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Stable precision grips using the fingertips are a cornerstone of human hand dexterity.
Occasionally, however, our fingers become unstable and snap into a hyper-extended
posture. This is because multi-link mechanisms, like our fingers, can buckle under tip
forces. Suppressing this instability is crucial for hand dexterity, but how the neuro-
muscular system does so is unknown. Here we show that finger stability is due to the
stiffness from muscle contraction and likely not feedback control. We recorded maximal
force application with the index finger and found that most buckling events lasted less
than 50 ms, too fast for sensorimotor feedback to act. However, a biomechanical model
of the finger predicted that muscle-induced stiffness is also insufficient for stability at
maximal force unless we add springs to stiffen the joints. We tested this prediction in
39 volunteers. Upon adding stiffness, maximal force increased by 34±3%, and muscle
electromyography readings were 21±3% higher for the finger flexors (mean±standard
error). Hence, people refrain from applying truly maximal force unless an external
stabilizing stiffness allows their muscles to apply higher force without losing stability.
Muscle recordings and mathematical modeling show that the splint offloads the demand
for muscle co-contraction and this reduced co-contraction with the splint underlies the
increase in force. But more stiffness is not always better. Stiff fingers would interfere
the ability to passively adapt to complex object geometries and precisely regulate force.
Thus, our results show how hand function arises from neurally tuned muscle stiffness
that balances finger stability with compliance.
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I. INTRODUCTION

Precision grip, as the name implies, is the precise
and stable application of fingertip forces. In this grip
style, the fingers are relatively stationary while the fin-
gertips exert force (Napier, 1956). A stable precision
grip played a key role in the evolution of human hand
dexterity (Karakostis et al., 2018; Kivell, 2015; Marzke,
1997, 2013). But the inherent mechanics of multi-link
chains make the fingers prone to many types of insta-
bilities when the fingertip experiences forces (Hogan and
Buerger, 2018; Murray et al., 2017). The nervous sys-
tem often masks these instabilities by using a lifetime
of learned control strategies. So we rarely witness them
in everyday experience. Understanding how the nervous
system suppresses these instabilities is needed to explain
hand function and its loss due to disease or aging.

Instabilities that arise when pushing on surfaces can
be categorized as those affecting the tip where the force
is applied (Bicchi and Kumar, 2000; Hogan and Buerger,
2018; Murray et al., 2017; Okamura et al., 2000; Ran-
court and Hogan, 2001; Whitney, 1987), or the internal
degrees of freedom associated with posture (Bunderson
et al., 2008; De Groote et al., 2017; Klimchik et al., 2015).
Tip instabilities are particularly severe when a stiff fin-
ger or limb makes contact with a rigid surface (Hogan
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and Buerger, 2018). When feedback control is used
to precisely apply tip forces, the fingertip’s position in
space may become unstable and start to oscillate, which
also destabilizes the applied force (Hogan and Buerger,
2018; Whitney, 1987). One strategy is to increase the
compliance of the finger or limb (Akella and Cutkosky,
1989; Hanafusa and Asada, 1977; Kao et al., 1997; Ma-
son, 1981). Such stiffness control and its generalization
to impedance control in dynamic contexts (Hogan and
Buerger, 2018) have proven quite effective in controlling
contacts in robots.

Postural stability of the internal degrees of freedom has
received considerably lesser attention than tip stability,
and has only been studied in models (Bunderson et al.,
2008; De Groote et al., 2017) or robots (Klimchik et al.,
2015). Kinematic chains with many internal degrees of
freedom are prone to buckle and lose postural stabil-
ity under external compressive forces (supplement §S1.1
and §S1.2), analogous to the buckling of slender columns.
Consider pushing a rigid surface with the index fingertip
(figure 1), and focus on the mechanics within the plane
of the finger. In this setting, the index finger has three
internal degrees of freedom between the knuckle and the
tip. When the tip does not slip, it is subject to two trans-
lational constraints within the finger’s plane. Thus the
finger is kinematically underdetermined by one degree.
It is this degree of freedom that could become unstable.

To suppress postural instabilities, humans appear to
use a conflicting strategy to that of stable force control,
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namely to make the limb stiffer. Potential instabilities
of limb or finger posture when applying contact force
have not been studied much, but a related behavior of
stabilizing the posture of a handheld tool has been inves-
tigated previously (Rancourt and Hogan, 2001). When
using a tool like a handheld drill, more force applied on
the wall makes the orientation of the drill more suscep-
tible to becoming unstable (Rancourt and Hogan, 2001).
Rancourt and Hogan (2001) found that hand stiffness is
critical for stabilizing the drill. The nervous system uses
stiffening as a strategy for postural stability in other con-
texts as well, such as dealing with unstable environmen-
tal dynamics when moving the arm (Burdet et al., 2001)
or the destabilizing effects of motor noise (Selen et al.,
2009). Higher stiffness, which is harmful for tip stability
under force feedback control, may be what stabilizes the
internal degrees of freedom of our fingers and limbs. But
the role of stiffness remains debated and unresolved in
several contexts involving postural stability. Examples
include standing in humans (De Groote et al., 2017; Pe-
terka, 2002) and cats (Bunderson et al., 2008), and arm
(Selen et al., 2009) and finger movements (Venkadesan
and Valero-Cuevas, 2008). We presently lack studies to
tease apart the role of stiffness versus other strategies
such as feedback control for maintaining postural stabil-
ity during contact.

In this paper, we investigate postural stability of our
fingers during maximal force application by using the
index finger as a representative example. We study
flexed postures where musculotendon tissues support the
joint loads because of its implications for understanding
forceful precision grasps (Karakostis et al., 2018; Kivell,
2015; Marzke, 2013; Marzke and Marzke, 2000), and do
not consider hyper-extended postures due to potential
of injury when producing large tip forces (Marco et al.,
1998; Schweizer, 2001; Vigouroux et al., 2006). Our ap-
proach is inspired by the study of Rancourt and Hogan
(2001), who used maximal force tasks to probe the neural
strategy that stabilizes the posture of a handheld drill.
The central idea is to challenge the nervous system by
making the internal mechanical response as unstable as
possible. Because buckling-type instabilities are gener-
ally more severe at higher forces, we examined how the
fingertip’s maximal force is affected by external mod-
ifications to the finger that alter stability. Moreover,
the muscle activation pattern that people use at sub-
maximal fingertip force is a linearly scaled version of the
pattern that they use at maximal force (Valero-Cuevas,
2000; Valero-Cuevas et al., 2009; Venkadesan and Valero-
Cuevas, 2008). So, understanding stability at maximal
force may also help us understand the properties at sub-
maximal forces. In a series of experimental and math-
ematical studies, we show that feedback control alone
cannot stabilize the postural instability during maximal
tip force application, and people rely on the spring-like
properties of muscles to suppress the instability.
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FIG. 1 Buckling of the index finger joints. Sample trial
showing the change in the angle of the distal interphalangeal
joint (DIP), ∆θDIP. Every fifth sample is plotted for clar-
ity (black circles). inset: Linear-log plot of the exponential
growth in DIP angle. The time-constant τ for the unsta-
ble growth in ∆θDIP is found using the slope. For this trial,
τ = 20 ms.

II. RESULTS

A. Postural instability of the index finger

We first conducted a study with nine volunteers to
assess the severity of the buckling instability in the in-
dex finger (see Methods). They were instructed to ap-
ply the largest normal force possible on a rigid surface,
with no explicit instruction about stability. We asked
them to repeatedly try to push harder until we recorded
33 instances of postural instabilities. The instability
manifested as a sudden change in the finger’s posture
where one of the three finger joints ended up in a hyper-
extended angle. The distal interphalangeal joint (DIP)
buckled most frequently, in 28 out of 33 instances that we
captured (figure 1, movie 1). So, we used the DIP angle
to analyze the temporal characteristics of the buckling
event. The DIP joint angle grew exponentially in the
trials (R2 > 0.9). The time-constant was smaller than
45 ms in 19 out of 28 trials, and never exceeded 80 ms
(figure 1, table S3).

Neural feedback control alone cannot stabilize such
rapid instabilities because the nerve conduction latency
for the round-trip from the hand to the spinal cord ex-
ceeds 45 ms, and the fastest sensory-driven finger re-
sponse is usually timed at 65 ms or more (Johansson and
Birznieks, 2004). Despite these latencies, the finger was
stable for most of the trials (40 out of 63 trials were
stable in 7 subjects, the number of non-buckling events
were not recorded in the remaining two). Thus, we pos-
tulate that muscle contraction and the joint stiffness it
induces is responsible for stability. Muscles are intrinsi-
cally stiffer when producing more force, a property known
as short-range stiffness (Cui et al., 2008; Rack and West-
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bury, 1974). Therefore, the harder someone pushes with
the fingertip, the higher the muscle and overall finger
stiffness ((Hajian and Howe, 1997), supplement §S1.1).
So, stability could just be a byproduct of the muscles
contracting to produce force. Alternatively, the need to
remain stable may constrain the maximum exertion of
fingertip force. We performed additional analyses and
experiments to find out whether stability is a byproduct
or a constraint.
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FIG. 2 Modeling study to test if stability is a byprod-
uct of fingertip force. a, Schematic of a planar model of
the index finger that maintains contact at the fingertip and is
driven by seven muscles. b, The optimal activation pattern
~aopt that maximizes the vertical component of the fingertip

force at a fixed posture ~θ = (30◦, 30◦, 10◦). This is the pos-
ture used in subsequent experiments in this paper. c, The
decision tree to test whether muscle-induced stiffness leads to
stability when the activation pattern is chosen solely to max-
imize fingertip force. The computed force and stiffnesses at
~θ = (30◦, 30◦, 10◦) are in blue. The finger is unstable at the
maximal force because kjoint < kmin.

B. Stability at maximal force

We investigated postural stability using a previously
developed detailed anatomical model of the index fin-
ger (Valero-Cuevas et al., 1998; Venkadesan and Valero-
Cuevas, 2009, supplement §S1.1). The finger is mod-
eled as a three-link, planar kinematic chain, and driven
by seven muscles (figure 2a). The tip is constrained to
not translate to capture the absence of fingertip slip, but
can freely rotate (Venkadesan and Valero-Cuevas, 2009).
Muscle activations are specified by a normalized 7D vec-

tor ~a with values between 0 and 1, which govern both
muscle force and stiffness (Bunderson et al., 2008; Cui
et al., 2008, supplement §S1.1). Activating the muscles
drives the finger’s joints with torques ~τ , applies a finger-
tip force ~f , and induces stiffness K at the joints.

The planar finger model has only one unconstrained
degree of freedom. So the constrained dynamics of the
finger are defined by a projection of the finger’s dynamics
onto the null-space of the constraints that are imposed
on the fingertip (supplement §S1.1). The orthonormal
basis vectors of the null-space are expressed as columns
of the null-space matrix P, which in the case of the single
degree of freedom finger reduces to a single null-space
vector. Thus, the 3×3 stiffness matrix K associated with
the multi-link finger reduces to a scalar stiffness kjoint =
PTKP when projected onto the finger’s unconstrained
degree of freedom. In the absence of feedback control,
stability requires the muscle-induced joint stiffness kjoint

to exceed a minimum threshold kmin that depends on the
tip force (supplement §S1.2),

kjoint > kmin for stability. (1)

We computed the optimal muscle activation pat-
tern ~aopt that maximizes the vertical force without
any constraints imposed on stability (figure 2b, supple-

ment §S1.3). This activation produces a tip force ~fopt

and joint stiffness kjoint because of muscle’s short-range
stiffness. This stiffness kjoint was compared with the min-
imum stiffness kmin that is needed for stability at the
maximal force ~fopt (figure 2c, supplement §S1.2). For
the same posture as the experiments (30◦, 30◦, 10◦), we
found kjoint = 109 N mm and kmin = 295 N mm. So, the
finger is unstable for the activation pattern that maxi-
mizes tip force (figure 2). We also examined all possible
postures that do not hyper-extend the joints while main-
taining the same tip position as (30◦, 30◦, 10◦). None
of those postures were stable at the maximal force (fig-
ure S1). Therefore, stability does not automatically arise
as a byproduct of force application.

Once the finger becomes unstable, the posture grows
along the unstable mode specified by the null-space vec-
tor P. For the posture (30◦, 30◦, 10◦), the null-space vec-
tor is P = (0.06 −0.49 0.87)T. The third, DIP compo-
nent of the vector is the biggest in magnitude, indicating
that the largest change in joint angles would occur at the
DIP joint. This behavior is consistent with the recorded
buckling events in human subjects (section II.A) and nu-
merical simulation of the nonlinear equations of the finger
model (supplement §S1.4, movie 2).

The results support the hypothesis that stability rather
than muscular capacity constrains the maximal voluntary
fingertip force. Therefore, we predict that people should
be able to produce more force if their finger is externally
stiffened to reduce or eliminate the postural instability.
We tested this prediction in experiments with volunteers.
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FIG. 3 Maximal force upon stiffening the finger. a,
Three conditions were tested at the posture (30◦, 30◦, 10◦):
no splint (free), 2-joint split (2J), or 1-joint splint (1J). b,
For a sample subject, the shaded rectangles show the time-
window when the maximal force occurred, pink for 2J and
yellow for free, overlaid on the vertical force, and raw EMG
recordings from FDP and FDS. EMG rectangles are scaled 6×
for clarity, but the force rectangles are to scale. c, Change in
the maximal normalized force fmax, flexor EMG, and extensor
EMG for the 2J and 1J conditions away from the free finger.
The bars and whiskers show the mean and standard error,
respectively. d, Scatter plots and regression fits of the change
in EMG versus change in force between the splint and the free
conditions, for the 2J and 1J conditions.

C. Effect of externally stiffening the finger

We instructed 39 consenting volunteers to stably ap-
ply the largest force they could with their index fingertip
against a rigid surface (see Methods). To test the predic-
tion of the model, we compared the maximal force of a
free index finger with trials where we externally stiffened
the finger by attaching a custom-molded thermoplastic
splint. Motivated by the large DIP component of the un-
stable mode, we used two splint designs (figure 3a). One
that stiffened the DIP and the PIP joints (2J splint), and
another that only stiffened the PIP joint (1J splint). Be-

cause the finger has only one net degree of freedom, both
splint designs would stiffen the finger, with lesser stiff-
ness induced by the 1J splint. We recorded, smoothed,
and processed the fingertip force and surface electromyo-
grams (EMG) of the flexor digitorum profundus (FDP)
and flexor digitorum superficialis (FDS) from all 39 sub-
jects and additionally recorded EMG of the extensor dig-
itorum communis (EDC) in a subset of 16 subjects. The
maximal force Fmax is the maximum of the force trace
that is smoothed using a 1-second window. The normal-
ized maximal force fmax is the maximal force normalized
by the maximal force from all the trials of a given subject.
The flexor EMG measure EMGflexors is a PCSA-weighted
average of the RMS of the filtered and MVC-normalized
EMG from the two flexors during the 1-second window
where force is maximized (see Methods, figure 3b). Data
from one subject was excluded because their finger re-
peatedly buckled without the splint and did not yield
reliable measurements.

Presence of a splint significantly affected the normal-
ized maximal force fmax (F2,263 = 144.57, p < 0.0001),
and EMGflexors (F2,263 = 40.22, p < 0.0001). The or-
der of trials, free or splinted first, did not have a sig-
nificant effect on fmax or EMGflexors (F1,218 = 2.13,
p = 0.15 and F1,190 = 0.46, p = 0.49, respectively).
There was also no significant interaction between splint
condition and the order of presentation of the trials on
either fmax or EMGflexors (F2,68 = 2.28, p = 0.11 and
F2,69 = 2.36, p = 0.10, respectively). Relative to the
free finger, the normalized maximal force significantly in-
creased for the 2-joint and 1-joint conditions by ∆fmax =
0.34±0.03 and 0.23±0.03, respectively (mean±standard
error, figure 3c, p < 0.0001 in both conditions). There
was subject-to-subject variability in the magnitude of in-
crease, but the force increased for all but three subjects
with the 2-joint splint, and for all but one with the 1-joint
splint. EMG from flexors also significantly increased for
the 2-joint (p = 0.04) and 1-joint conditions (p = 0.04),
by ∆EMGflexors =0.21±0.03 and 0.14±0.03, respectively
(mean±standard error, figure 3c). Statistically signifi-
cant differences were not found between the two splint
types either for normalized force or EMG from flexors.

The normalized force increase ∆fmax and ∆EMGflexors

are significantly correlated for both the 2-joint (R2=0.39,
p < 0.0001) and 1-joint conditions (R2=0.47, p <
0.0001), despite the generally noisy nature of surface
EMG measurements, showing that the increased tip force
was because of higher muscle force (figure 3d). Detailed
statistics and verification of assumptions are in supple-
ment §S2.

We conclude that the nervous system refrains from pro-
ducing truly maximal force. Upon stiffening the finger,
especially the DIP joint in the 2-joint splint, the maxi-
mal force increased. This is consistent with the predic-
tion that once stability is no longer a concern, higher
force can be applied. The increase in flexor EMG ac-
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tivity with force indicates that the nervous system could
tap into additional muscle force capacity, but only when
the finger was externally stabilized. We next perform an
analysis of co-contraction in order to test this idea on
additional muscle force capacity with the splint and to
understand the origin of inter-subject variability.
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FIG. 4 Co-contraction and maximal force. a, Ratio
of extensor to flexor activity for the free, 1J, and 2J splint
conditions (n=16). The bars and whiskers show the mean
and standard error, respectively. b, Pictorial demonstration
of the hypothesis that the free finger is co-contracted relative
to the splinted condition, as seen by a steeper slope for the
free finger compared to the splint condition in the normalized
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two flexors, FDS and FDP, and the extensor, EDC for the free,
1J and 2J splint conditions (n=16). The bars and whiskers
show the mean and standard error, respectively. d, Scatter
plot and regression fit of the change in EDC co-contraction
versus the change in normalized force. The scatter plot is
colored by the magnitude of the free finger’s baseline force
(n=16). e, Scatter plot and regression fits of the free finger’s
baseline force versus the change in force between the splinted
and the free conditions for the 2J (black, n=38) and the 1J
splints (gray, n=29).

D. Co-contraction and maximal force

The idea behind more force with the splint is that the
splint provides stiffness for stability, thus allowing muscle
co-contraction to decrease, which in turn allows for more
force from the flexors that contribute substantially to
tip force. To analyze changes in co-contraction with the
splint, we recorded surface EMG from the extrinsic ex-
tensor EDC in a subset of 16 subjects, in addition to the
extrinsic flexors FDP and FDS. The force and the EMGs
are normalized per subject by the respective largest
recorded value, and the aggregate EMGflexors is defined
as in §II.C. The extensor and flexors are approximate
antagonists, implying that lesser co-contraction would
manifest as a reduction in the ratio EMGEDC/EMGflexors

upon adding the splint. A one-way ANOVA with finger
condition (free, 1J, or 2J) as the factor and the ratio
EMGEDC/EMGflexors as the dependent variable was sig-
nificant (F2,45 = 3.80, p = 0.03). Post hoc contrasts show
that the ratio is significantly smaller for the 2J splint
(p = 0.049, ∆ratio = −0.43), and borderline for the 1J
splint (p = 0.06, ∆ratio = −0.42) compared to the free
finger (figure 4a, supplement table S10).

However, the finger’s muscles are not organized as a
simple uniarticular agonist-antagonist system. There-
fore, producing joint torques to apply fingertip force in
a specific direction leads to co-activation of even seem-
ingly antagonistic muscles (Valero-Cuevas et al., 1998),
and produces joint stiffness as a byproduct (§II.B, fig-
ure 2b). To account for these complexities and refine the
analysis of co-contraction, we use the decomposition of
the total EMG recorded for a muscle as one portion that
contributes to fingertip force with stiffness as a byprod-
uct, and another that lies in the null-space of the mapping
from muscle contraction to fingertip force and thus con-
tributes solely to finger joint stiffness but not the fingertip
force. We term the latter component as co-contraction.
The hypothesized mechanism for force increase with the
splint is that the null-space component needed for stabil-
ity is lowered upon adding the splint. Therefore, if the
splint reduced the co-contraction component, the same
force could be produced with lesser EMG, i.e. the ratio of
EMG to force would be lesser with the splint (schematic
of hypothesis in figure 4b). The one-way ANOVAs with
finger condition as the factor and the EMG to force ratio
as the dependent variable were significant for all three
muscles (FDS: F2,45 = 4.29, p = 0.02, FDP: F2,45 =
3.69, p = 0.03, EDC: F2,45 = 9.79, p = 0.0003, figure 4c).
Post hoc contrasts show that the 2J splint always led to a
significant decrease in the EMG to force ratio, but the 1J
splint led to a significant ratio decrease only for the EDC
(supplement table S11). As seen from the optimization
for tip force (§II.B, figure 2b), EDC has a nil or weak
projection onto the tip force for the posture used in our
study. So EDC activity is probably most strongly asso-
ciated with finger stiffening. This understanding of EDC
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function is consistent with the results that its EMG was
most sensitive to adding a splint, 1J or 2J, and responded
by nearly halving in magnitude.

The co-contraction analysis could also help understand
the inter-individual differences in force increase with the
splint. It is possible that not all subjects increased their
force output by the same relative magnitude when the
splint was added because of differences in the extent of
reduction in co-contraction. More important is the new
understanding that the splint is simply a means to al-
low the subject to reduce their co-contraction and the
force gain is hypothesized to be a result of the reduced
co-contraction. To assess this, we extended the analysis
of EMG to force ratio to assess how well the decrease
in EDC contraction could explain the change in maxi-
mal voluntary force. The EDC is chosen as the primary
muscle for the analysis because of its more direct role in
finger stiffness and minimal or nil contribution to finger-
tip force. Informed by previous studies that showed that
people linearly scale their EMG patterns as they vary
their force (Valero-Cuevas, 2000; Valero-Cuevas et al.,
2009; Venkadesan and Valero-Cuevas, 2008), we com-
pared the free finger’s EDC EMG with a linearly scaled
version of the splinted condition EDC EMG to estimate
the excess EMG in the free finger relative to the splinted
condition if the force were the same (figure 4b). The
excess EDC co-contraction ∆ccEDC is defined as the dif-
ference in EMG between the linearly scaled splinted trial
and the free trial according to,

∆ccEDC = EMGEDC,splint
fmax,free

fmax,splint
−EMGEDC,free. (2)

Lesser co-contraction would imply a negative ∆ccEDC.
A linear regression, with the change in normalized force
∆fmax as the dependent variable and ∆ccEDC as the
regressor, showed significant correlation between co-
contraction change and force change (F1,30 = 16.93, p =
0.0003, R2 = 0.36, slope±standard error= −0.65 ± 0.16,
intercept±standard error= 0.15 ± 0.05, figure figure 4d).
We also tested an alternative hypothesis that the force
gain with the splint is minimal or zero in some subjects
because they are not limited by stability to begin with
and would exhibit high force capabilities even without
the splint. We tested this using a regression with the
non-normalized increase in force as the dependent vari-
able and non-normalized force under free conditions as
the regressor. This regression was not significant for ei-
ther the 2J or 1J splints (2J: F1,36 = 1.48, p = 0.23,
1J: F1,27 = 1.34, p = 0.26, figure 4e). Furthermore,
the change in co-contraction ∆ccEDC was not signifi-
cantly correlated with the free finger’s maximal force
(F1,30 = 3.31, p = 0.08), thus making it unlikely that dif-
ferences in co-contraction reduction are simply because
some subjects were strong to begin with.

The inter-individual variability in reduction in co-
contraction may reflect differences in willingness to ex-

plore new areas of muscle contraction space that is un-
like the normal experience. The baseline force was un-
able to explain the force difference showing that people
who are strong to begin with could still produce more
force with the splint, so long as they decreased their co-
contraction. Surface EMG, that too from a partial subset
of the muscles of the finger, is a potentially noisy measure
of co-contraction but, as we find, with predictive power.
The choice of the EDC that is informed by the modeling
analysis probably helped detect the role of co-contraction
in force production despite potential limitations of sur-
face EMGs. Future studies could refine our results and
probe learning and neuromotor exploration of the feasi-
ble space of strategies by using intramuscular readings
from all seven muscles.
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FIG. 5 Muscle co-contraction, stiffness, and stability
at sub-maximal force. a, Monte Carlo simulations densely
sampled the four-dimensional space of activation patterns, all
of which produce the same tip force but vary in stiffness and
stability (fy = 9.1 N, fx = −8.0 N). Using the nondimen-
sional variables ηb/kmin and (kjoint − kmin)/kmin for stability
and stiffness, respectively, the 4D space of activations col-
lapses into a family of 1D curves that are parametrized by
the damping value. Near the origin, the 1D stability-stiffness
curves merge into a universal line with slope = −1 accord-
ing to the asymptotic relation (3). b, The unstable optimal
activation ~aopt (inset) that maximizes tip force, and c, the
marginally stable pattern ‘2’ are linearly scaled to vary the tip
force. The joint stiffness kjoint and the minimum stiffness kmin

also scale linearly, thus preserving the stability properties of
the original activation pattern. (inset c,) Maximally scaled
up version of pattern ‘2’. Posture for all plots: (30◦, 30◦, 10◦).
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E. Sub-maximal forces

The trade-off between co-contraction and maximal
force suggest that at sub-maximal forces, the muscles
may have the leeway to co-contract and modulate stiff-
ness without affecting force. To investigate this, we used
the finger model and numerically found activation pat-
terns with minimum and maximum joint stiffness kjoint

when applying a sub-maximal force (‘1’ and ‘4’ in fig-
ure 5a, supplement §S1.5, posture: 30◦, 30◦, 10◦). Both
these patterns produced the same horizontal force as the
maximal solution (figure 2b) but just 9 N of force verti-
cally, which is 4.68× lower than maximal. Because the
force is sub-maximal, there is a four-dimensional null-
space for the mapping from muscle activations to finger-
tip force. All the null-space activation patterns apply
the same joint torques and tip forces, but their stiffness
would vary between those of ‘1’ and ‘4’.

We sampled the null-space using 6×100 million Monte
Carlo simulations at 6 different damping values b (sup-
plement §S1.5), and show the results on a nondimen-
sional stability-stiffness space (figure 5a). The finger was
critically or over damped, like past measurements (Ha-
jian and Howe, 1997). The nondimensional variables are
found from asymptotic analysis of the eigenvalue equa-
tion (S1.11) near the point of marginal stability when
kjoint = kmin. The minimal stiffness for stability is given
by kmin = f0`, where f0 is the tip force magnitude and `
is a posture-dependent length scale (supplement §S1.1).
As kjoint nears kmin, the stability-dominating eigenvalue
η that has the largest real part is asymptotically given
by,

ηb/kmin ∼ −(kjoint − kmin)/kmin. (3)

This trade-off between stability ηb/kmin and stiffness
(kjoint − kmin)/kmin is a universal (asymptotic) relation-
ship that is independent of the finger’s mass, and ac-
counts for differences in damping, posture, force magni-
tude, or force direction.

Within the null-space are stable patterns like ‘3’ (sup-
plement §1.5, movie 2) and marginally stable patterns
like ‘2’ with stable and unstable patterns on either side
of it. Importantly, as the co-contraction decreases and
the finger approaches marginal stability, the nondimen-
sional stability-stiffness curves collapse onto a universal
line with slope = −1 given by equation (3). Thus, more
co-contraction improves stability but also makes the fin-
ger stiffer.

We used the model to also examine stability when a
specific activation pattern is linearly scaled, in turn lin-
early scaling the tip force. This is motivated by simul-
taneous intramuscular EMG recordings from all seven
muscles in humans (Valero-Cuevas, 2000; Valero-Cuevas
et al., 2009; Venkadesan and Valero-Cuevas, 2008), which
showed that people exert sub-maximal forces by linearly

scaling the activation pattern that they used to stably ex-
ert maximal force. We found that the stability character-
istics are preserved by linearly scaling the activation pat-
tern because the governing equations (S1.10) and (S1.12)
are linear (supplement §S1). So, producing sub-maximal
forces by scaling the maximal force pattern ~aopt does not
help stability and the finger remains unstable (figure 5b).
However, for the marginally stable activation pattern ‘2’
that produces sub-maximal force, the marginal stabil-
ity is preserved whether the activations are scaled up or
down (figure 5c).

III. DISCUSSION

We have shown that maximum exertion of force is lim-
ited by stability than muscular capacity, and people re-
strict how hard they push because the finger would oth-
erwise buckle. Neural feedback control alone cannot help
because the buckling instability is too fast relative to
sensorimotor latencies during maximal voluntary effort.
So people rely on the stiffness arising from muscle con-
traction. Although the short-range stiffness of muscle is
proportional to force, it does not automatically guarantee
stability. Only select combinations of muscle contraction
and co-contraction patterns can help stiffen and stabilize
the finger. Indeed, people are significantly co-contracted
when producing fingertip forces, likely for stability. Our
co-contraction analysis from EMG measurements and the
finger model shows that stiffness due to muscle-induced
co-contraction is a viable stabilizing strategy only at sub-
maximal forces. That is why, even when instructed to
maximize force, people apply lesser force than the capac-
ity of their muscles.

Muscle’s stiffness and open-loop stability of contacts
are important not only for maximal force production but
also for precision grips using lighter forces. We have
shown that if a specific activation pattern lends stability
at maximal force, linearly scaling it down to apply lighter
forces will also maintain stability. Past experimental
measurements lend support to the idea that people rely
on the preservation of stability by linear scaling. When
instructed to vary their fingertip force magnitude, peo-
ple linearly scaled the muscle activation pattern that they
used for maximal stable voluntary force (Valero-Cuevas,
2000; Valero-Cuevas et al., 2009; Venkadesan and Valero-
Cuevas, 2008). We have shown that stability at maximal
voluntary force is because of muscle-induced stiffness and
not feedback control. When people use scaled versions of
the stable maximal voluntary pattern, the finger would
continue to remain stable without the need for feedback
control. So, we infer that people rely on muscle’s short-
range stiffness for stability when using precisions grips
with light forces. Thus, open-loop stability may be a key
part of human hand dexterity.

Although neural feedback control is not a viable sta-
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bilizing strategy to prevent buckling at maximal force, it
might still be effective at lighter forces. This is because
the real part of the eigenvalue that governs the rate of
growth of instabilities could be smaller at lighter forces.
For a pattern ~a = α~a0 that scales an unstable pattern
~a0 by a factor α < 1, the original eigenvalue η0 becomes
η = αη0(b0/b), where b0 and b are the damping associ-
ated with the original and scaled patterns, respectively.
How damping scales with muscle contraction is presently
unclear, but it is hypothesized to scale nonlinearly with
activation (Hajian and Howe, 1997; Nguyen et al., 2018).
So, the eigenvalue could vary with the scaling factor α
and the unstable growth of the finger’s posture may be
slower at lower activations. A high force that was outside
the ability of feedback control to stabilize could thus be-
come stabilizable at lower activation levels. But stability
is still a key objective for selecting coordination patterns
that allow feedback to augment the role of muscle’s stiff-
ness. Future studies are needed to test whether neural
feedback is used in this manner, or whether people rely
mostly on open-loop stability based on muscle’s stiffness
even when applying light fingertip forces.

In contrast to our finding that neural feedback alone
cannot stabilize the finger’s internal degrees of freedom
at maximal force, previous studies on endpoint force and
position control find that neural feedback is important
(Chib et al., 2009; Doemges and Rack, 1992; Hu et al.,
2017; Mugge et al., 2009). One difference from our study
is that these past studies investigated low forces, where
feedback may prove effective. Furthermore, our results
do not show that neural feedback is absent, and instead
only shows that neural feedback cannot be effective at
maximal force. For example, stretch reflexes will exist at
maximal force and would likely be elicited by the buckling
event. But the rapidity of the event would render the
reflexes unable to prevent the finger from buckling. At
lower forces, these reflexes and other slower sensorimotor
feedback may indeed complement the role of muscle co-
contraction and whether that is the case remains to be
seen through future studies that may use sensory blocks
or other means to investigate the quetion. Nevertheless,
the fact that the subjects knew how far to push in order
to not buckle indicates that trial-to-trial feedback and
learning were used to limit the maximal force and to
select appropriate co-contraction strategies that balance
the trade-off between force maximization and stability
maintenance.

More stiffness is better for postural stability, but has
implications for everyday hand usage. Although people
pre-shape their hand to match the object about to be
gripped (Jeannerod et al., 1995), the fingers need to fur-
ther deform upon contact to adapt to the object’s precise
geometry (Santello and Soechting, 1998). Compliance is
essential for the fingers to deform and adapt the grasp to
the object’s geometry (Erdmann and Mason, 1988; Kao
et al., 1997; Kazemi et al., 2012; Mason, 1981), and is

also needed to avoid the well-known instabilities associ-
ated with tip force control (Hogan and Buerger, 2018;
Whitney, 1987). But the compliance for adaptive grasp-
ing has to be traded-off against stiffness for postural sta-
bility. More work is needed to understand this trade-off,
but the augmentation of open-loop stability by neural
feedback at light forces may help manage the trade-off.
The universal stability-stiffness curve shows how some
patterns may be weakly unstable and allow the finger to
be more compliant than strictly enforcing open-loop sta-
bility. Thus, our findings on the stability-stiffness trade-
off may underlie the selection of strategies for stable yet
compliant grasps. Open questions also remain on how
such strategic muscle co-contraction is acquired through
experiential learning, and how these patterns are related
to the vigorously debated neuromuscular synergies (San-
tello et al., 2016; Takei et al., 2017; Weiss and Flanders,
2004). Nevertheless, the generality of our results imply
that muscle’s role in open-loop stabilization must be con-
sidered.

Our results and analyses present some possible gen-
eralizations and implications to other areas. Simulation
studies have found that contact-induced postural insta-
bilities could also occur in the legs of standing cats and
humans (Bunderson et al., 2008; De Groote et al., 2017).
Because inertia is not involved in the universal nondimen-
sional stability-stiffness curve at the margin of stability,
our results are applicable to multi-link chains of diverse
length scales. As animal limbs typically have more mus-
cles than kinematic degrees of freedom, joint stiffness can
be controlled independent of the torques and therefore
strategies may exist to use co-contraction to maintain
stability. In robotic limbs also, stiffness and torques can
be independently controlled because variable impedance
actuators are increasingly prevalent (Vanderborght et al.,
2013). Therefore, our results apply broadly across an-
imals and machines for achieving compliant, adaptive,
and stable contacts. Furthermore, our results are also
applicable when the condition of a rigid tip contact is
relaxed to include a compliant contact, such as during
multi-fingered grasps. In force control, contact compli-
ance is beneficial for stability. But the postural instabil-
ity relies on the tip force magnitude alone, and impor-
tantly, the proportionality between the minimum joint
stiffness for stability and tip force would remain. What
compliant contact, such as in multi-fingered grasps may
help with is to reduce the severity or remove the trade-
off between compliance for force control versys stiffness
for postural stability. Finally, our results have impli-
cations for data normalization methods and the use of
maximum voluntary contraction (MVC) measurements
in the clinical functional testing, and in neuromechani-
cal and biomechanical studies (Burden, 2010; Halaki and
Ginn, 2012). Such measurements should either consider
externally stabilizing the limb in question or find means
to delineate the role of stability versus muscular capacity
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in maximal EMG and force production.

IV. METHODS

We conducted two separate experiments with the vol-
untary participation of right-handed adults, who had no
history of hand injuries or impairments: (i) experiment 1
to record finger buckling: n=10, 7M, 3F, age 24–47 years,
and (ii) experiment 2 to test maximal force with splints:
n=39, 26M, 13F, age 18–47 years. Subjects studied the
consent form and the experimenter discussed potential
risks of the study and their option to withdraw from the
study at any time. The experiment was performed af-
ter the subject provided informed consent and in accor-
dance with the relevant guidelines and regulations. The
detailed procedures for seeking informed consent were ap-
proved by Yale University’s IRB (HIC# 2000029475). A
similar procedure was followed for the study conducted
in India, with approval from the Institute Ethics Com-
mittee (Human Studies) of the National Centre for Bi-
ological Sciences, Bengaluru, India. One subject from
experiment 1 was excluded because they never exhibited
buckling events, which was the goal of the study. One
subject from experiment 2 was excluded because their
finger repeatedly buckled and did not yield reliable data.

A. Experiment 1: Buckling timescale

Subjects maintained a flexed index finger posture of
their choosing, with the fingertip pushing on a horizon-
tal steel plate (figure 1). They were asked to maximize
the distal fingertip force while maintaining a flexed fin-
ger posture with no regard for postural stability. Circular
3 mm reflective markers were attached to the radial as-
pect of the metacarpophalangeal (MCP), proximal inter-
phalangeal (PIP) and distal interphalangeal (DIP) joints,
the fingertip, and the second metacarpal’s proximal end.
A high-speed camera (Photron FASTCAM Mini AX100,
MEC, Westfield, IN) recorded the instances of buckling
in the lateral (radial) view of the index finger at 4500 fps
for Subject 1 and 5000 fps for rest of the subjects. Trials
were separated by 2 minutes to reduce fatigue.

We estimated the change in the joint angles ∆θx where
x is either DIP, PIP, or MCP from the videos using cus-
tom software. The time-history ∆θx(t) was used once the
angle increased past 2◦, and until the subject-dependent
end of buckling (supplement table S3). To estimate the
time-constant τ for the hypothesized exponential growth
∆θx(t) = ∆θ0e

t/τ , we performed a linear regression of
log ∆θx(t) versus t using the middle half of the data to
avoid end-effects associated with the log-transform. The
slope of the semi-log plot is equal to 1/τ (figure 1, inset).
The estimated time-constants and R2 of the fits are re-
ported for the thirty-three trials where the finger buckled

(supplement table S3). Matlab (version 9.8.0.1323502,
Natick, MA) was used for the image and regression anal-
yses.

B. Experiment 2: Splinted finger

The second experiment tested the model’s predictions
by measuring the change in maximal voluntary force
when the stability of the finger was altered by externally
stiffening it.

Experimental apparatus: Subjects wrapped their thumb
and unused fingers of the right hand around a ground-
mounted non-slip handle and pushed on a horizontal steel
plate with their index finger. The handle was adjusted so
that the MCP, PIP, and DIP joints were at 30◦, 30◦, and
10◦ flexion, respectively (figure 3a). Using established
methods (Valero-Cuevas et al., 2009, 1998; Venkadesan
and Valero-Cuevas, 2008), the fingertip was covered by
a subject-specific custom-molded thermoplastic thimble
(Turbocastr, T-Tape Company, The Netherlands) and
fixed using Vetrap bandage (3M, Maplewood, Minnesota)
to yield a well-defined contact point and consistent fric-
tion.

To stiffen the finger, we attached subject-specific ther-
moplastic 2-joint and 1-joint splints to the dorsal face
of the index finger using Vetrap bandage. The splints
were molded to each subject’s finger at the posture (30◦,
30◦, 10◦). The 2-joint splint covered MCP, PIP and DIP
joint and stiffened the PIP and DIP joints, but the 1-
joint splint covered only the MCP and PIP joints, and
stiffened the PIP joint.

Experimental protocol: The subjects were asked to try
2–6 times to apply the greatest vertical force they could
during the measurement window without letting the fin-
ger buckle or the tip slip on the surface, with at least 2
minutes rest between tries. Three finger conditions were
tested: free, 2-joint splint (2J), and 1-joint splint (1J).
For 9 subjects (set A) we tested free and 2J fingers with
a 15 s measurement window. For 14 subjects (set B),
the free, 1J, and 2J fingers were measured using a 20 s
window. For 16 subjects (set C), the free, 1J, and 2J
fingers were measured using a 15 s window. To control
for motor learning, the order was randomized in set A
(free before splint for 7 subjects) and set C (free before
splint for 7 subjects). To control for fatigue, the free fin-
ger was always first in set B. Subjects were acclimatized
to the splint by handling objects and lightly pushing on
surfaces before measurement. The vertical fingertip force
was displayed as a live trace on a monitor. The finger-
tip never slipped, but trials where the free finger buckled
were excluded.

Data recording: Fingertip force was recorded at 2000 Hz
by rigidly fixing a six-axis load cell (model 45E15A4-
M63J-EF, JR3 Inc., Woodland, CA) between the steel
plate and a rigid bench. Surface-EMG was acquired at
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2000 Hz using wireless electrodes (Trigno Wireless EMG
System, Delsys Inc., Natick, MA). We palpated the ven-
tral side of the forearm when the subject resisted forces
on the index finger to identify the two extrinsic flexors,
flexor digitorum profundus (FDP) and flexor digitorum
superficialis (FDS), and attached the electrodes to the
skin over the muscle belly using hypoallergenic double-
sided tape and Vetrap bandage. For Set C, additional
EMG was recorded from one extensor, extensor digito-
rum communis (EDC). We verified the electrode place-
ment by asking subjects to push the experimenter’s hand
using their index finger while observing the EMG traces.

Signal processing: EMG recordings were band-stop fil-
tered in the range 48 − 52 Hz and 98 − 102 Hz with zero
phase distortion to remove electrical noise for Set A and B
(India uses 50 Hz AC supply), and in the range 58−62 Hz
and 118−122 Hz for Set C (USA uses 60 Hz AC supply).
We then high pass filtered at 20 Hz to remove movement
artifacts, full-wave rectified and passed through a fourth-
order Butterworth filter with a time constant of 0.23 s to
adjust for the muscle’s excitation-contraction dynamics
(Valero-Cuevas et al., 2009).

The force and the processed EMG were moving aver-
age filtered with a 1-second window (figure 3b) to find
the maximal voluntary force Fmax and the EMG at that
time. The fingertip force vector across trials was oriented
5.0±2.8 deg (mean±SD) from the vertical and we verified
that the results were not sensitive to the moving average
window size (figure S2). We normalized the maximal
voluntary force Fmax of each trial by the maximal forces
from all the trials of that subject to obtain a normalized
force measure fmax. For each subject, we normalized the
EMG recordings of each muscle with the moving average
filtered maximal activity of the corresponding muscles. A
PCSA-weighted average of the smoothed and normalized
flexor EMG signals was used to find EMGflexors.

Statistical analysis: We report the mean±SE of the
change in fmax and EMGflexors, calculated as the differ-
ence between the splinted and the free conditions, for
the 2J and 1J splint to assess whether the force and
EMG significantly increased with the splint. Addition-
ally, descriptive statistics for Fmax and EMGflexors, and
the change in normalized force fmax and EMGflexors are
in the supplement (supplement table S4 and S7).

Two one-way mixed-model Type III ANOVAs using
Satterthwaite’s method tested the effect of splint (free,
1J, 2J) and order of splint conditions on fmax and
EMGflexors, with subject as a random factor. Tukey con-
trasts for multiple comparisons of means were used and
Bonferroni-Holm method were applied to find the ad-
justed p-values (supplement table S6). Two linear re-
gressions, one for each splint type, modeled the relation-
ship between change in fmax (dependent) and change in
EMGflexors (explanatory) (supplement table S8).

For 16 subjects in Set C, we measured EMGEDC along
with EMGFDP and EMGFDS. An ANOVA tested the

effect of finger condition on the ratio of EMGEDC to
EMGflexors. Three ANOVAs tested the effect of finger
condition on the EMG to normalized force ratios for FDS,
FDP, and EDC. Bonferroni-Holm method were applied
on the multiple comparison of means to find the adjusted
p-values (supplement table S10 and S11). Using the dif-
ference between the linearly scaled splinted EMGEDC for
producing the same normalized maximal force as the free
finger and the EMGEDC for the free condition, we cal-
culated the change in co-contraction of EDC (∆ccEDC)
between the splinted and the free condition (figure 4a).
Three linear regressions tested the effect of change in co-
contraction ∆ccEDC on the change in normalized finger-
tip force ∆fmax, the effect of free finger’s baseline force
Ffree (N) on the change in co-contraction ∆ccEDC, and
the effect of free finger’s baseline force Ffree (N) on the
change in fingertip force ∆Fmax (N), respectively.

We verified statistical assumptions of normality and
equivariance (supplement figure S3, S4, and S7). Signifi-
cance level for all statistical tests was a priori set to 0.05.
RStudio (version 1.1.463, RStudio Team, 2016) was used
for the statistical tests. The complete dataset is provided
as supplement files.
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