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Abstract 
         Untargeted metabolomics enables direct quantification of metabolites without apriori 
knowledge of their identity.  Liquid chromatography mass spectrometry (LC-MS), a popular 
method to implement untargeted metabolomics, identifies metabolites via combined mass/charge 
(m/z) and retention time as mass features. Improvements in the sensitivity of mass spectrometers 
has increased the complexity of data produced, leading to computational obstacles.  One 
outstanding challenge is calling metabolite mass feature peaks rapidly and accurately in large 
LC-MS datasets (dozens to thousands of samples)  in the presence of measurement and other 
noise.  While existing algorithms are useful, they have limitations that become pronounced at 
scale and lead to false positive metabolite predictions as well as signal dropouts.  To overcome 
some of these shortcomings, biochemists have developed hybrid computational and carbon 
labeling techniques, such as credentialing.  Credentialing can validate metabolite signals, but is 
laborious and its applicability is limited.  We have developed a suite of three computational tools 
to overcome the challenges of unreliable algorithms and inefficient validation protocols: isolock, 
autoCredential and anovAlign.  Isolock uses isopairs, or metabolite-istopologue pairs, to 
calculate and correct for mass drift noise across LC-MS runs. autoCredential leverages statistical 
features of LC-MS data to amplify naturally present 13C isotopologues and validate metabolites 
through isopairs.  This obviates the need to artificially introduce carbon labeling.  anovAlign, an 
anova-derived algorithm, is used to align retention time windows across samples to accurately 
delineate retention time windows for mass features. Using a large published clinical dataset as 
well as a plant dataset with biological replicates across time, genotype and treatment, we 
demonstrate that this suite of tools is more sensitive and reproducible than both an open source 
metabolomics pipelines, XCMS, and the commercial software progenesis QI.  This software 
suite opens a new era for enhanced accuracy and increased throughput for untargeted 
metabolomics. 
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Introduction  

 
Figure 1 (A & B): Picking peaks in LC-MS data is challenging.  A. Shown is a sliver of a 
chromatogram within +/- 200 ppm of the metabolite citrulline’s peak (176.1034 Da, red and 
orange regions).  This represents only a fraction of fraction of a percent of the total data in an 
LC-MS run with a typical (m/z) range of 80-1000 Da.  Signals from different metabolite mass 
features (colored) must be distinguished from noise (grey), as well as each other.  Peak picking is 
even more complicated when hundreds of samples are pooled together, as mass and retention 
time drift cause serious issues for existing signal processing algorithms.  This noise causes peak 
splitting in many algorithms (Fig 1B) (red and orange regions are actually a single peak, 
citrulline)  
 
         Accurately identifying and quantifying metabolites in an untargeted fashion is an 
important goal for the medical and life sciences. If achieved, it will improve the ability to 
characterize biochemistry in disease and health states, improve establishment of better clinical 
biomarkers (Clish, 2015) as well as enable better understanding of biochemistry in organisms 
across all kingdoms.  The orbitrap (Zubarov and Makarov, 2013) and other high-resolution 
machines, which offer mass resolution at the single digit parts per million (ppm) error range, 
now produce larger and more complex datasets. However, detection of meaningful signals still 
remains challenging because of the high degree of random noise incurred by these sensitive 
instruments, as well as the prevalence of contaminants such as salts.   Novel informatics 
techniques are needed to increase the signal to noise ratio in the LC-MS data in order to 
accurately identify mass feature signals of metabolites. Despite decades of method development, 
LC-MS driven untargeted metabolomics faces numerous challenges which have only been 
partially solved (Gertsman and Barshop, 2018).  In LC-MS, metabolites are identified as mass 
features, or regions of signal which occur at a unique point in the space of retention time and 
mass.  The mass and retention time, are both stored in vendor specific binary files which are 
often converted to open source text formats (Martens et al., 2011).  Unfortunately, these files are 
large and unwieldy, and contain abundant noise produced by the sensitive machinery.  When 
existing algorithms analyze this data, the noise frequently causes peak splitting and other 
detection issues.  The problems of distinguishing signal from noise are amplified when large 
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numbers of samples are used (dozens to hundreds of samples) because a compound must be 
reproducibly tracked in each sample in order to be reliably detected in the dataset.  
 
  There are three major sources of noise that limit the ability of existing informatics 
approaches to reproducibly detect compounds across samples.  Two of these sources of noise, 
mass drift between runs and across samples, relate to the mass spectrometry  aspect of LC-MS.  
The third source of noise, retention time drift, derives from the high pressures needed to be 
maintained to ensure consistent elution from the chromatography column, and transient 
fluctuations.   
 
Mass Drift Decreases Resolution 
  Even with high resolution instruments, maintaining a mass resolution within intended 
ranges is difficult (Gorshkov et al., 2011).  In order to resolve metabolites, mass spectrometry 
must be both accurate, meaning an ion of a certain mass will be detected at that mass using the 
instrumentation, and precise, meaning that repeated measurement of the given mass closely agree 
with one another across time (Brenton et al., 2010).   Effective and frequent calibration is 
required to maintain suitable accuracy and precision.  Initial calibration ensures that the machine 
accurately resolves a target ion to within an acceptable range of error, such as +/- 5 parts per 
million (ppm).  To put this sensitivity in perspective, effective calibration at 5 ppm accuracy 
would ensure that all signals associated with a compounds of mass 100 Da will fall within 
99.9995 Da to 100.0005 Da.  Owing to practical limitations, high resolution mass spectrometers 
are usually calibrated once a week.  A typical machine may then drift up to 1-3 ppm a day from 
its point of calibration, causing the precision to degrade (citation).  Over time, this drift becomes 
substantial, effectively “smearing” mass signals between calibrations and reducing resolution. 
Frequent calibration is an imperfect solution to mass drift.   This is because the accuracy of a 
single calibration attempt, while generally within 2-3 ppm (Hecth et al., 2019), will depend on 
uncontrollable external factors such as fluctuations in temperature, humidity or other stochastic 
variables.  This results in a subtle batch effect, as each week’s calibration may disagree with one 
another by up to several ppm, causing decay of resolution.  Taken together, variability in 
calibration efficacy and the degradation of precision between calibrations, are serious problems 
that reduce the resolution of high resolution mass spectrometers when datasets of hundreds to 
thousands of samples which must be run on timescales of weeks to months are being analyzed.  
Using spike-ins as internal standards is not an ideal solution to capture this variation, as the set of 
standards will be unlikely to match the diversity of compounds detect by untargeted 
metabolomics, and thus can introduce measurement bias.  Additionally, these standards will be 
prone to their own peak picking concerns which would interfere with the ability to detect drift. 
    
 
Stochastic Noise Signals Interfere with Mass Identification 
  In addition to the smearing of signals from mass drift, the production of stochastic noise 
signals makes it difficult to resolve the masses of true mass features from noise (Du et 2008).  
Owing to the extreme sensitivity of high-resolution mass spectrometers, spurious m/z signal 
intensities are produced stochastically (Kaur et al., 2006).  These signals are distributed 
randomly across masses, and their intensities range between 0 to 10^5 counts, overlapping with 
the abundance of many metabolites.  The signal-to-noise ratio in single samples is frequently too 
low to delineate metabolite masses from noise, causing a proliferation of dropouts as the number 
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of samples in a dataset increases. The high prevalence of missing values due to technical reasons 
limits the detection of important biology and has required statistical solutions  (Wei et al., 2018). 
   
Chromatography Performance Is limited by Retention Time Drift 
    Once the mass of a metabolite is identified, the compound’s retention window in a 
chromatography column (such as HILIC or RPLC for polar and nonpolar compounds, 
respectively) must also be determined in order to define metabolite as a mass feature.  Using 
retention time as an additional dimension of measurement enables separation of isomers (Pan  et 
al., 2005). Consistent retention times can be difficult to maintain across multiple samples due to 
the high required pressures and the impact of transient temperature and pressure gradients 
(Asberg et al., 2017).  Shifts in retention time can also cause false peak-splitting events and 
dropouts in large datasets.  
 
 
 

 
Figure 2 
Existing algorithms such as centWave essentially view the 3-Dimensional mass feature peaks as 
2D ion heatmaps, in which 2 dimensional sliding windows are fit around plausible regions of 
metabolite signals regions of interest (ROI’s).  While powerful, this imperfect approach can split 
signals (Citrulline is split into two features) as noise accumulates across samples as well as miss 
true metabolites if filtering parameters are too stringent.  Mass feature boundaries depicted in 
Figures 1 & 2, were determined using Progenesis QI on a previously published, 600 sample 
human microbiome dataset (Lloyd-Price et al., 2019). 
 
 Limitations of Existing Methods 
 to Cope with Noise 
  Existing peak-picking algorithms, such as centWave, identify metabolites by extracting 
signals concentrated in a unique window of mass and retention time.  These are called regions of 
interest (ROI) (Tautenhahn et al, 2008).  centWave attempts to overcome noise in both domains 
(mass drift or retention time drift) by using a 2-dimensional binning heuristic to define ROI’s, 
with the parameters of this binning procedure allowing variability in mass and retention time 
across samples.  However, this paradigm creates serious trade-offs between sensitivity and 
specificity when defining ROI’s (Figure 2).  If noise thresholds are set too stringently, the 
number of metabolites detected plummets.  Conversely, if thresholds are too relaxed, noise 
regions are turned into false positive metabolite predictions. The strategy identifying metabolites 
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as ROI’s through the 2-dimensional bins compounds uncertainty in both the mass and retention 
time domain and forces unacceptable tradeoffs between sensitivity and specificity, regardless of 
how parameters are determined.  This causes both a high number of dropouts and false positives 
in large datasets.  While companion software (such as IPO) can be used to tune parameters for 
these algorithms, performance gains will be limited by the drawbacks of ROI based algorithms.  
For example, XCMS, an open source software which implements centWave, finds ROI’s in each 
file individually and then attempts to align predictions across multiple samples (Alboniga et al., 
2020). This strategy of analyzing individual files separately can propagate errors, even when 
optimize parameters are used.  A new paradigm, which rigorously models and fully accounts for 
noise in LC-MS data, addressing each source independently, is needed to define metabolite mass 
features. 
 
 Big-Data oriented Solutions: 
 One of the factors limiting approaches to handling metabolomics datasets was the large 
file sizes associated with each run. Increased availability of large-scale computing resources has 
made it possible to design novel peak picking algorithms which can effectively handle the 
multifaceted sources of LC-MS noise.  We propose a novel software suite (Isolock, 
autoCredential and anovAlign, from here on called the IAA suite) that is capable of analyzing 
large scale LC-MS datasets (hundreds to thousands of files) in a single analysis, thereby 
exploiting statistical features of the data to distinguish signal from noise in ways that are only 
evident when LC-MS files are pooled.  This software suite uses 3 novel algorithms to first 
correct for mass drift (isoLock), then identifies masses most likely to belong to true metabolites 
(autoCredential), and, finally, correct for retention time drift (anovAlign) to refine the signals 
associated with these masses into high confidence mass features. 

 
Figure 3: isopairs are signals separated by a mass shift corresponding to the approximate mass 
difference between 12C and 13C.  This mass can now be determined to multiple decimal points 
using HRMS. Spread between peaks is not to scale. 
 
RESULTS 
  Growing the signal to noise ratio: Merged mass spectra and isopairs 
   When multiple samples are merged together into single mass spectra, there is an extreme 
amplification of signals associated with both metabolites (M0’s) and their substantially less 
abundant isotopologues (M1’s).  This amplification of isotopologues makes it possible to 
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correspond mass-intensity signals of a metabolite with the signal of its isotopologue. These pairs 
of corresponding signals between a metabolite M0 and M1 will be equivalent to the mass gain 
derived from a 13C atom (1.00336 Da), which is resolvable using HRMS. These pairs of mass-
intensity signals between metabolite M0’s and M1’s are known as isopairs.  Because the masses 
determined by HRMS are accurate to several decimal places, and isopairs require two signals 
spaced at the exact mass of a 13C atom, the probability of two noise signals belonging to an 
isopair is extremely low.         
 

 
Legend 4A: Citrulline, an abundant metabolite, demonstrates 
substantial mass drift across a set of 600 human fecal microbiome samples analyzed in batches 
across multiple days.  This causes peak splitting when analyzed by existing algorithms. 
 
 

 
Legend 4B:  After correction for drift using the algorithm isoLock, the data is resolvable as a 
single peak.  
 
 
Isolock uses isopairs to correct for mass drift 
  Although signal to noise ratios increase when mass spectra are pooled together, mass drift
interferes with successful alignment of signals in a merged spectra.  When spectra from large 
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batches are pooled together, mass signals can spread well outside the intended limits of high 
resolution mass spectrometers.   Fig 4A illustrates an example of mass drift across a dataset of 
hundreds of samples.   
 
 
 
Figure 5:  
Isopairs can quantify deviations in the measured mass from true mass. 
 

Figure 6: 
The determination by isoLock of a 2 ppm mass drift in a query sample relative to reference (via 
isopoairs) is shown.  Isopairs are calculated in a fashion such that the M0 will belong to a 
reference file, and the M1 component will belong to a query file, with the separation between 
isopairs being allowed to vary across plausible mass shifts ( + the mass gain of 13C atom).  The 
correct shift (2 ppm) is that which produces the highest number of isopairs.  
 
  Isopairs, however, can be used to capture the effect of drift across the mass spectra so that
it can be removed (Figure 5).  When mass drift is present, the separation between isopairs will no 
longer be equal to the mass gain of 13C atom, but 1.00336 + the mass drift (in ppm).  The correct
amount of mass drift between sets of samples can be determined by first selecting a sample early 
in the injection queue as a reference.  The number of isopairs generated (across all masses) by 
the mass gain of a 13C atom + plausible mass drift values (+/- 20 ppm) can be calculated (Figure 
6).  Isolock determines the optimal mass drift value as that which maximizes isopairs and all 
mass values can then be adjusted by this value.  After alignment of spectra via isoLock, spectra 
from hundreds to thousands of samples can be pooled into a single merged mass spectra in which 
signal to noise ratios are dramatically enhanced (Figure 4B).   
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autoCredential uses background distribution and isopairs to identify high priority mass-
intensities on a merged mass spectra 
 

 
Figure 7: Signals around a metabolite (M0) and its isotopologue (M1) increase as samples are 
pooled together in a merged mass spectra.  Because noise signals are random, noise regions do 
not show the dramatic growth in signal as samples are pooled.   
 
   In a typical large-scale LC-MS metabolomics experiment, the combined mass spectra of 
hundreds of samples may contain billions of signals.  However, these correspond to only 
thousands (at most) of metabolites (Mahieu et al., 2014).  Thus, the vast majority of mass-
intensity signals are noise.  While the sheer number of noise signals is daunting, the statistical 
power resulting from a merged mass spectra enables effective filtering of metabolite masses 
from noise.  The signal to noise ratio of a merged mass spectra is maximized by correcting for 
drift using isolock prior to merging spectra, as signals hyperconcentrate around the mass of valid 
mass features (Figure 7).  While the vast majority of signals in a merged mass spectra are noise 
by raw number, they are spread out across the many millions of possible masses detectable by a 
high resolution instrument.  Thus, their information density is low.  
 
  Dividing a merged mass spectra into .0001 Da bins (well within the idealized 1 ppm level 
of resolution for all relevant masses) and resampling at random, demonstrated that a single .0001 
Da bin rarely contains more than several dozen noise signals even when hundreds of files are 
merged (Figure S1).  Mass bins of this same size (.0001 Da) associated with either a metabolite 
or even its related and less abundant species (isotopes and adducts), however, will contain 
hundreds to thousands of signals.  Thus, purely noise regions of a merged mass spectra can be 
pruned by removing any .0001 Da bin with less than several dozen signals. In our test set of 600 
human fecal metabolome samples, this reduced >2 Billion masses to ~1 million masses.  The 
merged mass spectra, however, still contains many artifactual signals, such as those belonging to 
inorganic salts. These can be removed by keeping only mass signals which are members of 
isopairs.  Even if a singular region escapes denoising, the probability of detecting noise as a peak 
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is especially low on a denoised mass spectra, as doing so requires two noise signals to occur at 
the exact interval equivalent to mass gain of a 13C atom is low.  
 
  Calculating isopairs reduced the number of plausible masses ~another order of 
magnitude.  As highly abundant metabolites will spawn multiple distinct isopairs, collapsing 
isopairs within 1ppm yields a realistic number of metabolite masses (several dozens of 
thousands).   

 
  Figure 8: In the test dataset, we further checked to see if the masses were present in the 
majority of samples (>300), finding 80% of the masses met that criteria. To ascertain how many 
samples were required for autoCredential to effectively find isopairs for compounds, we 
resampled random combinations of the 600 runs of size 3-600 and tracked how many of our 
high-confidence metabolites had isopairs in each resample. We show that, on average, half the 
signals have isopairs with only two samples pooled into a merge mass spectra and that this 
fraction increases to eighty percent by the time 10 samples included in the merged mass spectra.  
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anovAlign: Accounting for retention time drift to identify  mass features       
 
 

   Figure 9:  The retention time of citrulline shows visible drift across the first batch (injection 
date 1) and the final batch (injection date 16). 
 
   Although isolock corrects for mass drift, and autoCredential ensures that masses belong 
to metabolites (as opposed to inorganic salts - which would lack an isopair), retention time drift 
still makes it difficult to define the bounds of a mass feature.  Once masses are accurately 
identified, chromatogram slices around a mass can be effectively extracted on a mass-specific 
basis for compound specific modeling.  anovAlign uses signal to noise thresholds and 
identification of localized regions of scans whose signals are correlated to identify the likely 
region chromatographic peak of the signal.  Once identified, the drift in each sample from the 
peak of a reference sample can be modeled as the translation of a gaussian, via anova (Figure 9). 
This is accomplished by running a t-test on the array of scan numbers for all samples compared 
to a reference sample (chosen as that with the highest signal).  If the p-value is less than .05, the 
difference between the two means is subtracted from the query file.  A signal-to-noise filter is re-
run on this drift adjusted chromatogram slice to identify the refined mass feature bounds.    
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Figure 10 a:  Before application of our pipeline (isoLock, autoCredential and anovAlign) the 
diffuse signal around a metabolite mass (such as citrulline) has substantial mass and RT drift 
which makes it difficult to call the mass feature correctly.  This noise causes splitting in mass 
feature prediction using commercial software  (the bounds determined by Progenesis QI are 
shown). 
 

 
    
Figure 10 b: After running our full pipeline and examining the predicted bounds around single 
returned citrulline mass feature, it is clear that mass drift is corrected by isoLock, the mass is 
correctly called by autoCredential, and the retention time bounds are accurately called using 
anovAlign (correctly identifying the citrulline signal as a single mass feature). 
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  Examining the prediction for citrulline mass feature using our suite (isolock, 
autoCredential, anovAlign) makes it clear that the paradigm of data pre-polishing (isoLock) 
followed by validation of masses via isopairs (autoCredential) and, finally, delineation and 
cleaning of the retention time bounds via anovAlign (Figures 10a and 10b).  Considering the 
signal of a mass feature, such as citrulline, in isolation effectively captures the sequential 
progression of data through our pipeline.  Much of the noise likely responsible for mass feature 
splitting in Progenesis QI prediction (Figure 10) resides in the mass domain. Once this is 
resolved, autoredential validates the correct mass using isopairs and the complete signal 
effectively falls out, allowing anovAlign to define the final mass feature boundaries (Figure 
10b).  This combined workflow of polishing AND feature selection effectively takes care of the 
“noisy data in, noisy data out” conundrum of traditional LC-MS software pipelines.  While 
citrulline provides a good proof of concept as single signal in a large dataset, it is important to 
view the global performance of these algorithms in large, complex datasets. 
 
 
  We present analyses of two datasets that reflect the ability of our software to capture 
biologically important metabolite signals.  The first dataset is a re-analysis of a previously 
published untargeted metaoblomics study consisting of hundreds of human microbiome samples.  
Using this dataset, we show that the suite of isoLock, autoCredential and anovAlign detects the 
majority of mass features found through a commercial program, Progenesis QI.  We also show 
that a number of mass features, validated via isotopologue signals, are uniquely detected using 
our software (Figure 11).  The second dataset is a smaller untargeted plant metabolomics 
experiment, but contains 4 replicate samples from 3 Setaria viridis genotypes under two watering 
conditions at 3 time points, allowing for the comparison of the percentage of variance accounted 
for by the experimental factors .  Using this second dataset, we show that our pipeline 
outperforms the open source software, XCMS, in terms of detecting numbers of mass features 
and those with high levels of variance explained by genotype, time and treatment (Figure 12). 
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Figure 11:  High Priority Mass-Feature Signals at +/- 15 ppm and +/- 3.5 min 
Analyzing a large (600 samples) previously published human clinical dataset (Lloyd-Price et al., 
2019) demonstrates that the isolock, autoCredential and anovAlign suite captures the majority of 
mass features predicted by a commercial software, Progenesis QI.  We also show that our 
pipeline predicts thousands of additional mass features. 
Application: 
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Figure 12: The IAA suite outperforms XCMS. Using a plant dataset with replicates and three 
experimental factors (genotype, treatment and time) enables the calculation of variance explained
by the factors.  A. Number of compounds detected plotted against the variance explained by the 
model (Intensity ~ genotype + time + treatment + genotype*time*treatment).   
 
Methods 
  Current peak picking paradigms identify metabolite mass features as 2-dimensional 
regions of likely metabolite signal known as regions of interest (ROI’s).  The first innovation of 
the IAA suite is to recognize that this problem can be rephrased as a much simpler one: simply 
taking the intersection of two arrays in order to identify isopairs.  Mass spectrometry data are 
typically reported to multiple decimal points beyond the resolution of a high-resolution mass 
spectrometry machine.  At even single ppm resolution, only the 4th to 5th decimal points are 
relevant for effective mass resolution within relevant small molecule mass ranges (80-1200 Da).  
Thus, a complete mass spectra can be effectively discretized by rounding every mass-intensity 
signal to the fifth decimal point without a loss of resolution.  This discretization is critical for 
determination of important statistical attributes, without incurring information loss.  
Discretization also enables rapid calculation of isopairs.  In order to provide an interface between 
raw mass spectra and the IAA suite, vendor binary converting libraries (RawFileReader 5.0) are 
used to convert .raw files to tab delimited text files  of the following format: The IAA suite 
utilizes extensive parallelization to manage the hundreds of gigabytes to terabytes of data 
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contained in a large scale LC-MS study.  Parallelization and sequential execution of all steps in 
the IAA suite (whether accomplished via Python or R) are managed via a Python dask workflow 
and interface with a robust job engine (such as HTCondor). 
 

Figure 13: Input to the IAA suite requires .tsv’s with columns containing only data relevant to 
construction of a merged mass spectra and subsequent peak picking (name of file, Mass, 
Intensity, retention time, polarity and MsType) 

 
Figure 14: isopairs, which are used extensively in the IAA suite, are calculate by determining 
signal pairs in raw mass spectra with mass separation equivalent to the mass gain between a 12C 
an 13C atom (1.00336 Da)  
 
  To accommodate large-scale calculations, these .txt files are then converted to hdf5 files 
using the python package Vaex.  Hdf5 is a hierarchical data format that allows rapid 
manipulation of larger-than-memory datafiles.  These hdf5 files are manipulated in python 
(Python 3.7.4) for all subsequent calculations involving isopairs (Figure 14).  Isopair calculations 
on a mass spectra involves two arrays representing the mass values from a spectra containing 
data from one or more hdf5 files.  Isopairs are calculated via the following operations, which are 
essentially set intersections.  Isopairs are fundamental to isoLock and autoCredential.   
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Figure 15: isopairs are used to determine mass drift between a reference and query sample. One 
array used in the calculation of isopairs(A1) contains the mass signals in the reference sample, 
while another (A2) contains the mass signals in the query. 
IsoLock Calculations: 
  During isoLock (Figure 15), isopairs are calculated in an iterative fashion.  A1 is the 
array of masses from a reference file, while the array A2 contains the masses from a query file.  
In each iterative calculation of isoLock, isopairs are calculated between A1 and A2.  In each 
iteration, the shift between isopairs will vary across a range of 1.00336 (the mass gain of a 13C 
vs 12C element) +/- plausible drift values between samples (up to 20 ppm).  The most likely 
value of drift is the shift which maximizes the number of isopairs.  This drift value is then 
subtracted from the query file in order to align it with the reference This drift value is then 
subtracted from the original mass and added as a new column in the hdf5 file, providing a 
column of drift corrected mass.  isoLock can be run on each file in parallel, allowing rapid drift 
correction of thousands of files.  isoLock is implemented in Python, using the Vaex library to 
manipulate hdf5 files. 
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Figure 16: In autoCredential, isoLock adjusted samples are used to create a merged mass 
spectra, and isopairs are used to identify only mass signals with corresponding M1’s.  
 
autoCredential 
  autoCredential (Figure 16) uses files isoLock corrected files in to create a merged mass 
spectra.  Isopairs are used to identify metabolite masses from the merged mass spectra.  The 
merged mass spectra object is created and manipulated in Python via the Vaex and Pandas 
libraries.  In addition to containing the M0 and M1 signals needed to calculate isopairs, the 
merged mass spectra also contains noise regions.  However, using the enhanced signal to noise 
qualities of a merged mass spectra, these are easily identified and removed via denoising.  This is 
accomplished via permutation testing in R.  Resampling of randomly generated masses 
determines the median signal count in .0001 Da mass bin in noise regions.  Bins of the same span
(.0001 Da) which do not surpass this threshold are removed. From the remaining space of 
signals, isopairs are  calculated, thereby determining the small fraction of masses associated with 
carbon containing mass-features.  Because single metabolite may create multiple isopairs, 
masses within 1ppm are collapsed (the .00001 Da resolution of each isopair is within this 1ppm, 
range for relevant small molecule masses).   
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Figure 17: In anovAlign, correlations across local regions of scans are first used to draw 
approximate boundaries (Algorithm 1).  Within these boundaries, ANOVA is used to align 
signals to a reference (Algorithm 2) before refined bounds are drawn on aligned signals using 
Algorithm 1. 
 
anovAlign 
  The anovAlign (Figure 17) algorithm models retention time drift on an individual mass-
feature by mass-feature basis.  Once masses are accurately determined using isoLock and 
autoCredential, regions of the chromatogram around each mass (+/- 5 ppm) can be extracted 
from each sample. In the IAA suite, chromatogram slices are extracted mass by mass from each 
sample’s hdf5 file and concatenated into merged EIC slices.  Each merged extracted ion 
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chromatogram (EIC) slice contains the signal (+/- 5 ppm) associated with a mass across ALL 
samples.  The extraction of these regions is parallelized by file, using the Python package Vaex 
to query each hdf5 file.   
  Modeling drift on a metabolite by metabolite basis in each merged EICslice avoids the 
common compromises of state of the art warping algorithms such as obiWarp (Prince and 
Marcotte, 2006) or the more refined warpGroup (Mahieu et al., 2016).  Warping algorithms, 
such as obiWarp, attempt to align large regions of chromatogram to one another using global fits.  
However, the actual drift function for individual metabolites varies substantially across 
compound classes within these regions.  Thus, corrections calculated by current warping 
algorithms can be biased in favor of certain mass-features, at the expense of others.   
   anovAlign first denoises a merged EICslice (keeping only the 95th percentile of scans).  
As an analyte flows through its retention time window, adjacent regions will be statistically 
similar to each other.  This means that adjacent windows will contain data from many of the 
same files, despite some dropouts, and these signals will correlate with each other.  Preliminary 
bounds (prior to drift correction) are drawn by treating a denoised, merged EIC slice as a grid of 
5 scan intervals, and identifying adjacent regions that correlate with one another.  Within each of 
these regions of a potential mass-feature, drift is modeled via ANOVA to produce refined 
bounds.   
  In order to implement ANOVA towards alignment, the sample with the third highest 
signal (to avoid potential outliers) within a region of correlated scans is chosen as an alignment 
reference.  The signal in potential mass feature region is first divided into thirds by intensity.  
Signals are divided into tertiles for alignment to minimize the effect of intensity dependent drift.  
Within each tertile of intensity, the average difference in scans between a query sample and the 
reference is determined via the t.test() function in R (ANOVA).  This difference (if significant) is 
subtracted from the query, in order to align the query signal with the reference.  Following the 
alignment within each provisional mass feature region, final bounds are determined by again 
searching the merged EIC slice for correlated scan windows, this time using the ANOVA 
corrected scans.  In addition to capturing the intuitive notion of retention time drift as the 
translation of Gaussians, this approach is not constrained to Gaussian profiles, but merely 
assumes that drift itself is the introduction of an (approximately) Gaussian source of error.  
Modeling individual masses in isolation avoids propagation of biases across metabolites, 
allowing errors to become independent and randomly distributed at a large scale.  Structuring the 
problem in this fashion also sets the stage to easily incorporate standards-based adjustments to 
anovAlign.  
 
 
Data Production and Procurement  
Broad dataset 
   600 positive mode HILIC raw Thermo-Fisher QE  files  were downloaded from 
metabolomics workbench (project ID: ST000923) from the experiments described in this 
manuscript (600 human microbiome samples from Lloyd-Price et al., 2019 ).  RawFileReader 
version 5.0 was used to convert binaries to .txt files in order to run the IAA suite.  Previously 
published mass features for the positive mode HILIC  quantified from the Progenesis QI were 
downloaded from the supplementary data at: https://www.nature.com/articles/s41586-019-1237-
9.  In order to resolve peak splitting in the Progenesis QI, a custom R script was used to collapse 
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mass features within 2 minutes and 5 ppm of one another into a single mass feature, averaging 
retention time and masses across collapsed mass features.   
 
Plant Growth Conditions, Harvesting and Data Analysis 
   As part of a larger water deficit study, 216 Setaria plants representing 3 genoptypes 
(TB12-48, A10, TB12-201,) were grown at the Donald Danforth Plant Science Center for 7 days 
prior to transplantation to the Bellwether phenotyper system (Fahlgren et al., 2015).  Plants were 
allowed to equilibrate to Bellwether conditions for 6 days before a water deficit treatment (45 
percent of field capacity) was implemented on half of the plants.  Plants were then harvested at 
the following timepoints following the equilibration period: 4 Days, 6 Days and 8 Days.  Leaves 
from 3 plants of the same genotype, treatment and timepoint were pooled into a single test tube 
upon harvesting in order to average out individual plant characteristics.  Thus, the 216 plants 
across the 3 genotypes, 2 treatments and 3 timepoints resulted in 72 test tubes (3 genotypes 
*3timepoints*2treatments*4 replicates) * 3 = 216. Plants were taken off the phenotyper and the 
the youngest fully emerge leaf was removed at the node, placed in a 15ml centrifuge tube with 
stainless  steel ball bearings, and placed in liquid nitrogen, until it could be stored at -80C.  Then, 
a paint shaker was used to grind the samples, keeping them cold with liquid nitrogen.  Finally, 
they were aliquoted into 2 ml tubes, weighed, and submitted to the Donald Danforth Proteomics 
and Mass Spectrometry Facility (PMSF).   
 
LC-MS Analysis 

Samples were resuspended for RPLC by addition of 50 μL of 30% methanol.  For HILIC, 
samples were resuspended in 50 μL of 80% methanol.  For both analyses, plate d with 
resuspension solvent were sealed with RAPID EPS pierceable sealing mats (BioChromato, 
Kanakawa, Japan) and shaken at 900 rpm at 10°C for 15 minutes on an Eppendorf Thermomixer 
then centrifuged 2 minutes at 3800 xg to collect the dissolved metabolites at the bottom of the 
wells and pellet any remaining particulates before transferring 45 μL of each sample to a new 
well-plate, sealed and stored in a 4°C cold room until use (1-2 days). Just prior to analysis, an 
additional 15 μL of methanol was added to each well. 

 LC-MS was performed using a custom built 2D microLC Ultra (Eksigent 
Technologies, Dublin, CA) attached to a Q-Exactive mass spectrometer (Thermo-Fisher 
Scientific, San Jose, CA) using electrospray ionization.  Data were acquired in either polarity 
switching full MS only or in data-dependent MS/MS acquisition mode.  Full MS scans were 
taken at a resolution of 70,000 (FWHM at m/z 200) with and automatic gain control setting of 
500,000 charges and a maximum inject time of 100 ms.  MS/MS scans were taken at a resolution 
of 17,500 (FWHM at m/z 200) with and automatic gain control setting of 50,000 charges and a 
maximum inject time of 50 ms.  The top 12 precursors from the previous full M scan were 
selected with an isolation window of 2 and fragmented with stepped collisional energy of 15, 25 
and 35 NCE.  Positive ion mode scans were taken with a spray voltage of 4.2 kV while negative 
ion mode scans used a spray voltage of 3.9 kV.  The sheath gas flow, aux gas flow, aux gas 
temperature and capillary temperature settings were the same for all scans at 15 units, 5 units, 
50°C and 250°C, respectively. 

 For HILIC analysis a custom packed (Higgins Analytical, Mountain View, CA) 
0.5 x 150 mm Zic-pHILIC (Merck-Sequant, Darmstadt, Germany) column with 5 µm particle 
size was used.  The solvents used were 10 mM ammonium bicarbonate in water (A) and 10 mM 
ammonium bicarbonate in 95% acetonitrile.  The gradients began with a hold at 100% B for two 
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minutes followed by a linear ramp to 85% B over one minute, then a linear ramp to 50% B over 
13 minutes, followed by a linear ramp to 30% B with a hold for one minute before ramping back 
to 100% B over two minutes with a re-equilibration time of 10 minutes.  For RPLC analysis a 0.5 
x150 mm TARGA C18 column with 3 µm particle size was used (Higgins Analytical, Mountain 
View, CA).  The solvents for RPLC were 0.1% formic acid in water (A) and 0.1% formic acid in 
acetonitrile (B).  The gradient consisted of an initial hold at 2% B for 3 minutes followed by a 
linear ramp to 100%B over 10 minutes and a hold for 3 minutes before ramping back to initial 
conditions over 3 minutes with an 11-minute re-equilibration time.  Both methods used a flow 
rate of 15 µL/minute and injection volume of 2 µL. 

 
Data Analysis 
 
 .raw files were converted to .txt files using RawFileReader version 5.0 in order to run the IAA 
suite. Thermo Fisher .raw files were converted to mzML format via msConvert (ProteoWizard 
release: 3.0.20287), downloaded from: https://hub.docker.com/r/chambm/pwiz-skyline-i-agree-
to-the-vendor-licenses.  Relevant msConvert flags were : --filter "peakPicking true 1-1" --filter 
"polarity positive" --filter "threshold count .00001 least-intense." XCMS commands in relevant 
functions used to process mzML files for peak picking from mzML files were: 
xcmsSet(method="centWave", peakwidth=c(22.25,109.5),  mzdiff= .0084, snthresh=5.7, ppm = 
3, noise = 100, bw = 6, minfrac = .8 ), xset2 <- group(xset, bw = 6, minfrac = .8), and retcor( 
xset2, method="loess"). 
  
Discussion 
  As large scale LC-MS datasets proliferate, robust peak-picking software are needed to 
reliably convert the gigabytes to terabytes of raw spectra data to mass features.  Optimally, these 
informatics solutions must be sensitive enough to detect biological signals, but have safeguards 
to prevent flagging non-metabolite signals (salts, contaminants) as mass features.  They must 
also contend with drift in the mass and retention time domains. Our software suite addresses the 
common problem of “noisy data in, noisy-data out” issue encountered by many LC-MS pipelines 
by first leveraging isoLock to correct for mass drift.  This represents a significant improvement 
in the ability to quantify mass features in LC-MS data.  Essentially, this software suite provides a 
statistical workaround to the fact that metabolomics lags behind the other -omics partly because 
the discipline lacks a foundational technology equivalent to polymerase chain reaction (PCR).  
While other -omics (i.e. many forms of genomics and transcriptomics) frequently overcome 
signal to noise issues by using PCR to physically amplify genetic material, no such resource 
exists to selectively amplify metabolites.   We demonstrate that this should no longer be a 
stumbling block, however, as merging mass spectra and chromatograms can exponentially 
increase signal to noise ratios, and paves the way for new, more powerful peak-picking 
algorithms.  Our suite addresses the concerns that arise with pooling data into a merged data file 
such as mass drift (isoLock) and retention time drift (anovAlign).   
 
 Application of the IAA suite to real world data demonstrates that it improves sensitivity, 
without incurring the tradeoff of false positives.  This is accomplished, generally, by formulating 
the computational problems of LC-MS peak picking in a way such that the law of large numbers 
is utilized advantageously. For example, while individual spectra are noisy, pooling samples 
increases signal to noise ratios.  This is somewhat counterintuitive, but immediately evident, 
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when the data is examined.  On average, signal hyperconcentrates around metabolite masses 
across multiple runs.  This pooling would, ordinarily, cause signal smearing due to mass drift.  
However, solving for mass drift (isoLock) beforehand avoids this complication. This can explain 
many of the significant advantages of our workflow when re-analyzing the previously published 
dataset from the Broad Institute.  Many of the peaks in this dataset demonstrated substantial 
splitting (when processed using Progenesis QI) due to noise in both the mass and retention time 
domains.  Resolving these issues via isoLock did not reduce sensitivity, and rigorous denoising 
via permutation tests, assured restriction of false positives.  This made it possible for the IAA to 
recapitulate the vast majority of high priority peaks predicted by Progenesis, while being able to 
detect many more.  
The second application of the IAA suite, on a smaller but more complex plant metabolomics 
dataset (multiple biological replicates across genotype, time and treatment) demonstrates that 
these computational advantages translate into enhanced biological signal, compared to peaks 
quantified using a typical XCMS workflow.  This analysis shows that the IAA suite results in not 
only more peaks but also, peaks with greater average variance explained by a biological model. 
 
  Importantly, the principles underneath these algorithms are highly generalizable and our 
suite is modular – allowing effective application to other workflows besides LC-MS, such as 
direct injection experiments which are popular in burgeoning single cell metabolomics, a context 
which could benefit immediately from these tools.  These tools will also have utility to other 
contexts which require accurate LC-MS signal processing beyond untargeted metabolomics, 
such as proteomics or the use of mass spectrometry for non-traditional analytical settings, such 
as satellite applications in the space sciences (Arevalo et al., 2020).  Additionally, autoCredential 
can be modified such that the mass spacing in an isopair is reflective of the mass gain of various 
chemical species (not simply the difference between 12C and 13C), making this pipeline 
amenable to labeling experiments and detection of inorganic compounds. 
 
   Despite the improvements represented by our software package, significant hurdles 
remain in LC-MS informatics.  This software provides an excellent platform whose future 
development can address these issues. One such challenge is to match mass features to 
compounds of known molecular identity.  Another related problem is how to associate adducts 
and other degeneracies with parent ions.  Our suite of isolock, autoCredential and anovAlign 
provides powerful tools whose future development will address these challenges which are 
particularly important for pharmaceutical and academic applications.  For example, knowing that 
a predicted mass feature is accompanied by an isotopologue provides confidence that an ion is 
not a salt or artifact of noise.  Future algorithms will leverage the isotopic signature of polished 
mass spectra to not only determine metabolite masses, but also the most likely number of 
carbons via modeling the decay in intensity between M0 and M1 peaks.  This will improve 
confidence in the annotation of degenerate mass features, by ensuring that adducts (and higher 
level isotopologues) agree in the molecular formula of their parent ions, at least in terms of the 
number of carbons and improve database matching.  Future modifications of these algorithms 
will also be applicable to Ms2 data, further improving the ability to translate signal into 
biological insight via determination of the molecular formula for high confidence peaks.  
Ultimately, we believe that the extremely effective peak picking capacities of our software suite 
(isoLock, autoCredential and anovAlign) will allow LC-MS driven metabolomics to affordably 
and accurately interrogate the complete metabolome.  
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Software availability: 
Code for each of the algorithms is available at https://github.com/kilgain/MassSpec/tree/main. 
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Supplementary Figures 

Supplementary Figure 1: 
  1,000 Masses were chosen at random.  A mass slice of 5 ppm around the region of each 
mass was then selected in order to create a signal profile representatitve of the region around the 
mass. These mass regions were then randomly resampled into subsets of 100 masses, thus 
creating a representative subpopulations of mass-intensity background signals. The median 
number of signals in each .0001 Da Bin in each 100 Mass subpopulation was then calculated in 
order to determine the number of signals expected in each .0001 Da Mass region due to purely 
background noise signals.  The cutoff for autoCredential (50 counts per each .0001 Da ) 
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