tested for over-735 

representation in the +C2 candidate drug combinations using Fisher’s Exact Test. We performed 736 

tests for each drug, drug pair, and three-drug combination and controlled the false discovery rate 737 

(FDR, (Benjamini and Hochberg, 1995)) 738 

Supplemental Information 739 

Figure S1. Separation of annotated drug combinations by PCA. Projection of the pairwise in 740 

vitro combination data from all in vitro models onto PCs 1 and 2 (top) and PCs 1 and 3(bottom). 741 

(A) Points are colored by outcome in the RMM: (A) blue=+C1, better than standard of care; 742 

red=-C1, standard of care or worse; (B) green=+C2, better than BPaL; orange=-C2, BPaL or 743 

worse. Percent variance explained by each PC indicated in the axis title. Outer box and whisker 744 

plots show the distributions of combination classes along each PC.  745 

Figure S2. Model performance across different numbers of in vitro conditions. Scatter plots of 746 

model training AUC for SOC and BPaL classifiers for models trained with data from indicated 747 

number of in vitro conditions (one to seven). Median performance of every model is shown with 748 

black dashed lines (SOC AUC=0.83, BPaL AUC=0.88).  749 

Figure S3. Top three-condition model performance and predictions. Test performance for the six 750 

highest performing three-condition models during training: (A) butyrate+standard+valerate, (B) 751 

dormancy+cholesterol-high + standard, (C) butyrate+dormancy+standard, (D) 752 
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acidic+dormancy+cholesterol-high, (E) acidic+cholesterol+dormancy, (F) butyrate + dormancy 753 

+ cholesterol-high. ROC (top) and PR (bottom) curves are labeled as in Figure 2A. Probability 754 

scatter plots are on the right and labeled as in Figure 2D. 755 

Figure S4. Contribution of conditions to model performance. (A) Scatter plots of training 756 

performance for models without the indicated condition compared to models including the 757 

indicated condition. Change in model performance by inclusion of the condition is indicated by 758 

color (increased (blue), decreased (red), or indifferent (grey)). Dashed line indicates the line of 759 

“indifference”, where model performance does not change with or without indicated condition. 760 

Single condition training performance indicated above plot and with solid line. Percentage of 761 

models with increased or decreased performance are shown. (B) Model performance density plot 762 

of models with (green) and without (red) butyrate+dormancy+cholesterol-high (red). 763 

Figure S5. Univariate analysis of features using combined training and test data. Univariate 764 

feature analysis in SOC and BPaL models. (A) Box plots showing the distribution of values for 765 

drug interaction (log2FIC50 and log2FIC90), and drug potency (Einf, GRinf, and AUC25 based on 766 

BPaL (green = +C2 and yellow = -C2) outcome. (B) Scatter plot of p-values for the Wilcoxon 767 

Rank Sum test evaluated for predicting SOC (-C1 vs +C1) and BPaL (-C2 vs +C2) outcomes. 768 

Features are colored by in vitro condition and shaped by metric type (circle, AUC25; square, Einf; 769 

downward triangle, GRinf). P-values are corrected for multiple hypothesis testing within each 770 

outcome group (e.g., corrected for SOC comparison separate from BPaL comparison). Dashed 771 

lines show p=0.05. Features with FDR p-values <0.05 are annotated with extra information such 772 

as time (C or T for constant or terminal, respectively) and the summary statistic type (min, mean, 773 

or max). Linear regression line (solid black), confidence interval (shaded region), Pearson 774 

correlation coefficient (R) and associated p-value are indicated on plot. (C) Scatter plot of p-775 
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values from the Wilcoxon rank-sum tests contrasting values of individual drug interaction 776 

features across SOC (-C1 vs. +C1) and BPaL (-C2 vs. +C2) outcomes. Plot elements are 777 

analogous to those in panel B. Features are shaped by metric type (upward triangle, log2FIC90; 778 

diamond, log2FIC50).  779 

Figure S6. Alternative ruleset scatter plots. Scatter plots of two metrics from each subset of 780 

conditions identified to be important for outperforming BPaL for each subset of conditions: (A) 781 

butyrate+dormancy+choleterol-high, (B and C) butyrate+standard+valerate, (D and E) 782 

acidic+dormancy+cholesterol-high. Plots are labeled as in Figure 4. Combinations are separated 783 

into those that were used in decision tree model training (circle, top-left), testing (triangle, top-784 

right), or are candidates (square, bottom-left). Selected drug combinations are indicated with 785 

labels. Plot regions are colored based on the decision tree classification using thresholds (dashed 786 

lines) learned during training. Selected drug pair metric values are indicated along plot margins. 787 

Logic formatted rules are written in the bottom-right of each panel. 788 

Figure S7. “At-a-glance” drug pair in vitro metric heatmaps. Heatmap of drug pair data for 789 

selected drug interaction (A, C, E) and potency (B, D, F) features for the conditions butyrate (A, 790 

B), dormancy (C, D) and cholesterol-high (E, F). Drugs are indicated along plot margin using 791 

abbreviations as in Table 1. Drug pair data are colored by their values for the indicated metric 792 

and condition.  793 

Figure S8. RMM predictions help stratify clinical SOC predictions. (A) Overlap in drug 794 

combination categorization between BPaL (RMM) and SOC (clinical) outcomes. Green/Blue 795 

and Orange/Red squares indicate treatment improvement agreement (+C2/+C1) between 796 

outcomes. Yellow/Blue and Green/Red squares highlight treatment improvement differences 797 
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between outcome annotation (+C2/-C1 or -C2/+C1). (B) Probability scatter plot for BPaL model 798 

predictions (+C2 probability) and clinical model predictions (+C1 probability) using the 799 

butyrate+dormancy+cholesterol-high condition data. Annotated combinations are colored by 800 

clinical outcome when treatment improvement agrees, or split color is shown as in panel A. 801 

Model training combinations for both BPaL and clinical are labeled with circles. Combinations 802 

used for testing the BPaL model and training the clinical model training are labeled with 803 

diamonds. Candidate combinations (without annotations) are labeled with grey squares, and the 804 

number and percent of candidates in quadrants are indicated. Probability regions and threshold 805 

are labeled as in Figure 5 with regions colored for clinical outcome as in panel A 806 

Figure S9. Prediction correlation from clinical models with and without Phase 2a trial 807 

combinations. Scatter plot of prediction probabilities from model trained with only Phase 2b trial 808 

combinations (12 combinations) and model trained with Phase 2a and Phase 2b trial 809 

combinations (15 combinations). Annotated combinations used for model training are indicated 810 

with circles (Phase 2b) and triangles (Phase 2a). Candidate combinations are in grey boxes. 811 

Linear regression line, Pearson correlation coefficient (R), and associated p-value are shown.  812 

Table S1. Pairwise drug combination metric data. 813 

Table S2. High-order drug combination summarized pairwise dataset 814 

Table S3. Drug combination in vivo outcome annotations. 815 

Table S4. ML algorithm performances. 816 

Table S5. “Leave-one-drug-out” model performances. 817 

Table S6. RF model predictions. 818 
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Table S7. Conditions subset model performances 819 

Table S8. Univariate analysis of features for drug combination class separation 820 

Table S9. Drug pair enrichment analysis. 821 

Table S10. RF model performance with repeated training and test resampling.  822 
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Figures 1155 

 1156 

Figure 1. Data structure to organize in vitro drug pair data underlying higher-order drug 1157 

combinations. (A) Summary of combinatorial explosion going from single drugs to three- and 1158 

four-drug combinations for ten and twenty drugs. (B) Diagram of drug combination dose 1159 

response curve, highlighting four (Einf, log2FIC90, log2FIC50, AUC25) of the five metrics 1160 

calculated. GRinf is not diagramed because a separate dose response curve is used (Hafner et al., 1161 

2016). Below each metric is an arrow that points to whether low (down arrow) or high (up 1162 

arrow) metric values are potent or synergistic. (C) Diagram of data structure used in the study. 1163 

Combination ABC is composed of three drug pairs: AB, AC, BC. Metrics from each pairwise 1164 

dose response curve are collated and summarized by calculating the minimum, maximum and 1165 

mean for each metric (green) for every measured growth condition and time point. The summary 1166 
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metrics for a combination in an in vitro condition (orange) are compiled and concatenated with 1167 

the metrics for all in vitro conditions (purple) to constitute all the pairwise data underlying a 1168 

high-order combination at a given time point. The totality of data from all combinations (grey) at 1169 

two time points in seven growth conditions and five metrics comprise the in vitro dataset used in 1170 

this study.  1171 

 1172 

 1173 

Figure 2. in vitro pairwise data is predictive of treatment improvement in vivo. (A) Receiver 1174 

operator characteristic (ROC, upper panel) and precision recall (PR, lower panel) curves 1175 

associated with an SOC random forest classifier trained using all summary pairwise features 1176 

from seven in vitro growth conditions. The model was trained on 70% of annotated combinations 1177 

and tested on the remaining 30%. Test combinations are colored by outcome annotation (blue = 1178 

+C1, better than the standard of care; orange = -C1, standard of care or worse). (B) Schematic of 1179 

combinations in the training set with annotations indicated by color and brackets. Selected 1180 

combinations important for defining classes are indicated with single drug letter abbreviations 1181 

(Table 1). (C) Receiver operator characteristic (ROC, upper panel) and precision recall (PR, 1182 

lower panel) curves associated with a BPaL random forest classifier trained using all summary 1183 
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pairwise features from seven in vitro growth conditions. The model was trained on 70% of 1184 

annotated combinations and tested on the remaining 30%. Test combinations are colored by 1185 

outcome annotation (green = +C2, better than the BPaL; yellow = -C2, BPaL or worse). (D) 1186 

Probability scatter plot for SOC model predictions (+C1 probability) and BPaL model 1187 

predictions (+C2 probability). Marginal box plots show the annotated combination probability 1188 

distributions. Annotated combinations are colored as in panel B (orange = -C1, blue = +C1-C2, 1189 

green = +C2). Training combinations for SOC and BPaL are labeled with circles. Test 1190 

combinations are labeled with triangles. Combinations that were used for training in SOC and 1191 

testing in BPaL or testing in SOC modeling and training in BPaL modeling are labeled with 1192 

diamonds. Combinations without annotations (candidates) are labeled with grey squares, and the 1193 

number and proportion of candidates in three quadrants are indicated. A probability threshold 1194 

associated with Youden’s J is shown with solid black lines. Probability regions showing 1195 

classification of combinations within regions are colored as in panel B. 1196 

 1197 

 1198 

Figure 3. Predictive information in subsets of in vitro conditions and dose response metrics. (A) 1199 

Scatter plot of model performance (AUC) for the SOC and BPaL machine learning models 1200 
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trained on data from one, three or all (seven) conditions and evaluated in cross-validation (see 1201 

Figure S2 for performance of models from any number of conditions). Marginal boxplots 1202 

indicate the performance of models containing each condition. Dashed line indicates the median 1203 

performance across all models. One-, seven-, and selected three-condition subsets are labeled. 1204 

Single condition abbreviations: a, acidic; b, butyrate; c, cholesterol; d, dormancy; h, 1205 

cholesterol(high); s, standard; v, valerate (Table 1). (B) Scatter plot of p-values from the 1206 

Wilcoxon rank-sum tests contrasting values of individual potency features across SOC (-C1 vs. 1207 

+C1) and BPaL (-C2 vs. +C2) outcomes. Features are colored by in vitro condition and shaped 1208 

by metric type (circle, AUC25; square, Einf; downward triangle, GRinf). P-values are corrected for 1209 

multiple hypothesis testing within each outcome group (e.g., corrected for SOC comparison 1210 

separate from BPaL comparison). Dashed lines show p=0.05. Features with FDR p-values <0.05 1211 

are annotated with extra information such as time (C or T for constant or terminal, respectively) 1212 

and the summary statistic type (minimum, mean, or maximum). Linear regression line (solid 1213 

black), confidence interval (shaded region), Pearson correlation coefficient (R) and associated p-1214 

value are indicated on plot. (C) Scatter plot of p-values from the Wilcoxon rank-sum tests 1215 

contrasting values of individual drug interaction features across SOC (-C1 vs. +C1) and BPaL (-1216 

C2 vs. +C2) outcomes. Plot elements are analogous to those in panel B. Features are shaped by 1217 

metric type (upward triangle, log2FIC90; diamond, log2FIC50).  1218 
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 1220 

Figure 4. Rule sets for assembling +C2 (RMM) drug combinations based on effective drug 1221 

pairs. Scatter plots of two metrics identified to be important for outperforming BPaL, shown as 1222 

decision tree 1 (A) and an alternative decision tree 2 (B). Combinations are colored by 1223 

classification (green = +C2, orange = -C2). Combinations are plotted separately based on 1224 

whether they were used in decision tree model training (circle, left), testing (triangle, middle), or 1225 

are candidates (square, right). Selected drug combinations are indicated with labels. Regions of 1226 

the plot are colored based on the decision tree classification using thresholds (dashed lines) 1227 

learned during training. White region denotes satisfying rule one but not rule two criteria for +C2 1228 

classification. Metric values of selected drug pairs are indicated along plot margins. Rules are 1229 

written in logic format on the right 1230 
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Figure 5. Modeling and rational design principals applied to clinical SOC outcome. (A) Overlap 1233 

in +C1(blue) and -C1(red) drug combination categorization between SOC (RMM) and SOC 1234 

(clinical) outcomes. Blue/red squares highlight differences between outcome annotation. (B) 1235 

Probability scatter plot for SOC model predictions (+C1 probability) and clinical model 1236 

predictions (+C1 probability) using the butyrate+dormancy+cholesterol-high condition data. 1237 

Annotated combinations are colored as in panel A. Model training combinations for both SOC 1238 

and clinical are labeled with circles. Combinations used for testing the SOC model and training 1239 

the clinical model training are labeled with diamonds. Candidate combinations (without 1240 

annotations) are labeled with grey squares, and the number and percent of candidates in three 1241 

quadrants are indicated. Probability regions and threshold are labeled as in Figure 2 with regions 1242 

colored as in panel A. (C) and (D) show scatter plots and alternative rule sets for two metrics 1243 

identified as important for outperforming the SOC for decision tree 1 (C) and decision tree 2 (D) 1244 

trained for clinical bactericidal outcomes. Combinations are plotted and shaped as in Figure 4. 1245 

Regions are colored as in (B) based on decision tree classification thresholds learned during 1246 

training.  1247 
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